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On Sensor Data Clustering for Machine Status
Monitoring and Its Application to Predictive

Maintenance

Eleonora Oliosi, Gabriele Calzavara, and Gianluigi Ferrari, Senior Member, IEEE

Abstract— Predictive maintenance is one of the main approaches
which Industry 4.0 is based on, since it aims at reducing unplanned
downtime and maintenance costs of industrial machines. In this
work, a time-aware clustering-based approach to the analysis of
sensor data is presented for the purpose of monitoring the time
evolution of the health status of an industrial machine. A possible
application of the proposed framework to predictive maintenance is
then proposed. As a relevant representative application scenario,
the focus is on one of the key machines in a pharmaceutical
plant: a freeze-dryer. The illustrated procedure allows to carry out
a time segmentation of the properly sensed data. More precisely,
the corresponding operational points (associated with features of
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the sensed data) are clustered using various algorithms, among which Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) turns out to be the best. The benefits of the proposed approach are (i) its general nature and (ii)
the limited amount of needed features that have to be extracted from a single sensor signal. The proposed procedure is
attractive when the collected data (e.g., from a single sensor) are not sufficient to build an accurate physical model of the

monitored component.

Index Terms— Clustering, Density-Based Spatial Clustering of Applications with Noise (DBSCAN), Predictive Mainte-

nance, Sensor Data Processing

[. INTRODUCTION

N industrial pharmaceutical plants, the use of hetero-

geneous sensors to monitor the production processes is
nowadays common. The sensed data are usually recorded
for years [1]. The historical process data of an industrial
plant can be specifically used to analyse the behaviour of
the components of the plant itself [2]-[4]. The most typical
strategies involve training anomaly classifiers and building
predictive maintenance algorithms based on collected data
[5], [6]. The efficiency of the developed models is heavily
affected by the collected data and the type of components to
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be monitored [7].

Predictive maintenance is a methodology that aims at
predicting the deterioration of the health conditions of an
industrial machine, typically associated with anomalies of its
components. Predicting accurately impending failures can be
very difficult: it is essential to have a deep knowledge of
the specific system to derive a precise prediction model [8].
Nevertheless, it may happen that the collected data provide in-
adequate information to accurately determine the degradation
status of a particular component. In fact, the recorded sensor
data are often representative of the status of a combination of
components. Accurate knowledge of system physics may be
necessary to detect the origin of a variation in an inspected
sensor signal [9]. Therefore, a variation of the operational
condition of the machine can easily be detected, but the
difficulty lies in the identification of the specific responsible
machine component.

This work represents a significant extension of [10], where
a semi-automatic approach to evaluate a Health Indicator (HI)
of an industrial freeze-dryer is derived. The focus of [10]
is on the freeze-dryer cleaning process—namely, Cleaning In
Place (CIP)—and the used dataset is obtained from the water
flow rate signal of a spray tube used in the CIP process.
The Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) clustering algorithm [11] is used to build
a robust HI. In the current paper, we extend the analysis of
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the CIP process by considering other Artificial Intelligence
(AI)-based data analysis strategies based on various clustering
methods, namely: k-Means and Gaussian Mixture Models
(GMMs). In addition to these two clustering methods, Princi-
pal Component Analysis (PCA) is applied with visualization
purposes. We also investigate the applicability of other out-
lier detection algorithms, namely: One-Class Support Vector
Machine (SVM) and Local Outlier Factor (LOF). Moreover,
a second process run in the freeze-dryer—namely, the Leak
Test (LT)—is considered for the derivation of a HI of other
components of the freeze-dryer. In this case, the relevant
dataset for the LT is obtained from the pressure signal recorded
during the LT process. In both CIP and LT cases, we show
that DBSCAN outperforms other Al data analysis algorithms.
All the considered algorithms are adopted for two operational
approaches: a posteriori analysis and real-time monitoring of
the evolution of the considered system health status. In the
latter case, a possible approach to predictive maintenance is
proposed.

This paper is organized as follows. In Section II, the
system background, in terms of the two freeze-drying anal-
ysed processes, is presented. In Section III, a semi-automatic
approach to inspect the water flow rate (in the CIP process)
and the pressure (in the LT process) signals with the aim of
computing a HI is illustrated, considering a posteriori analysis
and real-time monitoring as possible operational approaches.
In Section IV and Section V, the obtained results for CIP and
LT are presented, respectively. In Section VI, a discussion on
the obtained results, failure modes, and possible extensions
of our approach is presented. In Section VII, conclusions are
drawn.

Il. SYSTEM BACKGROUND

Freeze-drying, or lyophilization, is a process that involves
three phases: (i) freezing the product, (ii) lowering the pres-
sure, and (iii) removing the ice by sublimation based on tem-
perature increase (primary and secondary drying). This process
aims at drying the product by removing the water in it without
damaging its qualities. In order for this to happen, the product
is frozen to a temperature below its so-called eutectic point
(i.e., the lowest freezing point of a mixture) [12], which must
be carefully determined together with the freezing rate. As a
matter of fact: a slow freezing rate will produce a more porous
structure, characterized by a shorter sublimation rate but more
difficult to reconstitute; whereas a fast freezing rate will result
in a more granulated structure, easier to reconstitute but with
a longer sublimation rate. Freeze-drying is largely used in the
pharmaceutical field, since its operational conditions guarantee
that the final product, despite shape transformation, keeps all
its initial qualities and preserves them over time. As a matter
of fact, the preservation of the physico-chemical properties
is fundamental when dealing, for instance, with vaccines or
genetic material.

Industrial freeze-drying takes place in machines denoted
as freeze-dryers or lyophilizers, which are designed to reach
and maintain specific temperature and pressure conditions
needed for the process to be successful. The lyophilizer is
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Fig. 1: Piping and Instrumentation Diagram (P&ID) of the water supply for
the condenser spray tube.

a steel machine consisting of two main chambers: the largest
one contains the plates which the product is positioned on
during the freeze-drying process; the smallest one contains
a condenser, inside which liquid nitrogen flows at extremely
low temperatures. In addition to the lyophilization cycle, other
automated processes are run in the freeze-dryer with the aim
of cleaning, sterilizing or testing its integrity. Among these
additional processes, CIP and LT are of interest in this work.

A. CIP

CIP consists in cleaning the freeze-dryer with purified water.
In the reference machine in this work, five spray tubes are used
to spray the chamber walls, the shelves, the condenser walls
and the condenser plates. Each spray tube has multiple nozzles
that pour water in the machine. Four spray tubes are located in
the main chamber, whereas there is only one in the condenser.
The condenser spray tube is prone to strong mechanical and
thermal stresses since it is used to spray hot water—as a
matter of fact, the temperature gap between the steel of the
condenser and the sprayed water can be as high as 150°K. As
a consequence, leaks in the spray tube can occur frequently
and the machine runs the risk of being washed incorrectly. As
the freeze-dryer must always be in sterile conditions, extreme
attention has to be paid to cleaning. Therefore, one needs
to regularly monitor the status of the spray tube in order to
keep correct operational conditions. In Fig. 1, the components
of the freeze-dryer watering system are shown only for the
condenser, as it will be the sub-system of reference for CIP
considered in the rest of this work.

During the CIP process, valve 1 stays open while valve 2
opens and closes three times over a 50 s time interval. During
this period, the water pushed by the pump flows through
the nozzles and enters into the condenser. This procedure is
the same for the four spray tubes of the main chamber. A
Water Flow Rate Sensor (WFRS), used to monitor the process,
measures the water flow rate (dimension: [m?3/h]) through
each spray tube. The WFRS signal thus allows to calculate the
total amount of water that has been sprayed in the machine.
The sampling rate of the WFRS is 1 sample/s.

A spray tube’s conditions can only be monitored by the
WERS signal associated with the water flowing into the freeze-
dryer. During the CIP process, since the five spray tubes are
turned on in disjoint time intervals, at each time instant the
WERS signal is representative of the unique spray tube that is
pouring water into the machine.

The water flow streamed from a spray tube is characterized
by a rate that depends on two factors:
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Fig. 2: P&ID of the components involved in the LT process, namely, a vacuum
pump and four vacuum valves. The pressure sensor used to record the pressure
signals is also highlighted.

o the spray tube’s structural (health) conditions, associated
with the deterioration of its steel components;

o the performance of the pump that pushes water to the
nozzles, which can vary its thrust force depending on its
health status.

