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This paper provides a comprehensive estimation framework via nuclear norm plus ℓ1
norm penalization for high-dimensional approximate factor models with a sparse resid-
ual covariance. The underlying assumptions allow for non-pervasive latent eigenvalues
and a prominent residual covariance pattern. In that context, existing approaches based
on principal components may lead to misestimate the latent rank. On the contrary,
the proposed optimization strategy recovers with high probability both the covariance
matrix components and the latent rank and the residual sparsity pattern. Conditioning
on the recovered low rank and sparse matrix varieties, we derive the finite sample
covariance matrix estimators with the tightest error bound in minimax sense and
we prove that the ensuing estimators of factor loadings and scores via Bartlett’s and
Thomson’s methods have the same property. The asymptotic rates for those estimators
of factor loadings and scores are also provided.
© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The digital revolution has enormously enlarged the amount of available data for researchers and practitioners.
onsequently, the need rises to develop methodologies able to summarize the content of high-dimensional datasets, in
rder to derive meaningful information from them.
The factor model is an effective tool to this end, as it detects the latent covariance structure behind a set of variables.
e can define the factor model for any p-dimensional mean-centered random vector x as

x = Bf + ϵ, (1)

where B is a p × r matrix, f is a r × 1 random vector with E[f] = 0r and Var[f] = Ir , and ϵ is a p × 1 random vector with
E[ϵ] = 0p and Var[ϵ] = S∗, with S∗ full rank p × p matrix.

Let us indicate by Σ ∗ the p × p covariance matrix of the random vector x. Assuming that f and ϵ are componentwise
uncorrelated, the factor model (1) induces in Σ ∗ a low rank plus residual decomposition of the following type:

Σ ∗
= L∗

+ S∗
= BB⊤

+ S∗, (2)

where L∗
= BB⊤

= ULΛLU⊤

L , with UL p × r semi-orthogonal matrix and ΛL r × r diagonal matrix. Representation (2) is
invariant under orthogonal transforms, and it is therefore unidentifiable from the data without further constraints.
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Suppose that we have a i.i.d. sample xk, k ∈ {1, . . . , n}. The p × p sample covariance matrix is defined as Σ n =

n−1∑n
k=1 xkx

⊤

k . Most of factor model estimation methods rely on Σ n as an input, and make essentially use of two
techniques: principal component analysis (see [28] for an overview) and maximum likelihood. As outlined in [7], however,
a large dimension p leads to some particular estimation problems for model (1), due to the limitations of Σ n in high
dimensions.

From a historical perspective, the classical inferential theory for factor models [2] prescribes that the dimension p is
fixed while the sample size n tends to infinity. In particular, the strict condition p < n is required to ensure consistency. As
a consequence, the classical framework is clearly inappropriate if p is large. When p ≥ n, in fact, Σ n becomes inconsistent
and no longer distributed as non-singular Wishart.

At the same time, when the dimension p and the sample size n are finite, [3] shows that the use of the principal
components of Σ n to estimate B leads to factor loadings and scores estimates which are incoherent with model
assumptions, because any estimate of S∗ so derived will never be full rank. That is the reason why [17] proves that
the principal components of Σ n consistently identify L∗ under model (1) as p → ∞, provided that the r eigenvalues of
L∗ diverge with p and S∗ is a non-diagonal matrix with vanishing eigenvalues as p diverges.

Another relevant aspect concerns the ratio p/n. If p/n → 1−, where ‘‘→ 1−’’ means ‘‘tends to 1 from the left’’, the bad
conditioning properties of Σ n inevitably affect the consistency of Principal Component Analysis (PCA) as a factor model
estimation method. In fact, the sample eigenvalues follow the Marcenko–Pastur law [32], which crucially depends on the
ratio p/n. In particular, if p/n → 1−, it is more likely to observe small sample eigenvalues, thus making Σ n numerically
unstable.

An overall inferential theory of PCA as a high-dimensional factor model estimation method has been developed in [4].
As also outlined in [4,17] shows that the pervasiveness of the eigenvalues of L∗ as p → ∞ is crucial for the recovery
of the latent rank r , performed by the identification criteria of [6]. If that condition is violated, the latent rank r may
be underestimated by any PCA-based method, as one or more latent eigenvalues may be unrecovered, because the
corresponding sample eigenvalues may not be large enough. In order to achieve consistency, PCA tolerates a non-diagonal
residual covariance matrix S∗ and residual heteroscedasticity, provided that p and n are both large and

√
n/p tends to 0.

n the contrary, if only n is large, no non-diagonal residual covariance structure is admitted.
The authors in [22] propose to estimate the covariance matrix Σ ∗ in high dimensions under representation (2) by

aking out the principal components of Σ n and then thresholding their orthogonal complement, under the assumption
hat S∗ has a bounded ℓ1 norm as p diverges. The uniform parametric consistency of loadings, factor scores and
ommonalities obtained is established. That sparsity assumption on S∗ also allows to make the estimation error of Σ n
vanish in relative terms as p diverges.

The asymptotic distribution of factors and factor loadings estimated via PCA when both p and n are large is derived
n [8]. A relevant merit of that paper is that factors and loadings are precisely identified without the need of any rotation.
nder relatively weak factors in terms of explained variance proportion, [34] derives the (normal) asymptotic distribution
f the Ordinary Least Squares (OLS) estimated coefficients in the regressions of the PC estimates of factors (loadings) on the
rue factors (true loadings). That distribution has good approximation properties even when both p and n are reasonably
mall.
Concerning maximum likelihood estimation, [2] shows that the exact maximum likelihood is consistent for loading

stimation, even if it is still inconsistent as far as factor scores estimation is concerned. Nevertheless, factor scores can be
onsistently estimated by the conditional maximum likelihood, via Bartlett’s [11] or Thomson’s estimator [37].
The consistency of maximum likelihood (ML) to estimate a high-dimensional factor model has been studied in [5]

previous contributions on the topic also include [29,30]). Differently from the estimator of factor scores based on PCA, the
ne based on ML is consistent also for small p and n, even if the estimator distribution is less complicated to derive when

p diverges. ML has a better asymptotic rate and is more efficient than PCA in the case of independent and heteroscedastic
residuals. However, in presence of a non-diagonal residual covariance structure, the convergence rates and the optimality
conditions of ML estimators become cumbersome. It is important to note that the relative magnitude of p and n is a crucial
ssue for both methods (ML and PCA) to provide consistent factor model estimates.

Given these premises, the interest arises to find an alternative estimation method to ML and PCA, as they both present
ome relevant drawbacks in high dimensions. First of all, the latent rank recovery fails if the latent eigenvalues are not
piked enough with respect to the dimension. Then, the sample covariance matrix is increasingly numerically unstable as
he dimension increases, such that the need to regularize sample eigenvalues rises. In addition, a more effective sampling
heory is needed with respect to the degree of spikiness of latent eigenvalues and the degree and pattern of residual
parsity. Ideally, latent rank recovery and numerical stability should be ensured for any finite values of p and n.
In [9], it is proposed to use the nuclear norm heuristics in place of PCA. That work provides the asymptotic normality

nd parametric consistency of approximate factor model estimates as both p and n diverge. The proposed objective
unction is a least squares loss penalized by a nuclear norm plus ℓ1 norm heuristics, which is useful to detect covariance
atrix decompositions of type (2) where S∗ is element-wise sparse. In [23], the authors exploit the same heuristics to
erive algebraically consistent covariance matrix estimates, that is, the latent rank and the residual sparsity pattern are
ecovered with high probability for finite values of p and n. Such a feature is extremely important, as it allows to avoid
he use of any identification criterion for the latent rank like the one described in [9].

Algebraic and parametric consistency are here defined analogously to [18].
2
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efinition 1. A pair of symmetric matrices (S, L) with S, L ∈ Rp×p is an algebraically consistent estimate of the low rank
plus sparse decomposition (2) for the covariance matrix Σ ∗ if the following conditions hold: (a) the sign pattern of S is
the same as that of S∗: sgn(Sij) = sgn(S∗

ij), for all i, j ∈ {1, . . . , p} (we assume that sgn(0) = 0); (b) the rank of L is the
same as the rank of L∗: rk(L) = rk(L∗); (c) matrices L + S, S, and L are such that L + S and S are positive definite and L is
positive semidefinite.

Parametric consistency holds if the pair of estimates (S, L) is close to the pair (S∗, L∗) in some norm with probability
approaching 1.

Definition 2. A pair of symmetric matrices (S, L) with S, L ∈ Rp×p is a parametrically consistent estimate of the low
rank plus sparse decomposition (2) for the covariance matrix Σ ∗ if the norm gγ = max (∥S − S∗

∥∞/γ , ∥L − L∗
∥2/∥L∗

∥2),
where γ ∈ R+ and ∥.∥∞ denotes the maximum norm, converges to 0 with probability approaching 1.

The results of [23] are obtained by allowing for intermediate degrees of spikiness for latent eigenvalues and interme-
diate degrees of sparsity for the residual component. In particular, their assumptions prescribe that the latent eigenvalues
are spiked in the sense of Yu and Samworth ([22], p. 656), thus allowing for intermediately pervasive latent factors as p
diverges. What is more, the number of non-zeros in the residual component S∗ is allowed to grow with p (even if slower
than the latent eigenvalues). The identifiability of the matrix components L∗ and S∗ is ensured by imposing that L∗ and
S∗ are far enough from being sparse and low rank respectively.

The model setup of [23] broadens the one of [22], allowing for an intermediate degree of latent eigenvalues spikiness
and residual sparsity. Unlike [9,22], the solution method in [23] recovers with high probability both the latent rank and
the residual sparsity pattern, even when the latent eigenvalues diverge at a rate slower than O(p) as p → ∞, which may
cause the rank selection criteria in [6] to fail (also see Lemma S.1 in the Supplement). As a consequence, establishing the
optimality properties of the estimators of loadings and factor scores derived from the covariance matrix estimators of [23]
is extremely important, as it allows to estimate high-dimensional factor models under a broader variety of data settings
than existing competitors.

For these reasons, in this paper we study the estimators of loadings, factor scores and commonalities obtained under
a model framework that builds over the one of [23]. The state of the art of high-dimensional factor model estimation is
discussed in Section 2. In Section 3, the asymptotic consistency of factor model estimators based on least squares penalized
by the nuclear norm plus ℓ1 norm heuristics is proved under appropriate regimes of intermediate latent eigenvalue
spikiness and residual covariance sparsity. In Section 4, we present a finite sample version of the covariance matrix
estimators obtained via that heuristics and we derive their optimal properties in terms of minimax error in spectral norm.
In Section 5, we highlight that the ensuing Bartlett’s and Thomson’s estimators of factor scores provide the minimax error
bound in Euclidean norm within the classes of algebraically consistent low rank and sparse component estimates given a
finite sample. The conclusions follow in Section 6. A contains some essential technical details. A wide simulation study and
a real data example proving the validity of our approach are provided in a Supplement, beyond some ancillary technical
results.

