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ABSTRACT

The Covid-19 pandemic affected financial markets in several ways, influencing the
dynamics of the relationships between asset classes. We investigate the connected-
ness between cryptocurrencies and international energy markets from 2018 to 2021
using the time-varying parameter vector autoregression approach. Net total direc-
tional connectedness suggests that the cryptocurrency and energy indexes had het-
erogeneous roles. Bitcoin and Ripple coin were the net receivers of shocks, while
Ethereum switched from receiver to transmitter. The US energy market was a per-
sistent net transmitter of shocks, while Asian energy markets were consistent net
shock receivers. Pairwise connectedness reveals that cryptocurrencies can explain
the volatility of the energy markets during the difficult period of the pandemic at
the beginning of 2020. We provide insights for portfolio optimization and policy
implications.
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1 INTRODUCTION

With billions of US dollars in transactions and the emergence of a futures market that
provides tools for risk hedging, cryptocurrencies have garnered significant attention
in recent years, not least due to their potential to revolutionize financial systems. As
a novel type of trade asset, cryptocurrencies exhibit price fluctuations distinct from
those seen in traditional financial assets (Corbet et al 2019), and these fluctuations
were intensified by the Covid-19 pandemic (Wang et al 2021).

Besides having idiosyncratic characteristics, cryptocurrencies can influence other
asset classes and markets, such as energy. One potential linkage between cryp-
tocurrencies and energy markets arises from the process of crypto mining and the
proof-of-work consensus algorithm, which requires substantial computational power
and, consequently, significant energy consumption. As cryptocurrencies have gained
popularity and their market value has increased, concerns have been raised about
the environmental implications and sustainability of their energy-intensive mining
operations.

The fact that crypto mining consumes a lot of energy has an impact on energy mar-
kets in several ways. First, the increased electricity use by miners may strain regional
power grids, increasing energy costs and possibly causing blackouts in impacted
areas. Second, because miners are frequently motivated to use electricity during off-
peak times when it is less expensive, the concentrated demand for energy from crypto
mining can potentially upset the established dynamics of energy supply and demand.
Additional energy infrastructure investments, designed to meet the growing demand,
could raise costs for both consumers and utility companies.

Concerns with the environmental impact of crypto mining have recently been
raised (see, for example, Afjal and Clanganthuruthil Sajeev 2022; Corbet et al 2021;
Sapra and Shaikh 2023; Yuan et al 2022; Zheng et al 2023). The electricity con-
sumption associated with mining operations contributes to greenhouse gas emis-
sions, exacerbating climate change. In fact, it has been estimated that the carbon
footprint of mining Bitcoin is comparable to that of some small countries. This has
prompted calls for developing and adopting more environmentally friendly consen-
sus mechanisms, such as proof-of-stake, requiring less energy. As cryptocurrencies
develop further, addressing the energy market linkage will be essential to ensuring
their long-term viability and reducing their environmental impact.

The relationship between asset classes, including cryptocurrencies, is dynamic and
state-dependent and, given that few studies have covered the pandemic period, con-
clusive evidence for its effect on these linkages is challenging to find. Our paper
therefore makes several contributions to the literature. First, we fill a gap in the
contemporary literature by investigating the relationship between volatility in the
energy market and in the crypto market. In particular, our paper adds to the existing
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studies that focus on the impact of periods of uncertainty, such as the Covid-19 pan-
demic, on this relationship. Second, to study the relationships between the crypto and
energy markets, we employ a novel empirical approach that combines time-varying
parameter vector autoregression (TVP-VAR) with an extended joint-connectedness
approach. Finally, we observe a net total directional relationship between crypto
and energy markets, suggesting that each cryptocurrency and energy index has a
heterogeneous role and investment implications.

We follow Balcilar et al (2021) in employing TVP-VAR combined with an
extended joint-connectedness approach. We select this combined empirical approach
due to its various advantages. Specifically, it does not reduce the number of observa-
tions. Thus, it can be used in the case of short data spanning, though this is not the
case studied here.

We show that each cryptocurrency and energy index played a different role in the
total net directional correspondence. Bitcoin and Ripple coin were the net receivers
of shocks, while Ethereum switched from receiver to transmitter. The US energy
market was persistently a net transmitter of shocks, while Asian energy markets
were consistent net receivers. Pairwise connectedness reveals that cryptocurrencies
can explain the volatility in the energy markets during the difficult period during
the Covid-pandemic at the beginning of 2020. We provide insights for portfolio
optimization and policy implications.

The rest of the paper is organized as follows. Section 2 reviews the related liter-
ature. Section 3 describes the data and models. Section 4 contains our findings and
discussions. Section 5 states our conclusions and offers policy implications.

