
Abstract
In dairy cattle farming, heat stress largely impairs production,

health, and animal welfare. This study aims to develop a workflow
and a numerical analysis procedure to provide a real-time 3D dis-
tribution of the temperature and humidity index (THI) in a generic
cattle barn based on temperature and humidity monitored in sam-
ple points, besides characterising the relationship between indoor
THI and outside weather conditions. This research was carried out
with reference to the study case of a cattle barn. A model has been
developed to define the indoor three-dimensional spatial distribu-
tion of the Temperature-Humidity Index of a cattle barn based on
environmental measurements at different heights of the building.
As a core of the model, the Discrete Sibson Interpolation method

was used to render a point cloud representing the THI values in the
non-sampled areas. The area between 1-2 meters was emphasised
as the region of most significant interest to quantify the heat waves
perceived by dairy cows. The model represents an effective tool to
distinguish different areas of the animal-occupied zone charac-
terised by different values of THI.

Introduction
The animal welfare of dairy cows has been intensively studied

for several decades, and solutions for its achievement represent a
topical theme of biosystems engineering due to its importance for
the productivity and sustainability of cattle husbandry. The ongo-
ing climate change is strengthening the awareness of the necessity
of tools effective in maintaining appropriate microclimate condi-
tions in livestock buildings. For this reason, the developments of
smart sensors and monitoring tools exploiting wireless connectiv-
ity have allowed to create new agricultural management strategies
with the opportunity to monitor animals and take advantage of this
individual animal control that is known as precision livestock
farming (PLF) (Berckmans and Guarino, 2017). Several scientific
investigations have proposed that PLF constitutes a valuable
approach for supervising and assessing animal welfare. Their
research (Bonora et al., 2018) used the advantage of the amount of
data available by implementing the new farming management
approaches to provide valuable information to dairy farm deci-
sion-makers.

On the other hand, the development of Unsupervised Machine
Learning algorithms has generated a widespread application of the
continuous monitoring of the behaviours of several cows over
extended periods, through the analysis of complex behavioural
patterns from such datasets to inform subsequent statistical mod-
elling better (McVey et al., 2020). In the same way, Hofstra et al.
(2022) performed the identification of individual animals and the
registration of their behaviours, which are determined by crucial
aspects such as positioning, posture, and locomotion. More recent
evidence highlighted the potential of PLF for animal welfare mon-
itoring, for evaluation and management purposes (Halachmi et al.,
2019).

In cattle farming, the suitable environment temperature range
for milk production is 5-25°C; when the upper limit is exceeded,
the cow’s body temperature exceeds the animals’ heat regulation
ability resulting in physiological responses such as decreased for-
age intake (Wang et al., 2020). However, other parameters require
special attention to measure animal welfare, such as wind speed,
solar radiation, and precipitation. The adverse impact of all these
factors on animal production is known as Heat Stress (Becker et
al., 2020). 

Reducing the harmful effects caused by heat stress plays a
vital role from the point of view of farmers who seek improved
production performances. In livestock farming systems located in

3D numerical modelling of temperature and humidity index distribution
in livestock structures: a cattle-barn case study
Carlos Alejandro Perez Garcia, Marco Bovo, Daniele Torreggiani, Patrizia Tassinari, Stefano Benni

Department of Agricultural and Food Sciences, University of Bologna, Italy

Journal of Agricultural Engineering 2023; volume LIV:1522

                                                                   [Journal of Agricultural Engineering 2023; LIV:1522]                                                 [page 231]

Correspondence: Stefano Benni, Department of Agricultural and
Food Sciences, University of Bologna, viale G. Fanin 48, 40127,
Bologna, Italy.
Tel.: +39.051 2096166.
E-mail: stefano.benni@unibo.it

Key words: dairy cow; heat stress; monitoring.

Acknowledgments: the activity presented in the paper is part of the
research project PRIN 2017 “Smart dairy farming: innovative solu-
tions to improve herd productivity” funded by the Italian Ministry of
Education, University and Research [20178AN8NC].

