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Abstract
Multistores are data management systems that facilitate query processing across databases based on
different data models; in addition to distributing data, integration and data fusion activities are necessary
to address complexities such as schema heterogeneity and data replication. Our multistore solution
relies on a dataspace to provide the user with an integrated view of the available data and enables
the formulation and execution of GPSJ queries. In this paper, we outline a technique to optimize the
execution of GPSJ queries by formulating and evaluating different execution plans on the multistore.
In particular, we identify different strategies to carry out joins and data fusion by relying on different
schema representations; then, a self-learning black-box cost model is used to estimate execution times
and select the most efficient plan. The experiments assess the effectiveness of the cost model in choosing
the best execution plan.
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1. Introduction

The decline of the one-size-fits-all paradigm has pushed researchers and practitioners towards
the idea of polyglot persistence [1], where a multitude of databases is employed to support data
storage and querying. The motivations are manifold, including the exploitation of the strongest
features of each system, the off-loading of historical data to cheaper DBMS, and the adoption of
different storage solutions by different branches of the same company. This trend has influenced
the discipline of data science, as analysts are steered away from traditional data warehousing
and towards a more flexible and lightweight approach to data analysis.

Multistores are characterized by 1) the replication of data across different storage systems
(i.e., there is no sharp horizontal partitioning) with possibly conflicting records (e.g., the same
customer with a different country of residence in different databases), and 2) a high level of
schema heterogeneity: records of the same real-world entity may be represented with different
structures, using different naming conventions for the same kind of data. The large volume and
the frequent evolution of these data hinder the adoption of a traditional integration approach.
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Figure 1: A graphical representation of the physical implementation of the case study; different colors
represent different databases with different data models (a). The dataspace of the case study (b).
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Figure 2: Overview of our multistore.

In recent work [2, 3, 4, 5] we have proposed a multistore solution that relies on a dataspace
to provide the user with an integrated view of the data. A dataspace is a lightweight integration
approach providing basic query expressiveness on a variety of data sources, bypassing the com-
plexity of traditional integration approaches and possibly returning best-effort or approximate
answers [6]. The dataspace is built in accordance with a pay-as-you-go philosophy, i.e., by
applying simple matching rules to recognize relationships between data structures and by letting
the users progressively refine the dataspace as new relationships are discovered [7]. Users
exploit the dataspace to formulate GPSJ (generalized projection, selection, and join) queries,
i.e., the most common class of queries in analytical applications [8]. Queries are translated into
execution plans that consist of many local computations (carried out by the single databases)
and a global computation (carried out by the middleware layer).

In this paper, we outline a technique to optimize the execution of GPSJ queries by finding the
most efficient execution plan on the multistore and experimentally assess its efficiency.



2. Overview and multistore formalization

We consider a multi-cloud architecture case study, where different branches of the same holding
rely on different storage systems to store overlapping data on the same domain. The physical
implementation is depicted in Figure 1a, with 𝐶1 to 𝐶7 representing the collections of data and
the “:” notation indicating the entities contained in each collection (notice that the document-
based database contains a single collection which uses nested structures, e.g., to embed orders
and order lines within customers). While Cloud 1 employs a relational database, Cloud 2 satisfies
the need for data variety support by relying on NoSQL systems and also stores orders’ invoices.
As the two branches belong to the same holding, both customers and products are partially
overlapped in the two cloud environments. Figure 1b shows the dataspace of the case study.

The multistore is described by a dataspace, i.e., an abstract global representation of the data
scattered across different databases. It is composed of two main concepts: entities, corresponding
to the real-world entities in the multistore (e.g., customers, products), and features, corresponding
to the attributes that describe entities (e.g., the name of customers, the brand of products). These
concepts are built in a pay-as-you-go fashion by analyzing the schemas in the data and detecting
relationships between attributes.