2 RELATED LITERATURE

More than a decade after their introduction, Bitcoin and other cryptocurrencies have
become attractive investments for investors, with billions of US dollars in transac-
tions and the emergence of a futures market that provides tools for risk hedging.
As a novel type of trade asset, cryptocurrencies exhibit price fluctuations distinct
from those seen in traditional financial assets (Corbet et al 2019), and these fluctu-
ations were intensified by the Covid-19 pandemic (Wang et al 2021). According to
related studies, Covid-19 has been the source of an exceptional surge in economic
policy uncertainty and an unprecedented energy market reaction (Ashfaq et al 2019;
Bašta and Molnár 2018; Bigerna et al 2021; Cevik et al 2020; Cui et al 2021; Qin
2020; Jiang and Yoon 2020; Khalfaoui et al 2019; Li et al 2020; Liu et al 2020;
Mokni 2020; Nazlioglu et al 2020; Pavlova et al 2018; Sarwar et al 2020). The
major energy market indexes frequently activated circuit breakers in the first quarter
of 2020. During this period, the price of Ethereum decreased by roughly 44%, while
the price of Bitcoin decreased by about 50% in one day, making it one of the worst
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one-day declines in history. The Covid-19 bear market produced the first signifi-
cant losses since active Bitcoin trading began (Conlon and McGee 2020). Using the
informational-efficiency framework, Lahmiri and Bekiros (2020) revealed that dur-
ing the Covid-19 pandemic, crypto markets had more idiosyncratic characteristics,
such as instability and irregularity, than equity markets.

It is possible there is an asymmetric spillover effect between energy and crypto
markets. Many scholars contend that the hash rate1 and half-annual supply generate
price volatility in cryptocurrencies (Lamothe-Fernández et al 2020). Energy market
price changes, however, are caused by business earnings and fundamentals. Mean-
while, news events such as severe public-health situations could change investor sen-
timent and the flow of capital between the two markets, thus increasing the danger
of risk spillover. More specifically, even though crypto markets are mainly driven
by sentiments, their connection to energy markets could be fundamental and driven
by physical energy consumption during the crypto mining process and other valida-
tion procedures. Several studies have investigated such channels, providing mixed
conclusions depending on the cryptocurrency type, energy market and time period
(see, for example, Afjal and Clanganthuruthil Sajeev 2022; Corbet et al 2021; Sapra
and Shaikh 2023; Yuan et al 2022; Zheng et al 2023). These studies emphasize
the potential linkage and spillover effects between the two markets by focusing on
the intensity of energy demand for crypto operations and the implications for sus-
tainable development. Hence, the possible bidirectional relationship and informa-
tion spillover between cryptocurrencies and energy markets remain unidentified. We
therefore analyze data from 2018 to 2021, considering the periods before and after
the outbreak of Covid-19 to show the dynamic connectedness between cryptocurren-
cies and energy markets. We use the three dominant cryptocurrencies and six global
energy indexes.

It is worth emphasizing that, unlike energy markets in the United States and else-
where, the Bitcoin market lacks a protective circuit-breaker mechanism, exacerbating
the asymmetric contagion phenomena between it and other markets. According to
Afjal and Clanganthuruthil Sajeev (2022) and Kumah and Mensah (2022a,b), cryp-
tocurrencies have a weak correlation with energy indexes; therefore, portfolio diver-
sification should reduce risk. Others, however, reveal positive correlations depending
on the sample period, making cryptocurrency an unusual instrument for hedging in
energy markets (Moussa et al 2020; Jareño et al 2021). For instance, Ji et al (2019),
Das et al (2019) and Attarzadeh and Balcilar (2022) used regime-switching mod-
els to investigate the contagion effect between energy markets and centralized crypto

1 The hash rate is a measure of the computational power on a blockchain network. It is based on
how many guesses are made per second. The overall hash rate helps determine the security and
mining difficulty of a blockchain network.
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markets, documenting strong contagion from the energy market to the crypto market,
as well as coskewness of returns. Okorie (2021) analyzed the information spillover
between several crypto and electricity markets, concluding that the return and trading
volumes of the crypto markets are net information transmitters, while the markets’
volatility and the demand for electricity in the United States, China and Japan are net
information receivers in the system, providing environmental implications for such
a spillover.

The combination of TVP-VAR with total connectedness appears to be an appro-
priate approach for investigating the interrelationships both between individual
cryptocurrencies and between cryptocurrencies and other asset classes. Using this
approach, Ersan et al (2022) studied the linkage between fan tokens and football
stocks and found that the shocks transmitted to any token are larger than those trans-
mitted to the stocks, and that tokens are the net transmitters of shocks; a decrease in
total connectedness was also documented. Jiang et al (2022) used the same method-
ology to investigate the connectedness between cryptocurrencies and financial mar-
kets; they found that Bitcoin is an investment hedge rather than a safe haven, and
that external market attention is the cause of volatility spillover movement. In con-
trast, Al-Shboul et al (2023) found that cryptocurrencies remained safe-haven tools
against market uncertainty during Covid-19, and that Covid-19 played an important
role in the impact of policy uncertainty on the connectedness between asset classes.
Giannellis (2022), providing a similar result, found that the connectedness between
cryptocurrencies is time-varying and appeared to decline during Covid-19.