For this work, an industrial freeze-dryer located in the
production plant of GlaxoSmithKline (GSK) in San Polo di
Torrile (Parma, Italy) is considered. The used historical data
are collected from all the CIP processes from November 2014
to November 2019.

B. Leak Test

LT is necessary to measure the sealing of the freeze-dryer.
In fact, because of strong thermal variations, microscopical
cracks can appear, mostly in tubes and support structures.
These cracks may create a leak, namely, an influx of gas into
the drying chamber. As a consequence, the sterile product
environment inside the chamber is contaminated, no matter
the leak size, and the final products’ quality is compromised
(possibly leading to significant economic losses). The system
components that are involved in the LT process are shown in
Fig. 2. Essentially, during LT, all the border valves (valve 2,
valve 3, and valve 4) of the freeze-dryer are, first, closed.
Then, the vacuum pump is activated and valve 1 is opened.
When the freeze-dryer reaches the internal pressure of 10 pbar,
valve 1 is closed and the pressure increase is measured over
a fixed time interval (generally 1.5 h). If the pressure increase
is evaluated as anomalous, e.g., it becomes too high, LT is
declared failed and a maintenance activity on the lyophilizer
sealing is required.

The process signal that can be used to monitor the status of
the freeze-dryer sealing is the pressure signal, which is shown
in Fig. 3 (over 235 consecutive cycles from January 2016 to
January 2020). This signal is extracted by the pressure sensor
shown in Fig. 2. We underline that, in this case, the pressure
increase measured during the LT process cannot be associated
with a single component, but it depends on the health status
of the multiple components which all contribute to lyophilizer
sealing.

The analysed historical data refer to the LT processes from
January 2016 to January 2020 carried out at the freeze-dryer
mentioned for CIP at the end of Subsection II-A.

[1l. THE PROPOSED DATA ANALYSIS APPROACH

In this work, we propose an approach based on the analysis
of data recorded by sensors installed on industrial machines
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Fig. 3: LT pressure signal extracted by the pressure sensor shown in Fig. 2
over 235 consecutive cycles from January 2016 to January 2020.

and expedient to describe the operational conditions of the
machine component of interest. Our goal is to estimate the
health status of the considered component and, then, to predict
its time-evolution. To this purpose, the illustrated approach
involves, first, the extraction of features and, then, the appli-
cation of clustering in order to highlight, through proper time
segmentation, the system status evolution over time. For this
reason, we refer to our clustering-based approach as “time-
aware.” In Section IV (CIP) and Section V (LT), it will be
shown that DBSCAN, making use of the analysed process
cycle number as fundamental feature, is the best clustering
method to be adopted for data analysis. As a final step, a
HI will be derived from the clustered data. As anticipated,
two operational approaches will be considered: a posteriori
analysis and real-time monitoring. In the second case, a
predictive model is proposed in order to identify anomalous
variations of the considered system health status, thus enabling
predictive maintenance. In the remainder of this section, we
sketch the main “ingredients” of our approach.

The extraction of statistical features from time-domain
sensor signals and the computation of the monotonicity as a
features’ selection method have been proposed in the litera-
ture for health status monitoring [13], [14]. The main novel
contributions of our paper are:

« the median-based aggregation method in the signal process-
ing approach and in the HI evaluation to obtain more robust
results;

o the use of a “time-aware” clustering to study the time-
evolution of the health status of the considered component;

o the computation method for the HI after the DBSCAN-
based outlier removal;

« the predictive approach based on a linear interpolation of
the real-time computed HI.

A. Single Sensor Signal Processing

The HI is a time-dependent indicator that describes the
evolution (namely, the degradation) of the industrial machine
under analysis, more precisely of one of its components [15].
A key role in HI computation is played by the features chosen
to describe the signals recorded by the component’s sensors.
This choice can heavily affect HI evaluation and accuracy.
However, features’ selection cannot abide by any a priori rules,
since the specific scenario of interest and the knowledge of the
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considered process must be taken into account. As a matter
of fact, given that the signals are possibly heterogeneous, the
associated descriptive information needs to be extrapolated
accordingly. Being the sensor signals usually affected by noise,
“smoothing” can be applied to better highlight the underlying
trend of the extracted features, as suggested in [16]. In order
to do this, a causal moving median filter with a window of
six taps' is used, resulting in the following smoothed signal
(associated with the most recent time epoch of the window):

fo(i) — [medianlf G =5), . J = 1), S0 6<i<N
smooth (=) median[f(1), ..., £(3)] 1<i<6
(1

where f(i) is the value of feature f in the i-th cycle
(@ 1,...,N) and N represents the number of all available
cycles.

B. Monotonicity of Sensor Signal Features

Once the features are extracted and smoothed, their “po-
tential” to predict the deterioration of the machine component
must be evaluated. This potential can be quantified in terms
of monotonicity, defined as follows:

N-1

D

i=1

sgn [fsmooth(i + 1) - fsmooth(i)]
N -1

A

monotonicity( f, N)

2)
where fmootn () is the value of smoothed feature f in the i-th
cycle (defined in (1)) and sgn[n]= £ 1 if n 2 0, respectively
[16]. The monotonicity value always belongs to the interval
[0,1] and assesses how well a feature is representative of the
system evolution: the closer the monotonicity value to 1, the
more representative the feature.

In [16], other features’ selection methods used for predictive
maintenance are proposed, such as prognosability and trend-
ability. Prognosability measures the variance in the critical
failure value of a population of systems: namely, it measures
the variability of the indicators at failure. Trendability indicates
the similarity between the trajectories, measured in several
run-to-failure experiments, of a feature. Trendability is use-
ful to determine which indicator best tracks the degradation
process since the most “trendable” feature tends to always
have the same behaviour when the analysed system gets
progressively closer to failure. Even though prognosability
and trendability are meaningful criteria, the chosen features’
selection criterion is monotonicity because, by means of a
monotonous feature, a failure in the described process can
be instantly identified. As a matter of fact, if there is an
abrupt change in the underlying trend of the feature, it is
intuitive to conclude that something anomalous has occurred
to the considered machine component, since degradation is
typically an irreversible process. Moreover, in order to adopt
the prognosability and trendability selection methods, a much
larger quantity of data describing a failure of the considered
machine component would be required.

'Our results show that using six taps provides a good compromise between
complexity and performance.

Features Extraction

. Cycle #
Median

L iJ i+1 Aggregated
Cycle #

fsm(‘)glh(i)

T
fsmooth(z + 1)

l

Monotonicity

Fig. 4: Signal processing steps: from feature extraction to the monotonicity
computation (Nyedian = J)-

In the current work, the monotonicity is computed on the
features extracted from a training dataset, which includes
40% of the whole available dataset. In fact, in this way, the
monotonicity results can be used also for real-time monitoring.
In order to obtain more robust monotonicity measurements, be-
fore applying (sliding window-based) smoothing, the extracted
features’ values are aggregated in consecutive and disjoint
groups of Npedian €lements and the median of each group is
computed. For instance, other results (not shown here for lack
of space) obtained by computing the arithmetic average instead
of the median show that the median is the most effective
aggregation method. The overall signal processing strategy is
shown in Fig. 4, with nyeqian set illustratively to 5.

C. DBSCAN-based Clustering

As anticipated, the classification of the machine operational
conditions revolves around clustering, based on the use of
DBSCAN, of a properly extracted feature of the sensed
signal. The clustered data lead naturally to a time series
segmentation. The proposed approach could make use, at the
place of DBSCAN, of other clustering and outlier removal
algorithms applicable to our problem. In Subsections IV-C
and IV-D (CIP), in Subsection V-C (LT) and, more generally,
in Subsection VI-A, relevant comparisons among DBSCAN
and other algorithms are carried out.

DBSCAN is a clustering algorithm relying on a density-
based notion of clusters. In [11], it is stated that “the key
idea is that for each point of a cluster the neighborhood of
a given radius has to contain at least a minimum number of
points, i.e. the density in the neighborhood has to exceed some
threshold.” As a matter of fact, two parameters are required:
(i) the minimum number of items per cluster, denoted as
“minPts”, and (ii) the distance ¢ corresponding to the radius
of a neighborhood of a given point in the cluster. The value
of € is estimated through different steps: (i) for each point
in the input database, the distance to the minPts-th nearest
point is evaluated; (ii) a graph is generated after sorting in
ascending order the points according to the computed distance
values; (iii) an “elbow” in this graph can be identified and
its corresponding distance is chosen as e. The criterion for
the choice of the minPts value is that it must be a number
larger than or equal to one plus the number of dimensions
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Fig. 5: minPts-distance graph (minPts = 5) used for CIP process (see
Subsection IV-B for more details). The corresponding value of € is indicated.

of the input data in the features’ space. This criterion has
been derived from [11], where it is shown that, for a two-
dimensional input database, the minPts-distance graph with
minPts=4 is not significantly different from the ones obtained
with larger values of minPts, while being computationally
more efficient.