Figure 2 provides a functional overview of the multistore system and the supported user
interactions. Most importantly, users interact with the dataspace to formulate GPSJ queries,
which are well-suited for data analysis; a typical analytical query consists of a group-by set (i.e.,
the features used to carry out an aggregation), one or more numerical features to be aggregated
by some function (e.g., sum, average), and (possibly) selection predicates. Based on the user’s
query, the system’s Optimizer defines the query plan to be executed on the multistore in two
steps: first, the Query planner generates multiple query plans, then a Cost model is used to
choose the most convenient one. Query plans are decomposed into subplans, each identified
by macro operators that embed a tree of operations. Local subplans are computed directly on
the local databases; global subplans are computed on the middleware’s execution framework to
combine the partial results from local subplans and obtaining the final result to be returned.

In the dataspace, entities are identified by a 𝑘𝑒𝑦 that corresponds to the feature that uniquely
distinguishes the instances (e.g., the feature identifying orders in 𝐸𝑜𝑟 is 𝑓𝑜𝑖𝑑). Relationships
are expressed between two entities 𝐸𝑖 and 𝐸𝑗 on a feature 𝑓 . Most importantly, many-to-one

relationships are indicated with 𝐸𝑖
𝑓−→ 𝐸𝑗 . It is 𝐸𝑖 ⇒ 𝐸𝑘 if there exists a path of many-to-one

relationships from 𝐸𝑖 to 𝐸𝑘.
A collection 𝐶 contains data that refer to one or more dataspace entities, indicated with ℰ𝐶 ;

the portion of the dataspace described by 𝐶 is called a collection graph (𝐶𝐺𝐶 ). Depending on
the way that entities ℰ𝐶 are modeled in 𝐶 , we recognize three kinds of schema representations.

• Normal (NoR), composed by a single entity.
• Nested (NeR), composed by at least two entities connected in a single path of many-to-one

relationships from 𝐸𝑖 to 𝐸𝑘 (𝐸𝑖 ⇒ 𝐸𝑘). Each instance in 𝐶 is identified by the 𝑘𝑒𝑦 of 𝐸𝑘 ,
and contains features about the other entities in the form of nested arrays. For example,
𝐶𝑖 in Figure 3 is a fully nested collection, showing an instance of 𝐸𝑐𝑢 containing an array
of instances of 𝐸𝑜𝑟 , each containing an array of instances of 𝐸𝑜𝑙.

• Flat (FlR), which is also composed of at least two entities where ∃𝐸𝑖 ∈ ℰ𝐶 such that



{ "oid":"O010",

"orderDate":"2020-01-01",

"cid":"C001",

"firstName":"Alice"

"orderLines":[{

"olid":"OL100",

"asin":"B00794N76O",

"qty":94
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}]}

Cj

{ "cid":"C001",

"firstName":"Alice",

"orders":[{

"oid":"O010",

"orderDate":"2020-01-01",

"orderLines":[{

"olid":"OL100",

"asin":"B00794N76O",

"qty":94

},{ "olid":"OL101",

"asin":"B004PYML90",

"quantity":80

}]}]}

{ "olid":"OL100",

"asin":"B00794N76O",

"qty":94,

"oid":"O010",

"orderDate":"2020-01-01",

"cid":"C001",

"firstName":"Alice"

},{ "olid":"OL101",

"asin":"B004PYML90",

"quantity":80,

"oid":"O010",
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Figure 3: Three examples of collection graphs representing the same data with the same set of entities
using different schema representations.

∀𝐸𝑗 ∈ ℰ𝐶 ∖ 𝐸𝑖 it is 𝐸𝑖 ⇒ 𝐸𝑗 . Each instance in 𝐶 is identified by the 𝑘𝑒𝑦 of 𝐸𝑖 and
instances of 𝐸𝑖 also contain features of the other entities. For example, 𝐶𝑘 in Figure 3 is
a fully flat collection showing two instances of 𝐸𝑜𝑙 with the corresponding features of
𝐸𝑜𝑟 and 𝐸𝑐𝑢. Notice that FlR implies the duplication of values from 𝐸𝑜𝑟 and 𝐸𝑐𝑢.