Contributions: SB, MB, DT, PT, conceptualization; SB, CAPG,
methodology; CAPG, software; SB, MB, CAPG, validation; CAPG,
formal analysis; SB, MB, investigation; DT, resources; CAPG, data
curation; CAPG, SB, writing of original draft preparation; DT, writ-
ing, review, editing, and project administration; SB, MB, visualiza-
tion; PT, supervision and funding acquisition. All authors read and
approved the final version to be published.

Received: 15 January 2023.
Accepted: 24 April 2023.

©Copyright: the Author(s), 2023
Licensee PAGEPress, Italy
Journal of Agricultural Engineering 2023; LIV:1522
doi:10.4081/jae.2023.1522

This work is licensed under a Creative Commons Attribution-
NonCommercial 4.0 International License (CC BY-NC 4.0).

Publisher's note: all claims expressed in this article are solely those
of the authors and do not necessarily represent those of their 
affiliated organizations, or those of the publisher, the editors and 
the reviewers. Any product that may be evaluated in this article or
claim that may be made by its manufacturer is not guaranteed or
endorsed by the publisher.

Non
-co

mmerc
ial

 us
e o

nly



temperate climate regions, proper management of the thermal
environment for the animals is of paramount importance to reduce
the influence of climatic conditions on the comfort and the perfor-
mance of the animals. Behavioural data can be automatically col-
lected through a combination of position and activity sensors, and
behaviour analysis proved to be a tool for monitoring the health
and welfare of cows (Barker et al., 2018). Accelerometers can pro-
vide an indirect measure of flinch, step, and kick, which can be
combined with other production and behavioural information
available, e.g., the number of visits to milking robots, supplemen-
tal feeding, and milk yield. Moreover, the measurement of indoor
environmental parameters through the combinations of smart sen-
sors and embedded circuits allows to develop an automated system
able to identify animals with early onset distress or discomfort;
and, at the same time, to provide a basis for inferential analysis that
contribute to increase the farm production. In this way, it is possi-
ble to provide a non-invasive assessment of animal welfare, allow-
ing an early intervention by the farmer to improve welfare and pro-
duction (Stewart et al., 2017). Within the framework of heat stress
prediction, a specific thermal comfort indicator, namely the skin
temperature index for cows, was developed based on the heat bal-
ance equations and an integrative tool to predict and assess heat
stress in dairy cows (Yan et al., 2022).

Focusing on the situation in Italy, according to Lovarelli et al.
(2020), the vast majority of high-income livestock activities are
located in northern regions. However, it is also possible to find
small traditional farms predominantly in mountains in those areas.
The geographical characteristics of northern Italy, with a broad
plain area surrounded by the mountain ranges of the Alps and the
Apennines, favour the occurrence of significant heat waves and the
permanence of warm and humid conditions for several weeks
every year.

The temperature and humidity index (THI) developed by
Thom (1959) is the most widely used parameter to quantify the
magnitude of climatic conditions perceived by living beings based
on the combined effects of the dry bulb (Tdb) and dew point (Tdp)
temperatures. Besides, a variety of indices were used to estimate
the degree of heat stress affecting cattle and other animals (Lees et
al., 2019); however, the equation expressing THI referred to by
Yousef (1985) continues to be recognised for the reliability of its
index of the dairy cow’s welfare in livestock buildings.

Constructing a comprehensive welfare evaluation system for
dairy cows requires the definition of automated detection tech-
niques. The selection process relies on several factors, including
the existence and authentication of such methods, the expenses
involved, the user-friendliness, and the non-invasive nature of
these methods toward the animals under consideration.
Additionally, this process facilitates the further refinement of
appropriate indicators. Whereas some indicators, such as ambient
temperature, are already efficiently monitored using low-cost sen-
sors such as silicon diode-based temperature sensors, others, such
as anomalous behaviour, necessitate extensive research to devise a
reliable automated detection methodology (Leliveld and Provolo,
2020). This study aims to develop a workflow and a numerical
analysis procedure to provide a 3D distribution of the THI in a
dairy cattle barn based on temperature and humidity monitored in
sample points. This process includes the stages of loading, pre-pro-
cessing, and interpolating raw data recorded by a monitoring sys-
tem. The outcome represents an analysis tool able to identify the
areas with thermo-hygrometric conditions favourable or, at differ-
ent levels, unfavourable for animal welfare and thus provide farm-
ers and technicians with indications supporting decisions for better
management and design of livestock buildings.