In Fig. 5, we show the minPts-distance graph obtained
in the case of the CIP process (see Subsection IV-B.1 for
more details). On the x-axis, the points of the input database,
sorted in ascending order of their computed minPts-th nearest
distance, are indicated. With minPts=5, it can be observed
that € ~ 17. As a matter of fact, for ¢ >17 the points start
becoming noisy.

Given e¢ and minPts, DBSCAN allows to identify three
kinds of point [17]:

e core point: a point in a cluster that has at least minPts
points in its e-neighborhood;

e border point: a point in a cluster that has a number of points
in its e-neighborhood smaller than minPts but larger than
one;

o noise point: a point that in its e-neighborhood has only one
point, i.e., itself.

Three concepts turn out to be fundamental for DBSCAN:
(i) direct density-reachability, (ii) density-reachability, and (iii)
density-connectivity. A point p is directly density-reachable
from a point ¢, with respect to € and minPts, if p belongs
to the e-neighborhood of ¢ and the cardinality of the e-
neighborhood of ¢ is larger than or equal to minPts. A point
p is density-reachable from a point ¢, with respect to € and

minPts, if there is a chain of points p1, ..., pym, With p; = ¢
and p,, = p, such that p;; is directly density-reachable from
pi,t = 1,...,m—1. A point q is density-connected to a point

p, with respect to € and minPts, if there is a point r such that
both ¢ and p are density-reachable from r with respect to e
and minPts [11].

At this point, the steps involved in DBSCAN-based cluster-
ing can be summarized as follows [17].

e A point p is randomly chosen and all points density-
reachable from p, with respect to ¢ and minPts, are
retrieved. At this point, there are two possibilities:

— If p is a core point, a cluster with respect to € and minPts
is formed;
— If pis not a core point and no points are density-reachable

from p, then the algorithm passes to the next data point
by identifying p as a noise point.
o If a cluster is fully expanded (all points within reach are
visited), then DBSCAN proceeds to iterate through the
remaining unvisited points in the data set.

As will be shown in Subsection IV-A and Subsection V-
A, only one of the features extracted from the recorded
signals for each process (either CIP or LT) will be sufficiently
monotonous to be considered for the HI derivation. This
feature’s values will then be used as input to DBSCAN
together with the number of the analysed process cycle in
order to obtain a “time-aware” data clustering. For the purpose
of making these two features comparable, as an initial step,
we z-score normalize (by subtracting the mean, over all
available observations, from the value at each epoch and
dividing this difference by the standard deviation [18]) the
resulting most monotonous feature. Subsequently, we multiply
it by a constant (heuristically selected) equal to 100 to obtain
approximately the same order of magnitude as the cycle
numbers.

The main benefits of DBSCAN-based clustering algorithm,
with respect to other methods illustrated in the literature and
discussed later, are the following:

1) the amount of clusters is not to be set before the algorithm
application;
2) the outliers are automatically identified.

D. Health Indicator (HI)

In general, there is no fixed rule for the computation of
the HI. We now propose a novel method, developed through
successive refinements, while analysing the available data and
the obtained results.

As mentioned in Subsection III-C and as will be shown
in Subsection IV-A, only one feature, after monotonicity
evaluation, will be selected for the HI computation, during
the CIP process, given the high correlation among the resulting
three most monotonous features (the same will happen in Sub-
section V-A for the LT process). After removing the outliers
found by means of DBSCAN, as described in Subsection III-
C, and according to the aggregation approach proposed in
Subsection III-B, this feature values are divided in consecutive
and disjoint groups2 of Nmedian = 3 elements (associated
with three consecutive cycles). Then, the median of each
group is calculated (in order to obtain the aggregated most
monotonous feature value representative of that group). At
this point, smoothing is applied according to (1). Finally, the
HI is evaluated by relying on the aggregated and smoothed
feature values. According to this approach, the HI will be
represented as a function of the aggregated cycle number,
which is derived from the considered process cycles according
to the aggregation factor nyedian and to the considered avail-
able cycle set. In the next Subsection III-E, two operational
approaches will be considered, namely, a posteriori analysis

2In this case, we select consecutive and disjoint groups of three elements, in-
stead of five, as for the monotonicity calculation mentioned in Subsection II1I-B
and represented in Fig. 4, since the cardinality of the available process cycles
set is much smaller than the cardinality of an entire data set.
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and real-time monitoring: in both cases, Nmedian = 3. However,
for a posteriori analysis, the available cycle set to which
Nmedian 18 applied will be equal to each manually identified
cluster, whereas for real-time monitoring, it will be equal to
the interval of ten process cycles. More details will be provided
later.

Should at least two uncorrelated (or weakly correlated)
features be the most monotonous ones, a multidimensional
extension of our approach would be required. This will be
discussed in Subsection VI-D.

E. Operational Approaches

The four operational steps discussed above—namely, the
single sensor signal processing (Subsection III-A), the com-
putation of the monotonicity of the extracted features (Subsec-
tion III-B), the DBSCAN-based clustering (Subsection III-C),
and the HI evaluation (Subsection III-D)—can be used for
both a posteriori analysis of the system health status evolution
over time (as offline data analysis) and real-time health status
monitoring (for the purpose of predictive maintenance).

1) A Posteriori Analysis

In order to obtain an a posteriori overview of the machine
health status and HI evolution, one can consider all the
available sensors data. Although the results are not useful for
practical (maintenance) purposes, they allow one to obtain an
a posteriori evaluation in terms of both data clustering and HI.
For DBSCAN-based clustering, we use as input the considered
process (either CIP or LT) cycle number and the resulting most
monotonous feature’s values collected over all the available
cycles of the considered process, properly processed as de-
scribed in Subsection III-C. As for the HI computation, we
introduce a preparatory step to obtain more robust results.
This step involves the identification of the pauses between two
consecutive process (either CIP or LT) cycles. We consider the
time difference between two consecutive cycles and we choose
a threshold (namely, 300 h for CIP and 1,500 h for LT, as
will be discussed in Subsection IV-B.1 and Subsection V-B.1,
respectively) to select the most significant interruptions. These
interruptions identify the separations between clusters to be
identified. We call this process “manual clustering” to distin-
guish it from the automatic clustering provided by DBSCAN.
At this point, the procedure for the HI derivation described in
Subsection III-D is applied with aggregation and smoothing of
the resulting most monotonous feature performed within each
manually identified cluster.

The use of all the available (historical) sensors data data is
important also to analyse the extracted single sensor features.
As a matter of fact, as mentioned in Subsection III-B, the
monotonicity is computed on a dataset including 40% of the
whole available data. From a practical point of view, this can
be considered as a training step that returns the features to be
used for real-time monitoring, making the presented real-time
monitoring results meaningful.