2. Theoretical background

2.1. Notation

Given a p × p symmetric positive semi-definite matrix M, we denote by λi(M), i ∈ {1, . . . , p}, the eigenvalues
of M in decreasing order. To indicate that M is positive definite or semi-definite we use the notations: M ≻ 0 or
M ⪰ 0, respectively. The expressions diag(M) and off − diag(M) identify the diagonal elements and off-diagonal elements
of M, respectively. The minimum nonzero off-diagonal element of M in absolute value is denoted as ∥M∥min,off =

min 1≤i,j≤p
i̸=j,Mij ̸=0

|Mij|. Then, we recall the following norm definitions: 1. element-wise: (a) l0 norm: ∥M∥0 =
∑p

i=1
∑p

j=1 1(Mij ̸=

0); (b) l1 norm: ∥M∥1 =
∑p

i=1
∑p

j=1 |Mij|; (c) Frobenius norm: ∥M∥F =

√∑p
i=1
∑p

j=1 M
2
ij; (d) maximum norm: ∥M∥∞ =

maxi≤p,j≤p |Mij|; 2. induced by vector: (a) ∥M∥0,v = maxi≤p
∑

j≤p 1(Mij ̸= 0), which is the maximum ‘degree’ of M; (b)
M∥1,v = maxj≤p

∑
i≤p |Mij|; (c) spectral norm: ∥M∥2 = λ1(M); 3. Schatten: (a) nuclear norm of M, here defined as the

um of the eigenvalues of M: ∥M∥∗ =
∑p

i=1 λi(M).
For any t ≥ 0, we define: T (H)

t , the hard-thresholding operator with parameter t , such that the p × p matrix T (H)
t (M)

has (i, j) element Mij if |Mij| ≥ t , 0 otherwise; T (S)
t , the soft-thresholding operator with parameter t , such that the p × p

matrix T (S)
t (M) has (i, j) element sgn(Mij)max(|Mij|−t, 0); T (SVT )

t , the singular value thresholding operator with parameter
t , such that the p × p matrix T (SVT )

t (M) is equal to UMT (S)
t (ΛM )U′

M , where UMΛMU′

M is the spectral decomposition of M.

Given a p-dimensional vector v, we denote by ∥v∥ =

√∑p
i=1 v

2
i the Euclidean norm of v, by ∥v∥∞ = maxi∈{1,...,p} |vi|

the maximum norm of v, and by vk,i the ith component of the indexed vector vk.
Given two sequences Aν and Bν , ν → ∞, we write Aν = O(Bν) or Aν ⪯ Bν , if there exists a positive real C independent

of ν such that A /B ≤ C , we write B = O(A ) or A ⪰ B , if there exists a positive real C independent of ν such that
ν ν ν ν ν ν

3
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ν/Aν ≤ C , and we write Aν ≃ Bν if there exists a positive real C independent of ν such that Aν/Bν ≤ C and Bν/Aν ≤ C .
imilarly, we write Aν = o(Bν) or Aν ≺ Bν , if there exists a positive real C independent of ν such that Aν/Bν < C , and we
rite Bν = o(Aν) or Aν ≻ Bν , if there exists a positive real C independent of ν such that Bν/Aν < C .
We denote by Op the big-O in probability.

.2. State of the art

Imposing S∗
= Ip, [4] shows that the loading matrix B and the factor scores fk, k ∈ {1, . . . , n}, are consistently recovered

nder model (1) as p → ∞ by extracting the top r eigenvectors of Σ n, provided that the r eigenvalues of L∗ are O(p). The
reason why this method is consistent as p → ∞ can be understood by recalling [27]. In fact, the principal components
of Σ n are derived by solving the problem

min
L,rk(L)≤r

1
p
∥Σ n − L∥2

F , (3)

which is equivalent to the problem

min
bj,fk,j

1
np

n∑
k=1

∥xk − zk∥2
2, (4)

where zk =
∑r

j=1 bjfk,j, fk,j is the jth component of fk and the p × 1 column vectors bj, j ∈ {1, . . . , r}, are orthogonal.
Intuitively, the solutions to problem (4) are consistent under model (1) if and only if the eigenvalues of L∗ are O(p) as

→ ∞, because otherwise the signal zk would not be strong enough to be detected.
Full solution vectors bj, j ∈ {1, . . . , r}, can be difficult to interpret in high dimensions. For this reason, [38] introduces

parse Principal Component Analysis (SPCA), a method based on a version of problem (4) where each bj is penalized by a
idge plus lasso penalty. The resulting sparse principal components are no longer orthogonal and represent approximate
olutions, which reduce effectively the complexity of estimated components when p is large.
At the same time, as p diverges, the assumption S∗

= Ip is definitely too strong, as it is unlikely that the latent structure
is able to entirely catch the covariance for all pairs of variables. In order to relax that assumption, [15] proposes Principal
Component Pursuit (PCP), that is based on the solution of the following problem:

min
L+S=Σn

∥L∥∗ + ∥S∥1, (5)

where ∥L∥∗ is the nuclear norm of L and ∥S∥1 is the ℓ1 norm of S. Problem (5) can be thought of as a robust PCA problem in
presence of missing or grossly corrupted data. It is solved by exploiting the singular value thresholding algorithm of [14].

The use of the nuclear norm for rank minimization as an alternative to PCA was first proposed in [25]. The nuclear
norm was then successfully applied to matrix completion problems, among which the Netflix problem is the most
celebrated one. Within this research strand, we mention [16,26,33,35], which all describe and solve approximate robust
PCA problems.

Even if problem (5) is able to bypass the assumption S∗
= Ip, the number of parameters to be recovered may be

remarkably high without any further assumption on S∗, particularly if p is large. In order to reduce the parameter space
dimensionality, a rough alternative is to impose sparsity on Σ ∗. In the covariance matrix context, for instance, [12]
assumes that Σ ∗ is sparse and recover it by solving the problem minΣ ∥Σ n − Σ∥1. This problem is solved by applying
to Σ n the soft-thresholding algorithm of [20], which is consistent for Σ ∗ but does not provide any dimension reduction.

In this paper, we merge dimension reduction and sparsity in a single problem with the aim to explore the performance
of the ensuing estimators of factor scores and loadings. First, we recover the two components L∗ and S∗ of Σ ∗ from Σ n.
This step is performed by solving the following problem [23]:

min
L,S

1
2
∥Σ n − (L + S)∥2

F + ψ∥L∥∗ + ρ∥S∥1, (6)

here ∥L∥∗ is the nuclear norm of L and ∥S∥1 is the ℓ1 norm of S, and ψ and ρ are positive threshold parameters. The
feasible set of (6) is the set of all p×p symmetric positive definite matrices S and all p×p symmetric positive semi-definite
matrices L. Problem (6) is a least squares one, penalized by a nuclear norm plus ℓ1 norm heuristics, which has been proved
in [24] to be the tightest convex relaxation of the original NP-hard problem involving rk(L) and ∥S∥0. Some variants of
(6) have been used to estimate under the low rank plus sparse assumption in high dimensions the covariance matrix and
its inverse, as well as the spectral density matrix, in [1,10,18], respectively.

Problem (6) can be thought of as an approximate robust PCA problem. In [23], a refined estimation theory for the
estimators of L∗, S∗ andΣ ∗ obtained via (6) is provided assuming the generalized spikiness of the eigenvalues of L∗ and the
generalized element-wise sparsity of S∗. The solutions to problem (6) in [23] are called L̂ALCE and ŜALCE, where ALCE stands
for ALgebraic Covariance Estimator. ALCE estimates are computed via an alternate thresholding algorithm, composed of a
singular value thresholding [14] and a soft-thresholding step [20]. In the Supplement, we report the pseudo-code of the
solution algorithm (Section 1) and a criterion to select the optimal threshold pair (ψ, ρ) (Section 3).
4
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ALCE estimates are then re-optimized in order to minimize the spectral loss from the target Σ ∗ given a finite sample.
Such task is performed by applying an additional least squares step, which leads to the final covariance matrix estimates
LUNALCE and ŜUNALCE (where UNALCE stands for UNshrunk ALCE). Under the assumptions of [23], UNALCE estimates
converge to ALCE ones as p and n diverge. A characterizing feature of UNALCE and ALCE estimates is that they are both
parametrically and algebraically consistent, i.e. covariance matrix estimates are consistent in spectral norm and the latent
rank and the residual sparsity pattern are recovered with high probability.

The effectiveness of problem (6) as a factor model estimation method has been recently studied in [9] as far as
parametric consistency is concerned, but no algebraic consistency theory is provided therein. Moreover, the latent
eigenvalues in [9] must diverge with p in order to ensure parametric consistency, while [23] allows for intermediate
degrees of latent eigenvalues spikiness and residual sparsity. An alternative approach is POET [22]. POET covariance matrix
estimator is the result of a two-step procedure where L∗ is estimated as the covariance matrix of the top r principal
omponents, and S∗ is estimated by soft-thresholding their orthogonal complement. In [22], the strict pervasiveness of
atent factors is assumed, i.e. latent eigenvalues are assumed to be O(p), while residual covariance sparsity is imposed
y bounding the ℓ1 norm. Under those assumptions, the consistency of factor loadings and scores obtained by OLS is
rovided.

.3. Paper contributions

In comparison to [9,22], the ALCE estimation framework [23] gives several advantages, e.g., there is no need to use any
dditional criterion to recover the latent rank, intermediately spiked latent eigenvalues are recovered, a residual sparsity
attern can be recovered, and the sampling theory is relaxed according to the pervasiveness degree of latent factors
nd the sparsity degree of the residual component. For this reason, in this paper we formally establish the consistency
f approximate factor model estimators obtained by ALCE covariance matrix estimates. Consistency is established in a
ouble asymptotic framework where both p and n diverge to infinity, by deriving the conditions ensuring the asymptotic
quivalence between the nuclear norm plus ℓ1 norm penalized problem (6) and the OLS problem (4). To this end, we
xtend the theoretical framework of [23] by means of specific assumptions ensuring factor model recovery by exactly
haracterizing the allowed relative size of p and n, the tolerated strength of latent factors and degree of residual
parsity, and the maximum absolute loading and residual covariance magnitude allowed as p, n → ∞. We also include
ifferentiated speeds of divergence for latent eigenvalues as p → ∞. Furthermore, we prove that factor loadings as
ell as Bartlett’s and Thomson’s factor scores estimators obtained by UNALCE covariance matrix estimates possess strong
ptimality properties in finite samples, and we derive the conditions under which they converge to their OLS counterparts.
his fully characterizes factor model estimators obtained by solving problem (6), both asymptotically and in finite samples,
hile retaining the exact recovery of latent rank and residual sparsity pattern.