Testing the dynamic connectedness between cryptocurrencies and other asset
classes is not limited to VAR models. Using wavelet techniques and quantile models,
Kumah and Mensah (2022a,b) provided evidence that cryptocurrencies are hedges
for gold investment regardless of the market regime in the medium to long term;
Demiralay and Bayracı (2021) confirmed the similar result that adding cryptocur-
rencies to equity market portfolios enhances portfolio diversification. Elsayed et al
(2022) used Bayesian models to find a significant causal relationship between cryp-
tocurrencies. Except for the Chinese yuan, however, major traditional currencies
were not found to significantly affect cryptocurrencies. Ghabri et al (2022) revis-
ited the volatility spillover among several asset classes, including cryptocurrencies,
during the early stages of the Covid-19 pandemic. They documented the safe-haven
function of gold and Bitcoin, but found Bitcoin’s safe-haven function to have been
unstable over the pandemic lockdown period. They concluded that gold is the most
promising hedge and safe-haven asset, as it remained stable and thus exhibited
superiority over both Bitcoin and Tether.

The dynamic linkage between asset classes, including cryptocurrencies, is not
determined a priori. The relationship depends on the horizon, the market condi-
tion (bear or bull) and the technical approach. Few studies investigating such link-
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ages have covered the pandemic lockdown period. Our paper is therefore timely
because it covers an extended pandemic period (before and during) and investigates
the dynamic linkage between energy markets and cryptocurrencies, offering prac-
tical implications for portfolio balancing and for policymakers. Thus, we fill a gap
in the contemporary literature by examining the relationship between energy market
and crypto market volatility using novel methodologies and including the uncertain
Covid-19 period.

3 DATA AND MODELS

3.1 Data and preliminary analysis

Our overall sample period is January 1, 2018 to December 31, 2021. We study
three cryptocurrencies, chosen on the basis of market capitalization: Bitcoin (BTC),
Ethereum (ETH) and Ripple coin (XRP).2 We study six global energy indexes
(specifically, Morgan Stanley Capital International (MSCI) energy equity indexes):
the MSCI USA Energy Index (USA), MSCI China A Energy Index (CHN), MSCI
Korea Energy Index (KOR), MSCI Japan Energy Index (JPN), MSCI Europe Energy
Index (EUR) and MSCI UK Energy Index (UK).3

Regarding the entire sample, all series in Table 1 show positive average returns.
As indicated in part (a), the XRP and ETH markets have the highest variance, mak-
ing them the two riskiest assets throughout the sample periods. Further, all series
are leptokurtic, which indicates that the distributions have fatter tails than a normal
distribution. According to the Jarque–Bera test (Jarque and Bera 1980), all assets
are substantially nonnormally distributed. All results are at least at the 1% signifi-
cance level when the unit-root test by Elliott et al (1996) is used. Finally, the Fisher–
Gallagher test (Fisher and Gallagher 2012) finds that the returns and squared returns
are autocorrelated, implying that the interrelationships of the series may be modeled
using a TVP-VAR method with a time-varying variance–covariance structure. Since
the study aims to find the linkages between crypto and energy markets, we examine
these markets’ interconnectedness before and during the Covid-19 pandemic.

Parts (b) and (c) of Table 1 highlight the main statistics of two subsamples. We
use the World Health Organization’s (WHO) time line to split the sample into before
and after the Covid-19 outbreak. The WHO publicly revealed the coronavirus to the
world for the first time on December 31, 2019. Accordingly, we assume that the pre-
Covid-19 outbreak subperiod is from January 1, 2018 to December 31, 2019 and the
post-Covid-19 outbreak subperiod is from January 1, 2020 to December 31, 2021.

2 Prices of crypto assets were collected from Bloomberg: www.bloomberg.com/crypto.
3 Values of energy indexes were collected from MSCI: www.msci.com.
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FIGURE 1 Volatilities of returns of the crypto and energy markets.
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Surprisingly, all indexes show positive performance during the Covid-19 pandemic
except for the UK energy index.

Moreover, the mean returns of BTC, ETH and XRP all increased following the
start of the Covid-19 crisis, with the value of BTC and ETH returns changing from
negative to positive. Further, the investigated energy markets became volatile during
the pandemic, except for CHN. The unit-root and weighted-portmanteau test results
for the subperiods are similar to those for the whole sample, confirming that the TVP-
VAR approach with a time-varying variance–covariance structure is appropriate for
modeling interconnectedness between our chosen asset classes and markets.

The volatilities of all markets are show in Figure 1.
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3.2 Models

Previous empirical papers usually employ generalized VAR methods, as in Diebold
and Yılmaz (2012). However, one limitation of this approach is its reliance on
an arbitrarily chosen rolling-window size for time-variant connectedness. Several
suggestions have been introduced to resolve this issue, such as using the mean
squared prediction error of the rolling-window VAR employed (Antonakakis et al
2020) or the joint spillover index (Lastrapes and Wiesen 2021). We follow Bal-
cilar et al (2021) in using time-varying parameter vector autoregression (TVP-VAR),
combined with an extended joint-connectedness approach. We select this combined
empirical approach due to its various advantages. Specifically, it does not reduce
the number of observations. Thus, it can be used in the case of short-spanning data,
although this case is beyond the scope of this paper.

Moreover, the presence of an outlier does not cause a significant change in our
results, and this approach also provides a better adjustment to parameter changes than
generalized VAR. The most important step in our chosen strategy is computing the
net pairwise connectedness, which detects transmission mechanisms between energy
and crypto markets. The findings of this paper bring critical, insightful knowledge
and warnings for investors and authorities.