If a collection graph fully conforms to one of these schema representations, we indicate it
with 𝑟𝑒𝑝(𝐶𝐺𝐶) ∈ {NoR,NeR, FlR}. If a collection mixes different schema representations (for
instance 𝐶𝑗 in Figure 3, which mixes NeR and FlR), then 𝑟𝑒𝑝(𝐶𝐺𝐶) = ∅.

3. Multistore algebra

3.1. NRA and data fusion operations

The query execution plans are formulated in Nested Relational Algebra (NRA) extended with
the merge operator ( ⊏) to support data fusion operations, handling overlap between collections
and resolving schema heterogeneity and record overlapping [4, 5]. Its goal is to retain as much
information as possible, both from the extensional and the intensional points of view. The merge
operator ( ⊏) answers this need by (i) avoiding any loss of records, (ii) providing output in terms
of features instead of attributes, and (iii) resolving conflicts whenever necessary. The operation
essentially involves a full-outer join between the collections, followed by the resolution of the
columns that represent the same feature.

3.2. Entity views

To simplify the discussion on query plans, we introduce the notion of entity views as high-level
abstraction operations. An entity view (EV) is a runtime-computed collection that provides a
standard representation for the records modeling a set of entities.



Definition 1 (Entity view). An entity view is a collection 𝜒 whose records represent the features
of a given set of entities in accordance to a schema representation. Its collection graph 𝐶𝐺𝜒 is such
that 𝑟𝑒𝑝(𝐶𝐺𝜒) ∈ {𝑁𝑜𝑅,𝑁𝑒𝑅, 𝐹 𝑙𝑅}.

An EV is either local or global. A local entity view (LEV) is obtained from collections belonging
to the same database, thus it may provide a partial representation of a set of entities. A global
entity view (GEV) provides a complete and cleansed representation of a set of entities in the
multistore. The operations on EVs are defined as EV operators, i.e., macro-NRA operators
(distinguished from simple ones by the hatˆsymbol) that embed a tree of NRA operations.

• LEV creation: �̂�(𝒞𝜒, 𝐹𝜒, 𝑝𝜒, 𝐶𝐺𝜒). This operation creates a LEV 𝜒 from a set of collec-
tions 𝒞𝜒 from the same database, projects a set of features 𝐹𝜒, and applies the optional
selection predicates 𝑝𝜒; the structure of the result is defined by 𝐶𝐺𝜒.

• GEV creation: ⊏ˆ (𝑋, 𝑝𝑋), where 𝑋 is a set of LEVs, |𝑋| ≥ 2, and 𝑝𝑋 is an optional
conjunction of selection predicates. This operation creates a GEV 𝜒′ by resolving conflicts
between duplicated records from two or more LEVs sharing the same collection graph
𝐶𝐺′, i.e., ∀𝜒 ∈ 𝑋 it is 𝐶𝐺𝜒 = 𝐶𝐺′. Essentially, this macro-operator produces a left-deep
tree of binary merge operations between LEVs. Once all LEVs have been merged, the
optional selection predicates are applied.

• Join of GEVs: ◁▷̂ (𝑋), where 𝑋 is a set of GEVs, |𝑋| ≥ 2. The obtained GEV 𝜒′ is
the result of join operations between the GEVs in 𝑋 representing connected but non-
overlapping sets of entities. Like ⊏ˆ, this macro-operator produces a left-deep tree of
binary join operations between two GEVs. The result is the GEV that provides a cleansed
representation of all the records in the multistore that are required to answer the query.

EV operations implement logical rules to produce an optimized NRA tree (e.g., push-down of
selection predicates, join operation reordering), but we overlook them due to space limitations.

4. Query planning

The execution plans of GPSJ queries are defined in terms of EV operations as follows.

Definition 2 (Query plan). A query plan 𝑃 is a rooted tree of entity view operations, where (i) the
root is a GEV join operation (◁▷̂ ), (ii) the root is preceded by one or more GEV creation operations
( ⊏ˆ), and (iii) each of the latter is preceded by one or more (parallel) LEV creation operations (�̂�).
The root is possibly extended with an NRA aggregation operation (𝛾).