To this end, the work is structured as follows: definition of the
experimental farm building adopted as a study case, description of
the smart monitoring system deployed on the farm, analysis of the
variables measured for the estimation of animal welfare, as well as
the statistical tools involved in data analyses. Subsequently, dedi-
cated graphs in 2 and 3 dimensions were generated with the objec-
tive of analysing the spatial distributions of the variable under
study. Finally, an analysis of the amount of the quantification of the
Stress Degree Hours faced by the dairy cows on the period under
analysis was performed.

Materials and Methods
Experimental site

The study was carried out with reference to the study case of a
dairy cattle farm that collaborated with this research under an
agreement with the Department of the authors and therefore plays
the role of the experimental farm for what concerns data collection
and monitoring of parameters for the environment, production, and
animal behaviour. The farm is located in the metropolitan city of
Bologna (Emilia-Romagna, Italy), specifically in the municipality
of Budrio (coordinates: WGS84 coordinates 44°33’32.7”N
11°31’09.7”E, 25 m above sea level). The dairy cattle barn (Figure 1)
is a 50.0 m long and 27.0 m wide rectangular building with a steel
frame structure and double-pitched roof of insulated metal panels.
The farm building hosted about 70 Holstein-Friesian lactating
cows and 15 dried cows, and the internal space is arranged into
three main areas for resting, feeding, and milking through one
automatic milking system (AMS) station. The resting area, whose
floor is partially slatted, has 78 cubicles with sawdust bedding sep-
arated into two blocks of head-to-head rows located in its central
part, and another row runs along the entire length of the resting
area. On the other side, the feeding area is placed on the northeast
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Figure 1. 3D diagram of the farm under study (above) and layout
of the temperature humidity sensors positions (below).
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side and extends across the entire building width. Lastly, the AMS
hosts the robotic milking “Astronaut A3 Next” by Lely that assures
several daily visits for each cow depending on the cow’s produc-
tivity and its expected optimal milk yield per visit, with a mini-
mum and a maximum number of daily visits as constraints, respec-
tively set at 2 and 4.

Smart monitoring system
Temperature and relative humidity measurements were record-

ed by a smart monitoring system (SMS) deployed in the barn in the
frame of the project “Smart dairy farming: innovative solutions to
improve herd productivity” (Italian PRIN, Research Projects of
relevant National Interest - Call for Proposals 2017) (Bovo et al.,
2020). The SMS was composed of 12 sensor nodes and a weather
station connected to a gateway through radio LoRaWAN. The
positions of the sensor nodes were defined by considering the
objective of collecting measurements in several significant points
of the volume of the barn at different heights and the feasibility of
the location concerning the presence of the cows and the require-
ment of assuring them proper freedom of movement. The sensors
that the animals could reach have been protected through robust
cages. The sensor nodes and the weather station were equipped
with an electronic board powered either by photovoltaic solar pan-
els or the electric grid (Table 1). Then, a Raspberry Pi was used to
collect the information provided by the sensor nodes, package it
and send it to the supervisory system through an Internet connec-
tion. The study was conducted during the summer of 2021, more
precisely from July 4th to September 23rd. Temperature and humid-
ity were logged every 5-minute intervals in the 12 measurement
points indoors and one point outdoors of the livestock building,
where the weather station was placed.