3.2.1 TVP-VAR

In this subsection, we outline the TVP-VAR connectedness approach of Antonakakis
et al (2020), in combination with the work of Diebold and Yılmaz (2012). For our
paper, the Bayesian information criterion suggests a lag length of 1 for estimating
the TVP-VAR model:

yt DMtyt�1 C "t ; "t � N.0;˙t /; (3.1)

vec.Mt / D vec.Mt�1/C �t ; "t � N.0;Rt /; (3.2)

where yt , yt�1 and "t are .Z � 1/-dimensional vectors andMt and˙t are .Z �Z/-
dimensional matrixes; .Mt / and �t are .Z2�1/-dimensional vectors, whereas Rt is
a .Z2 � Z2/-dimensional matrix. This model is designed to allow a time-varying
series of all parameters .Mt /. The model also assumes time-varying variance–
covariance matrixes, ˙t and Rt . Most previous studies show that variances and
covariances – especially in the energy market – are time-dependent, adding market
and investment risks. In the following step, we adopt the Wold representation the-
orem to transform TVP-VAR into a time-varying parameter vector moving-average
(TVP-VMA) model:

yt D

1X
hD0

Nh;t"t�1;

Journal of Energy Markets www.risk.net/journals



Dynamic connectedness between energy markets and cryptocurrencies 11

where N0 D Iz and "t is a vector of white-noise shocks (symmetric but not orthog-
onal), with Z � Z time-varying covariance matrix E."t"

0
t / D ˙t . Thus, the L-step

forecast error can be written as

't .L/ D ytC1 �E.ytCL j yt ; yt�1; : : : /; (3.3)

with a forecast-error covariance matrix equal to

E..'t .L/'
0
t .L/// D Nl;t˙tN

0
h;t : (3.4)

Koop et al (1996) and Pesaran and Shin (1998) proposed the L-step-ahead general-
ized forecast-error variance decomposition (GFEVD), which will be useful in devel-
oping our framework. The impact of a shock in variable j on gSTij;t , denoting the
(scaled) GFEVD, is formulated as follows:

'
gen
ij;t .L/ D

E.'2
i;t .L/ �EŒ'i;t .L/ �E.'i;t .L/ j "j;tC1; : : : ; "j;tC1/�

2/

E.'2
i;t .L//

; (3.5)

'
gen
ij;t .L/ D

PL�1
lD0 E.e

0
iNlt˙tej /

2

.e0j˙tej /
PL�1

lD0 E.e
0
iNlt˙tN

0
lt
ei /2

; (3.6)

gSTij;t D
'

gen
ij;t .L/PL

jD1 '
gen
ij;t .L/

; (3.7)

where ei is an eiZ�1 zero-selection vector with unity in its i th position, and 'gen
ij;t .L/

is the proportional reduction in the L-step forecast-error variance of variable i due
to conditioning on the future shocks of variable j . As

ZX
jD1

'
gen
ij;t ¤ 1;

Diebold and Yılmaz (2012) proposed to normalize it to unity by the row sum,
resulting in the generalized spillover table, gSTij;t .

The generalized spillover table shows the total directional connectedness between
several variables, which illustrates the magnitude of the network’s effect on variable i
and how much variable i influences the whole network, respectively. These metrics
can be written as

X
gen;from
i �;t D

ZX
jD1; i¤j

gSTij;t ; (3.8)

X
gen;to
i!�;t D

ZX
jD1; i¤j

gSTij;t : (3.9)

www.risk.net/journals Journal of Energy Markets



12 M. Harasheh et al

In addition to the total connectedness measure, the net total directional connected-
ness shows whether variable i is a net influencer or influenced by the network:

X
gen;net
i;t D X

gen;to
l!�;t

�X
gen;from
i �;t :

If Xgen;net
i;t > 0, then variable i is a net shock transmitter (affecting the network), and

if Xgen;net
i;t < 0, then it is a net shock receiver (influenced by the network).

Another noteworthy indicator of connectedness is the total connectedness index
(TCI), which is a measure of interconnectedness within the network and can also be
viewed as market risk. The TCI is used by portfolio and risk managers as a useful
tool for diversification. It is calculated as the average total directional influence from
(or to) others, formulated as follows:

gSTt D
1

Z

ZX
iD1

X
gen;from
i �;t D

1

Z

ZX
iD1

X
gen;to
i!�;t : (3.10)

A higher TCI represents greater market risk due to the spillover effect directly af-
fecting portfolio balancing.

Finally, the pairwise directional spillover also occurs at a more disaggregated
level; it offers information about the bilateral interrelationships of two variables and
is defined by

X
gen;net
ij;t D gSTgen;to

ij;t � gSTgen;from
ij;t :

If Xgen;net
ij;t > 0 or Xgen;net

ij;t < 0, this definition implies that variable i dominates
variable j when gSTgen;to

ij;t has a greater impact on gSTgen;from
ij;t .

