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Existence and non-existence results for a
semilinear fractional Neumann problem
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Abstract. We establish a priori L∞-estimates for non-negative solutions
of a semilinear nonlocal Neumann problem. As a consequence of these
estimates, we get non-existence of non-constant solutions under suitable
assumptions on the diffusion coefficient and on the nonlinearity. Moreover,
we prove an existence result for radial, radially non-decreasing solutions
in the case of a possible supercritical nonlinearity, extending to the case
0 < s ≤ 1/2 the analysis started in [7].
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1. Introduction

For s ∈ (0, 1), we consider the following nonlocal Neumann problem
⎧
⎪⎨

⎪⎩

d(−Δ)su + u = uq−1 in B,

u ≥ 0 in B,

Nsu = 0 in R
n \ B,

(1.1)

where d > 0, B is the unit ball of Rn with n ≥ 1, q > 2, (−Δ)s denotes the
fractional Laplacian

(−Δ)su(x) := cn,s PV
ˆ
Rn

u(x) − u(y)
|x − y|n+2s

dy, (1.2)

cn,s is a normalization constant, and Ns is the following nonlocal normal
derivative

Nsu(x) := cn,s

ˆ
B

u(x) − u(y)
|x − y|n+2s

dy for all x ∈ R
n \ B, (1.3)

first introduced in [8]. We observe that such nonlocal Neumann condition
makes the structure of problem (1.1) variational, we refer to [8, Sect.s 1 and 3]
for further comments on this.
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Problem (1.1) is the analogue in the nonlocal setting of the Lin-Ni-Takagi
problem, studied since the eighties, see for instance [10–13].

In [7], the existence of a non-constant solution of (1.1) was established in
the case s > 1/2, for a more general nonlinearity f(u). The aim of this paper
is twofold: on one hand we establish a non-existence result for (1.1) for any
s ∈ (0, 1), on the other hand we complement the existence analysis performed
in [7] with the case s ≤ 1/2. Here, to avoid technicalities, we consider only
the prototype nonlinearity uq−1, but all the results can be extended to more
general f(u) (see Remarks 1.3 and 1.5 below).

In order to present our results, we need to introduce some notation. For
the operator (−Δ)s in B under nonlocal Neumann boundary conditions, we
denote by λ2 the second eigenvalue and by λ+

2,r the second eigenvalue whose
corresponding eigenfunction is radial and radially non-decreasing, cf. the defi-
nitions in (2.6) below. Moreover, for every n ≥ 1, we denote by 2∗

n the critical
exponent for the fractional Sobolev inequality, namely,

2∗
n :=

{
2n

n−2s if 0 < s < n
2 ,

+∞ if s ≥ n
2 .

Our main result on non-existence can be stated as follows.

Theorem 1.1. Let s ∈ (0, 1), n ≥ 1, and 2 < q <
2∗

n+2
2 . There exists d∗ > 0

such that for every d > d∗, problem (1.1) admits only constant solutions.

Theorem 1.1 extends to the nonlocal setting a result by Ni and Takagi
(see [13, Theorem 3]). The proof is based on a uniform L∞- estimate, which
we state here below.

Theorem 1.2. Let s ∈ (0, 1), n ≥ 1, and 2 < q <
2∗

n+2
2 . There exists a positive

constant K∞ = K∞(n, s, q), depending only on n, s, and q, such that for every
u ∈ Hs

B,0 solution of (1.1), the following estimate holds true:

‖u‖L∞(B) ≤ K∞ max
{

1,
1

dΛq

}

, Λq :=

{
2∗

n

2∗
n−2(q−1) if 2∗

n < ∞
1 otherwise.

(1.4)

The definition of solution and the functional space Hs
B,0 are the natural

ones for problem (1.1) and will be formally introduced in Sect. 2.

Remark 1.3. Some comments on Theorem 1.1 are in order.

(i) The value of d∗ can be given explicitly in terms of the L∞-bound, in the
following way:

d∗ := max
{

1,
(q − 1)Kq−2

∞ − 1
λ2

}

. (1.5)

(ii) In Theorem 1.1, we have considered the nonlinearity uq−1, just for the
sake of simplicity. The same result holds true for every nonlinearity f(u)
satisfying (see conditions (A1)-(A3) in [13]):

1. f ∈ C1([0,+∞)),
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2. there exist positive constants a0, a, and 2 < q0 < q <
2∗

n+2
2 , such

that

a0u
q0−1 ≤ f(u) ≤ auq−1 for u sufficiently large.

We can state now our existence result, which extends to the case 0 < s ≤
1/2, a result contained in [7].

Theorem 1.4. Let s ∈ (0, 1
2 ], and assume that q <

2∗
1+2
2 . If q > 2+ dλ+

2,r, there
exists a non-constant radial, radially non-decreasing solution of (1.1) which is
strictly positive in B \ {0}.

Observe that in the previous statement, 2∗
1 represents the critical Sobolev

exponent in dimension 1, and not in dimension n. The interest here, as in [7],
is proving existence of solutions in the case of a supercritical nonlinearity (i.e.
q > 2∗

n). We remark that the range
(
2+dλ+

2,r,
2(1−s)
1−2s

)
, in which q can be taken,

is certainly not empty when s is in a (sufficiently small) left neighborhood of
1/2. In particular, in the limit case s = 1/2, for q large enough all assumptions
are satisfied. Instead, for smaller values of s the range could become empty.
For simplicity we have stated the result in the unit ball, but one can see that
the same statement holds true in a ball of radius R (as in [7]) with exactly
the same conditions on qλ+

2,r with the analogous eigenvalue λ+
2,r(BR) in the

set BR. Hence, when s is close to zero, one can look at Theorem 1.4 as an
existence result in a sufficiently large ball BR, since (by scaling) λ+

2,r(BR) → 0
as R → ∞.