2) Real-time Monitoring and Application to Predictive Mainte-

nance

For real-time monitoring, we choose to check the considered
machine component health status every ten process cycles
(either CIP or LT). In particular, up to every ten process cycles

(i) the DBSCAN-based clustering is applied as mentioned in
Subsection III-C; (ii) the outliers are identified and removed;
and (iii) the HI is computed as described in Subsection III-D
(with the most monotonous feature’s values being aggregated
by Nmedian=3 elements and then smoothed according to (1)).
At this point, various methods, based on the analysis of the
real-time monitoring results, can be used for the purpose of
predictive maintenance. In this paper, we present an approach
based on endpoints linear interpolation of the real-time HI
to identify potentially anomalous system behaviours. The
endpoints are the HI value in correspondence to the starting
cycle (or reset cycle) and the HI value of the last considered
aggregated cy/cle, namely, (tin, HIi,) and (tgn, HIg,). The
straight line HI(t) = at + b passing though the considered
endpoints can be derived from the following expression:

t — tin HI - HI,

= 3
tﬁn - tin Hlﬁn - Hlin ( )
from which:
HIﬁn - HIin
T — tm
fin = lin
tin(HIﬁn - HIin) (4)
b=HI;, — .
tfin — tin

The interpolating line HI (t) intuitively needs to be com-
pared with the effective value HI(t) for ¢ = tg, + 1 (in
general, t > tgy): if the value of HI(t) is sufficiently close
to HI(t), then one can conclude that there is no anomaly. In
order to automatize the detection of anomalies, we consider
the following two alarm threshold lines HI(F2):

HIG® () 2 at +b+ A
HICA@®) L2 at+b— A

where the value of A is specific for each monitored process.
By trial and error, our results show that effective values
are 0.25 m3/h for CIP and 0.005 mbar for LT. If the HI
computed in the next 10 cycles is included between the lines
HI2) | then the analysed component operational conditions
are considered correct. The interpolation slope a and intercept
b values can then be updated taking into account the new
cycles. On the contrary, if the next computed HI is outside
the range between the lines HI (iA), then an alarm can be
emitted. This can be summarized as follows:

&)

HI(t) < HIA)(t) or HI(t) > HITA)(t) anomalous.
(6)
Once an anomaly has been detected and the corresponding
problem (if any) solved (through a predictive maintenance
approach), the linear interpolation-based procedure can start
again from the new cycle (after problem solution), in order to
detect the next future anomaly.

Together with HI interpolation and prediction, real-time data
clustering can also highlight that something occurred to the
considered system. As a matter of fact, if at a check point
(namely, every ten process cycles) only one cluster is identi-
fied, this means that no variation appeared in the operational

{HI<—A)(t) < HI(t) < HIFA) (1) correct
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conditions of the considered component—the HI can start
drifting but still remaining within the alarm threshold range.
At the opposite, when at the check point at least two clusters
appear, this likely means that an anomalous event has taken
place in the system (possibly a failure). In correspondence to
the appearance of at least two clusters, the HI shows an abrupt
deviation and exits out of the alarm threshold range.

In this work, we perform real-time monitoring with the same
sensors data of the a posteriori analysis. In practical use cases,
real-time monitoring would be based on new data (after a
training phase carried out on the available data).

IV. CLEANING IN PLACE (CIP)

In this section, the proposed data analysis approach is
applied to the sensor signals recorded during the CIP process.
In Subsection IV-A, the single sensor signal processing and
the features’ monotonicity computation are described. In Sub-
section IV-B, DBSCAN-based a posteriori analysis and real-
time monitoring are illustrated. In Subsection I'V-C, other two
clustering algorithms (namely, £-Means and GMM) and PCA
are applied to our problem, as alternatives to DBSCAN, and
their performances are investigated. In Subsection IV-D, other
outlier removal algorithms (namely, One-Class SVM and LOF)
are considered as alternatives to DBSCAN and a comparison
among the obtained results is provided.

A. Single Sensor Signal Processing and Features’
Monotonicity

In order to analyse the CIP process and, in particular, the
time-evolution of the health status of the components of the
condenser water distribution system, the considered sensor
is the WFRS, as mentioned in Subsection II-A. We follow
the procedures for WFRS signal processing and features’
monotonicity computation presented in Subsection III-A and
Subsection III-B, respectively.

With the purpose of computing the HI and detecting the
considered system anomalies, three intuitive (temporal) fea-
tures are extracted from the WFRS signal. Such features are
illustrated in Fig. 6 and can be described as follows.

o Feature 1 is the time interval between the instant at which
the water flow rate goes above the threshold of 0.3 m3/h
and the instant at which it returns below this threshold.

o Feature 2 quantifies the time taken by the spray tube to
reach the maximum water flow rate: it coincides with the
time interval between the instant at which the water flow
rate becomes higher than 0.3 m3/h and the instant at which
it reaches the “steady-state” value (above 12 m? /h).

o Feature 3 corresponds to the WFRS signal average value
during “‘steady-state” conditions (namely, the time interval
during which the water flow rate is approximately max-
imum). For the purpose of computing this feature, the
identification of a MidPoint (MP) between the instant at
which the water flow rate overcomes 12m?/h and the
instant corresponding to its return below this threshold is
required. Subsequently, the average value of the WFRS
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Fig. 6: WFRS signal and the three extracted intuitive (temporal) features.

TABLE |: Monotonicity of the three features of the WFRS signal.

Feature 3
0.56

Feature 2
0.01

Feature 1
0.01

Monotonicity

signal in an interval equal to 40 s centered at the MP is
evaluated.’

The monotonicity of the three (temporal) features described
above can be evaluated following the procedure outlined in
Fig. 4 and according to (1) and (2). In particular the total
number of cycles is 355 and the number of aggregated cycles
is N = 355/Nmedian = 355/5 = 71. Table I reports
the obtained results: Feature 3 turns out to be the only feature
with a sufficiently high monotonicity value (equal to 0.56).

In order to extend the approach outlined above, we extract
other (common) statistical features from the WFRS signal:
they are listed in Table II. In this table, {v(¢)},_, coincides
with the WFRS signal in the (n-sample) time interval (per
cycle) during which Feature 3 is evaluated. More precisely,
the n samples are extracted from the 40 s time interval
introduced above in the description of Feature 3. Since the
WFRS sampling rate is 1 sample/s, it follows that n = 41.%

The statistical features listed in Table II are computed for
each CIP cycle. Their monotonicity is computed by following
the steps outlined in Fig. 4. The monotonicity values of the
computed features (namely: all statistical features in Table II;
Feature 1; and Feature 2) are shown in Fig. 7. One can observe
that almost all monotonicities are below 0.2 but for “Mean”
(corresponding to Feature 3 in Table I), “RMS,” and “Squared
Factor.” Since these three features turn out to be correlated
by 99%, one of them can be selected as representative of
the remaining two. As a consequence, we select “Mean” (i.e.,
Feature 3) as the only relevant feature of the WFRS signal. In
the rest of this paper, it will be referred to as “FlowMean.”

B. DBSCAN-based Analysis and Monitoring

As mentioned in Subsection III-C, DBSCAN is applied to
two features:

o FlowMean,;
« the CIP process cycle number (denoted as CycleNumber).

3The time interval during which the water flow rate is maximum is larger
than 40 s.

4The total number of samples is 41 because the first considered sample is
at 0 s and the last considered sample is at 40 s.



IEEE SENSORS JOURNAL

TABLE II: Time domain statistical features of a time-discrete signal
{v(t)}}—;. In the current work, {v(¢)};_; coincides with the WFRS signal
in the (n-sample) time interval during which the water flow rate is maximum.
The mean corresponds to Feature 3.

Feature Mathematical expression
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Fig. 7: Monotonicity of the extracted features (all statistical features of WFRS,
Feature 1 and Feature 2).

The “heuristic” transformation described in Subsection III-
C makes the value of FlowMean numerically comparable to
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Fig. 8: CIP  process: DBSCAN-based computed  clusters

(minPts = 5, ¢ = 17) [10].

that of CycleNumber.

1) A Posteriori Analysis

For the a posteriori analysis, we follow the approach dis-
cussed in Subsection III-E.1.

The chosen (minPts, €) configuration for DBSCAN is
(5,17), as can be derived from the minPts-distance graph in
Fig. 5. We set minPts to 5 because it is a reasonable value
according to the general rule discussed in Subsection III-C and
it turns out to be the most suitable value for our application
in terms of data clusters’ identification (minPts = 4 worsens
the performance). The outcome of the DBSCAN-based data
clustering is shown in Fig. 8. It is important to remark that the
borders between adjacent clusters correspond to modifications
carried out in the system (e.g., maintenance acts). However,
it can be noticed that cluster 3 behaves in an unexpected
way, since it is identified in the same time interval as clus-
ter 2, despite being represented by different FlowMean values.
Although the motivation behind this anomalous behaviour is
likely associated with physical conditions, it is noteworthy that
it can be detected by an automatic data clustering method—
this will be investigated in Subsection IV-B.2. As one can
observe in Fig. 8, DBSCAN can also discriminate, together
with the anomalous cluster, all the isolated points, identifying
them as outliers. We remark that no ground truth is available
for outlier detection, since the only available auxiliary infor-
mation is about the four maintenance acts on the considered
system. Based on this information, the data clustering in Fig. 8
is as accurate as possible and, consequently, we rely on the
same data for outlier identification.