Sensors location
The wireless sensor network was placed in three lines at differ-

ent heights to cover the indoor spatial distribution of the environ-
mental parameters of the livestock building as much as possible.
This arrangement was studied to obtain measurements of the envi-
ronmental parameters that could take into account the effect of the
presence of the animals. The scientific literature provided detailed

analyses of the influence of the heat produced by the cows on the
thermo-hygrometric conditions of the animal occupied zone
(AOZ) (Chung et al., 2022), and these considerations guided the
definition of the sensors’ positions. On the northeast side of the
barn, sensors S2, S3, and S4 were placed at a distance of 8, 16, and
12 meters, respectively, and at a fixed height of 2.5 metres. On the
opposite side, sensors S8, S9, and S10 cover the lowest part of the
southwest end of the building, located at a height of 1 meter above
the ground. Finally, in the centre line, two rows of sensors were
deployed at equal distances but at different heights; this measure-
ment setup is depicted in Figure 1.

Environmental indicators
Measuring the impact of animal heat stress is the key to imple-

menting mitigation strategies. That is why the proper selection of
a mathematical model to compute thermal comfort is relevant. The
current literature provides various heat-stress assessment methods
for different on-farm conditions (e.g., different ventilation sys-
tems) and different breeds (Frigeri et al., 2023). Table 2 summaris-
es the three widely applied THI equations; however, the generality
of models requires carrying out statistical tests to quantify the
model’s capability of correctly reflecting the actual farm condi-
tions. The index referred to by Equation (1) proposed by (National
Research Council (U.S.), 1971), represents the Oklahoma Mesonet
Cattle Heat Stress Index, designed to indicate the level of heat
stress of outdoor cattle. This index has been used in several
researches focused on the incidence of body temperature on the
genetic performance of dairy cows (Ravagnolo and Misztal, 2002;
West, 2003). On the other hand, Equation (2), developed by Yousef
(1985), was initially intended to measure human welfare.
Subsequently, its use was extended empirically to measure the
effects of heat stress on cattle from a physiologic and productive
standpoint. Furthermore, with Equation (3), Hahn (1997) devel-
oped a THI model as a support for decision-making by producers
in the event of heat waves, considering environmental parameters
like relative humidity and dry bulb temperature, which refers to the
ambient air temperature. Table 3 summarises the descriptive statis-
tics of the thermal index for the entire period under study. It is pos-
sible to notice the similar performance of the minimum, maximum,
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Table 1. Specifications of the environmental sensor.

Sensor model name                    Data output                                Resolution                        Accuracy                                    Range

AM2315C                                         Relative humidity                                       0.024                                         ±2                                           0~100% RH
                                                            Air temperature                                          0.01                                        ±0.3                                            -40~80°C
RH, relative humidity.

Table 2. List of temperature humidity indices compared in this study.

Equations                                                                                                      Year                                                            Index

THI = (1.8*Tdb + 32)-[(0.55 - 0.0055*RH)*(1.8*Tdb - 26.8)]                                     1971                                                                       (1)
THI = Tdb + 0.36*Tdp + 41.2                                                                                         1985                                                                       (2)
THI = 0.8*Tdb + (RH⁄100)*(Tdb -14.4) + 46.4                                                              1997                                                                       (3)
THI, temperature-humidity index, RH, relative humidity.

Table 3. Descriptive statistics for the thermal indices during this study.

Item                          Number                         Minimum                       Maximum                     Mean                       Standard deviation

Equation (1)                      1944                                      58.51                                     85.12                              73.58                                        5.2400
Equation (2)                       1944                                      60.53                                     85.39                              73.10                                        4.8157
Equation (3)                       1944                                      58.51                                     84.76                              73.40                                        5.1611
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and average values, while Equation (2) achieved the lowest stan-
dard deviation compared to that exhibited by the other two equa-
tions. In order to quantify the sensitivity of the equations under
study, the correlation between the THI values computed and the
inputs of the equation (temperature and relative humidity) was
analysed. Despite the similarity of the THI values obtained from
the different equations in Table 4, it should be noticed that the ther-
mal index calculated through Equation (2) shows the highest abso-
lute value of the correlation coefficient for both input variables.
Although the three equations proved to be scientifically sound,
Equation (2) was selected for the calculation of THI in the present
study because it showed the highest correlation with both variables
affecting the thermo-hygrometric welfare of cattle. The relation-
ship between environmental and production parameters might be
characterised by abrupt changes that a standard linear regression
cannot correctly detect. However, several studies established the
use of threshold values of heat stress to group the neglected effect
(on animal behaviour or production). Due to the variability in
terms of parity, days in milk and age of the animal population
under study, the general scale of thresholds proposed by Eigenberg
et al. (2005) was selected with the aim of labelling the adverse fac-
tors of THI value incidence on a broader scale (Table 5). The ref-
erence values of this scale were also indicated in the scientific lit-
erature as thresholds referred to the equation by Yusef (1985) for
assessing heat stress in dairy cattle (Ji et al., 2020).