It is worth mentioning also that, in terms of the diffusion coefficient d,
Theorem 1.4 ensures that if 0 < d < d∗∗ := (q − 2)/λ+

2,r, problem (1.1) admits
a non-constant solution. Since K∞ ≥ 1 (see Remark 3.2 below) and λ2 ≤ λ+

2,r,
it results d∗∗ < [(q − 1)Kq−2

∞ − 1]/λ2. Hence, having in mind the definition
of d∗ given in (1.5), both if d∗ = 1 and if d∗ = [(q − 1)Kq−2

∞ − 1]/λ2, we
can conclude that d∗∗ < d∗. So far, we are not able to prove neither that d∗

is sharp for non-existence nor that d∗∗ is sharp for existence. Nevertheless,
for the local case, in [3, Lemma 2.7 and Theorem 3.5] it has been proved
via bifurcation techniques that for d sufficiently large (still remaining below
the threshold for non-existence) all non-constant radial solutions are radially
decreasing. Therefore, we suspect that also in the nonlocal case, d∗∗ should
not be optimal even for the existence of non-constant radial solutions, since
we expect that in the gap (d∗∗, d∗) problem (1.1) admits radially decreasing
solutions. In the local case, we refer to [5, Corollary 1.5-(ii)] for the existence
of a radial, radially decreasing solution when q satisfies q > 2 + dλ2,r in the
subcritical regime, and to the Introduction of the same paper for a discussion
on the importance of the subcritical growth for deriving a priori estimates for
radially decreasing solutions. We refer also to the Introduction of [3] for some
conjectures on the appearance of nonradial solutions in the local case.

Remark 1.5. Also in the statement of Theorem 1.4, a more general nonlinearity
can be considered. In particular the same result holds true if uq−1 is replaced
by a function f(u) satisfying the following conditions (see (f1)-(f3) in [7]):
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(f1) f ′(0) = limt→0+
f(t)

t ∈ (−∞, 1);
(f2) lim inft→∞

f(t)
t > 1;

(f3) there exists a constant u0 > 0 such that f(u0) = u0 and f ′(u0) > dλ+,r
2

+ 1.

The supercritical nature of the problem prevents a priori the use of vari-
ational methods for proving existence. To overcome this issue, following previ-
ous papers (cf. [4,7,14]), we work in the convex cone of radial Hs

B,0-functions
which are non-negative and radially non-decreasing. Working in this cone
allows to get L∞-a priori estimates of the form ‖u‖L∞(B) ≤ K ′

∞ for the
solutions u belonging to C (cf. Theorem 4.4 below) which are uniform over
a whole class of problems (see (4.1)) to which, in particular, (1.1) belongs.
As a consequence, this allows in turn to modify the nonlinearity tq−1 at
infinity (say for t > K ′

∞ + 1) into a subcritical g(t) for proving existence via a
mountain pass-type argument, cf. [7, Sect. 4]. It is worth mentioning that the
same existence result can also be proved when the domain is an annulus of Rn.
Even more, in such a case, beyond the non-decreasing solution, the existence
of a non-constant radially non-increasing solution can be proved with the same
technique, working in the cone of radially non-increasing functions.

As a first step for proving a priori estimates, one needs to use continuous
embeddings for fractional Sobolev spaces in the radial setting. In particular,
when s > 1/2 one immediately has that radial increasing Hs-functions be-
long to L∞ (see [7, Lemma 3.1]) and can prove directly uniform L∞-a priori
estimates for solutions of this type. On the other side, for treating the case
s ≤ 1/2, we need to combine the continuous embedding in Lp (for any p in the
case s = 1/2, and for any p ≤ 2∗

1 in the case s < 1/2) with a Moser iteration
argument.

Once that existence is proved, it remains to show that the solution found
is not constant. To do so, it is possible to argue as in [7, Sect. 5], where it is
proved that the energy of the constant 1 is strictly higher than the energy of the
minimax solution found before. The need for the extra assumption q > 2+dλ+

2,r

required in the statement of Theorem 1.4 arises exactly at this stage, in the
energy comparison.

The paper is organized as follows. In Sect. 2, we recall the functional
setting, the definition of solution, and some fractional embedding results. In
Sect. 3, we prove L∞-a priori estimates for solutions of (1.1) and the non-
existence result stated in Theorem 1.1. Finally, Sect. 4 is devoted to the proof
of the existence of a non-constant radial solution of (1.1) for s ≤ 1/2, as stated
in Theorem 1.4.

2. Preliminaries

In this section we define the functional setting of our problem and recall
Sobolev’s embedding theorems for fractional spaces, which will be useful in
the next sections.
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Let u : Rn → R be a measurable function. We introduce the seminorm

[u]Hs
B,0

:=

(
cn,s

2

¨
R2n\(Bc)2

|u(x) − u(y)|2
|x − y|n+2s

dx dy

) 1
2

, (2.1)

where Bc denotes the complement of B. The space

Hs
B,0 :=

{
u : Rn → R, u ∈ L2(B) : [u]Hs

B,0
< ∞

}

is a Hilbert space equipped with the norm ‖u‖Hs
B,0

:=
(
‖u‖2

L2(B) + [u]2Hs
B,0

) 1
2
.

As mentioned in the Introduction, the Neumann condition (1.3) is the
natural notion to have a variational structure in this setting, indeed, as proven
in [8, Sect. 3], the following integration by parts formula holds true for all
bounded C2(Rn)-functions u, v:

cn,s

2

¨
R2n\(Bc)2

(u(x) − u(y))(v(x) − v(y))
|x − y|n+2s

dx dy

=
ˆ

B

v(−Δ)su dx +
ˆ

Bc

vNsu dx.

(2.2)

We recall the formal definition of weak solution for problems of the form
⎧
⎪⎨

⎪⎩

d(−Δ)su + u = f(u) in B,

u ≥ 0 in B,

Nsu = 0 in R
n \ B.

(2.3)

A non-negative function u ∈ Hs
B,0 is a weak solution of (2.3) if for every

v ∈ Hs
B,0 it holds

d
cn,s

2

¨
R2n\(Bc)2

(u(x) − u(y))(v(x) − v(y))

|x − y|n+2s
dx dy +

ˆ
B

u v dx =

ˆ
B

f(u) v dx.