Example 1. Figure 4 shows a sample plan for a query that computes, for each gender, the average
quantities bought for products of brand “BrandABC”. In the upper part, two LEV creation operations
compute an EV in NeR with customers, orders, and order line records from the collection in the
document-based database (i.e., 𝐶5) and the tables in the relational one (i.e., 𝐶1 to 𝐶3), respectively;
in particular, the latter is the one hiding the most complexity, as multiple join and nest operations
are required to compute the NeR representation. The two LEVs are then merged in a GEV creation
operation, that returns a cleansed FlR representation of the same data and projects the only features
required by subsequent operations. Similarly in the lower part, two other LEV creation operations
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Figure 4: Example of a full query plan expressed with EV operations. Data flows are represented by full
arcs while dotted lines link collections and EVs to sample data.

compute an EV in NoR with product records from 𝐶6 and 𝐶4, respectively. The subsequent GEV
creation operation merges the products and applies the filter on the reconciled records. Ultimately,
the GEV join operation combines the produced GEVs, while the aggregation operation computes the
final result.

Several query plans can be devised for the same query. The factors that determine the number
of alternative query plans are summarized below.

#1 LEV creation. Different query plans can be created by choosing different schema repre-
sentations to create the LEVs.

#2 GEV creation. A query plan may include several alternative combinations of GEVs (e.g.,
considering a query that involves two entities 𝐸𝑐𝑢 and 𝐸𝑜𝑟 , the options are to create (i) a
GEV for each entity and joining them, or (ii) a single GEV in NeR or FlR).

#3 LEV allocation. Each LEV creation operation can be executed either directly by the
middleware or pushed down to the database storing the respective data.

For a given query, all feasible query plans are enumerated. Due to space constraints, we refer
the reader to [5] for the detailed algorithms to enumerate query plans. Among all possible
query plans, the most efficient one is identified by the cost model discussed in Section 5.

5. Cost model

Finding the most efficient query plan is crucial and challenging due to the heterogeneity of
different DBMSes and the variability in terms of DBMS’s resources. In [3], we relied on existing
literature to model the cost of each NRA operation on each engine in terms of read and written
disk pages. While this worked well on the simple example considered by [3], (i) it did not
consider resources allocation, (ii) it made simplistic assumptions about the parallelization of
the computation, (iii) it considered execution costs related to disk I/O only, (iv) it required



Profile Feature Domain Engine supp.
Entity view operation {�̂�, ⊏^, ◁▷̂ } R D W K M
Source schema representation {NeR, NoR, FlR} R D W K M
Target schema representation {NeR, NoR, FlR} R D W K M
Number of records N R D W K M
Selectivity [0, 1] R D W K M
Aggregation rate [0, 1] R D - - M
Number of unnest operations N R D - - M
Number of join operations N R D - - M
Number of union operations N - - - - M
Number of merge operations N - - - - M
Number of selections exploiting indexes or source partitioning N R D W K M
Number of selections not exploiting indexes or source partitioning N R D W K M
Number of nested selections exploiting indexes N R D - - M
Number of nested selections not exploiting indexes N R D - - M
Number of aggregations (nest, group by) N R D - - M

Table 1
The regression models’ features; engines are Relational, Document, Wide-column, Key-value, Middleware.

an advanced knowledge about the internal details of each engine and related algorithms that
reduces its extensibility.