Comfort assessment
As shown in Figure 2, the raised THI values reached during the

daytime can be recovered during the night due to the decrease in
temperatures and the consequent increase in relative humidity of
the air. In this context, quantifying the time at which the herd has
been exposed to THI exceeding the different thresholds (Table 5)
previously defined and to what extent is a crucial way to determine
the possibility of recovery of adverse effects, as well as their inci-
dence in the subsequent days. The stress degree hours (SDH) intro-
duced by Hahn (1997) provide a measure of the magnitude of day-
time heat load (intensity and duration) on dairy cows.

                                              
(4)

where THI is the hourly temperature-humidity index, and the base
represents the threshold’s lower boundary corresponding to the
onset of heat stress.

Data processing
The general workflow followed in this study can be divided

into three main steps, starting with a preprocessing of temperature
and humidity datasets recorded by the SMS; then the computation
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Table 4. Pearson correlation coefficient temperature and relative humidity index vs temperature and relative humidity.

Variable/Equation                                                              Equation (1)                          Equation (2)                           Equation (3)

Temperature                        Correlation coefficient                              0.960824                                       0.976873                                        0.955738
                                                             p                                                 <0.001                                           <0.001                                            <0.001
Humidity                             Correlation coefficient                             -0.590304                                     -0.620091                                       -0.575161
                                                             p                                                 <0.001                                           <0.001                                            <0.001
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Figure 2. Time series representation of temperature-humidity index values inside the barn.
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of the welfare index selected, and finally, a strategy to handle miss-
ing values was applied in order to obtain a clean dataset that allows
to performance statistical analysis that supports the operational and
strategical decision systems. As a first step, simple comparison
rules were applied to identify the inliers values from the sensors’
measurement range, as reported in Table 1. Furthermore, the
interquartile range method was applied to detect and remove the
outliers found in the dataset. Afterwards, a THI index was comput-
ed following Equation (2), as previously stated. Finally, a strategy
to handle missing data was implemented directly to the THI values
computed. 

Handling missing data
To guarantee an accurate analysis during the time interval anal-

ysed in this work, a machine learning model was trained to predict
the missing measurements of the sensors based on THI measure-
ments computed by external temperature and humidity measure-
ments provided by the weather station. The process includes fitting
Random Forest Regressor algorithm that uses the external THI as
an independent variable and as a target for the THI at the different
measurement points. As a result, a regression was obtained that
allows reproducing with high precision the behaviour of the differ-
ent sensors without missing values. However, to work with as
many raw values as possible, only the missing values calculated by
the regression were imputed in the initial dataset.

It should be noted that the environmental measurements
recorded by SMS deployed on the farm under study, as well as the
structural characteristics of the livestock building, limit the use of
interpolation strategies based on the thermal characteristics of the
facility. That is why the application of the Discrete Interpolation
algorithm constitutes a feasible solution to infer the indoor spatial
distribution of the THI through the measuring points.

The relationship between indoor vs. outdoor THI values was
carried out to complete the preliminary analyses of the data avail-
able. It is, in fact, an analysis that provides a starting point for
future research on the estimation of welfare indexes from external
measurements. In this respect, the Pearson’s Correlation was cal-
culated between the set of internal variables and the data from the
weather station. Table 6 shows the high correlation between the
different data sets and the presence of a probability value (p-value)
lower than the significant threshold (0.05).