3.2.2 Extended joint-connectedness method

Here, we try to find the equivalent of gSTij;t for the joint-connectedness method,
namely, jSTij;t , under the following conditions:

X
jnt;from
i �;t D

ZX
jD1; i¤j

jSTij;t ; (3.11)

X
jnt;to
� i;t D

ZX
jD1; i¤j

jSTj i;t ; (3.12)

jSTi D
1

Z

ZX
iD1

X
jnt;from
i �;t D

1

Z

ZX
iD1

X
jnt;to
i!�;t : (3.13)

In this context, Lastrapes and Wiesen’s (2021) scaling approach is generalized,
indicating that (3.11) must hold. In addition, the diagonal elements of the joint-
connectedness table must stay the same since the row sums of the original table and
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the joint-connectedness table are 1. Thus, the scaling factor � is different for each
row, which leads to the following equations:

�i D
X

jnt;from
i �;t

X
gen;from
i �;t

; (3.14)

� D
1

Z

ZX
iD1

�i : (3.15)

Our � scaling and the one from the joint-connectedness method are the same, except
that our approach is more flexible because each row has its own scaling factor. Thus,
the following steps have to be performed:

jSTij;t D �i gSTij;t ;

jSTi i;t D 1 �X
jnt;from
i �;t ;

X
jnt;to
i!�;t D

ZX
jD1; i¤j

jSTij;t :

Finally, because the scaling factor varies by row, the net total and pairwise directional
connectedness can be computed by the following measures:

X
jnt;net
i;t D X

jnt;to
i!�;t �X

jnt;from
i �;t ; (3.16)

X
jnt;net
ij;t D gSTj i;t � gSTij;t : (3.17)

In this way we extend the joint-connectedness approach to overcome the limi-
tations of the row-sum normalization method (Caloia et al 2019). The extended
method deals with multiple issues of the original connectedness approach through
the following improvements, among others.

� The rolling-window size is not arbitrarily chosen.

� The estimation results are not outlier-sensitive, thanks to the multivariate
Kalman filter method.

� VAR coefficients and variance–covariance matrixes are allowed to vary over
time in order to better reflect financial market volatility, providing crucial
information to portfolio and risk managers.

� The row-sum normalization issue has been addressed according to Lastrapes
and Wiesen (2021).

� The flexible version of the joint-connectedness approach aligns with the orig-
inal joint-connectedness approach, allowing the computation of net pairwise
directional connectedness measures. Such measures are important in showing
the relative bilateral strength of variables.
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4 EMPIRICAL FINDINGS AND DISCUSSIONS

We evaluate the effects of the uncertain Covid-19 period on the interrelationships
between crypto and energy markets by analyzing changes in the TCI before and dur-
ing Covid-19. We also discuss the net total connectedness and net pairwise connect-
edness of assets’ returns,4 offering insights into the influence of each market within
our proposed framework. Consequently, each market can be classified as a net shock
transmitter or a net receiver. Finally, following Lastrapes and Wiesen (2021), we find
that joint spillover is a helpful index for exploring the reasons behind interrelation-
ship changes. A similar procedure is also applied to two subsamples to indicate the
influence of the Covid-19 pandemic on the network.

4.1 Average time-variant dynamic connectedness

Using the full set of observations and the subsets based on the day the Covid-19
pandemic was declared by the WHO, the average results regarding interrelationships
of all markets in the network are reported in Table 2. The diagonal elements report
the volatility of returns of a particular market, accounted for by its own shocks. The
bilateral contributions of one market to others’ volatility are summarized in the off-
diagonal elements. Note that each row corresponds to the contributions that a partic-
ular market’s forecast-error variance receives from the markets heading each column,
while each column corresponds to the effects of a particular market on the markets
labeling each row.

Regarding the entire sample, the average TCI is 45.97%, suggesting that idiosyn-
cratic effects can explain 54% of the forecast-error variance of the system. The aver-
age results presented in Table 2 indicate that comovement occurs between the studied
markets, with CHN, EUR, JPN, KOR and UK tending to be shock receivers. Among
the net receivers, the only cryptocurrency is BTC. With a tendency to influence other
markets rather than be influenced, ETH, XRP and USA are the three net transmitters
of shocks.

By considering the two subsets of observations, this paper sheds light on how
a market can act differently according to the given periods (ie, state-dependence).
Before Covid-19, each market in the network was still the primary factor in its
own development and evolution (TCI D 45:23%). It is worth noting that the TCI
increased to 46.13% when the Covid-19 pandemic started, and that idiosyncratic
effects were responsible for 56.09% of volatility in the network during the pandemic.
These findings show that, during a time of uncertainty, substantial comovements
occurred. Pre-Covid-19, the average joint connectedness of BTC, ETH, CHN, KOR
and UK showed them to be shock receivers. During the same sample period, XRP,

4 We use “returns” to refer to log returns, calculated as log Ret D log.Pt=Pt�1/.
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TABLE 2 Averaged joint connectedness. [Table continues on next page.]