(2.4)

Clearly, this definition makes sense when
´

B
f(u) v dx is finite for every test

function v. For brevity, throughout the paper, we will omit the term weak and
we will call solution of (2.3) any function satisfying the distributional identity
(2.4). Moreover, when it will be clear from the context, we will avoid distri-
butional identities/inequalities, using directly their strong form: we will write
simply (−Δ)su ≤ f meaning that the corresponding distributional inequality
holds with all non-negative test functions.

As for fractional embeddings, we first recall that the following inequality
holds between the usual Hs-seminorm and our seminorm [ · ]Hs

B,0
, by mono-

tonicity of the integrals with respect to domain inclusion

[u]Hs
B,0

≥ [u]Hs(B).

Thus, as an easy consequence of the fractional embeddings Hs(B) ↪→ Lp(B)
(see for example Sect. 7 in [1] and remind that Hs(B) = W s,2(B)), we have
the following result.
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Proposition 2.1. If n �= 2s, the space Hs
B,0 is continuously embedded in Lp(B)

for every p ∈ [1, 2∗
n]. If n = 2s the same continuous embedding holds for

p ∈ [1,+∞).

As already mentioned in the Introduction, to gain compactness in our su-
percritical setting, we work with radial functions, in the following cone C made
of functions sharing the same symmetry, monotonicity, and sign conditions as
the solution we are going to detect:

C :=

{

u ∈ Hs
B,0 :

u = u(r) is radial, u ≥ 0 a.e. in R
n,

u(r) ≤ u(s) if0 ≤ r ≤ s ≤ 1

}

, (2.5)

where, with abuse of notation, we denote by the same letter u the function in
Hs

B,0 and its radial profile, writing u(|x|) = u(x).
Working with radial functions allows to improve the embedding results,

increasing the critical exponent up to 2∗
1, which is critical for the one-

dimensional case.
Throughout the paper, we denote by BR the ball of radius R centered at

the origin and we omit the radius only for denoting the unit ball.

Lemma 2.2. Let u be a radial function in Hs
B,0. Then,

(i) if s = 1
2 , ‖u‖Lp(B\B1/2)

≤ C‖u‖Hs
B,0

for every p ∈ [1,∞);
(ii) if 0 < s < 1

2 , ‖u‖Lp(B\B1/2)
≤ C‖u‖Hs

B,0
for every p ∈ [1, 2∗

1],

for some positive constant C depending only on n, s, and p. As a consequence,
if u belongs to the cone C of non-negative, radial, radially non-decreasing func-
tions introduced in (2.5), the following inequalities hold:
(iii) if s = 1

2 , ‖u‖Lp(B) ≤ C‖u‖Hs
B,0

for every p ∈ [1,∞);
(iv) if 0 < s < 1

2 , ‖u‖Lp(B) ≤ C‖u‖Hs
B,0

for every p ∈ [1, 2∗
1]

for some positive constant C depending only on n, s, and p.

Proof. The proofs of (i) and (ii) are the same as in [6, Lemma 4.3] with the
only natural changes due to the different boundary conditions. We report here
only a sketch of the proof of (ii) to highlight the differences. Arguing as in [6,
formula (4.3)], we can estimate

[u]2Hs
B,0

≥ cn,s

2

¨
B2

|u(x) − u(y)|2
|x − y|N+2s

dxdy ≥ C

ˆ 1

1
2

ˆ 1

1
2

|u(�) − u(r)|2
|� − r|1+2s

d�dr.

Here and in the rest of the proof, C denotes different positive constants whose
exact values are not important. Thus, using the radial symmetry and the
Sobolev embedding in dimension 1 in the interval (1/2, 1), and denoting by S
the corresponding best Sobolev constant, we get

‖u‖2
Hs

B,0
≥ C[u]2Hs(1/2,1) +

ωN−1

2N−1

ˆ 1

1
2

u2 d�

≥ C

S2

(ˆ 1

1
2

u
2

1−2s d�

)1−2s

≥ C

S2ω1−2s
N−1

‖u‖2

L
2

1−2s (B\B1/2)
.
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The proofs of (iii) and (iv) then follow immediately using the radial mono-
tonicity of functions in C, being for every p as in the statementˆ

B1/2

|u|pdx ≤ |B1/2||u(1/2)|p ≤ |B1/2|
|B \ B1/2|

ˆ
B\B1/2

|u|pdx.

�

We remark that a similar result holds also for s > 1/2, cf. [7, Lemma 3.1]
and [6, Lemma 4.3].

Finally, for future use, we recall here the definitions of the following types
of second eigenvalue of the fractional Neumann Laplacian in B. Denoting by

Hs
r := {u ∈ Hs

B,0 : u radial } and

Hs,+
r := {u ∈ Hs

B,0 : u radial and radially non-decreasing },

we introduce

λ2 := inf
v∈Hs

B,0,
´

v=0

[v]2Hs
B,0´

B
v2

≤ λ2,r := inf
v∈Hs

r ,
´

v=0

[v]2Hs
B,0´

B
v2

≤ λ+
2,r := inf

v∈Hs,+
r ,

´
v=0

[v]2Hs
B,0´

B
v2

,

(2.6)

where the inequalities follow easily from the inclusions Hs,+
r ⊂ Hs

r ⊂ Hs
B,0 and,

by the direct method of Calculus of Variations, all these infima are achieved.

3. L∞-a priori estimates and non-existence in the subcritical
regime

In this section we prove Theorem 1.1. We start with an L2∗
n -L∞ estimate,

which is the crucial ingredient in the proof of the L∞-a priori bound.