We overcome these limitations by adopting a self-learning cost model, which implicitly
captures the aforementioned aspects without requiring explicit and complex modeling of
execution costs [9, 10]. Inspired by [11], the cost model is composed by a set of multi-regression
models 𝐻 = {ℎ0(), ..., ℎ𝑛()}, one for each of the 𝑛 execution engines composing the multistore
including the middleware denoted by ℎ0(). The query plan 𝑃 is partitioned in a set subplans
𝑆𝑃 , each corresponding to the execution of an EV operation on an engine. A multi-regression
model ℎ𝑒𝑛𝑔(𝑃 ′)(𝑃

′) estimates the execution time for the subplan 𝑃 ′ on the corresponding engine
𝑒𝑛𝑔(𝑃 ′) based on a plan profile. Table 1 shows the list of the features captured by the profile;
some of them are directly obtained from the plan (e.g., number of unnest operations embedded in
a �̂� or ⊏ˆ operation), while others also require basic statistics on the local databases (e.g., indexes,
collections’ cardinalities, and attributes’ histograms to compute selectivity and aggregation
rate). The execution time for 𝑃 is estimated by composing the execution time of its subplans
𝑆𝑃 as follows: 𝑇𝑖𝑚𝑒(𝑃 ) =

∑︀
𝑃 ′∈𝑆𝑃 |𝑒𝑛𝑔(𝑃 ′)=0 ℎ0(𝑃

′) + max𝑖∈[1,𝑛]
∑︀

𝑃 ′∈𝑆𝑃 |𝑒𝑛𝑔(𝑃 ′)=𝑖 ℎ𝑖(𝑃
′).

Models’ drift is detected through an error threshold, and new regression trees must be built for
drifted engines or new databases.

6. Related Work and Conclusions

The variety in terms of data models responds to different requirements of modern data-intensive
applications, but providing transparent querying mechanisms to query large-scale collections on
heterogeneous data stores is an active research area [12]. Multistore and polystore systems have
emerged as solutions to provide integrated access and querying to several heterogeneous stores
through a mediator layer (middleware) [12]. The difference between multistores and polystores
lies in whether they offer a single or multiple querying interfaces, respectively. Among the most
notable are BIGDAWG [13], TATOOINE [14], and CloudMDsQL [15]. However, these systems
do not provide direct support for data fusion. To effectively query a heterogeneous system with
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Figure 5: Pair-wise comparison between plan-selection strategies (a). Percentage of times that the plan
chosen by the strategy is one of the top-K plans (b).

overlapping records, data fusion techniques [16] are necessary, but limited proposals consider
this scenario in a polyglot system [17, 18]. As for the cost model, BIGDAWG [13, 19] uses
black-box models for optimization within each engine, TATOOINE [14] makes no mention of
cost optimization, and CloudMDsQL [15] blends rule-based and white/black-box cost modeling
without giving details. Our multistore uses rule-based optimization and a black-box cost model
with active learning, overcoming challenges of white-box models in complex environments;
indeed, black-box models automatically learn and fine-tune a system behavior model, freeing
the user from the task of modeling query costs.

In this paper, we have outlined a cost-based optimization of execution plans in a multistore
by devising and evaluating different strategies to carry out joins and data fusion in presence of
data replication. The execution plans are generated in terms of a multistore algebra extended
from NRA and are based on different schema representations, so as to possibly take advantage
of the original modeling of the data in the local databases. Experiments on different multistore
benchmarks1 have revealed the factors that drive the performance of different execution plans,
demonstrating the need to evaluate alternative plans. Two key factors impacting execution plan
performance are: (i) the need to solve record overlapping, which affects schema representation
choice, and (ii) preserving the original modeling of data usually translates to faster executions.

Figures 5a and 5b show the effectiveness of the cost model (OPT) by comparing it with five
baseline strategies: RCL is the oracle that always selects the optimal plan; PRV is based on a
previous multistore implementation [4]; NOB, NEB, and FLB adopt a simple strategy to choose
the plan that maximizes both computation push-down and the creation of LEVs in a given
schema representation (respectively NoR, NeR, and FlR). The results show that OPT outperforms
all baseline strategies and is more likely to choose the optimal (or a sub-optimal) plan.

Future work aims to enhance the multistore data platform by adding support for the graph
data model and incorporating advanced features (e.g., data profiling, provenance investigation,
application pipeline orchestration [20]). We plan to improve the system’s efficiency by exploring
data aggregation push-down to local databases and developing cost-effective execution plans.

1Available at https://big.csr.unibo.it/multistore

https://big.csr.unibo.it/multistore
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