3D interpolation
In agricultural engineering, interpolation plays an essential role

in applying standard visualisation techniques such as contouring,
slicing, and volume rendering to scattered data. In our case, inter-
polating THI measurements of the different indoor sampling points
allowed us to detect areas with critical THI values not directly mea-
sured. Among the most peculiar characteristics of the variable under
analysis, there is the stability in surrounding areas within indoor
environments; hence discrete interpolation is a feasible way to infer
the THI values in non-measured areas. Natural-neighbour interpo-
lation method, and more precisely, Discrete Sibson, is an algorithm
that has shown good performance in the applications of the interpo-
lation of environmental variables (Etherington et al., 2021); hence
it is suitable for the present context of the application. Developed
by Park et al. (2006), Discrete Sibson Interpolation uses a Discrete
Voronoi diagram, which can be computed from three-dimensional
graphics exploiting geometrical properties of the Sibson’s method,
which reduce the interpolation algorithm to rendering and blending
spheres whose radii are determined by the distance between an
evaluation location and its nearest neighbour in the dataset. The

Python Natural Neighbor library is the implementation of the
Discrete Sibson Interpolation method that uses as input the mea-
sured values of each sensor at a fixed position (x,y,z), and a mesh
grid occupying the volume of the building object of study. As a
result, a multidimensional array was obtained, corresponding to the
spatial distribution of the THI values inside the livestock building.
Subsequently, using one of the most widely used Python libraries
for graphs (Plotly), we proceeded to represent the gridded points,
corresponding to a sampling time.

Validation of spatial interpolation
Despite the reliable performance of Discrete Sibson

Interpolation highlighted by Park et al. (2006), a validation of the
accuracy of the spatial interpolation was performed. The Leave
One Out (LOO) algorithm in the Python scikit-learn library was
employed at each sampling instant. James et al. (2013) refer to
LOO as a simple cross-validation. Each learning set is created by
taking all but one sample, with the test set being the left out sam-
ple. As a result, the mean and standard deviation of the mean abso-
lute error (MAE) and root mean square error (RMSE) were calcu-
lated from the mean residuals obtained from each process iteration.

Results and Discussion
Time series analysis

The time series shown in Figure 2 represents the outcome of
the different steps of the selected data processing methods,
grouped according to the height values at which they were placed.
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Table 5. Dairy cow’s thermal environmental classification based
on the values of the temperature-humidity index, derived from the
classes presented in the papers cited.

Thermal environmental classification          THI values range

Normal                                                                                  THI≤74
Alert                                                                                   74<THI≤79
Danger                                                                                79<THI≤84
Emergency                                                                             84<THI
THI, temperature-humidity index.

Table 6. Pearson's correlation coefficient between the weather sta-
tion and indoor sensor nodes.

Weather station              Correlation coefficient                 p

Sensor 2                                             0.971413181                           <0.05
Sensor 3                                             0.974734771                           <0.05
Sensor 4                                             0.963707038                           <0.05
Sensor 5                                               0.9747492                             <0.05
Sensor 6                                             0.971683325                           <0.05
Sensor 7                                             0.971636456                           <0.05
Sensor 8                                             0.966068954                           <0.05
Sensor 9                                             0.972278099                           <0.05
Sensor 10                                            0.97839969                            <0.05
Sensor 11                                           0.979708887                           <0.05
Sensor 12                                           0.971827708                           <0.05
Sensor 13                                           0.971380867                           <0.05
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Table 7 summarises the main metrics reached by the Random
Forest Regressor algorithm, where it is possible to note, first, the
proximity to the best possible value (1.0) of the coefficient of
determination (R2), indicating goodness of fit and therefore a mea-
sure of how well-unseen samples are likely to be predicted by the
model. Furthermore, the MAE and mean square error show satis-
factory results guaranteeing the correspondence to the expected
value of the absolute error loss and the squared error, respectively.