At this point, we derive an HI following the procedure
described in Subsection III-D, after a “manual clustering”
preparatory step. The “manual clustering” results are shown
in Fig. 9, where the outliers and the anomalous clusters found
by DBSCAN have been removed from the data. The time
threshold is set to 300 h. It can be noticed that (i) not all the
interruptions coincide with maintenance acts that modify the
water flow rate values and (ii) the chosen time threshold does
not allow to identify the event that determines the transition
from cluster 6 to cluster 7 in Fig. 8 (this maintenance lasts
much less than 300 h). The resulting HI of the components
contributing to the water distribution in the condenser is shown
in Fig. 10.

The maintenance acts carried out on the pump are high-
lighted as vertical green lines. More precisely, the first two
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Fig. 9: CIP process: “manual” clustering (time threshold = 300 h).
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Fig. 10: HI of the condenser water distribution system

maintenance acts are the occurrences determining the cluster 4
boundaries in Fig. 8—the exact same cluster can also be
observed in Fig. 9. The first maintenance act (27th March
2017) alters the status of the system and, then, the second
one (15th June 2017) makes it return to its initial condition.
Only one maintenance act was performed on the spray tube
(identification and subsequent weld of a leak) in the considered
time interval: this is represented by the red vertical line at cycle
88 in Fig. 10. It can be observed that the HI grows linearly
from the initial data instant to the welding date, except for
the interval between the first two pump maintenance acts, in
correspondence to which it deviates. This observation is the
basis for our predictive model, discussed in Subsection III-
E.2 and applied to this problem in Subsection IV-B.2. The
green line at cycle 104 refers to a process modification of the
water distribution system (third pump maintenance act), which
intentionally leads to an increase in water flow rate from that
cycle onward.

2) Real-time Monitoring and Application to Predictive Mainte-

nance

In order to monitor in real-time the health status of the
condenser water distribution system, the approach discussed
in Subsection III-E.2 is followed. For illustrative purposes,
we will show only the results up to the following CIP cycle
numbers: 190, 300, and 340. This choice is motivated by the
fact that these cycles belong to the cycle intervals (the results
are updated every 10 process cycles) immediately after main-
tenance acts on the considered system. As for the DBSCAN-
based clustering, the same (minPts, €) configuration used for
the a posteriori analysis (i.e., minPts = 5 and € = 17) is
adopted and the obtained results are shown in Fig. 11(a),
Fig. 12(a) and Fig. 13(a), respectively. It can be observed that,

in all these cases, the cluster identified after the maintenance
act is different from the cluster identified before it. Therefore,
DBSCAN is able to track the variations of the component
health status in real-time. Moreover, in Fig. 11(a), it can be
noticed that all the anomalous cycles at the beginning of the
year 2016 are identified as outliers (as a further confirmation
see Fig. 14 later). Only at a later stage, when multiple years
data are processed, these cycles are recomputed as two clusters
(namely, part of cluster 2 and cluster 3) in Fig. 12(a) and
Fig. 13(a). Nevertheless, from an operational point of view,
this phenomenon does not affect the performance of the
proposed approach, since the focus of real-time monitoring
is on the current health status variation.

The HI evolution, associated with clustering, up to cycle
190, 300, and 340 is shown in Fig. 11(b), Fig. 12(b), and
Fig. 13(b), respectively. The alarm thresholds are set consid-
ering A = 0.25 m3/h in (5). It can be observed that the
HI computed in real-time represents all the condenser water
distribution system health status variations over time that occur
up to the check points, namely, the pump maintenance acts
(March 2017 and June 2019) in Fig. 11(b) and Fig. 13(b), and
the weld of the spray tube leak (October 2018) in Fig. 12(b).
It can be noticed that our predictive approach, based on
interpolation of the endpoints of the real-time HI, is effective
for anomaly detection. As a matter of fact, under all the re-
ported real-time monitoring circumstances, the HI overcomes
the predicted alarm thresholds only in correspondence to the
repairs activities that, in fact, modify the system health status.

In Fig. 11(b), we compare our method results with the
ones obtained with a least-squares linear regression. It can be
observed that even if interpolation-based and linear regression-
based results are slightly different, the outcome, in terms of
prediction of the real-time system status variation, is the same,
since in both cases the HI overcomes the alarm thresholds
when the activity on the pump is carried out. Therefore, in
the remainder of this work, we will consider the interpolation-
based approach proposed in equations (3)-(5), being compu-
tationally simpler.

As noticed with the DBSCAN-based clustering, the anoma-
lous cycles at the beginning of the year 2016 are considered
as outliers when monitoring in real-time this time period
(Fig. 11(a) and Fig. 14), but are then recomputed as clus-
ters when many more data are processed (Fig. 12(a) and
Fig. 13(a)). This phenomenon can also be observed in the
HI evaluation. As a matter of fact, by comparing Fig. 11(b),
obtained up to cycle 190 in 2017, and Fig. 13(b), obtained up
to cycle 340 in 2019, many more oscillations can be observed
in the latter real-time HI in the interval between the aggregated
cycles 20 and 40: this is due to the fact that the anomalous
cycles are now taken into account in the calculations. This
phenomenon does not affect, from an operational point of
view, the performance of the proposed method also in this
case, since the focus is now on the predicted HI behaviour
and not on the past events.
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Fig. 13: Real-time monitoring up to CIP cycle 340: (a) DBSCAN-based clustering (minPts = 5,¢ = 17) and (b) HL

C. DBSCAN versus k-Means, Gaussian Mixture Models
(GMMSs) and Principal Component Analysis (PCA)

In order to motivate the selection of DBSCAN, we compare
its performance with those of other two relevant clustering
algorithms, namely, k-Means and GMMs. PCA is also per-
formed in order to better visualize the data clustered structure.

k-Means partions a set of np, observations into k clus-
ters, so that the intercluster similarity is minimized and the
intracluster similarity is maximized. Similarity is expressed in
terms of the mean value of the observations in a cluster [19].
As a matter of fact, each data item is assigned to its most
similar cluster: namely, the cluster where the distance between
the item itself and the mean value of all the currently present
cluster items (denoted as cluster centroid) is minimum. Unlike
DBSCAN, the number of clusters k must be set a priori. This is

critical for the application at hand, especially when the amount
of data to be clustered keeps on increasing with real-time data
acquisition and the number of clusters is expected to increase
over time.

GMMs are a family of distribution-based clustering algo-
rithms. A GMM assumes that the data points have a Gaussian
distribution. The shape of the clusters, the so-called “com-
ponents,” is determined by two parameters, namely, the mean
and the standard deviation of the distribution [20]. As k-Means
and unlike DBSCAN, the number of components must be set
a priori by the user. This represents a disadvantage for the
application of a GMM to our scenario, because the number of
machine statuses is not known in advance.

Therefore, since both k-Means and GMM require the num-
ber of clusters to be set a priori, for the purpose of a fair
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Fig. 15: CIP process: k-Means-based computed clusters (k=7).

comparison, in Subsection IV-C.1, as for the a posteriori
analysis considered in Subsection IV-B.1, the same number of
clusters identified by DBSCAN in Subsection IV-B.1 is used in
k-Means and GMM. On the other hand, in Subsection IV-C.2,
as for real-time monitoring in Subsection IV-B.2, an approach
based on the identification of two consecutive clusters is
proposed in order to verify the validity of these clustering
algorithms for predictive maintenance (i.e., to detect a single
change of status).

1) A Posteriori Analysis

In Fig. 15, the clusters identified by k-Means are shown. It
can be observed that for k£ = 7, i.e., for a value of k£ equal
to the number of clusters found by DBSCAN in Fig. 8, the
detected clusters differ from the ones predicted by DBSCAN.
In particular, it can be noticed that cluster 4 in Fig. 8§ is not
correctly detected by k-Means; rather, it is included in cluster 7
of Fig. 8 with many other cycles belonging to the two adjacent
statuses. This highlights a major problem of k-Means: if the
clusters representing the machine statuses have very different
sizes (in terms of number of cycles), k-Means cannot separate
data correctly. Moreover, unlike DBSCAN, k-Means cannot
automatically identify the outliers. Cluster-based or distance-
based methods, which allow to remove the outliers and can
be used together with k-Means, have been proposed [21].
Nevertheless, using these methods requires to set additional
parameters, such as the cardinality of the k-nearest neighbors
set.