. Generalized factor model estimation

.1. Derivation of loadings and scores estimates

.1.1. OLS estimation
Let us define the n × r matrix F of factor scores as F⊤

= [f1 . . . fn], the p × r matrix B of factor loadings as
⊤

= [b1 . . . bp], and the n × p data matrix X as X⊤
= [x1 . . . xn]. The estimates of factor loadings and scores

ased on the OLS are derived as follows:

min
B,F

1
pn

p∑
j=1

n∑
k=1

(xkj − b⊤

j fk)
2. (7)

According to [4], minimizing (7) amounts to maximizing tr(F⊤(XX⊤)F). Under the constraints that 1
n

∑n
k=1 f̂k̂f

⊤

k = Ir and
⊤B̂ is diagonal, (7) is solved by F̂OLS1 =

√
nUn, where Un is the n× r matrix of the top r eigenvectors of the n× n matrix

XX⊤, and B̂⊤

OLS1 = n−1̂F⊤

OLS1x. It is easy to verify that n−1̂F⊤

OLS1̂FOLS1 = n−1√nU⊤
n
√
nUn = Ir , and that B̂⊤

OLS1B̂OLS1 = Λr ,
here Λr is the r × r diagonal matrix containing the largest r eigenvalues of Σ n in decreasing order.
Let us explore alternative estimates of loadings and factor scores. We denote the spectral decomposition of Σ n

as UpΛpU⊤
p , where Up contains as columns the p eigenvectors of Σ n, and Λp is a diagonal p × p matrix containing

he associated eigenvalues in decreasing order. We reconsider the principal component problem (3), whose solution is
r = UrΛrU⊤

r , where Ur is the p×r matrix whose columns are the eigenvectors corresponding to the largest r eigenvalues
f Σ n, contained in Λr . Then, we choose B̂OLS2 = UrΛr

1/2 as the loading matrix estimator, and, conditionally on B̂OLS2, we
stimate the factor scores via OLS as f̂OLS2,k = (̂B⊤

OLS2B̂OLS2)−1B̂⊤

OLS2xk = Λ−1
r B̂⊤

OLS2xk, for k ∈ {1, . . . , n}.
It is worth exploring the relationship between F̂OLS1 =

√
nUn and F̂OLS2, defined as F̂⊤

OLS2 = [̂fOLS2,1 . . . f̂OLS2,n]. Denoting
the eigenvalues and the eigenvectors of Σ n by λi(Σ n) and ui, i ∈ {1, . . . , p}, we know (see [13], formula (12).30) that the
corresponding eigenvalues and eigenvectors of n−1XX⊤ are λi(Σ n) and [

√
nλi(Σ n)]−1Xui, respectively, with i ∈ {1, . . . , p}.

herefore, we can recognize that U⊤
n = n−1/2Λ−1/2

r U⊤
r X⊤. It follows that F̂OLS2 = X̂BOLS2Λ

−1
r = XUrΛ

−1/2
r =

√
nUn = F̂OLS1,

nd, straightforwardly, that B̂ = B̂ .
OLS2 OLS1

5



M. Farnè and A. Montanari Journal of Multivariate Analysis 199 (2024) 105244

3

m
t

W

s
w

3

3

e
s

A
1

d
a
d
A
f

A
δ

o
o
t
a

.1.2. ALCE estimation
We assume that the matrix components L∗ and S∗ come from the following sets of matrices:

L(r) = {L | L ⪰ 0, L = UDU⊤,U ∈ Rp×r ,U⊤U = Ir ,D ∈ Rr×rdiagonal}, (8)
S(s) = {S ∈ Rp×p

| S ≻ 0, |supp(S)| ≤ s}, (9)

where L(r) is the variety of matrices with at most rank r , and S(s) is the variety of (element-wise) sparse matrices with at
ost s non-zero elements (supp(S) is the orthogonal complement of ker(S) and |supp(S)| denotes its dimension). Provided

hat L∗
∈ L(r) and S∗

∈ S(s), [19] shows that an uncertainty principle holds: if L∗ is nearly sparse, S∗ cannot be recovered;
if S∗ is nearly low rank, L∗ cannot be recovered.

Let us denote by T (L∗) andΩ(S∗) the tangent spaces to L(r) and S(s) respectively, and recall the following rank-sparsity
measures introduced in [18]:

ξ (T (L∗)) = max
L∈T (L∗),∥L∥2≤1

∥L∥∞, (10)

µ(Ω(S∗)) = max
S∈Ω(S∗),∥S∥∞≤1

∥S∥2. (11)

Bounding the product between (10) and (11) ensures that the tangent spaces T (L∗) and Ω(S∗) are close to orthogonal-
ity. This guarantees algebraic consistency, i.e. the recovery of latent rank and residual sparsity pattern with high probability
via heuristics (6). In particular, according to [18], the identifiability condition to be satisfied is ξ (T (L∗))µ(Ω(S∗)) ≤ 1/54.

The pair of ALCE covariance matrix estimates (̂LALCE, ŜALCE) is derived as

(̂LALCE, ŜALCE) = argmin
L,S

1
2
∥Σ n − (L + S)∥2

F + ψ∥L∥∗ + ρ∥S∥1. (12)

e define Σ̂ALCE = L̂ALCE+ ŜALCE, r̂A = rk(̂LALCE), and ŝA = |supp(̂SALCE)|. The recovered low rank and sparse matrix varieties
L̂(̂rA) and Ŝ (̂sA) are then defined as

L̂(̂rA) = {L ∈ Rp×p
| L = ÛALCEDÛ⊤

ALCE, D ∈ R̂rA×̂rAdiagonal}, (13)

Ŝ (̂sA) = {S ∈ Rp×p
| |supp(S)| ≤ ŝA}. (14)

We denote the spectral decomposition of L̂ALCE by ÛALCEΛ̂ALCEÛ⊤

ALCE, where ÛALCE is the p × r̂A matrix containing as
columns the eigenvectors of L̂ALCE, and Λ̂ALCE is the r̂A×r̂A diagonal matrix containing the eigenvalues of L̂ALCE in decreasing
order. Analogously to previously defined OLS factor model estimators, we define the ALCE loading matrix estimator B̂ALCE2

as B̂ALCE2 = B̂ALCE, with B̂ALCE = ÛALCEΛ̂
1/2
ALCE. Conditionally on B̂ALCE2, we then define the corresponding estimator of factor

cores for k ∈ {1, . . . , n} via OLS as f̂ALCE2,k = (̂B⊤

ALCE2B̂ALCE2)−1B̂⊤

ALCE2xk = Λ̂
−1
ALCEB̂⊤

ALCE2xk. Finally, to complete the analogy,
e set F̂ALCE1 = F̂ALCE2 and B̂ALCE1 = B̂ALCE2.

.2. Consistency of loadings and scores estimates

.2.1. OLS estimation
Suppose that model (1) holds. We state the sufficient conditions to ensure the parametric consistency of the OLS

stimators of factor loadings and scores under intermediate spikiness regimes for the latent eigenvalues and intermediate
parsity regimes for the residual component.

ssumption 1. (a) The eigenvalues of the r × r matrix B⊤B are such that λi(B⊤B) ≃ pαi , i ∈ {1, . . . , r}, for some
/2 < αr ≤ · · · ≤ α1 ≤ 1; (b) ∥bj∥∞ = O(1), j ∈ {1, . . . , p}, and r is finite for all p ∈ N.

Assumption 1(a) prescribes that the latent eigenvalues are intermediately spiked with respect to (hereafter, wrt) the
imension p in the sense of Yu and Samworth ([22], p. 656), thus allowing for intermediately pervasive latent factors
s p diverges. This is a characterizing feature of our approach compared to existing factor model estimators in high
imensions, like those in [9,22]. We also allow for different speeds of divergence for latent eigenvalues as p increases.
ssumption 1(b) prescribes that the factor loading vectors have bounded maximum norm, and that the latent rank r is
inite and independent of p.

ssumption 2. For all p ∈ N, there exist δ1 ∈ [0, 1/2] and δ2 > 0, such that: (a) ∥S∗
∥0,v = max1≤i≤p

∑p
j=1 1(S

∗

ij ̸=0) ≤

2pδ1 ; (b) ∥S∗
∥∞ = O(1); (c) p1−δ1∥S∗

∥min,off = o(1); (d)
∑p

j=1 S
∗

jj = o(pα1 ).

Assumption 2 prescribes that: for all p ∈ N, the maximum number of non-zeros per row, i.e. the maximum degree
f S∗, is bounded; the maximum entry of S∗ in absolute value is O(1); the minimum absolute nonzero element of S∗ is
(1/p1−δ1 ); the sum of residual variances is o(pα). This assumption allows to apply the probabilistic framework of [12]
o the residual covariance matrix component, and to make negligible its impact on the overall covariance matrix rate
s n → ∞. The resulting sparsity framework explicitly controls the number of non-zeros in the residual component
6
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nd their position, and imposes a gap between the magnitude of the smallest latent eigenvalue and the largest residual
igenvalue, because ∥S∗

∥2 ≤ ∥S∗
∥1,v ≤ ∥S∗

∥0,v∥S∗
∥∞ ≤ δ2pδ1 , and δ1 ≤ 1/2 < αr by Assumption 1(a). Part (d) actually

equals to impose tr(S∗) = o(tr(L∗)), which is a reasonable condition because it is equivalent to prescribe for model (1)
that tr(L∗)/tr(Σ ∗) → 1 as p → ∞, analogously to [19].

Assumption 3. In model (1), E[f] = 0r , Var[f] = Ir , E[ϵ] = 0p, Var[ϵ] = S∗, λp(S∗) > 0, E[fϵ⊤
] = 0r×p, and there exist

b1, b2, c1, c2 > 0 such that, for any l > 0, k ∈ {1, . . . , n}, i ∈ {1, . . . , r}, j ∈ {1, . . . , p}:

Pr(|fk,i| > l) ≤ exp{−(l/b1)c1}, Pr(|ϵk,j| > l) ≤ exp{−(l/b2)c2}.

Assumption 3 defines model (1) as an approximate factor model in the sense of [17], and imposes sub-exponential
tails to true factors and residuals, as in [22]. This allows to apply large deviation theory to factors, residuals and their
interactions. Moreover, it implies that all moments of fk,i and ϵk,j exist for all k ∈ {1, . . . , n}, i ∈ {1, . . . , r}, j ∈ {1, . . . , p}.

Assumption 4. There exists M > 0 such that, for all j ∈ {1, . . . , p} and k ∈ {1, . . . , n}: (a) E[p−1/2(ϵ⊤

k ϵk − E[ϵ⊤

k ϵk])4] < M
and (b) E[∥p−1/2∑p

j=1 bjϵk,j∥
4
] < M .

Assumption 4 is necessary to estimate loadings and factor scores. It explicitly controls cross-sectional dependence,
analogously to [4,22].

We can now focus on factor model estimators based on OLS. We follow the inferential framework of [4], exactly as [22]
does. We define the projection matrix onto the orthogonally rotated true factor space as HOLS1 = n−1(Λr )−1̂F⊤

OLS1FB
⊤B.

Then, the following theorem holds.