Lemma 3.1. Let q > 2. If 2∗
n < ∞, then, provided that q < 2∗

n, there exists a
constant Kq = Kq(s, n, q), which depends only on s, n, and q, such that

‖u‖L∞(B) ≤ Kq max
{

1,
1
d

}δq (
1 + ‖u‖γq

L2∗
n (B)

)

with δq :=
1

2∗
n − q

and γq :=
2∗

n − 2
2∗

n − q

(3.1)

for every u ∈ Hs
B,0 solution of (1.1).

If 2∗
n = ∞, for every p > q there exists a constant K ′

q,p = Kq,p(s, n, q, p),
which depends only on s, n, q, and p, such that

‖u‖L∞(B) ≤ Kq,p max
{

1,
1
d

}δq,p (
1 + ‖u‖γq,p

Lp(B)

)

with δq,p :=
1

p − q
and γq,p :=

p − 2
p − q

.

(3.2)
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Proof. The proof is based on the Moser iteration technique, in a version that
has been adapted to the fractional setting, cf. [2]. We first consider the case
2∗

n < ∞. For T > 0 and β > 1, we define the following differentiable and
convex function:

ϕ(t) = ϕT,β(t) =

⎧
⎪⎨

⎪⎩

0 t ≤ 0
tβ 0 < t < T

βT β−1(t − T ) + T β t ≥ T.

(3.3)

Observe that ϕ is a Lipschitz function with Lipschitz constant βT β−1. In
particular, if u is a solution of (1.1), ϕ(u) and ϕ(u)ϕ′(u) are non-negative
functions belonging to Hs

B,0. Moreover, observe that, since ϕ is convex, we
have (cf. [9, Proposition 4])

(−Δ)sϕ(u) ≤ ϕ′(u)(−Δ)su and Nsϕ(u) ≤ ϕ′(u)Nsu, (3.4)

where the inequalities are meant in the distributional sense. Hence, being
ϕ(u) ∈ Hs

B,0, by Sobolev’s embedding -Proposition 2.1- and using the
0-Neumann condition and the second inequality in (3.4), we getˆ

B

ϕ(u)(d(−Δ)sϕ(u) + ϕ(u))dx

= d[ϕ(u)]2Hs
B,0

+
ˆ

B

ϕ(u)2dx − d

ˆ
Bc

ϕ(u)Ns(ϕ(u))dx

≥ min{1, d}‖ϕ(u)‖2
Hs

B,0
≥ min{1, d}

C2
‖ϕ(u)‖2

L2∗
n (B)

.

(3.5)

On the other hand, using the first inequality in (3.4) and that u is a solution
of (1.1), we haveˆ

B

ϕ(u)(d(−Δ)sϕ(u) + ϕ(u)) dx

≤
ˆ

B

ϕ(u)ϕ′(u)d(−Δ)su dx +
ˆ

B

ϕ(u)2 dx

≤
ˆ

B

ϕ(u)ϕ′(u)uq−1 dx +
ˆ

B

ϕ(u)2 dx.

(3.6)

Combining together (3.5) and (3.6), we deduce thatˆ
B

ϕ(u)ϕ′(u)uq−1 dx +
ˆ

B

ϕ(u)2 dx ≥ min{1, d}
C2

‖ϕ(u)‖2
L2∗

n (B)
,

whence, using that tϕ′(t) ≤ βϕ(t) and Hölder’s inequality, we obtain

|ϕ(u)‖2
L2∗

n (B)

≤ βC2 max
{

1,
1
d

}(ˆ
B

ϕ(u)2uq−2 dx +
ˆ

B

ϕ(u)2 dx

)

≤ βC2 max
{

1,
1
d

}

max
{

1, |B|
q−2
2∗

n

}(
1 + ‖u‖q−2

L2∗
n (B)

)(ˆ
B

ϕ(u)
2∗

n
b dx

) 2b
2∗

n

,

(3.7)
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where b := 2∗
n−q+2

2 > 1. Since u ∈ L2∗
n(B) by Proposition 2.1, for β = b we are

allowed to let T → ∞ in (3.7). This leads to

‖u‖Lb2∗
n (B)

≤ b
1
2b

[

C max
{

1,
1√
d

}

max
{

1, |B| 1
2

q−2
2∗

n

}(
1 + ‖u‖

q−2
2

L2∗
n (B)

)] 1
b

‖u‖L2∗
n (B).

We now set βm := bβm−1 = bm for every m ∈ N, iterate the argument, and
obtain the recurrence formula

‖u‖Lβm2∗
n (B)

≤
(

Cq max
{

1,
1√
d

}) 1
βm

β
1

2βm
m

(
1 + ‖u‖

q−2
2

L2∗
n (B)

) 1
βm ‖u‖

Lβm−12∗
n (B)

,

where Cq := C max
{

1, |B| 1
2

q−2
2∗

n

}
. Therefore, iterating, we get

‖u‖Lβm2∗
n (B)

≤
m∏

k=1

β
1

2βk

k

[

Cq max
{

1,
1√
d

}(
1 + ‖u‖

q−2
2

L2∗
n (B)

)]
∑m

k=1
1

βk ‖u‖L2∗
n (B).

(3.8)

Taking into account that, in the limit as m → ∞, the following limits hold

true: βm → ∞,
∑∞

k=1
1

βk
= 2

2∗
n−q , and

∏∞
k=1 β

1
βk

k =: C0
2 < ∞, we can pass to

the limit in (3.8) to get

‖u‖L∞(B) = lim
m→∞ ‖u‖Lβm2∗

n (B)

≤
(

Cq max
{

1,
1√
d

}) 2
2∗

n−q

C0

(
1 + ‖u‖

q−2
2

L2∗
n (B)

) 2
2∗

n−q ‖u‖L2∗
n (B)

≤ max
{

2, 2
2

2∗
n−q

}
C

2
2∗

n−q

q max
{

1,
1
d

} 1
2∗

n−q

C0

(

1 + ‖u‖
q−2

2∗
n−q +1

L2∗
n (B)

)

.