The two shaded areas in Figure 2 show the threshold corre-
sponding to danger and emergency situation according to the THI
values recorded by the different measurement points. In addition,
the dashed black line placed on August 15th refers to the peak THI
value recorded by almost all sensors during the study period. The
diagrams also show that the level of the AOZ (1-2 m height) is
overall characterised by THI trends which are not significantly
lower than those registered at higher levels of the building volume,
and this can be ascribed to the effect of heat and moisture produced
by the cows themselves.

Spatial distribution of temperature and humidity
index

The spatial distribution of THI values within the livestock
building is shown in Figure 3 as a result of the 3D spatial interpo-
lation of discrete values of THI corresponding to the distribution of
indoor THI at 14:00 on August 15th. It is possible to observe that
the significant part of the indoor spaces of the building has high
THI values that place it in the emergency range, except for the
southwest corner, which is in the danger range, which may be
related to the wind direction or other parameters of the building
structure itself.

As a validation of the interpolation, the LOO algorithm execut-
ed on the whole dataset permitted the elaboration of Figure 4,
where it is possible to analyse the stability of the mean and stan-

dard deviation values of MAE and RMSE, which are between  and
respectively, denoting robustness for the current application con-
text since the THI would not be noticeably affected by an oscilla-
tion in this range. To get into details about the indoor distribution
of THI values, four horizontal sections were created considering
the time intervals in which THI’s highest and lowest values were
appreciated. Several researches have demonstrated the adverse
effects of high THI values on livestock production in general
(Samal, 2005) and specifically on milk production (Carvajal et al.,
2021; Habeeb et al., 2018). In this vein, monitoring of the zones of
greatest discomfort is an essential parameter to support farmers in
making decisions about the management of the herd. Through
Figure 5, it is possible to analyse in detail the spatial distribution
of the THI by using the predefined layers according to the height
values of the sampling points.

Figure 6 represents the behaviour of THI on the day following
the occurrence of the peak values of the index. It is possible to
notice the similarity of the behaviour in the interior zones of the
building (southwest corner within the range of danger values). It is
also possible to notice that the area covered by the danger thresh-
old values was extended compared to the previous day (Figure 5).

Temperature and humidity index metrics
Several studies have shown that the duration of heat loads can

lead to significant reductions in milk production (Benni et al.,
2020; Bonora et al., 2018), so it is a piece of important information
to be considered by farmers. Based on the categories defined above
(Table 5) for the THI values calculated in the period under study,
Table 8 summarises the duration in hours of the different thresh-
olds reached. It must be said that the quantification of the hours
shown in the following table represents the total duration of ther-
mo-hygrometric conditions corresponding to the various levels of
heat stress during the week analysed, in the position of each sensor
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Table 8. Average daily duration (h) of the threshold reached.

Category/Sensor     2             3              4               5                6                7                8                9              10             11             12               13

Normal                        9714        11440       12784         12011          11046           9545           11299          11133          11619        12284         11937           10768
Alert                            1476         1058          1118           1072            1190            1458            1140            1324            1238          1232           1070             1249
Danger                         597           342           450             307              446              602              333              411              369            360             318               475
Emergency                    14              3                4                 3                 11                35                 5                  5                  5                 0                 3                   9

Table 7. Regression metrics of filling missing values algorithm.

Sensor ID                                R2                                                                 MAE                                                                      MSE

Sensor 2                                    0.943658                                                                 0.817126                                                                          1.346449
Sensor 3                                    0.954011                                                                 0.791696                                                                          1.127177
Sensor 4                                    0.957707                                                                 0.423279                                                                           0.67454
Sensor 5                                     0.95129                                                                  0.801082                                                                            1.1122
Sensor 6                                    0.945866                                                                 0.847782                                                                          1.247269
Sensor 7                                    0.940255                                                                 0.879513                                                                          1.473713
Sensor 8                                     0.93924                                                                   0.91315                                                                           1.484271
Sensor 9                                    0.944059                                                                 0.752761                                                                          1.037722
Sensor 10                                  0.964642                                                                 0.538003                                                                          0.710516
Sensor 11                                   0.993429                                                                 0.138599                                                                          0.126711
Sensor 12                                  0.946604                                                                 0.847539                                                                          1.253052
Sensor 13                                  0.944183                                                                 0.851527                                                                          1.265363
R2, coefficient of determination; MAE, mean absolute error; MSE, mean square error.
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Figure 3. 3D spatial representation of the indoor temperature-humidity index values measured by the sensor nodes (left); 3D spatial rep-
resentation of the continuous values of temperature-humidity index obtained through interpolation (right). The coloured surfaces represent
the boundaries of the danger heat stress range.