Theorem 1. Suppose that Assumptions 1–4 hold. Assume that ∥S∗
∥1/p ≤ δ′

2 for some δ′

2 > 0, α1 − αr ≤ δ1,
and max{p2−2αr , ln(p)}/n = o(1). Then, as p, n → ∞, for the estimators B̂⊤

OLS1 = [̂bOLS1,1 . . . b̂OLS1,p] and F̂⊤

OLS1 =

[̂fOLS1,1 . . . f̂OLS1,n] minimizing (7) with r known it holds:

(i) maxj≤p ∥̂bOLS1,j − HOLS1bj∥ = Op

(√
ln(p)
n

)
;

(ii) maxk≤n ∥̂fOLS1,k − HOLS1fk∥ = Op

(
n1/4p1−αr

p1/2

)
;

(iii) maxj≤p,k≤n ∥̂b⊤

OLS1,ĵfOLS1,k − b⊤

j fk∥ = Op

(
n1/4p1−αr

p1/2
+ ln(n)

1
c2

√
ln(p)
n

)
.

Theorem 1, proved in A, provides the uniform error rates in Euclidean norm for loading vectors, factor scores and
commonalities estimated by OLS under generalized latent eigenvalues spikiness and residual sparsity, provided that
the latent rank r is known. This condition is necessary because, as reported by Yu and Samworth in the discussion
of [22], the latent rank may be underestimated by the information criteria of [6] when αr < 1, since in that case
imp,n→∞ Pr{IC(r ′) < IC(r)} > 0, r ′ < r (we refer to Lemma S.1 in the Supplement for more details).

The condition max{p2−2αr , ln(p)}/n = o(1) is sufficient to ensure that the estimation errors vanish as p, n → ∞. The
ondition α1 − αr ≤ δ1 rises to ensure the annihilation of the residual component contribution to the estimation errors
s p, n → ∞. The condition ∥S∗

∥1/p ≤ δ′

2 is imposed to control the cumulation of residual covariances. By assuming
1 = αr = 1, we note that we reobtain the rates and the conditions of Theorem 4 in [22] (also see Theorem S.1 in the
upplement for more details), and that the condition p2−2αr /n = o(1) ceases to be binding as n → ∞, which means that
heorem 1 holds for all p ∈ N as n → ∞ and ln(p)/n = o(1).

emark 1. Part (ii) of Theorem 1 shows that, for the estimation error of factor scores to disappear, it is required that
2−2αr /n = o(1) and n1/4p1−αr /p1/2 = o(1) hold simultaneously. This implies that it must hold δn,1p

2−2αr < n < δn,1p4αr−2

for some δn,1, δn,1 > 0 with δn,1 < δn,1. The inequality 2 − 2αr ≤ 4αr − 2 thus leads to the condition αr ≥ 2/3 for this
to hold. If αr = 2/3, it must be n = O(p2/3). If αr = 3/4, it must hold

√
p = o(n) and n = o(p). If αr = 1, it must hold

n(p) = o(n) and n = o(p2), consistently with [22].

.2.2. ALCE estimation
The consistency of ALCE factor model estimators requires to bound the quantities (10) and (11). In order to clarify

hy, we define: the incoherence of L∗ as inc(L∗) = maxj∈{1,...,p} ∥PL∗ej∥, where ej is the jth canonical basis vector,
nd PL∗ is the projection operator onto the row–column space of L∗; the minimum (or maximum) degree of S∗ as
egmin(S∗) = min1≤i≤p

∑p
j=1 1(S

∗

ij ̸=0) (or degmax(S∗) = max1≤i≤p
∑p

j=1 1(S
∗

ij ̸=0)). The incoherence of L∗ represents the
aximum discrepancy between the row–column space of L∗ and the canonical base. According to [19], inc(L∗) ranges
etween

√
r/p (maximum incoherence) and 1 (minimum incoherence). The minimum (maximum) degree of S∗ represents

instead the minimum (maximum) number of non-zeros per row in S∗. We know from [19] that

inc(L∗) ≤ ξ (T (L∗)) ≤ 2inc(L∗);
deg (S∗) ≤ µ(Ω(S∗)) ≤ deg (S∗). (15)
min max

7
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These definitions allow us to properly present the additional assumptions required to ensure the asymptotic consis-
tency of ALCE approach.

Assumption 5. For all p ∈ N, there exist κL, κS > 0 with
√
rκS/κL ≤ 1/54, kL ≥

√
r/2, κS ≤ δ2, such that

(T (L∗)) =
√
r/κLpδ1 and µ(Ω(S∗)) = κSpδ1 .

Assumption 5 essentially imposes the identifiability condition ξ (T (L∗))µ(Ω(S∗)) ≤ 1/54 (we refer to Proposition 1
n Appendix A for more details) by controlling the rate of the maximum degree of S∗ wrt the dimension p. From (15),
t is clear that Assumption 2 also implicitly controls the rate of µ(Ω(S∗)), by controlling degmax(S∗) = ∥S∗

∥0,v , which is
mposed to be not larger than δ2pδ1 (δ1 ∈ [0, 1/2]), thus requiring ξ (T (L∗)) to scale to O(p−δ1 ) to ensure identifiability.
his is also why we require κS ≤ δ2. Assumption 5 is a characterizing feature of ALCE approach compared to alternative
pproaches in [4,9,22], because those approaches do not explicitly control the underlying algebraic structure in terms of
eometric manifolds, as we do to ensure the identifiability of (8) and (9), following [18].

xample 1. Let us consider the two extreme values prescribed for δ1 by Assumption 2. If δ1 = 0, ξ (T (L∗)) =
√
r/κL and

µ(Ω(S∗)) = κS . This means that S∗ is imposed to be really sparse, because ∥S∗
∥0,v = O(1) and consequently µ(Ω(S∗)) =

O(1). This case exemplifies a situation where latent eigenvectors are minimally incoherent wrt the canonical base, because
(T (L∗)) = O(1). To tolerate this minimal value of incoherence for L∗, the identifiability condition ξ (T (L∗))µ(Ω(S∗)) ≤

/54 imposes a minimal number of residual non-zeros in S∗. On the other hand, if δ1 = 1/2, according to [19] the low
rank matrix L∗ is maximally incoherent, which means that the identifiability condition ξ (T (L∗))µ(Ω(S∗)) ≤ 1/54 tolerates
maximum number of non-zeros per row ∥S∗

∥0,v as large as O(p1/2). In plain terms, Assumption 5 controls µ(Ω(S∗)) by
ts upper bound ∥S∗

∥0,v , which is in turn controlled by Assumption 2.

ssumption 6. Define ψ0 = 1/ξ (T (L∗))
√
ln(p)/n. There exist δL, δS > 0 such that (a) the minimum eigenvalue of

L∗ (λr (L∗)) is greater than δLψ0/ξ
2(T (L∗)); (b) the minimum absolute value of the non-zero off-diagonal entries of S∗,

∥S∗
∥min,off, is greater than δSψ0/µ(Ω(S∗)).

Assumption 6 is the other crucial assumption to ensure algebraic consistency. It prescribes that the smallest latent
eigenvalue and the minimum off-diagonal absolute magnitude in the residual component are large enough. In particular,
Assumption 6(a) is required for the recovery of the latent rank and Assumption 6(b) is required to recover the residual
sparsity pattern.

Theorem 2. Suppose that Assumptions 1–3 and 5–6 hold. Define ρ0 = γψ0, where γ ∈ [9ξ (T (L∗)), 1/(6µ(Ω(S∗)))]. Assume
hat δ1 ≤ αr/3 and ln(p)/n → 0. Then, there exists a positive real κ independent of p and n such that, for all p ∈ N, as n → ∞

he pair of estimators (12) satisfies:

(i) Pr(p−α1 ∥̂LALCE − L∗
∥2 ≤ κψ0) → 1;

(ii) Pr(∥̂SALCE − S∗
∥∞ ≤ κρ0) → 1;

(iii) Pr(rk(̂LALCE) = rk(L∗)) → 1.

urther assume that p2−2δ1 ln(p)/n = o(1). Then, for all p ∈ N, as n → ∞ it holds: (iv) Pr(sgn(̂SALCE) = sgn(S∗)) → 1.

Theorem 2, proved in A, is explained in detail below.

emark 2. Theorem 2 differs from Theorem 1 in [23] in what follows. First, Assumption 1, unlike Assumption 1
n [23], now incorporates differentiated speeds of divergence among latent eigenvalues. Second, the sparsity conditions
n Assumption 2 have been completely reshaped and simplified, as they are now controlled by means of ∥S∗

∥0,v , ∥S∗
∥∞,

∥S∗
∥min,off, and tr(S∗), unlike the corresponding Assumption 4 in [23]. Third, the theorem is now proved for all p ∈ N as

→ ∞, thanks to the new condition δ1 ≤ αr/3, which regulates compatibility between Assumption 1(a) and 6(a) (see
emark 3). Fourth, thanks to these updates, Assumptions 5 and 6 in [23] are no longer needed.

emark 3. The conditions δ1 ≤ αr/3 and ln(p)/n → 0 are imposed to ensure that Assumption 6(a) is compatible with
ssumption 1(a), which requires, imposing Assumption 5,

λr (L∗) ≥ δL
ψ0

ξ 2(T (L∗))
≥ δL

(√
r
κL

)3

p3δ1
√

ln(p)
n

(16)

nder λr (L∗) ≃ pαr . Compatibility is always ensured for all p ∈ N if 0 ≤ δ1 ≤ αr/3, because n → ∞ and r is finite by
ssumption 1(b). If δ1 ∈ (αr/3, 1/2], Theorem 2 continues to hold as p → ∞ with the stricter requirement p6δ1−2αr /n → 0,
hat comes from the need to ensure that (16) holds under λr (L∗) ≃ pαr . This means that a large δ1, corresponding to more
on-zeros in S∗, complicates the recovery of both components in that the condition n > p may be needed to ensure

consistency if δ ∈ (α /3, 1/2].
1 r

8
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emark 4. Assumptions 6(b) and 2(b) are always compatible, as Assumption 5 ensures that

0 < 54δS

√
ln(p)
n

≤
δS

ξ (T (L∗))µ(Ω(S∗))

√
ln(p)
n

= δS
ψ0

µ(Ω(S∗))
< ∥S∗

∥min,off < ∥S∗
∥∞ = O(1),

which is always verified for all p ∈ N as n → ∞ and ln(p)/n = o(1). Similarly, Assumption 6(b) and 2(c) are always
compatible as long as p2−2δ1 ln(p)/n = o(1), because 54δS

√
ln(p)/n < ∥S∗

∥min,off = o(1/p1−δ1 ) is always verified for all
p ∈ N as n → ∞ and

√
ln(p)/n = o(1/p1−δ1 ), which leads to the condition p2−2δ1 ln(p)/n = o(1). Note that such condition

is only required to ensure the validity of clause 4 in Theorem 2, i.e., the sparsistency of ŜALCE, because of the specific role
of Assumption 6(b) (cf. Theorem 2 in [23]).