Putting Kq := max
{

2, 2
2

2∗
n−q

}
C

2
2∗

n−q

q C0 we conclude the proof in this case.
Finally, as for the case 2∗

n = ∞ (that is s = n/2, namely n = 1 and
s = 1/2), we can repeat the argument above replacing 2∗

n with p, for every
p > q. This leads to the desired estimate,

‖u‖L∞(B) ≤ max
{

2, 2
2

p−q

}
C

2
p−q
q,p max

{

1,
1
d

} 1
p−q

C0

(

1 + ‖u‖
q−2
p−q +1

Lp(B)

)

,

where Cq,p := C max
{

1, |B| 1
2

q−2
p

}
, putting Kq,p := max

{
2, 2

2
p−q

}
C

2
p−q
q,p C0.

�

Remark 3.2. By the previous lemma, we know that every solution of (1.1) is
bounded in B. Moreover, testing the weak formulation of the equation with
v ≡ 1 and using the 0-Neumann condition, we get

´
B

u dx =
´

B
uq−1 dx. Being

u ≥ 0, this implies that, if u �≡ 0, either 1 − uq−2 changes sign in B or u ≡ 1.
Thus, every non-zero solution u has ‖u‖L∞(B) ≥ 1.
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Proof of Theorem 1.2. We argue as in [7, Lemmas 3.4 - 3.5]. Testing the equa-
tion with v ≡ 1 as in the previous Remark, we getˆ

B

u dx =
ˆ

B

uq−1 dx =
ˆ

B∩{u≤2}
uq−1 dx +

ˆ
B∩{u>2}

uq−1 dx

≥ (1 + δ)
ˆ

B∩{u>2}
u dx,

where δ = 2q−2 − 1. Hence, we deduce thatˆ
B∩{u≤2}

u dx ≥ δ

ˆ
B∩{u>2}

u dx,

which implies ˆ
B∩{u>2}

u dx ≤ 1
δ

ˆ
B∩{u≤2}

u dx ≤ 2
δ
|B|.

We thus obtain thatˆ
B

uq−1 dx =
ˆ

B

u dx ≤ 2|B|
(

1 +
1
δ

)

=: K. (3.9)

Testing the equation in (1.1) with u, using the embedding in Proposition
2.1, and using that u ∈ L∞(B) by Lemma 3.1, we obtain for 2∗

n < ∞

‖u‖2
L2∗

n (B)
≤ C2‖u‖2

Hs
B,0

≤C2max
{

1,
1
d

} ˆ
B

uq dx

≤ C2 max
{

1,
1
d

}

K‖u‖L∞(B).

Hence, by (3.1),

‖u‖L∞(B) ≤ Kq max
{

1,
1
d

}δq (
1 + ‖u‖γq

L2∗
n (B)

)

≤ Kq max
{

1,
1
d

}δq
(

1 + Cγq max
{

1,
1
d

} γq
2

K
γq
2 ‖u‖

γq
2

L∞(B)

)

≤ Kq max
{

1,
1
d

}δq+
γq
2

K
γq
2 max{1, Cγq}

(
1 + ‖u‖

γq
2

L∞(B)

)

The assumption q <
2∗

n+2
2 is equivalent to γq

2 < 1, hence we deduce the L∞-
bound with

K∞ :=
(
2Kq max{1,K

γq
2 Cγq}

) 2
2−γq (3.10)

as in the statement.
The conclusion for s = 1/2 and n = 1 follows analogously using (3.2),

being γq,p

2 < 1 for p large. �
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Remark 3.3. (Alternative end of proof) The last part of the previous proof
can be replaced by the following more direct one: once we get (3.9), we can
invoke Lemma 3.1 to obtain, e.g. when 2∗

n < ∞,

‖u‖L∞(B) ≤ Kq max
{

1,
1
d

}δq
[

1 +
(ˆ

B

u2∗
n dx

) γq
2∗

n

]

≤ Kq max
{

1,
1
d

}δq
[

1 + ‖u‖
2∗

n−q+1
2∗

n
γq

L∞(B)

(ˆ
B

uq−1 dx

) γq
2∗

n

]

≤ Kq max
{

1,
1
d

}δq
(

1 + K
γq
2∗

n ‖u‖
2∗

n−q+1
2∗

n
γq

L∞(B)

)

.

Since the assumption q <
2∗

n+2
2 is equivalent to 2∗

n−q+1
2∗

n
γq < 1, we get the

desired L∞-bound.

We did not choose to reason as in the present remark because the argument
in the proof can be applied also to more general nonlinearities as we will need
to do in the next section.

We are now ready to prove the non-existence result.

Proof of Theorem 1.1. This part of the proof is inspired from [13, Theorem
3]. Let u =

ffl
B

u dx + φ =: u0 + φ ∈ Hs
B,0 be a solution of (1.1). We test the

equation in (1.1) with φ to have

d
cn,s

2

¨
R2n\(Bc)2

(φ(x) − φ(y))2

|x − y|n+2s
dx dy +

ˆ
B

(u0 + φ)φ dx

=
ˆ

B

(u0 + φ)q−1φ dx = (q − 1)
ˆ

B

(ˆ 1

0

(u0 + tφ)q−2 dt

)

φ2 dx,

(3.11)

where in the last equality we used that
´

B
φ dx = 0. Now, by the L∞-bound in

Theorem 1.2, (u0 + tφ)q−2 ≤ Kq−2
∞ max

{
1, 1

d(q−2)Λq

}
, moreover, by Poincaré’s

inequality (cf. (2.6) and [8, Lemma 3.10 and Theorem 3.11]),

cn,s

2

¨
R2n\(Bc)2

(φ(x) − φ(y))2

|x − y|n+2s
dx dy ≥ λ2

ˆ
B

φ2 dx.