As for GMM, for a fair comparison with DBSCAN and
k-Means, the number of components to be found is set to
7, as anticipated above. From the results shown in Fig. 16,
it can be observed that GMM has a worse performance, in
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Fig. 16: CIP process: GMM-based computed clusters (set a priori to 7).

terms of status identification, than DBSCAN. For instance,
the cluster included between the first two pump maintenance
acts—cluster 4 in Fig. 8—is not correctly identified. Moreover,
clusters 6 and 7 in Fig. 8 are now merged together into a single
cluster in Fig. 16, despite representing two different machine
statuses (specifically, before and after a modification of the
water distribution system, as remarked in Subsection IV-B.1).
This is due to the fact that the GMM mostly computes “oval”
clusters. Its goal, indeed, is to describe the data by means
of two-dimensional Gaussian distributions, which are actually
characterized by oval contour lines.

As k-Means, GMM is not able to automatically identify the
outliers in a data set. In the literature, one can find methods
that require to post-process clustering results. In [22], the
“three times standard deviation principle” is applied to each
computed Gaussian component with the aim of identifying
each cluster outliers. Outlier detection algorithms can also be
used in combination with the GMM to obtain improved results,
as will be discussed in Subsection VI-A.

In addition to k-Means and GMM, we also consider PCA,
which is fundamental for multivariate methods, such as Mul-
tivariate Statistical Process Control (MSPC) [23]. PCA is
mainly adopted for dimensionality reduction and for high-
dimensional data visualization. For this reason, it can be
applied to support clustering. In order to be able to apply PCA
to our problem, we use as input data all the statistical features
introduced in Table II computed for each CIP cycle and
represented as functions of time. These features are properly
smoothed, according to (1), and z-score normalized. In Fig. 17,
the PCA-based computed clusters are shown. Only the first two
Principal Components (PCs) are taken into account because
they explain more than 90% of the total variability in the
dataset. It can be observed that PCA detects five clusters that
are mostly formed by consecutive cycles, as represented by
their colors. However, the time evolution of the health status
of a machine component cannot be correctly identified, since
there is no intuitive pattern followed by the clusters, along
time, that can be inferred from Fig. 17. Therefore, a PCA-
based approach turns out not to be appropriate for our problem:
this is due to the fact that the features lose their physical
meanings because of their transformations in PCs.

2) Real-time Monitoring and Application to Predictive Mainte-

nance

As mentioned above, in order to use k-Means and GMM
for real-time monitoring, we set the number of clusters to be
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identified to two. As a matter of fact, two clusters are sufficient
to detect an anomalous variation of the health status—should
there be no anomalous variations, all the available data would
be clustered together.

In order to verify the validity of this approach, in Fig. 18,
Fig. 19 and Fig. 20 the data clustering results with real-time
monitoring using (a) k-Means and (b) GMM are shown up
to CIP cycles 190, 300, and 340, respectively. In the same
figures, (c) the corresponding HI is also shown. It can be
observed that in Fig. 18 and Fig. 20 neither of the two
algorithms can identify the status variations related to the
pump maintenance acts (highlighted by vertical lines), unlike
DBSCAN in Fig. 11(a) and Fig. 13(a). However, both k-Means
and GMM succeed in identifying the second cluster after the
spray tube leak weld (in Fig. 19(a) and Fig. 19(b)), but it is
likely that this is simply due to the large distance of these
new cycles from the previous clustered cycles, and not to a
detected variation of the status.

In terms of real-time HI derivation, k-Means and GMM
return the same results, since no outlier is identified and
then removed. The HI up to cycles 190, 300 and 340 are
shown in Fig. 18(c), Fig. 19(c), and Fig. 20(c), respectively.
Abrupt oscillations can be observed in correspondence to the
anomalous behaviours of the water flow rate signals at the
beginning of the year 2016. Moreover, although the variations
related to the pump maintenance acts are not identified by
clustering, it can be noticed that the HI starts deviating at
these points.

Overall, it can be concluded that, unlike DBSCAN, k-Means
and GMM do not allow to track the system health status
variation by means of both a (time) clustering of sensed data
and evaluation of the HI.

D. DBSCAN versus One-Class Support Vector Machine
(SVM) and Local Outlier Factor (LOF)

In order to further validate the use of DBSCAN for outlier
identification, we compare its performance with those of two
outlier detection algorithms available in the literature, namely,
One-Class SVM and LOF.

One-Class SVM is an unsupervised machine learning tech-
nique frequently used to identify the outliers in a dataset. As a
matter of fact, it separates the considered faulty samples from
the remaining ones by computing a “boundary” around the cor-
rect operational data and, consequently, isolating the outliers

[24]. The so-called Contamination Fraction (CF) parameter,
corresponding to the outliers’ percentage to be identified, must
be set a priori.

LOF is a density-based outlier detection algorithm, intro-
duced in [25]. It computes the density of each data point and
compares it with the density of the neighbors. It identifies
the isolated points as outliers. As for One-Class SVM, the
percentage of the outliers to be detected must be set a priori
by the user.

Therefore, since these algorithms are intended only for
outlier detection, it is not possible to automatically segment
the sensed data (namely, cluster them) and to carry out real-
time monitoring of the evolution of the considered component
health status.

1) A Posteriori Analysis

As anticipated above, since the One-Class SVM and LOF
provide only outlier detection, no cluster is automatically
identified. Therefore, we resort to a “manual clustering,’
carried out after removing the detected outliers.

The clusters obtained with One-Class SVM are shown in
Fig. 21. The CF is set to 0.2, i.e., 20% of the data are
considered as outliers. It can be observed that: unlike Fig. 9,
many points belonging to the anomalous clusters (between
21st December 2015 and 1Ist June 2016) are still present; the
cluster included between the two first pump maintenance acts—
namely, cluster 4 in Fig. 8-has completely disappeared. The
obtained HI, shown in Fig. 22, is different from the one in
Fig. 10. In Fig. 22, two vertical blue lines are inserted to
highlight the change in the plot referring to the anomalous
clusters considered in the HI computation. Overall, it can be
concluded that One-Class SVM does not work properly in our
case, since it removes data points, that would actually help
describing the health status of the analysed machinery, and
does not allow to identify all the anomalies, despite the high
outliers’ percentage indicated by CF.

In Fig. 23, we show the results obtained with LOF, after
“manual clustering,” with CF set to 0.2, as for the One-Class
SVM. It can be observed that the anomalous clusters are
mostly removed and the cluster included between the first two
pump maintenance acts is still present. As a matter of fact,
the corresponding HI, shown in Fig. 24, is more similar to the
one computed with DBSCAN in Fig. 10 than to the HI derived
after the One-Class SVM outliers’ removal shown in Fig. 22.
It can be noticed that the change in the plot, highlighted by
the two vertical blue lines, is minimum with respect to the one
in Fig. 22. Moreover, one can detect the HI deviations due to
the first two pump maintenance acts and identified by two
vertical green lines, which are highlighted in Fig. 10, but not
in Fig. 22. However, despite the improvements with respect
to One-Class SVM, it can be concluded that LOF is still not
suitable for our purposes, because the percentage of outliers to
be identified has to be set a priori by the user and no clustering
is carried out automatically.

2) Real-time Monitoring and Application to Predictive Mainte-

nance

As mentioned above, no real-time monitoring of the health
status of the components of the condenser water distribution
system is possible with both One-Class SVM and LOF, since
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these algorithms are not intended for data clustering. However,
the HI can still be evaluated in real-time. The obtained results
are shown in Fig. 25, Fig. 26 and Fig. 27 with both (a) One-
Class SVM and (b) LOF up to CIP cycles 190, 300, and 340,
respectively. As in the case of the a posteriori analysis in
Subsection IV-D.1, it can be observed that One-Class SVM
detects as outliers the cycles included between the first two
pump maintenance acts: in fact, the HI is quite smooth in this
region, as can be seen in Fig. 25(a) and Fig. 26(a). At the

80
Aggregated Cycle Number
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Fig. 22: HI of the condenser water distribution system obtained with One-
Class SVM (CF = 0.2).

opposite, the HI obtained with LOF describes the first two
maintenance acts on the pump, as can be seen in Fig. 25(b)
and Fig. 26(b). In Fig. 26(b), it can also be noticed that the
HI drops in correspondence to the spray tube maintenance
act. On the other hand, in Fig. 27(a) it can be noticed that
the HI obtained with One-Class SVM correctly captures the
variation due to the third pump maintenance act (modification
of the water distribution system), unlike the HI obtained with
LOF in Fig. 27(b).
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Fig. 24: HI of the condenser water distribution system obtained with LOF
(CF =0.2).