Remark 5. Assumption 3 imposes sub-exponential tails to fk,i, i = {1, . . . , r}, and ϵk,j, j = {1, . . . , p}. This condition
is satisfied by the Gaussian distribution but is more general in nature. It is needed to apply Lemmas 3 and 4(a) of [22],
and (12) in [12] (together with Assumption 2(b), cf. Section 2 in [12]). Assumptions 1, 2, and 3 are required to prove
Lemma 1, which is essential for all the results of this paper. Assumption 4 is a further condition needed to explicitly
control cross-sectional dependence. It would be implied by Assumption 3 in the case of cross-sectional independence. It
is not needed to prove Theorem 2, because, unlike [22], it is only needed to prove consistency of ALCE estimated loadings
and factor scores (see Theorem 3), but not to prove consistency of ALCE covariance matrix.

Remark 6. Parts (i) and (ii) of Theorem 2 establish the parametric consistency of the pair of ALCE estimators (12) in
gγ -norm. The statements of parts (i) and (ii) follow in fact from the underlying thesis of Theorem 2, that is

gγ (̂SALCE − S∗, L̂ALCE − L∗) ≤ ψ0,

which in turn leads to p−δ1gγ (̂SALCE − S∗, L̂ALCE − L∗) = Op
(√

ln(p)/n
)
, where ψ = pα1ψ0, ρ0 = ρ, γ = ψ0/ρ0, and ψ and

ρ are the threshold parameters in (6). Remark 6 expresses a consistency result for L̂ALCE and ŜALCE jointly considered in
gγ -norm (see Definition 1), which is the dual norm of the composite penalty ψ0∥ · ∥∗ + ρ0∥ · ∥1. More explanations can
be found in the proof of Theorem 2 and in [18].

Remark 7. Parts (iii) and (iv) establish conditions a and b of Definition 1. This result comes at the price of bounding
the degree of transversality of the geometric manifolds where L∗ and S∗ lie, i.e. the matrix varieties L(r) and S(s). This is
recisely the role of Assumption 5, that, together with Assumption 2, is responsible for the factor pδ1 that appears in the

error rate of L̂ALCE and ŜALCE (see Corollary 1) in spectral norm. The lower bounds imposed by Assumption 6 on λr (L∗) and
S∥min,off are then the key to ensure the identifiability of L(r) and S(s) with high probability, where the probability rate
lso depends on Assumptions 1 and 3.

orollary 1. Under the assumptions of Theorem 2, for all p ∈ N, as n → ∞ it holds: (i) Pr(p−δ1 ∥̂SALCE − S∗
∥2 ≤

√
ln(p)/n) → 1; (ii) Pr(p−(α1+δ1)∥Σ̂ALCE − Σ ∗

∥2 ≤ κ
√
ln(p)/n) → 1; (iii) Pr(λp (̂SALCE) > 0) → 1; (iv) Pr(λp(Σ̂ALCE) >

0) → 1. In addition, supposing that λp(S∗) = O(pα1−1−ε) and λp(Σ ∗) = O(pα1−1−ε) for some ε > 0, the fol-
lowing statements hold for all p ∈ N as n → ∞: (v) Pr

(
p−δ1p−2(1−α1+ε)

∥̂S−1
ALCE − S∗−1

∥2 ≤ κ
√
ln(p)/n

)
→ 1; (vi)

r
(
p−(α1+δ1)p−2(1−α1+ε)

∥Σ̂
−1
ALCE − Σ ∗−1

∥2 ≤ κ
√
ln(p)/n

)
→ 1.

Corollary 1, proved in A, is clarified by means of the following remarks.

emark 8. Conditions λp(S∗) = O(pα1−1−ε) and λp(Σ ∗) = O(pα1−1−ε) for some ε > 0 are needed to ensure compatibility
ith Assumption 2(d).

emark 9. Parts (iii) and (iv) ensure that condition c of Definition 1 holds. Together with parts (iii) and (iv) of Theorem 2,
hey ensure the algebraic consistency of the pair of ALCE estimators (12) according to Definition 1.

We can now define the projection matrix onto the orthogonally rotated true factor space as HALCE1 =
−1(Λ̂ALCE)−1̂F⊤

ALCE1FB
⊤B, and state the main theorem of this section.

heorem 3. Suppose that all the assumptions and conditions of Theorem 2 hold. Then, for the estimators B̂ALCE1 =

b̂ALCE1,1 . . . b̂ALCE1,p] (where B̂ALCE1 is p × r∗ with r∗
= rk(̂LALCE) = r̂A) and F̂ALCE1 = [̂fALCE1,1 . . .̂ fALCE1,n], Theorem 1 holds

ith HALCE1 in place of HOLS1.

Theorem 3, proved in A, provides the uniform error rates in Euclidean norm for loading vectors, factor scores
nd commonalities estimated by penalized OLS via ALCE approach under the generalized spikiness regime for latent
igenvalues and the generalized sparsity regime for the residual component, relying on the fact that r̂A = r with probability
ending to one under all the assumptions and conditions of Theorem 2.
9
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xample 2. The conditions δ1 ≤ αr/3 of Theorem 2 and α1 − αr ≤ δ1 of Theorem 1 give rise to the inequality
1 − αr ≤ αr/3, which leads to α1 −

4
3αr ≤ 0. Therefore, for Theorem 3 to hold, such condition must be satisfied.

or instance, if α1 = 1, it must hold αr ∈ (3/4, 1]; if α1 = 3/4, it must hold αr ∈ (9/16, 3/4]; if α1 = 2/3, it must hold
r ∈ (1/2, 2/3]. The limit case (ruled out by Assumption 1(a)) is αr = α1 = 1/2.

4. Estimation in the finite sample: UNALCE

In Section 3, we derived the asymptotic consistency of OLS and ALCE factor model estimates assuming that latent
factors are intermediately pervasive and the residual covariance is intermediately sparse wrt the dimension p. In this
section, we discuss the optimality properties of factor model estimates based on heuristics (6) when the parameters p
and n are fixed.

Let us recall the conclusions of Theorem 2 and Corollary 1. Theorem 2 states that the pair of solutions (12) under
Assumptions 1–3 and 5–6 is parametrically consistent and recovers the true latent rank and the residual sparsity pattern
with probability tending to one, provided that the sample size n and the thresholds ψ and ρ lie in a specific range wrt the
dimension p. The resulting estimators are named L̂ALCE, ŜALCE and Σ̂ALCE. Corollary 1 provides the error bounds in spectral
norm and the invertibility conditions for ŜALCE and Σ̂ALCE. Theorem 2 and Corollary 1 together mean that ALCE estimates
are algebraically consistent.

Once fixed the dimension p and the sample size n, our new aim is to prove that ALCE estimates can be re-optimized
as much as possible in the following sense:

min
L∈L̂(̂rA),S∈Ŝdiag

1
2
∥Σ n − (L + S)∥2, (17)

here Ŝdiag is the following set of matrices:

Ŝdiag = {S ∈ Rp×p
| diag(L) + diag(S) = diag(Σ̂ALCE), off − diag(S) = off − diag(̂SALCE), L ∈ L̂(̂rA)}.

In synthesis, for any threshold pair (ψ̆, ρ̆) satisfying the conditions of Theorem 2, the recovered matrix varieties L̂(̂rA)
and Ŝ (̂sA) (see (13) and (14)) are first recovered by solving the problem minL,S

1
2∥Σ n − (L + S)∥2

F under the constraint
that ψ̆∥L∥∗ + ρ̆∥S∥1 is minimum, which leads to the pair of ALCE estimates (12). In a second step, the estimates are then
re-optimized by solving problem (17), which entirely depends on the sample covariance matrix Σ n, and restricts the low
rank solution to lie in L̂(̂rA) and the residual solution to have the same off-diagonal elements of ŜALCE and a constrained
diagonal wrt diag(Σ̂ALCE).

Relying on the parametric guarantees offered by L̂(̂rA) and Ŝ (̂sA), and conditioning upon the recovered latent rank r̂A,
he residual sparsity pattern sgn(̂SALCE) and the first step optimization in (12), we prove that it is possible to re-optimize
he pair of estimates (̂LALCE, ŜALCE) to improve the overall fitting as much as possible, constraining the solutions to lie on
(̂̂rA) and Ŝdiag .

heorem 4. Let us define

L̂UNALCE = ÛALCE(Λ̂ALCE + ψ̆Ir )̂U⊤

ALCE,

where ψ̆ > 0 is a chosen eigenvalue threshold parameter, and ŜUNALCE such that

diag(̂SUNALCE) = diag(Σ̂ALCE) − diag(̂LUNALCE),

and

off − diag(̂SUNALCE) = off − diag(̂SALCE).

Then, assuming the sample covariance matrix Σ n as fixed, under all the assumptions and conditions of Theorem 2 the
following statements hold: (i) argminmaxL∈L̂(̂rA) ∥L − L∗

∥2 = L̂UNALCE; (ii) argminmaxS∈Ŝdiag ∥S − S∗
∥2 = ŜUNALCE; (iii)

argminmaxL∈L̂(̂rA),S∈Ŝdiag ∥(L+ S)−Σ ∗
∥2 = Σ̂UNALCE. More, if all the conditions of Corollary 1 and Theorem 3 hold, then: (iv)

argminmaxS∈Ŝdiag ∥S−1
− S∗−1

∥2 = Ŝ−1
UNALCE; (v) argminmaxL∈L̂(̂rA),S∈Ŝdiag ∥(L + S)−1

− Σ ∗−1
∥2 = Σ̂

−1
UNALCE.

Remark 10. In part (i), the minimax can actually be replaced by a simple minimum if δ1 > 0 and p is large enough, due
to algebraic consistency (see Proposition 3 and the proof of Theorem 4 in A).

Theorem 4 states that the UNALCE estimates of L∗, S∗, Σ ∗, S∗−1, Σ ∗−1 show the minimax errors in spectral norm
among algebraically consistent estimates, assuming the sample covariance matrix as fixed. The UNALCE procedure has
the effect to un-shrink the eigenvalues of L̂ALCE, and to update the diagonal of ŜALCE, while saving the recovered sparsity
pattern sgn(̂S ), that is equal to sgn(̂S ) by definition.
ALCE UNALCE

10
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. Bartlett’s and Thomson’s estimation

In this section, we prove that Bartlett’s and Thomson’s factor scores estimators based on UNALCE covariance matrix
stimates show the tightest possible error bounds in Euclidean norm, given the finite sample. First, we state the optimality
f the UNALCE loading matrix estimator, B̂UNALCE = ÛUNALCEΛ̂

1/2
UNALCE, with ÛUNALCE = ÛALCE and Λ̂UNALCE = Λ̂ALCE + ψ̆Ir , by

he following Corollary.

orollary 2. Let Hr be any r × r orthogonal matrix. Under the assumptions of Theorem 4, then

argmin max
B̂|̂L=B̂̂B⊤∈L̂(̂rA)

∥̂B − BHr∥ = B̂UNALCE.

roof. Let us define the loading matrix estimator B̂ = ÛLΛ̂
1
2
L , with ÛL p× r semi-orthogonal matrix and Λ̂L diagonal r × r

matrix such that L̂ = ÛLΛ̂LÛ⊤

L ∈ L̂(̂rA). It then holds

∥̂B − BHr∥ = λ1 (̂ULΛ̂
1
2
L − ULΛ

1
2
L Hr ).