Inserting the previous inequalities in (3.11), we have

(dλ2 + 1)
ˆ

B

φ2 dx ≤ (q − 1)Kq−2
∞ max

{

1,
1

d(q−2)Λq

}ˆ
B

φ2 dx. (3.12)

Hence, for d sufficiently large (more precisely, d > d∗, where d∗ is given in
Remark 1.3) we deduce that φ must be identically zero, i.e. u must be constant.
This concludes the proof. �

Remark 3.4. (i) (Non-existence for small q) The previous non-existence
result can be also stated in terms of q as follows: For any d > 0, there
exists q∗ > 2 (depending on d) such that, for every q ∈ (2, q∗), problem
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(1.1) does not admit non-constant solutions. Indeed, in the case 2∗
n < ∞,

in order to explicit (3.12) in terms of q in the limit as q → 2, we compute
by (3.10)

lim
q→2

Kq−2
∞ = lim

q→2

(
2Kq max{1,K

γq
2 Cγq}

) 2(q−2)
2−γq

= lim
q→2

(1 + o(1))
(

1 +
1

2q−2 − 1

) γq(q−2)
2−γq

= 1,

where we have taken into account that K = 2|B|
(
1 + 1

2q−2−1

)
(cf. the

proof of Theorem 1.2) and that Kq = C0 max
{

2, 2
2

2∗
n−q

}
C

2
2∗

n−q

q , Cq =

C max{1, |B| 1
2

q−2
2∗

n }, C0 =

(
∏∞

k=1
2∗

n−q+2
2

k
(

2
2∗

n−q+2

)k
) 1

2

, and γq = 2∗
n−2

2∗
n−q .

Therefore, if u is non-constant, that is
´

B
φ2 dx �= 0, (3.12) gives a con-

tradiction for q sufficiently close to 2.
(ii) (Assumption on q) We remark that the request that q is strictly below the

critical exponent q < (2∗
n + 2)/2 < 2∗

n, needed in Theorem 1.2, is exactly
the analogue in the fractional setting (0 < s < 1) of the hypothesis in [13,
Theorem 3]. We expect that this is only a technical assumption due to
the specific approach we use. In the local case, in [11, Proposition 1.4] it
is proved that the same result holds true for any subcritical q. Hence, we
expect that it is possible to extend the L∞-estimate and, consequently,
the non-existence result up to the critical exponent also for the nonlocal
setting. This would be an interesting point to investigate further.

(iii) (L∞-estimates for radial solutions) An analogous L2∗
1 -L∞ estimate as

in Lemma 3.1, with the same proof, can be also obtained for solutions
u ∈ C. In this case, according to Lemma 2.2, the critical exponent to
be used in (3.5) is 2∗

1, which is infinity for s ≥ 1/2. Similarly, a specific
L∞-bound as in Theorem 1.2 can be proved for solutions u ∈ C, requiring
that q < (2∗

1 +2)/2. As we will see in the following section, an L∞-bound
for solutions in C will play a crucial role for establishing our existence
result.

4. Uniform L∞-a priori estimates and existence for radial
solutions

In this section we restrict the analysis to radial, radially non-decreasing solu-
tions u ∈ C, allowing q to be supercritical in (1.1). Our aim is to extend to
the case s ≤ 1/2 the existence result established in [7] for the case s > 1/2.
As explained in the Introduction, the idea, originally presented in [4], consists
in modifying our nonlinearity (which is possibly supercritical) into a subcriti-
cal one, in order to use variational techniques for proving existence. This will
be possible thanks to a priori L∞-estimates for radial, radially non-decreasing
solutions which are uniform in a large class of problems (to which (1.1) belongs
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as well). In the case s > 1/2 (see [7]), any function in C is automatically L∞(B)
due to the one-dimensional Sobolev embedding. Here, being s ≤ 1/2, we prove
the uniform L∞-bound making use of a Moser iteration, as done in the previous
section.

4.1. Uniform L∞-bounds for solutions in C
We first consider the following class of modified problems:

⎧
⎪⎨

⎪⎩

d(−Δ)su + u = g(u) in B,

u ≥ 0 in B,

Nsu = 0 in R
n \ B,

(4.1)

where g can be any function of the form

g(t) = gq,t0(t) :=

{
tq−1 if t ∈ [0, t0],
tq−1
0 + q−1

�−1 tq−�
0 (t�−1 − t�−1

0 ) if t ∈ (t0,∞),
(4.2)

with t0 ∈ (1,∞] and � ∈ (2,min{2∗
n, q}). In particular, if t0 = ∞, gq,∞(t) =

tq−1, while, if t0 < ∞, gq,t0 is subcritical. Notice that the functions g are of
class C1, non-negative, increasing, and satisfy g(t) ≤ tq−1 for every t ≥ 0 and
g(t) ≥ t�−1 for every t ≥ 1.

We will prove that the solutions belonging to C of any problem of the
class (4.1) are uniformly bounded in the L∞-norm, independently of t0 and �.

Remark 4.1. We emphasize that, in order to modify our nonlinearity into a
subcritical one and prove the existence result, it is crucial that the L∞-bound
for solutions of problem (4.1) does not depend on t0. Indeed, this will allow to
choose t0 as in (4.7) below.

We start with a uniform L2∗
1 -L∞ estimate.

Lemma 4.2. Let q > 2.
If s < 1

2 , provided that q < 2∗
1, there exists a constant K ′

q = K ′
q(s, n, q, d)

depending only on s, n, q, and d such that

‖u‖L∞(B) ≤ K ′
q

(
1 + ‖u‖γ′

q

L2∗
1 (B)

)
with γ′

q :=
2∗
1 − 2

2∗
1 − q

(4.3)

for every u ∈ C solution of (4.1).
If s = 1

2 , for every p > q there exists a constant K ′
q,p = K ′

q,p(s, n, q, p, d)
depending only on s, n, q, p, and d such that

‖u‖L∞(B) ≤ K ′
q,p

(
1 + ‖u‖γ′

q,p

Lp(B)

)
with γ′

q,p :=
p − 2
p − q

(4.4)

for every u ∈ C solution of (4.1).