Overall, it can be concluded that neither One-Class SVM
nor LOF allow accurate real-time monitoring.

V. LEAK TEST (LT)

In this section, the proposed data analysis approach is
applied to the sensor signals recorded during the LT process.
In Subsection V-A, the single sensor signal processing and the
features’ monotonicity computation are described. In Subsec-
tion V-B, the procedure for DBSCAN-based a posteriori anal-
ysis and real-time monitoring is illustrated. In Subsection V-
C, k-Means is applied as an alternative to DBSCAN and its
performance is compared with that of DBSCAN.

A. Single Sensor Signal Processing and Features’
Monotonicity

In order to analyse the LT process and, in particular,
the time evolution of the health status of the components
contributing to the sealing of the freeze-dryer, we consider
the signal extracted by the pressure sensor, as mentioned in
Subsection II-B. The procedures considered for pressure signal
processing and features’ monotonicity computation are illus-
trated in Subsection III-A and Subsection III-B, respectively.
Eventually, the only feature taken into account is the mean
value of the pressure signal. In fact, in Subsection IV-A, it has
been observed that the mean value (of the WFRS signal during
“steady-state” conditions) is a feature sufficient to describe
the considered process and the same conclusion applies to LT
(based on a similar correlation analysis). We will refer to this
feature as “PressureMean.” Its monotonicity value, computed
following the procedure outlined in Fig. 4 and according to (1)

and (2), turns out to be 0.5 (the results are not shown here for
the sake of conciseness). This monotonicity value justifies the
use of the PressureMean feature for health status monitoring.

B. DBSCAN-based Analysis and Monitoring

At this point, as discussed in Subsection III-C, DBSCAN

is applied to the two following relevant features:

o PressureMean;

« the LT process cycle number (CycleNumber).

The “heuristic” transformation described in Subsection III-C
makes the value of PressureMean numerically comparable to
that of CycleNumber.

1) A Posteriori Analysis

For an a posteriori analysis of the sensed data, we follow
the approach discussed in Subsection III-E.1.

In the LT case, a good machine status identification is
obtained setting minPts = 5 and € = 17: the corresponding
clustered data are shown in Fig. 28. The chosen (minPts,
€) configuration is the same which allows to obtain, for the
CIP process, the data clusters shown in Fig. 8. From the
results in Fig. 28, it can be noticed that clusters’ separations
correspond to repair activities carried out on the analysed
freeze-dryer and, consequently, to changes in the machine
operational conditions.

At this point, we follow the HI derivation procedure
described in Subsection III-D, after a “manual clustering”
preparatory step. The time threshold is now set to 1,500 h.
The obtained “manual” clusters are shown in Fig. 29. Unlike
what was observed in Subsection IV-B.1, all the identified
interruptions are maintenance acts carried out on the freeze-
dryer system under analysis. The resulting HI is shown in
Fig. 30. Three time intervals, associated with the evolution of
the status of the machine, can be clearly identified: during
each of these intervals, the HI remains relatively constant.
In correspondence to the separation instants between adjacent
intervals, the machine was subject to changes which led to a
degradation (higher HI). The causes of this counter-intuitive
phenomenon will be discussed in Subsection VI-B.

2) Real-time Monitoring and Application to Predictive Mainte-

nance

For the purpose of monitoring in real-time the health status
of the multiple components contributing to the sealing of the
freeze-dryer, the approach discussed in Subsection III-E.2 is
followed, as in the CIP case. For illustrative purposes, we will
show only the results up to cycles 110 and 180 (the results are
updated every 10 process cycles), immediately after the two
repair activities carried out on the freeze-dryer.

As for DBSCAN-based clustering, the same (minPts, ¢€)
configuration used for the CIP process and for the LT a
posteriori analysis is adopted, namely, minPts = 5 and
e = 17. The results obtained up to cycles 110 and 180 are
shown in Fig. 31(a) and Fig. 32(a), respectively. It can be
observed that the changes of the health status are accurately
identified also in real-time.

As for the real-time derivation of the HI, the results obtained
up to cycles 110 and 180 are shown in Fig. 31(b) and
Fig. 32(b), respectively. The alarm thresholds are set consid-
ering A = 0.005 mbar in (5). It can be observed that the HI
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Fig. 29: LT process: “manual” clustering (time threshold = 1500 h).
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contribute to the sealing of the machine.

abruptly increases and, consequently, overcomes the predicted
threshold in correspondence to both the status variations (June
2017 and June 2018). Therefore, our predictive approach is
efficient also in the LT case.

From the results in Fig. 31(b) and Fig. 32(b), it may seem
counter-intuitive that the HI increases after the maintenance
activities. However, this phenomenon will be discussed in
Subsection VI-B.

C. DBSCAN versus k-Means

As considered in Subsection IV-C and in Subsection IV-D,
the performance of DBSCAN has been compared with those
of other clustering and outlier detection algorithms. For the
sake of conciseness, we show only the results obtained with
k-Means.

1) A Posteriori Analysis

For a fair comparison with DBSCAN, in the k-Means case
k is set to 3. In Fig. 33, it can be observed that the three
clusters do not comply with the maintenance acts. Therefore,
as in the CIP case, k-Means does not perform effectively in
the LT case either.

2) Real-time Monitoring and Application to Predictive Mainte-

nance

As discussed in Subsection IV-C.2, k-Means requires that
the user sets a priori the number of clusters to be identified. As
previously considered, we set a priori the number of clusters
to 2 in order to highlight an anomalous variation of the health
status of the multiple components involved in the LT process.
The obtained results up to cycles 110 and 180 are shown in
Fig. 34(a) and Fig. 35(a), respectively. In the former case, it
can be observed that k-Means cannot detect the changes of the
status since some cycles before the considered repair activity
belong to the newly formed cluster after it. In the latter case,
the cycles after the repair activity are included in the same
cluster as the cycles before it.

The corresponding HI, up to cycles 110 and 180, are shown
in Fig. 34(b) and Fig. 35(b), respectively. By comparing these
results with those in Fig. 31(b) and Fig. 32(b), it can be
observed that the overall behaviours are the same, but for some
oscillations due to the outliers that, using k-Means instead of
DBSCAN, cannot be detected and removed.

VI. DISCUSSION

It is remarkable that the same DBSCAN-based semi-
automatic method can be used to describe the evolution of
two different processes (namely, CIP and LT), starting from
two signals of different nature (namely, water flow rate and
pressure). But for the different natures of the used sensors,
the proposed clustering methodology (including its parametric
values) is the same. Although similar results, in terms of
clustering and outlier detection accuracy, could have been
achieved by a trained operator, it is important to emphasize that
we succeeded in making our real-time monitoring approach
automatic and, therefore, not vulnerable to human errors and
not requiring any manual handling.

A. Comparison with Other Algorithms

In Subsection IV-C (CIP), we have compared DBSCAN
with two different clustering algorithms, namely, k-Means
and GMM. In Subsection IV-D (CIP), the comparison was
between DBSCAN and two different outlier detection algo-
rithms, namely, One-class SVM and LOF. In Subsection V-
C (LT), DBSCAN has been compared with k-Means. In all
cases, both a posteriori analysis and real-time monitoring (with
application to predictive maintenance) have been considered.

Monitoring of time evolution of the considered component
health status is possible using all the considered algorithms,
namely, k-Means, GMM, One-Class SVM, and LOF. This
monitoring can be performed by means of the real-time
HI evaluation (provided that the unremoved outliers do not
impair the evaluation). However, our goal is also to track
the variations of the health status that led to the changes
detected through the HI by means of clustering. Therefore, it
can be concluded that, for both considered processes (CIP and
LT), the most efficient algorithm is DBSCAN, because it can
simultaneously cluster the machine statuses and the outliers.

Comparisons with other algorithms, such as AutoEncoder-
based approaches, are not feasible since the available sensor
data describing both correct operational conditions and anoma-
lous behaviours of the analysed freeze-dryer are not sufficient
to train the neural network to accurately detect the system
faults.