At this stage, we observe that, under the assumptions of Theorem 4,

argmin max
L̂∈L̂(̂rA)

∥̂L − L∗
∥2 = argmin max

(̂UL,Λ̂L) s.t. L̂=ÛLΛ̂LÛ⊤
L ∈L̂(̂rA)

λ1 (̂ULΛ̂LÛ⊤

L − ULΛLU⊤

L ) = L̂UNALCE,

f Theorem 2 holds. Setting L̂UNALCE = ÛUNALCEΛ̂UNALCEÛ⊤

UNALCE, it follows that the thesis

(̂UUNALCE, Λ̂UNALCE) = argmin max
(̂UL,Λ̂L) s.t. L̂=ÛLΛ̂LÛ⊤

L ∈L̂(̂rA)
λ1 (̂ULΛ̂

1
2
L − ULΛ

1
2
L Hr ),

escends from part (i) of Theorem 4. □

Corollary 2 is a direct consequence of Theorem 4. It shows that B̂UNALCE is the optimal loading matrix estimator given
he finite sample in terms of fitting performance within the class of algebraically consistent estimates for B, under all the
ssumptions and conditions of Theorem 4. If δ1 > 0, the minimax can be replaced by a simple minimum as p is large
nough, due to algebraic consistency (see Remark 10).
Then, we define Bartlett’s factor scores estimates for the observation k, k ∈ {1, . . . , n}, as follows:
f̂k,B = (̂B⊤̂S−1B̂)−1B̂⊤̂S−1xk. They simply are the Generalized Least Squares (GLS) factor scores estimates. The true

Bartlett’s factors are defined as fk,B = (B⊤S∗−1B)−1B⊤S∗−1xk. The following result for Bartlett’s factor scores and
ommonalities based on UNALCE covariance matrix estimates holds.

heorem 5. Let us denote by Hr any r × r orthogonal matrix. Under the assumptions of Theorem 4, for k ∈ {1, . . . , n}
the minimax minmaxB̂,̂L=B̂̂B⊤∈L̂(̂rA),̂S∈Ŝdiag

∥̂fk,B − Hr fk,B∥ and minmaxB̂,̂L=B̂̂B⊤∈L̂(̂rA),̂S∈Ŝdiag
∥̂B̂fk,B − Bfk,B∥ are achieved for

= B̂UNALCE and Ŝ = ŜUNALCE.

roof. We start considering the loss ∥̂fk,B−Hr fk,B∥. Since f̂k,B = (̂B⊤̂S−1B̂)−1B̂⊤̂S−1xk, k ∈ {1, . . . , n}, under the assumptions
of Theorem 4 we get

∥̂fk,B − Hr fk,B∥ ≤ ∥(̂B⊤̂S−1B̂)−1B̂⊤̂S−1
− Hr (B⊤S∗−1B)−1B⊤S∗−1

∥ × ∥xk∥.

We thus focus on

(̂B⊤̂S−1B̂)−1B̂⊤̂S−1
− Hr (B⊤S∗−1B)−1B⊤S∗−1. (18)

We note that, since Hr is orthogonal, (18) is equivalent to

(̂B⊤̂S−1B̂)−1B̂⊤̂S−1
− (B⊤S∗−1BH⊤

r )
−1B⊤S∗−1.

Then, via some algebra, we obtain

(̂B⊤̂S−1B̂)−1B̂⊤̂S−1
− (B⊤S∗−1BH⊤

r )
−1B⊤S∗−1

= (̂B⊤̂S−1B̂)−1B̂⊤̂S−1
− (B⊤S∗−1BH⊤

r )
−1B⊤S∗−1

+ (̂B⊤̂S−1B̂)−1B⊤S∗−1
− (̂B⊤̂S−1B̂)−1B⊤S∗−1

=
[
(̂B⊤̂S−1B̂)−1

− (B⊤S∗−1BH⊤

r )
−1]B⊤S∗−1

+ (̂B⊤̂S−1B̂)−1 (̂B⊤̂S−1
− B⊤S∗−1).

At this point, we add and subtract the quantity (B⊤S∗−1BH⊤
r )

−1
[̂
B⊤̂S−1

− B⊤S∗−1
]
, and we get:

(̂B⊤̂S−1B̂)−1B̂⊤̂S−1
− (B⊤S∗−1BH⊤

r )
−1B⊤S∗−1

=

[
(̂B⊤̂S−1B̂)−1

− (B⊤S∗−1BH⊤

r )
−1
]
B⊤S∗−1

+

[
(̂B⊤̂S−1B̂)−1

− (B⊤S∗−1BH⊤)−1B̂−1
]
(̂B⊤̂S−1

− B⊤S∗−1) + (B⊤S∗−1BH⊤)
−1

(̂B⊤̂S−1
− B⊤S∗−1). (19)
r r

11
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e first focus on the error matrix (̂B⊤̂S−1
− B⊤S∗−1). We write

(̂B⊤̂S−1
− B⊤S∗−1) = B̂⊤̂S−1

− B⊤S∗−1
+ B⊤̂S−1

− B⊤̂S−1 (̂B − B)⊤̂S−1
+ B⊤ (̂S−1

− S∗−1)

= (̂B − B)⊤̂S−1
+ B⊤ (̂S−1

− S∗−1) − (̂B − B)⊤S∗−1
+ (̂B − B)⊤S∗−1

= (̂B − B)⊤ (̂S−1
− S∗−1) + B⊤ (̂S−1

− S∗−1) + (̂B − B)⊤S∗−1. (20)

By the triangular inequality, Corollary 2 and Theorem 4 (part (iv)), it follows from (20) that

argmin max
B̂,̂L=B̂̂B⊤∈L̂(̂rA),̂S∈Ŝdiag

(̂B⊤̂S−1
− B⊤S∗−1) =

(̂
BUNALCE, ŜUNALCE

)
. (21)

We now focus on the term
[
(̂B⊤̂S−1B̂)−1

− (B⊤S∗−1BH⊤
r )

−1
]
. We recall that

∥(̂B⊤̂S−1B̂)−1
− (B⊤S∗−1BH⊤

r )
−1

∥ ≤ λ1((B⊤S∗−1BH⊤

r )
−1)λ1((̂B⊤̂S−1B̂)−1)∥(̂B⊤̂S−1B̂) − (B⊤S∗−1BH⊤

r )∥

≤
∥(̂B⊤̂S−1B̂) − (B⊤S∗−1BH⊤

r )∥
λr (̂B⊤̂S−1B̂)λr (B⊤S∗−1BH⊤

r )
. (22)

t this stage, we need to bound ∥(̂B⊤̂S−1B̂) − (B⊤S∗−1BH⊤
r )∥. We consider the error matrix B̂⊤̂S−1B̂ − B⊤S∗−1BH⊤

r . We
rite

B̂⊤̂S−1B̂ − B⊤S∗−1BH⊤

r = B̂⊤̂S−1B̂ − B⊤S∗−1BH⊤

r + B⊤S∗−1B̂ − B⊤S∗−1B̂
= (̂B⊤̂S−1

− B⊤S∗−1 )̂B + B⊤S∗−1 (̂B − BHr )

= (̂B⊤̂S−1
− B⊤S∗−1 )̂B + B⊤S∗−1 (̂B − BHr ) − (̂B⊤̂S−1

− B⊤S∗−1)B + (̂B⊤̂S−1
− B⊤S∗−1)B

= (̂B⊤̂S−1
− B⊤S∗−1)(̂B − B) + B⊤S∗−1 (̂B − BHr ) + (̂B⊤̂S−1

− B⊤S∗−1)B. (23)

ow, by the triangular inequality, Corollary 2 and Theorem 4 (part (iv)), from (22) and (23), we get

argmin max
B̂,̂L=B̂̂B⊤∈L̂(̂rA),̂S∈Ŝdiag

(̂B⊤̂S−1B̂ − B⊤S∗−1BH⊤

r ) =
(̂
BUNALCE, ŜUNALCE

)
. (24)

Finally, from (19), (21), (22) and (24) the statement follows. □

Theorem 5 states that Bartlett’s factor scores and commonalities estimated by UNALCE approach are the most precise
given the finite sample within the sets of algebraically consistent estimates for B and S∗, under the assumptions and
conditions of Theorem 4.

Suppose now that the bivariate distribution (xk, fk), k ∈ {1, . . . , n}, is multivariate normal (denoted as MNV):(
xk
fk

)
∼ MNV

[(
0p
0r

)
,

(
BB⊤

+ S∗ B
B⊤ Ir

)]
.

As a consequence, from the Bayesian point of view, we can derive the following a posteriori expected value for fk:

E[fk|xk] = B⊤(BB⊤
+ S∗)−1xk.

Thomson’s estimates of factor scores are the estimates of such expected value: f̂k,T = B̂⊤ (̂B̂B⊤
+ Ŝ)−1xk, k ∈ {1, . . . , n}.

he corresponding Thomson’s true factors are defined as fk,T = B⊤(BB⊤
+ S∗)−1xk, k ∈ {1, . . . , n}. The following theorem

n the performance of Thomson’s estimates of factor scores and commonalities based on UNALCE holds.

heorem 6. Let us denote by Hr any r × r orthogonal matrix. Under the assumptions of Theorem 4, for k ∈ {1, . . . , n}
he minimax minmaxB̂,̂L=B̂̂B⊤∈L̂(̂rA),̂S∈Ŝdiag

∥̂fk,T − Hr fk,T∥ and minmaxB̂,̂L=B̂̂B⊤∈L̂(̂rA),̂S∈Ŝdiag
∥̂B̂fk,T − Bfk,T∥ are achieved for

= B̂UNALCE and Ŝ = ŜUNALCE.

roof. We start considering the loss ∥̂fk,T − fk,T∥. For the definition of f̂k,T , under the assumptions of Theorem 4 we get

∥̂fk,T − fk,T∥ ≤ ∥̂B⊤Σ̂
−1

− B⊤Σ ∗−1
∥ · ∥xk∥.