(a) Whole sample

BTC ETH XRP USA CHN EUR JPN KOR UK From

BTC 33.33 37.06 24.65 4.45 0.72 1.10 1.10 0.75 1.83 68.89
ETH 36.71 29.93 27.75 4.63 0.94 1.12 1.31 1.28 1.32 72.29
XRP 21.62 25.43 48.29 4.05 1.01 1.01 1.18 1.06 1.35 53.93
USA 3.31 3.41 3.04 66.81 3.50 5.05 8.65 4.40 6.81 35.41
CHN 1.33 1.54 1.53 7.52 57.57 3.40 3.08 23.35 3.65 44.65
EUR 1.48 1.76 1.61 6.93 2.23 67.53 2.03 4.19 16.35 34.80
JPN 1.30 1.82 1.61 9.52 1.80 1.81 80.03 2.04 2.05 22.19
KOR 0.85 1.78 2.12 8.43 22.67 4.85 2.78 55.79 3.71 46.43
UK 2.04 1.47 1.71 7.91 2.19 16.57 1.97 2.36 66.78 35.44

To 66.88 72.50 62.25 50.68 34.30 34.13 21.33 36.66 35.29
Net �2.12 0.32 8.42 16.38 �11.46 �0.78 �0.97 �10.88 �0.26

TCI: 46.00

(b) Pre-Covid-19 pandemic

BTC ETH XRP USA CHN EUR JPN KOR UK From

BTC 37.45 39.18 23.19 0.91 0.51 0.76 0.81 0.55 0.62 64.77
ETH 38.92 31.14 29.32 1.14 0.85 0.72 0.86 0.71 0.35 71.08
XRP 20.25 27.09 52.40 0.73 0.88 0.78 0.79 0.72 0.35 49.82
USA 1.45 1.63 1.02 71.17 2.88 5.23 9.86 3.09 5.66 31.05
CHN 0.82 1.06 1.22 6.91 53.28 4.28 4.41 27.79 3.22 48.94
EUR 1.21 1.57 1.34 6.79 2.80 69.66 2.97 4.43 12.11 32.56
JPN 1.08 1.62 1.45 12.21 1.88 2.17 77.62 2.14 2.82 24.60
KOR 0.82 1.57 2.66 12.03 25.86 6.70 3.39 47.53 3.43 54.69
UK 0.86 0.55 0.54 7.01 2.50 13.26 3.09 2.51 72.67 29.55

To 63.65 72.50 58.96 45.96 37.41 33.11 26.40 41.27 27.78
Net �1.23 1.53 9.25 15.03 �12.64 0.67 1.91 �14.53 �1.88

TCI: 45.23

USA, EUR and JPN were the markets most affecting others, being the net transmit-
ters. However, with the appearance of Covid-19, things changed. While CHN and
KOR were persistent net receivers and XRP remained a net transmitter, roles shifted
for all other markets, with BTC, ETH and UK becoming net transmitters during the
pandemic.

Our findings align with the previous related studies (Corbet et al 2021; Sapra and
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TABLE 2 Continued.

(c) During the Covid-19 pandemic

BTC ETH XRP USA CHN EUR JPN KOR UK From

BTC 31.20 34.70 25.60 5.51 0.58 1.33 1.24 0.66 3.16 70.00
ETH 34.70 31.50 25.10 5.53 0.65 1.36 1.50 1.39 2.31 70.69
XRP 22.50 22.40 48.10 4.74 0.71 0.94 1.34 0.99 2.26 54.00
USA 5.84 5.48 5.32 61.35 3.99 4.45 6.85 3.09 5.63 40.87
CHN 1.66 1.88 1.83 6.83 62.90 2.71 1.85 19.49 3.85 39.32
EUR 1.86 1.97 1.64 6.66 1.71 64.01 1.01 2.08 22.10 38.21
JPN 1.81 2.09 1.86 8.93 1.92 1.60 80.48 1.84 1.47 21.74
KOR 1.05 1.94 1.73 4.47 19.36 3.01 1.74 65.51 4.16 36.71
UK 3.67 2.85 3.29 7.73 1.77 20.37 1.12 2.54 59.70 42.56

To 71.30 71.60 64.50 50.63 29.92 34.99 16.88 31.30 44.10
Net 0.36 1.01 11.50 10.87 �10.50 �3.34 �4.97 �5.51 1.67

TCI: 46.13

The table demonstrates the average results regarding interrelationships of different markets within the network.
The diagonal elements report the volatility of returns of a particular market, accounted for by its own shocks.
The bilateral contributions of one market to others’ volatility are summarized in the off-diagonal elements. Each
row corresponds to the contributions that a particular market’s forecast-error variance receives from the markets
heading each column, while each column corresponds to the effects of a particular market on the markets labeling
each row.

Shaikh 2023; Yuan et al 2022; Zheng et al 2023). We show that the three cryp-
tocurrencies had heterogeneous roles in impacting other markets but were gener-
ally considered net transmitters during times of uncertainty. Covid-19 contributed to
markets’ uncertainty, inducing investors to rebalance their portfolios by short-selling
cryptocurrencies and buying safe-haven assets such as gold. Such behavior reduced
the pressure on crypto mining, thus lowering energy demand and contributing to
lower energy prices.