Proof. The proof is exactly the same as the one for Lemma 3.1, with the only
difference that the critical exponent here is 2∗

1 instead of 2∗
n. In particular,

in the chain of inequalities (3.6), we use that gq,t0(u) ≤ uq−1 for every u,
independently of the specific value of t0. This allows to get an estimate which
is uniform in t0, as desired. �
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Remark 4.3. Since, differently from the previous section, for the purpose of
this section the explicit dependence on the diffusion coefficient d is not
important, we have omitted such a dependence in the L∞-bounds of Lemma
4.2 above and will do the same in Theorem 4.4 below.

Theorem 4.4. Let s ∈ (0, 1
2 ] and q > 2. Assume furthermore that

q <
2∗
1 + 2
2

if s <
1
2
. (4.5)

Then, there exists a constant K ′
∞ = K ′

∞(s, n, q, d) depending only on s, n, q,
and d such that

‖u‖L∞(B) ≤ K ′
∞ for every u ∈ Csolution of (4.1).

Proof. As for Theorem 1.2, we integrate the equation in (4.1) to get
ˆ

B

u dx =
ˆ

B

g(u) dx =
ˆ

B∩{u≤2}
g(u) dx +

ˆ
B∩{u>2}

g(u) dx

≥ (1 + δ′)
ˆ

B∩{u>2}
u dx,

where δ′ := 2�−2 − 1 > 0 (independent of t0), being g(t) ≥ t�−1 for t > 2.
Hence, we obtain

ˆ
B

g(u) dx =
ˆ

B

u dx ≤ 2|B|
(

1 +
1
δ′

)

=: K ′. (4.6)

Testing the equation in (4.1) with u, using the embedding in Lemma 2.2, and
that u ∈ L∞(B) by Lemma 4.2, we obtain for s < 1

2

‖u‖2
L2∗

1 (B)
≤ C2‖u‖2

Hs
B,0

≤C2max
{

1,
1
d

} ˆ
B

g(u)u dx

≤ C2 max
{

1,
1
d

}

K ′‖u‖L∞(B).

Hence, by (4.3),

‖u‖L∞(B) ≤ K ′
q

(
1 + ‖u‖γ′

q

L2∗
1 (B)

)

≤ K ′
q

⎡

⎣1 + Cγ′
q

(

max
{

1,
1
d

}

K ′
) γ′

q
2

‖u‖
γ′

q
2

L∞(B)

⎤

⎦ .

Since, by (4.5), γ′
q

2 < 1, the existence of a constant K ′
∞ as in the statement, fol-

lows. The conclusion for s = 1/2 follows analogously using (4.4) and observing

that γ′
q,p

2 < 1 for p large. �
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4.2. Existence of a non-constant solution in C
We follow the lines of [4,7]. Since, by Theorem 4.4, K ′

∞ is independent of t0,
we can choose g = gq,t0 with t0 satisfying

K ′
∞ + 1 < t0 < ∞. (4.7)

With this choice, problem (4.1) is subcritical and any solution of (4.1) is also
a solution of (1.1).

We introduce the energy functional associated to problem (4.1), namely
E : Hs

B,0 → R such that for every u ∈ Hs
B,0,

E(u) := d
cn,s

4

¨
R2n\(Bc)2

|u(x) − u(y)|2
|x − y|n+2s

dx dy +
1
2

ˆ
B

u2 dx −
ˆ

B

G(u) dx,

with G(t) :=
´ t

0
g(τ) dτ . In view of the subcritical growth of g, E is well defined

and of class C2 in Hs
B,0. Moreover, its critical points are weak solutions of (4.1).

Now, by the subcritical growth and the structure of E , it is possible to
prove that the functional E satisfies the compactness and geometry assump-
tions that allow to find a mountain pass-type critical point. The following
lemmas continue to hold also for 0 < s ≤ 1/2, with the same proofs given in
[7, Sect. 4] for the case s > 1/2.

The next lemma states that the functional E satisfies the Palais-Smale
condition.

Lemma 4.5. ([7, Lemma 4.2 and Corollary 4.4]) Let (uk) ⊂ Hs
B,0 be such that

(E(uk)) is bounded and E ′(uk) → 0 in (Hs
B,0)

∗, then (uk) admits a convergent
subsequence. As a consequence, let c ∈ R be such that E ′(u) �= 0 for every
u ∈ C having E(u) = c, then there exist ε̄, δ̄ > 0 such that ‖E ′(u)‖∗ ≥ δ̄ for
every u ∈ C with |E(u) − c| ≤ 2ε̄.

Furthermore, the following refined version of the Deformation Lemma
holds.

Lemma 4.6. ([7, Lemma 4.8]) Let c ∈ R be such that E ′(u) �= 0 for every u ∈ C
having E(u) = c. Then, there exists a continuous function η : C → C such that
(i) E(η(u)) ≤ E(u) for all u ∈ C;
(ii) E(η(u)) ≤ c − ε̄ for all u ∈ C such that |E(u) − c| < ε̄;
(iii) η(u) = u for all u ∈ C such that |E(u) − c| > 2ε̄,
where ε̄ is the constant corresponding to c given in Lemma 4.5.

Finally, the functional E has the mountain pass geometry.

Lemma 4.7. ([7, Lemma 4.9]) Let τ ∈ (0, 1), there exists α > 0 such that
(i) E(u) ≥ α for every u ∈ C with ‖u‖L∞(B) = τ ;
(ii) there exists ū ∈ C with ‖ū‖L∞(B) > τ such that E(ū) < 0.

In correspondence of τ and α as in Lemma 4.7, we put

U0 :=
{

u ∈ C : E(u) <
α

2
, ‖u‖L∞(B) < τ

}
,

U∞ :=
{
u ∈ C : E(u) < 0, ‖u‖L∞(B) > τ

}
.

This allows to conclude the existence part.
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Proposition 4.8. ([7, Proposition 4.12]) The value

c := inf
γ∈Γ

max
t∈[0,1]

E(γ(u)), with Γ := {γ ∈ C([0, 1]; C) : γ(0) ∈ U0, γ(1) ∈ U∞}

is positive and finite, and there exists a critical point u ∈ C with E(u) = c.
Moreover, u solves the original problem (1.1).