We first focus on the error matrix (̂B⊤Σ̂
−1

− B⊤Σ ∗−1). We write

(̂B⊤Σ̂
−1

− B⊤Σ ∗−1) = B̂⊤Σ̂
−1

− B⊤Σ ∗−1
+ B⊤Σ̂

−1
− B⊤Σ̂

−1
(̂B − B)⊤Σ̂−1

+ B⊤(Σ̂
−1

− Σ ∗−1)

= (̂B − B)⊤Σ̂−1
+ B⊤(Σ̂

−1
− Σ ∗−1) − (̂B − B)⊤Σ ∗−1

+ (̂B − B)⊤Σ ∗−1

= (̂B − B)⊤(Σ̂−1
− Σ ∗−1) + B⊤(Σ̂

−1
− Σ ∗−1) + (̂B − B)⊤Σ ∗−1. (25)

By the triangular inequality, Corollary 2 and Theorem 4 (part (v)), it follows from (25) that

argmin max
⊤

(̂B⊤ (̂L + Ŝ)−1
− B⊤(L∗

+ S∗)−1) =
(̂
BUNALCE, Σ̂UNALCE

)
, (26)
B̂,̂L=B̂̂B ∈L̂(̂rA),̂S∈Ŝdiag

12
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ith Σ̂UNALCE = B̂UNALCEB̂⊤

UNALCE + ŜUNALCE = L̂UNALCE + ŜUNALCE.
Then, we note that

B̂̂fk,T − BHr fk,T = B̂̂B⊤Σ̂
−1xk − B̂B⊤Σ ∗−1xk = L̂Σ̂−1xk − L̂Σ ∗−1xk.

Therefore, under the assumptions of Theorem 4 we can write

∥̂B̂fk,T − Bfk,T∥ ≤ ∥̂B̂B⊤Σ̂
−1xk − B̂B⊤Σ ∗−1

∥ · ∥xk∥.

By some algebra, we get

B̂̂fk,T − Bf = B̂̂B⊤Σ̂
−1

− BB⊤Σ ∗−1
= B̂̂B⊤Σ̂

−1
− BB⊤Σ ∗−1

+ B̂B⊤Σ ∗−1
− B̂B⊤Σ ∗−1

= B̂(̂B⊤Σ̂
−1

− B⊤Σ ∗−1) + (̂B − B)B⊤Σ ∗−1

= B̂(̂B⊤Σ̂
−1

− B⊤Σ ∗−1) + (̂B − B)B⊤Σ ∗−1
+ B(̂B⊤Σ̂

−1
− B⊤Σ ∗−1) − B(̂B⊤Σ̂

−1
− B⊤Σ ∗−1)

= (̂B − B)(̂B⊤Σ̂
−1

+ B⊤Σ ∗−1) + B(̂B⊤Σ̂
−1

+ B⊤Σ ∗−1) + (̂B − B)B⊤Σ ∗−1.

At this point, by the triangular inequality, Corollary 2 and (26), it follows that

argmin max
B̂,̂L=B̂̂B⊤∈L̂(̂rA),̂S∈Ŝdiag

(̂B̂B⊤ (̂L + Ŝ)−1
− BB⊤(L∗

+ S∗)−1) =
(̂
BUNALCE, Σ̂UNALCE

)
,

hich completes the proof. □

Theorem 6 states the same optimality properties of Theorem 5 for Thomson’s estimates of factor scores and common-
lities estimated by UNALCE approach. Their proof follows from the results of Theorem 4.
In the end, let us define for each k ∈ {1, . . . , n} the factor scores estimators:

• f̂k,B,A = (̂B⊤

ALCÊS
−1
ALCEB̂ALCE)−1B̂⊤

ALCÊS
−1
ALCExk; f̂k,T ,A = B̂⊤

ALCE (̂BALCEB̂⊤

ALCE + ŜALCE)−1xk;
• f̂k,B,U = (̂B⊤

UNALCÊS
−1
UNALCEB̂UNALCE)−1B̂⊤

UNALCÊS
−1
UNALCExk; f̂k,T ,U = B̂⊤

UNALCE (̂BUNALCEB̂⊤

UNALCE + ŜUNALCE)−1xk;

and the corresponding n× r matrix estimators: F̂⊤

B,A = [̂f1,B,A . . . f̂n,B,A]; F̂⊤

T ,A = [̂f1,T ,U . . . f̂n,T ,A]; F̂⊤

B,U = [̂f1,B,U . . . f̂n,B,U ];
F⊤

T ,U = [̂f1,T ,U . . . f̂n,T ,U ]. We finally state a corollary which completes our theory, in that it shows that, as p, n → ∞,
Bartlett’s and Thomson’s UNALCE estimates of factor scores converge to the respective ALCE ones and, more importantly,
Bartlett’s and Thomson’s ALCE factor scores estimates converge to their OLS counterparts. This means that the asymptotic
rates of OLS factor scores estimates reported in Theorem 1 also hold as p, n → ∞ for Bartlett’s and Thomson’s UNALCE
and ALCE factor scores estimates.

Corollary 3. Under all the assumptions and conditions of Theorems 3 and 4, as p, n → ∞, it holds: (i) (a) F̂B,U → F̂B,A and
(b) F̂B,A → F̂OLS2; (ii) (a) F̂T ,U → F̂T ,A and (b) F̂T ,A → F̂OLS2.

Proof. Let us define the spectral decomposition of L̂ALCE as ÛALCEΛ̂ALCEÛ⊤

ALCE, and B̂ALCE = ÛALCEΛ̂
1
2
ALCE. We recall that

FOLS2 = X̂BOLS2Λ
−1
r , with B̂OLS2 = UrΛ

1
2
r , and F̂ALCE2 = X̂BALCE2Λ̂

−1
ALCE, with B̂ALCE2 = B̂ALCE. First, we observe that, under all

he assumptions and conditions of Theorem 3, problems (3) and (6) are equivalent, because ψ/p → 0. As a consequence,
ALCE2 → B̂OLS2 and Λ̂ALCE → Λr as p, n → ∞.
For part i(a), F̂B,U → F̂B,A is implied by the condition ψ/p → 0 as p, n → ∞. We thus examine F̂B,A =

Ŝ−1
A B̂A (̂B⊤

A Ŝ
−1
A B̂A)−1. We note that, under Assumption 2, the proportion of non-zeros in S∗, which is O

(
p1+δ1/p2

)
, tends

to 0 as p → ∞. This means that S∗
→ D as p → ∞, where D is a p × p diagonal matrix, because λp(S∗) > 0 by

Assumption 3. More, ŜA → S∗ as p, n → ∞ if Theorem 3 holds. Consequently, since B̂ALCE = B̂ALCE2, as p, n → ∞

FB,A = X̂S−1
A B̂A (̂B⊤

A Ŝ
−1
A B̂A)−1

→ X̂BA (̂B⊤

A B̂A)−1
= X̂BAΛ̂

−1
ALCE = F̂ALCE2. Part i(b) then follows by Theorem 3.

For part ii(a), F̂T ,U → F̂T ,A is implied by the condition ψ/p → 0 as p, n → ∞. We thus examine F̂T ,A = XΣ̂−1
A B̂A, where

Σ̂ A = L̂A + ŜA. We recall that, under Assumptions 2 and 3, S∗
→ D, where D is a p × p diagonal matrix, and ŜA → S∗ by

Theorem 3 as p, n → ∞. At this point, Σ̂ A = B̂AB̂⊤

A + ŜA → B̂AB̂⊤

A + D = ÛALCEΛ̂ALCEÛ⊤

ALCE + D as p, n → ∞. Under the
conditions of Theorem 3, we know that Λ̂ALCE tends to Λr , and ÛALCE tends to Ur . Then, since the smallest eigenvalue of
Λr is O(pαr ) by Lemma 1, and the eigenvalues of D are o(pαr ) by Assumption 2(a), it follows that, as p, n → ∞, the p× p
positive definite matrix ÛALCEΛ̂ALCEÛ⊤

ALCE +D tends to the p×p r-rank matrix UrΛrU⊤
r . Therefore, Σ̂

−1
A tends to UrΛ

−1
r U⊤

r ,

nd F̂T ,A tends to XUrΛ
−1
r U⊤

r UrΛ
1
2
r = XUrΛ

−
1
2

r = F̂OLS2. Part ii(b) then follows. □

Summing up, we have proved that, under the conditions of Theorems 3 and 4, Bartlett’s and Thomson’s UNALCE and
ALCE estimators of factor scores F̂B,A, F̂B,U , F̂T ,A, and F̂T ,U converge to the OLS factor scores estimator F̂OLS2. This implies
that F̂B,U and F̂T ,U are optimal estimators of factor scores in the finite sample, and that those estimators tend to F̂OLS2
as p, n → ∞, exactly as F̂B,A and F̂T ,A, under the conditions of Theorem 3. Therefore, the UNALCE approach provides
optimality guarantees in terms of Euclidean error norm when p and n are fixed, while retaining the algebraic consistency
13
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roperties of ALCE and the asymptotic rates of OLS as p, n → ∞. Importantly, unlike OLS, the UNALCE/ALCE approach is
ble to recover the latent rank and the residual sparsity pattern with probability tending to one. UNALCE factor model
stimates are thus parametrically and algebraically consistent, as well as minimally biased in the finite sample.

. Conclusions

In this paper, we propose to estimate high-dimensional approximate factor models with element-wise sparse residual
ovariance matrix by nuclear norm plus ℓ1 norm penalization. We provide the conditions on the respective magnitude of
he dimension p and the sample size n, as well as on the allowed degree of spikiness for latent eigenvalues and of sparsity
or residual covariance, ensuring consistency for the estimators of factor loadings, scores and common components such
erived. These conditions guarantee sparsistency, i.e., the residual sparsity pattern recovery, and the latent rank recovery,
ven when the latent factors are not strictly pervasive with respect to the dimension p. We derive a finite sample version
f those factor model estimators, presenting strong optimality properties in terms of minimax Euclidean error bound for
actor loadings and scores (estimated both via Bartlett’s and Thomson’s method). We finally prove that those finite sample
stimators converge to the respective OLS counterparts as p, n → ∞.
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ppendix A. Proofs

emma 1. Let λr (Σ n) be the r-th largest eigenvalue of the sample covariance matrix Σ n = n−1∑n
k=1 xkx

⊤

k . Under
Assumptions 1, 2 and 3, λr (Σ n) ≃ pαr with probability approaching 1 as n → ∞.

roof. On one hand, we note that, since r + p − p = r ≤ p, dual Weyl inequality (see [36]) can be applied, leading to

λr (Σ ∗) ≥ λr (L∗) + λp(S∗). (A.1)

From (A.1), we can write

λr (Σ ∗) ⪰ O(pαr ) + O(pδ1 ) = O(pαr ),

because λr (L∗) ≃ pαr by Assumption 1(a), and λp(S∗) = O(pδ1 ) by Assumption 2, with δ1 < αr .
On the other hand, Lidskii inequality (see [36]) leads to

λr (Σ ∗) ≤ λr (L∗) +

r∑
j=1

λj(S∗). (A.2)

From (A.2), we can write

λr (Σ ∗) ⪯ O(pαr ) + O(rpδ1 ) = O(pαr ),

because λr (L∗) ≃ pαr by Assumption 1(a), λ1(S∗) = O(pδ1 ) with δ1 < αr by Assumption 2(a), and r is finite for all p ∈ N
by Assumption 1(b). It follows that λr (Σ ∗) ≃ pαr .