The linkage between cryptocurrencies and energy markets appears to be dynamic
and state-dependent. In a bull market, the greater demand for cryptocurrencies
increases the pressure on mining, causing energy prices to rise, and vice versa. Such a
situation would not last long, since lower energy prices, for example, would encour-
age crypto investments again and reactivate the cycle. In a nutshell, regardless of
whether they are net receivers or transmitters in the network, there is a linkage
between energy and crypto markets; thus, combining cryptocurrencies and energy
investments does not provide beneficial diversification and thus would not be helpful
for portfolio optimization.
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FIGURE 2 Time-variant total connectedness.
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Robustness checks were also conducted by changing these values. The black shaded area displays the joint
interrelationships, and the red line displays the original interrelationships.

4.2 Total time-variant connectedness

It is worth noting that the average findings are mainly used to summarize the fun-
damental interconnections. Such findings do not help investigate a single incident
or a big shock, such as the Covid-19 pandemic. As a result, employing dynamic or
time-variant total connectivity is critical for examining market dynamics and role
changes through time. One of the instances demonstrating the effectiveness of using
this model is the necessity of investigating the switching roles of net transmitter and
net receiver. The TCI’s temporal development is seen in Figure 2.5 Overall, the TCI
varies during the sample period. However, except for 2020, the figures for the TCI
over the four years are relatively stable. A visible trend from 2018 to 2020 shows
that the TCI values typically peak at the beginning of the year and move downward
toward the year’s end, before increasing slightly at the beginning of the following
year. However, after Covid-19 started to spread at the beginning of 2020, the TCI
peaked at around 72%, before rapidly decreasing toward the end of 2020. This down-
ward trends appears to have stopped in 2021, with the pattern being broken by a slight

5 In Figures 2–5 we follow Balcilar et al (2021) in using a lead of 20 and a lag of 1 for the forecast-
error variance decomposition in our TVP-VAR system.
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FIGURE 3 Net total directional time-variant connectedness of returns.
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increase in the TCI. The increase witnessed at the beginning of 2020 is similar to the
reported rise in commodity market connectedness during the global financial crisis
of 2007–9.

4.3 Net total and pairwise directional time-variant connectedness

The connectedness results in the following analysis are an additional indication for
distinguishing different markets as net transmitters or receivers. The dynamic method
also reveals the possibility of different markets switching between the two roles. We
show that the role a market plays in the system is determined by the time interval and
market type.

We start with net total connectedness, which allows us to see whether a market’s
role has changed over time compared with other markets. We next go through our
findings of pairwise net connectedness to scrutinize the evolution of interrelation-

Journal of Energy Markets www.risk.net/journals



Dynamic connectedness between energy markets and cryptocurrencies 19

ship over time and the two roles mentioned above by looking at pairs of markets.
Figure 3 depicts the findings for net total connectedness. Positive values indicate net
transmission, and negative values indicate net receipt. The previous average joint-
connectedness analysis shows alignments with the dynamic connectedness analysis.
For BTC, the market was a net receiver of shocks for most of the sample period.
ETH, EUR, JPN and UK all shared the same pattern of fluctuation between receiv-
ing and transmitting. Among them, JPN and EUR witnessed a trend of consider-
able net shock receipt after the pandemic hit. This means that, before the beginning
of 2020, the TCIs of these two markets was mostly positive. After the pandemic
began, their TCIs dropped to negatives values, and from 2020 to 2021 they remained
mainly net receivers of shocks. Among the nine markets, XRP and USA were per-
sistent net transmitters of shocks, while CHN and KOR were the two consistent net
receivers. Therefore, it can be concluded from the findings that CHN and KOR are
the two long-term net receivers of shocks, while XRP and USA are the long-term
transmitters.

Such dynamics are not surprising. China is considered the largest source of crypto
mining, accounting for about 80% of mining activity (Corbet et al 2021). Thus, it
is highly connected to crypto investment. Further, China was where the exogenous
shock of Covid-19 first appeared, causing lockdowns. This may have made China
a long-term net shock receiver, since investors replace risky assets with safe-haven
ones. The United States, on the other hand, has the world’s largest financial sector,
which may explain its role as a net shock transmitter. Understanding such dynamics
could help investors determine how quickly they would need to adjust their portfolios
before the shocks are realized. It would also benefit policy makers and regulators by
helping to establish mechanisms to absorb the impact of such shocks – for example,
by introducing circuit breakers in markets for highly connected traded assets.

Figure 4 illustrates the connectedness during the Covid-19 pandemic. BTC was a
net transmitter at the beginning of 2020, while ETH played a role as a net transmitter
from the beginning of 2020 to the beginning of 2021, before returning to being a
net receiver of shocks. XRP and USA, as expected, were still the two long-term net
transmitters, while CHN and KOR remained the long-term net receivers. After the
Covid-19 pandemic had started, JPN turned into a net receiver of shocks, with only
a few brief moments as a net transmitter at the beginning of 2020. Note that Japan
was the largest source of crypto mining after China. Therefore, the pandemic and the
falling demand for cryptocurrencies made JPN a net receiver. As for Europe, EUR
witnessed the same trend, except that by 2021 the market had become a net transmit-
ter again. These dynamics for EUR were mainly due to the pandemic: Europe was
the first bloc to impose a lockdown after China, putting pressure on energy markets
in the European Union; then, in 2021, lockdown measures were eased, and energy
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FIGURE 4 Net total directional time-variant connectedness of returns during the Covid-19
pandemic.
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demand started to soar again. While the fluctuation in the TCI values of the UK mar-
ket appeared mostly at the beginning and end of 2020, the UK market played the role
of a net transmitter for much of the time during the pandemic, due to less-stringent
Covid-19 restrictions than other European countries as well as the fact that many
European commodities exchanges are based in London.