In order to further validate our approach based on DB-
SCAN, we combine a clustering algorithm with an outlier
detection algorithm. For simplicity, we consider only the CIP
process. We choose LOF to remove the outliers and, then,
we apply GMM to cluster the remaining data points. The
number of components of GMM (set to 7) and CF (set to 0.2)
are the same used in Subsection IV-C and in Subsection IV-
D, respectively. The results are shown in Fig. 36. It can
be observed that the correct clusters are not identified. For
instance, cluster 1 turns out not to be coherent with the
maintenance acts in its corresponding time interval: as a matter
of fact, it includes all the CIP cycles between the first two
pump maintenance acts (i.e., 27th March 2017 and 15th June
2017) and other cycles belonging to the two adjacent statuses.
Therefore, even in this case the performance of DBSCAN,
with reference to the a posteriori analysis, is not reached.
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B. Failure Modes

Although DBSCAN has been shown to be the most efficient
clustering algorithm for the problem at hand, it still has some
disadvantages. For instance, the clustering results are sensitive
to the choice of the two parameters e and minPts. In particular,
the chosen value of € is critical because, as mentioned in
Subsection III-C, one has to correctly identify the distance
corresponding to the “elbow” formed in the graph representing
the minPts-th nearest point distances. Moreover, DBSCAN
does not perform well in the presence of high dimensional
data. This might be the case when using more sensor data
or when more than one feature turn out to be sufficiently
monotonous.

Another limitation of our approach is associated with the

computation of the HI. For instance, from the results in Fig. 30
it can be observed that the HI continues to increase even after
the two maintenance acts (highlighted in green)-an identical
behaviour can be observed in Fig. 31(b) and Fig. 32(b). This
is likely due to phenomena associated with the physics of
the considered processes. Therefore, our algorithm could be
improved by taking into account the physical characteristics
of the freeze-dryer and its processes [26].

C. Time Segmentation

As observed in Subsection IV-B.1 and Subsection IV-B.2
for CIP and in Subsection V-B.1 and Subsection V-B.2 for
LT, it turns out that, for our purposes, it is sufficient to extract
only one feature for both the analysed processes, namely: the
mean of the water flow rate signal at steady-state conditions
(for CIP) and the mean of the pressure signal (for LT)—
denoted as FlowMean (Subsection IV-A) and PressureMean
(Subsection V-A), respectively. Clustering is then applied
to these extracted features together with the process cycle
number, in order to carry out a time-aware analysis. However,
since both the extracted features mentioned above for CIP
(FlowMean) and LT (PressureMean) are expressed as functions
of time, other time series segmentation approaches (not based
on clustering) could be considered.

A segmentation algorithm revolves around a linear approx-
imation of the available time series data [27]. The approxima-
tion can be carried out by means of either linear interpolation
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or linear regression. One way to evaluate the segmentation
accuracy is by computing the Mean Square Error (MSE) be-
tween the actual time series data points and their approximated
values. Another way to evaluate the approximation error is
by calculating the L., norm between the approximating line
and the time series data points. Regardless of the chosen
error metric (MSE or L., norm), the following two types
of approximation error can be considered: segment error and
segmentation error. The segment error measures the difference
between the actual data points and the approximated ones (in
the approximating line) for each identified segment. The seg-
mentation error provides an estimate of the overall difference
between the actual time series and the approximation (given by
a concatenation of segments). Therefore, in order to carry out

an accurate time series segmentation, both segment error and
segmentation error must be below two different user-defined
thresholds, denoted as “max error” and ‘“total max error,’
respectively. In the following, we summarize a few relevant
segmentation approaches.

In general, three approaches for time series segmentation
can be considered [27]: (i) Top-Down; (ii) Bottom-Up; and (iii)
Sliding Window. A Top-Down approach consists in recursively
partitioning the time series until a stopping criterion is met
(namely, all the segments have approximation errors below
“max error” or the desired number of segments is reached).
A Bottom-Up approach foresees, first, the subdivision of the
considered time series into a large number of segments, which
are progressively merged, until a stopping criterion (namely,
the segmentation error becomes greater than “total max error”
or the desired number of segments is reached) is satisfied.

Top-Down and Bottom-Up are “offline” approaches, since
they require to analyse the entire data set at once. This makes
these two approaches relevant for a posteriori analysis, but not
for real-time monitoring and predictive maintenance. At the
opposite, a Sliding Window approach is an online approach.
This approach starts from the first point of the analysed time
series and creates a segment of increasing length until the
associated segment error becomes greater than “max error.”
At this point, another segment of increasing length starts
being created from the data point next to the end of the last
identified segment. As mentioned above, the time series to
be segmented are FlowMean (for CIP) and PressureMean (for
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LT). The same linear interpolation used for the HI predictive
model can be applied to approximate the time series. A
change of the machine health status can be identified when
the approximation error between FlowMean/PressureMean and
their interpolating line becomes greater than “max error:” this
leads to the identification of a new segment. The selection of
the “max error” value is thus critical. As a matter of fact, this
threshold value should depend on the data itself and, therefore,
it would be complicated to set it a priori, especially for real-
time monitoring when the entire data set is not available at
once. Selecting an appropriate value for the approximation
error threshold is crucial because it affects the accuracy of the
identification of the system health status: if the threshold is
too small, many health statuses may be erroneously detected;
at the opposite, if the threshold is too large, it can happen
that critical health status changes (representative of significant
variations of the machine operational conditions) are not
correctly identified.

Another approach for time series segmentation relies on the
use of a Hidden Markov Model (HMM). A HMM is associ-
ated with a pair of stochastic processes, namely: a “hidden”
process and an observable process [28]. The hidden process is
Markovian (i.e., the probability that the process is in a given
state at a given epoch depends only on the state visited at the
previous epoch) and can assume a finite number of values. At
every epoch, this process can visit another state or remain in
the same state. The observable process, at every time epoch,
generates a sample from a normal distribution with mean value
depending on the current state. An analysed time series can be
seen as a realization of the observable process. A segment is
defined as the time interval over which the hidden process
remains in the same state. Therefore, segmenting the time
series is equivalent to estimating the underlying state sequence
of the hidden process. In our case, the observable process, as
a function of the cycle number, would be either FlowMean
(for CIP) or PressureMean (for LT). On the other hand, the
underlying state sequence to be estimated would correspond
to the evolution of the health status of the considered machine.
The difficulties arise when the parameters characterizing the
HMM (e.g., the number of states to be identified, the transition
probability matrix of the hidden process, the mean and the
standard deviation of the conditionally independent random
variables forming the observable process) need to be estimated
in a so-called “parameter estimation step,” which requires
extra-processing.

In general, the applicability of time series segmentation
approaches to our problem, in a comparative way with respect
to the proposed DBSCAN-based method, is an interesting
research direction.

D. Multidimensional Extension

As mentioned in Subsection III-D, should more than one
feature turn out to be sufficiently monotonous for the HI
derivation, an extension to a multidimensional approach would
be required. In this case, one should “fuse” multiple features
in order to obtain a unique indicator for the health status of
the considered machine component. This could be achieved

by means of PCA or using neural networks, as proposed in
prognostic literature [29], and is the subject of current research
activity.

Further multidimensional extensions rely on the use of
multivariate time series. However, this goes beyond the scope
of the current work, since our focus is on the performances
that can be achieved by using the data extracted from a single
sensor. Multivariate time series will be of significantly higher
interest in the presence of multiple sensors.

VIlI. CONCLUSIONS

In this work, a time-aware clustering approach for the
computation of a HI of system components of an industrial
pharmaceutical machine (namely, a freeze-dryer) has been
proposed. It has been tested with two different signals (water
flow rate and pressure) acquired during two different pro-
cesses, namely, CIP and LT. Our results show that an accurate
identification of the evolution of the different health conditions
of the considered system can be obtained by means of a
time-aware DBSCAN-based clustering, for both a posteriori
analysis and real-time monitoring. In the context of real-
time monitoring, a predictive maintenance approach (based on
linear interpolation) has been proposed, verifying its efficiency
in both the CIP and LT cases. A comparison with other
clustering algorithms (namely, £-Means and GMM) and outlier
detection algorithms (namely, One-Class SVM and LOF) has
been carried out, highlighting the superiority of DBSCAN. A
qualitative comparison with other (non clustering-based) time
series segmentation approaches (in particular, online methods
such as Sliding Window and HMM) has also been provided.
Future research activities will focus on the application of the
proposed predictive maintenance approach to other industrial
machines, possibly using multiple sensors and multiple fea-
tures.
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