Figure 4. Mean and standard deviation of mean absolute error and root mean square error of Discrete Sibson Interpolation of tempera-
ture-humidity index weekly grouped.

Figure 5. Heat map of temperature-humidity index indoor values at 2021-08-15 14:00 (same orientation as Figure 1).
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node. Table 8 shows that sensor number 7, located in the central
row of the building at the height of 3.5 meters, experienced the
most significant number of hours in the emergency threshold,
which is explained by the fact that it is one of the highest SMS
sampling points, which is close to the milking robot and the drink-
ing trough, both places prone to a significant accumulation of ani-
mals. A similar behaviour can be seen in the danger and alert

thresholds. To assess in detail the probability of occurrence of heat
waves within the farm, the stress degree hours quantity, expressed
by Equation (1), was used to elaborate Figure 7, which reflects the
behaviour of the parameter above at the different sampling points.

Figure 7 represents the SDH cluster captured by each measure-
ment point; specifically, the graph was focused on the week in
which the highest THI values were experienced. In line with the
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Figure 6. Heat map of temperature-humidity index indoor values at 2021-08-16 14:00 (same orientation as Figure 1).

Figure 7. Trends of stress degree hours in the points of the barn monitored through sensor node.
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above, the highest part of the centre row of the building recorded
the highest amount of SDH, specifically in the range of danger.
Further, special attention should be paid to the measurements by
sensors 8-9-10 and 11-12-13 (located at 1 and 2 meters above the
ground) since they recorded measurements of environmental vari-
ables at approximately the same height as the cattle under study.
The similarity of the measurements between the pairs of sensors 8-
11, 9-12, and 10-13 indicates the correspondence in the spatial dis-
tribution of the environmental measurements according to the
location of the pairs of sampling points located in the same posi-
tion with respect to the x-axis of reference (Figure 1).

Conclusions
In this research, a model was developed to define the three-

dimensional spatial distribution of the THI within the volume of a
cattle barn based on data measured in a certain number of points.
Specifically, the model was applied to a study case of a cattle barn
where a SMS had been deployed. The spatial interpolation of the
THI values through the Discrete Sibson Interpolation method
allowed the detection of critical areas inside the livestock building
that require special attention to ensure animal welfare. By dividing
the resulting point cloud into the different layers corresponding to
the heights of the SMS sampling points, it was possible to analyse
in detail the distribution of the thermo-hygrometric conditions of
the barn. The area between 1-2 meters was emphasised as the
region of most significant interest to quantify the heat waves per-
ceived by dairy cows. The model represents an effective tool to
distinguish different areas of the AOZ, characterised by different
values of THI, which can also lead to identifying areas classified
with different ranges of the index according to the threshold
acknowledged in scientific literature. 

Moreover, to quantify the amount of heat stress perceived by
the animals under study, the SDH experienced in the different sam-
pled areas of the building were computed and analysed in detail,
with a procedure that can be applied to build the trends of such
parameter in several positions of the barn volume. This analysis
was made possible by applying the model developedfor the spatial
distribution of THI. The results highlighted that, within the animal-
occupied zone, there can be a significant variability in the time of
exposure of cows to various levels of heat stress. Therefore, this
analysis tool proved helpful in address effective measures to
reduce temperature or humidity in the most critical areas and peri-
ods. Farmers require such measures to ensure animal welfare and
thereby promote the quantity of milk yield and the quality of the
production.
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