The normalization approach employed in the original TVP-VAR methodology is
not theory-based and thus represents an arbitrary way of normalizing connectedness.
Therefore, the theoretically derived measures suggested by Lastrapes and Wiesen
(2021) are recommended. Our study now focuses on the net pairwise connected-
ness results presented in Figure 5, which are based on these measures. In particular,
we scrutinize the spillover effects of the crypto markets on different energy mar-
kets. The results indicate that the three cryptocurrencies account for the volatility of
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FIGURE 5 Net pairwise directional connectedness of returns during the Covid-19
pandemic, showing the influence of cryptocurrencies on energy markets.
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the energy markets. After the start of the Covid-19 pandemic, BTC and XRP were
the cryptocurrencies that most influenced USA, while for most of the time between
2020 and 2021, ETH was a net receiver of USA’s influence. This means that USA
had more impact on ETH than ETH had on USA. However, at the beginning of
2020, all three crypto markets peaked in their TCI values, indicating that at that time
USA was significantly impacted by cryptocurrencies. In addition, XRP was the only
cryptocurrency to remain a consistent net transmitter of shocks to USA. As one of
the long-term net receivers of shocks, CHN was consistently influenced by all three
cryptocurrencies, with the TCI values also peaking at the beginning of 2020. The
three cryptocurrencies were also net transmitters of shocks to EUR from the start
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of the pandemic onward. These results indicate that cryptocurrencies explain the
volatility of the energy markets during the pandemic.

5 CONCLUSION AND POLICY IMPLICATIONS

We adopted a network connectedness approach using a TVP-VAR methodology to
estimate the interrelationships between cryptocurrencies and energy markets in a
time-varying regime. We also introduced flexibility to the model by following the
method of Balcilar et al (2021), enabling us to attain metrics for net pairwise connect-
edness. We collected daily observations for the three largest cryptocurrencies and six
largest energy indexes from January 1, 2018 to December 31, 2021. Using the com-
plete data set, we proved that the two asset classes were somewhat interconnected.
However, during the Covid-19 pandemic, their interrelationship becomes stronger,
as illustrated by the relatively high TCI values of around 45% for the entire sample
and 46% during Covid-19. The results suggest that market risk dominates our con-
structed network. In particular, we found time-variant interrelationships within the
system that were triggered by the Covid-19 pandemic. Our findings emphasize the
influence of the pandemic on the system-wide dynamic connectedness due to funda-
mental public-health, economic and financial changes. Net total directional connect-
edness revealed that each cryptocurrency and energy index had heterogeneous roles,
depending on their internal characteristics and external shocks. Notably, BTC and
XRP were found to be net receivers of shocks, while ETH shifted from a receiver
to a transmitter. As for the energy markets, USA was a persistent net transmitters of
shocks, while CHN and KOR were the two consistent net receivers. Pairwise con-
nectedness revealed that cryptocurrencies can explain most of the volatility of the
energy markets at the beginning of 2020, during the start of the Covid-19 pandemic.

The findings provide practical implications for investors and authorities, offering
insights into contagion across diverse markets and its connection to policy. Knowing
the connectedness between various markets and asset classes can help policy mak-
ers design adequate policies to reduce market vulnerabilities and minimize negative
spillovers. Policy makers should examine the spillover of information from the BTC
market to prevent the market becoming a source of systemic risks. Improving the
regulatory system of the BTC market, mainly through the hash rate, is an effective
way to lessen the risk of contagion in the system. The dynamic supervision of energy
consumption through the sustainable reform of cryptocurrencies can also help reduce
the risk of spillovers.

We find considerable relationships between crypto and energy markets, emphasiz-
ing the potential impacts on diversification and portfolio balancing. This paper high-
lights the increasing market interrelationships during unexpected and highly uncer-
tain events such as the recent Covid-19 pandemic. Through these findings, we show
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that each asset class has its specific role within the overall network, which implies
that investors and portfolio managers should be more cautious in managing their
investments. By monitoring the contagion of uncertainty and risk, they could obtain
early-warning signals for consideration in investment strategies and dynamic port-
folio rebalancing. Understanding the dynamics of shock transmitters and receivers
would help investors determine how quickly they need to adjust their portfolios
before shocks are realized. It would also benefit policy makers and regulators by
helping to establish mechanisms to absorb the impact of such shocks – for example,
by introducing circuit breakers in markets for highly connected traded assets.

Besides highlighting cryptocurrencies’ role in financial contagion, we also open
up the discussion of their socioeconomic and environmental viability, as crypto min-
ing exerts a severe drain on electricity and thus disrupts energy supply chains and
prices. Finally, there is also a public welfare implication to our results, which can
help inform policies intended to prevent crypto markets from transmitting socially
adverse effects to energy markets. Hence, our results are invaluable for designing
policies that enhance the welfare of vulnerable groups and society at large.
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