Proof. In view of Lemmas 4.5, 4.6, and 4.7, the existence of a critical point
u at the minimax level c is standard. Hence, u solves problem (4.1). Now, as
already anticipated at the beginning of the present subsection, by Theorem 4.4,
‖u‖L∞(B) ≤ K ′

∞ and so, by the choice of t0, which is greater than K ′
∞ + 1 by

(4.7), g(u) = uq−1 in B. This implies that u solves also (1.1). �

Proof of Theorem 1.4. The existence of a solution u ∈ C of (1.1) has been
proved in Proposition 4.8. It remains to prove that u is not constant. Problem
(1.1) has only two constant solutions, 0 and 1, and, from its energy level, we
know that u �≡ 0. Let us show now that u �≡ 1. This is done performing a local
analysis around the constant solution 1: we prove that in every neighbourhood
of 1 we can find functions having lower energy. This allows us to construct an
admissible path γ ∈ Γ whose points γ(t) ∈ C have all energy below the energy
of 1. The proof can be done exactly as in [7, Lemmas 5.2 and 5.3, Theorem
1.1]. We report here only a sketch of the proof to illustrate the main lines,
highlighting the importance of the hypothesis

q > 2 + dλ+
2,r, (4.8)

and propose a more direct conclusion that exploits the specific form of the
nonlinearity in (1.1). We perturb the constant 1 in the direction of the second
radial and radially increasing eigenfunction ϕ2 that corresponds to the eigen-
value λ+

2,r. Via a second-order Taylor expansion of E centered at 1, we prove
that the energy of functions of the form vt := (1 + o(t))(1 + tϕ2) satisfies for
t ∈ (−ε, ε) and ε > 0 small,

E(vt) − E(1) =
1
2
E ′′(1)[tϕ2 + o(t), tϕ2 + o(t)] + o(t2)

=
t2

2

(

d[ϕ2]2Hs
B,0

−
ˆ

B

(q − 2)ϕ2
2 dx

)

+ o(t2)

=
t2

2
(dλ+

2,r − q + 2)
ˆ

B

ϕ2
2 dx + o(t2) < 0,

(4.9)

where, in the last step, we have taken into account (4.8).
Now, let τ be given as in Lemma 4.7 and fix t∞ > 1 so large that the

constant function t∞ belongs to U∞. By continuity, we can choose t̄ ∈ (0, ε)
so small that 1 + t̄ϕ2 ∈ C and t∞(1 + t̄ϕ2) ∈ U∞. Hence, the path defined as
γ̄(t) = tt∞(1+ t̄ϕ2) for every t ∈ [0, 1] belongs to the set Γ of admissible paths.
Moreover, via explicit calculations, it is possible to prove that E(γ̄(·)) attains
its unique maximum at some t′ ∈ (0, 1) such that
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t′t∞ =

(
d[1 + t̄ϕ2]2Hs

B,0
+ ‖1 + t̄ϕ2‖2

L2(B)

‖1 + t̄ϕ2‖q
Lq(B)

) 1
q−2

=

(
dt̄2[ϕ2]2Hs

B,0
+ |B| + t̄2

´
B

ϕ2
2 dx´

B
(1 + t̄ϕ2)q dx

) 1
q−2

=
( |B| + o(t̄)

|B| + o(t̄)

) 1
q−2

= 1 + o(t̄) as t̄ → 0,

where we have taken into account that
´

B
ϕ2 dx = 0. Hence, the point of γ̄

having maximal energy can be written in the form γ̄(t′) = vt̄ = (1 + o(t̄))(1 +
t̄ϕ2), and so, by (4.9),

E(u) = inf
γ∈Γ

max
t∈[0,1]

E(γ(t)) ≤ max
t∈[0,1]

E(γ̄(t)) = E(vt̄) < E(1).

In particular, u �≡ 1.
Finally, by the maximum principle [7, Theorem 2.6] (see Remark (ii)

below, for the regularity properties needed on u for the validity of such max-
imum principle), u is positive almost everywhere in B. This, combined with
the symmetry and monotonicity of u, implies that the solution can vanish only
at the origin. �

Remark 4.9. Let us conclude with two remarks.

(i) (Regularity of the solution) We observe that being u ∈ L∞(B) by Theo-
rem 4.4, we get by nonlocal Neumann conditions that u ∈ L∞(Rn), see
the proof of [7, Lemma 3.6].1 Moreover, using [15, Proposition 2.9] with
w = uq−1 − u ∈ L∞(Rn), we obtain u ∈ C0,α(Rn) for every α ∈ (0, 2 s).
Then, we can use a bootstrap argument and apply [15, Proposition 2.8]
to conclude that u has the following regularity: u ∈ C2(B) if q > 3 − 2s,
and u ∈ C1,q−2+2s(B) if 2 < q ≤ 3 − 2 s.

(ii) (Maximum principle) The maximum principle established in [7, Theo-
rem 2.6] is stated for “classical” s-superharmonic functions having non-
negative nonlocal Neumann conditions, namely for functions u satisfy-
ing (−Δ)su ≥ 0 in a pointwise (and not just weak) sense. In order to
be able to write (−Δ)su almost everywhere, some further regularity as-
sumptions are required on u ∈ Hs

B,0: if s > 1/2, it is needed to take
u ∈ C1,2 s+ε−1(B), while if s ≤ 1

2 , it is enough to assume u ∈ C2s+ε(B)
for some ε ∈ (0, 1). Since in [7], we were in the case s > 1/2, we
needed to require u ∈ C1,2s+ε−1(B) and we stated the maximum principle
under this assumption. In the present paper, being s ≤ 1

2 , the requirement
needed the for the validity of such maximum principle is u ∈ C2 s+ε(B).

1We warn the reader that Lemma 3.6 of [7] is not stated correctly. Indeed, as it can be seen
from the proof, the solution u is of class C2(B) ∩ L∞(Rn) and not of class C2(Rn).
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