Recalling that Σ n =
1
n

∑n
k=1 xkx

⊤

k and xk = Bfk + ϵk, where fk and ϵk, k ∈ {1, . . . , n}, are respectively the vectors of
factor scores and residuals for each observation, we can decompose the error matrix En = Σ n − Σ ∗ in four components
as follows (see [22]):

En = Σ n − Σ ∗
= D1 + D2 + D3 + D4,

where D1 = n−1B
(∑n

k=1 fkf
⊤

k − Ir
)
B⊤, D2 = n−1∑n

k=1

(
ϵkϵ

⊤

k − S∗
)
, D3 = n−1B

∑n
k=1 fkϵ

⊤

k , D4 = D⊤

3 .
Following [22], we note that

∥D1∥2 ≤

1n
(

n∑
k=1

fkf⊤k − Ir

)
2
∥BB⊤

∥2 ≤ rpα1maxi,j≤r

⏐⏐⏐⏐1n
n∑

k=1

fi,kfj,k − E[fi,kfj,k]
⏐⏐⏐⏐,

since E[f] = 0r and Var[f] = Ir by Assumption 3, ∥BB⊤
∥2 = O(pα1 ) by Assumption 1(a), and1n

(
n∑

fkf⊤k − Ir

) ≤ r
1n

(
n∑

fkf⊤k − Ir

) ,
k=1 2 k=1 ∞

14
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w

w

w
A

S

I

t

1

b

ith r finite and independent of p by Assumption 1(b).
Under Assumption 3, we can apply Lemma 4(a) in [22], which claims

maxi,j≤r

⏐⏐⏐⏐1n
n∑

k=1

fi,kfj,k − E[fi,kfj,k]
⏐⏐⏐⏐ ≤ C̃

1
√
n
, (A.3)

with probability 1 − O(1/n2) (C̃ is a real positive constant). Consequently, we obtain

∥D1∥2 ≤ C̃r
pα1
√
n

≤ C ′
pα1
√
n
, (A.4)

ith C ′
= C̃ r= O(1) by Assumption 1(b).

Then, we note that the diagonal elements of the matrix S∗ are bounded by a finite constant, due to Assumption 2(b).
Under Assumption 3 and the condition ln(p)/n → 0, (12) in [12] thus holds for the matrix S∗, leading to:

∥D2∥∞ = maxi,j≤p

⏐⏐⏐⏐1n
n∑

k=1

ϵi,kϵj,k − E(ϵi,kϵj,k)
⏐⏐⏐⏐ ≤ C̃2

√
ln(p)
n
, (A.5)

that holds with probability 1 − O(1/n2).
Now, by the triangular inequality we can write

∥D2∥2 ≤ ∥D(1)
2 ∥2 + ∥D(2)

2 ∥2, (A.6)

here D(1)
2 = T (H)

∥S∗∥min,off
(D2), with T (H) hard-thresholding operator of parameter ∥S∗

∥min,off, and D(2)
2 = D2 −D(1)

2 . Since by
ssumption 2(a) ∥S∗

∥0,v = O(pδ1 ), it follows from (A.5) that, as n → ∞,

∥D(1)
2 ∥2 ≤ ∥D(1)

2 ∥0,v∥D
(1)
2 ∥∞ ≤ C̃2δ2pδ1

√
ln(p)
n
. (A.7)

imilarly, it follows from (A.5) that, as n → ∞,

∥D(2)
2 ∥2 ≤ ∥D2

(2)
∥0,v∥D2

(2)
∥∞ < p∥S∗

∥min,off. (A.8)

mposing the condition p∥S∗
∥min,off = o(pδ1

√
ln(p)/n), we get p1−δ1∥S∗

∥min,off = o(
√
ln(p)/n), which leads to p1−δ1∥S∗

∥min,off
= o(1) as ln(p)/n → 0. Therefore, combining (A.7) and (A.8), by Assumption 2(c) it follows from (A.6) that, as n → ∞,

∥D2∥2 ≤ C̃2δ2pδ1
√

ln(p)
n
. (A.9)

At this stage, we consider
n−1∑n

k=1 fkϵ
⊤

k


2
. We first observe that

n−1∑n
k=1 fkϵ

⊤

k


2

≤

n−1∑n
k=1 fkϵ

⊤

k


F
. We

hen write
n−1∑n

k=1 fkϵ
⊤

k


F

=

√∑r
i=1
∑p

j=1 Ĉov(fi, ϵj)2 ≤

√∑r
i=1
∑p

j=1 V̂(fi )̂V(ϵj). We note that
√∑r

i=1
∑p

j=1 V̂(fi )̂V(ϵj)

converges to
√∑r

i=1
∑p

j=1 V(fi)V(ϵj) for each i ∈ {1, . . . , r} and j ∈ {1, . . . , p} as n → ∞ and ln(p)/n → 0 with probability

− O(1/n2), by (A.3) and (A.5). Therefore, we can write
n−1∑n

k=1 fkϵ
⊤

k


F

≤

√∑r
i=1
∑p

j=1 V(fi)V(ϵj) ≤

√
r
∑p

j=1 V(ϵj) =

√
ro(pα1 ) = o(pα1/2), by Cauchy–Schwartz inequality and Assumption 1(b), 2(d) and 3. It follows thatn−1

n∑
k=1

fkϵ⊤

k


2

= o(pα1/2)

as n → ∞ and ln(p)/n → 0.
Consequently, we obtain with probability 1 − O(1/n2) the following claim

∥D3∥2 ≤

1n
n∑

k=1

fkϵ⊤

k


2

· ∥B∥ = o(p
α1
2 )O

(
p
α1
2

)
= o(pα1 ) (A.10)

because ∥B∥ = O(pα1/2) by Assumption 1(a).
Putting (A.4), (A.9), and (A.10) together, the following bound is proved with probability 1 − O(1/n2):

∥Σ n − Σ ∗
∥2 ≤ C ′

pα1
√
n
,

ecause δ1 < αr ≤ α1 by Assumptions 1(a) and 2(a). It follows that
1

∥Σ n − Σ ∗
∥2

n→∞
−−−→ 0,
pα1
15
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w
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f

hich proves the lemma. □

roof of Theorem 1.
According to [4], setting F̂ = F̂OLS1 and H = HOLS1 = n−1Λ−1

r F̂⊤FB⊤B, we can write, for each f̂k1 , k1 ∈ {1, . . . , n}:

f̂k1 − Hfk1 =
1
n

(
Λr

p

)−1 { n∑
k2=1

f̂k2E[ϵ
⊤

k2ϵk1 ]/p +

n∑
k2=1

f̂k2ςk1k2 +

n∑
k2=1

f̂k2ηk1k2 +

n∑
k2=1

f̂k2ξk1k2

}
, (A.11)

where ξk1k2 = (f⊤k1
∑p

j=1 bjϵk2,j)/p, ηk1k2 = (f⊤k2
∑p

j=1 bjϵk1,j)/p, ςk1k2 = ϵ⊤

k2
ϵk1/p−E[ϵ⊤

k2
ϵk1 ]/p, and Λr is the diagonal matrix

containing the top r eigenvalues of Σ n in decreasing order. Expression (A.11) holds conditioning on the assumption that

the latent rank r is known.

In order to verify (A.11), we observe that the r.h.s of (A.11) (divided by n−1(Λr/p)−1) can be written as

n∑
k2=1

f̂k2E[ϵ
⊤

k2ϵk1 ]/p +

n∑
k2=1

f̂k2ςk1k2 +

n∑
k2=1

f̂k2ηk1k2 +

n∑
k2=1

f̂k2ξk1k2

=

n∑
k2=1

f̂k2E[ϵ
⊤

k2ϵk1 ]/p +

n∑
k2=1

f̂k2ϵ
⊤

k2ϵk1/p −

n∑
k2=1

f̂k2E[ϵ
⊤

k2ϵk1 ]/p +

n∑
k2=1

f̂k2 (f
⊤

k2

p∑
j=1

bjϵk1,j)/p +

n∑
k2=1

f̂k2 (f
⊤

k1

p∑
j=1

bjϵk2,j)/p

=

n∑
k2=1

f̂k2ϵ
⊤

k2ϵk1/p +

n∑
k2=1

f̂k2 (f
⊤

k2

p∑
j=1

bjϵk1,j)/p +

n∑
k2=1

f̂k2 (f
⊤

k1

p∑
j=1

bjϵk2,j)/p

=

n∑
k2=1

f̂k2ϵ
⊤

k2ϵk1/p +

n∑
k2=1

f̂k2 (f
⊤

k2B
⊤ϵk1 )/p +

n∑
k2=1

f̂k2 (f
⊤

k1B
⊤ϵk2 )/p.

We know that ϵk1 = xk1 − Bfk1 and ϵk2 = xk2 − Bfk2 . Then, we can write

n∑
k2=1

f̂k2ϵ
⊤

k2ϵk1/p =

n∑
k2=1

f̂k2 (xk2 − Bfk2 )
⊤(xk1 − Bfk1 )/p

=

n∑
k2=1

f̂k2x
⊤

k2xk1/p −

n∑
k2=1

f̂k2x
⊤

k2Bfk1/p −

n∑
k2=1

f̂k2 f
⊤

k2B
⊤xk1/p +

n∑
k2=1

f̂k2 f
⊤

k2B
⊤Bfk1/p.

We can also write

n∑
k2=1

f̂k2 (f
⊤

k2B
⊤ϵk1 )/p =

n∑
k2=1

f̂k2 f
⊤

k2B
⊤(xk1 − Bfk1 )/p =

n∑
k2=1

f̂k2 f
⊤

k2B
⊤xk1/p −

n∑
k2=1

f̂k2 f
⊤

k2B
⊤Bfk1/p

and

n∑
k2=1

f̂k2 (f
⊤

k1B
⊤ϵk2 )/p =

n∑
k2=1

f̂k2 f
⊤

k1B
⊤(xk2 − Bfk2 )/p =

n∑
k2=1

f̂k2 f
⊤

k1B
⊤xk2/p −

n∑
k2=1

f̂k2 f
⊤

k1B
⊤Bfk2/p.

Therefore, due to cancellation effects, the r.h.s. of (A.11) (divided by n−1(Λr/p)−1) reduces to
∑n

k2=1 f̂k2x
⊤

k2
xk1/p −∑n

k2=1 f̂k2 f
⊤

k1
B⊤Bfk2/p. We finally observe that f⊤k1B

⊤Bfk2 = f⊤k2B
⊤Bfk1 , because it is a scalar, and that f̂k2 = Λ−1

r B⊤xk2 . It
ollows that, under the conditions of Lemma 1, as n → ∞,

n∑
k2=1

Λ−1
r B⊤xk2x

⊤

k2xk1/p = Λ−1
r B⊤

n∑
k2=1

xk2x
⊤

k2xk1/p = nΛ−1
r B⊤BB⊤xk1/p = nΛrΛ

−1
r B⊤xk1/p = nΛr̂ fk1/p,
16
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n∑

k2=1

f̂k2 f
⊤

k2B
⊤Bfk1/p = F̂⊤FB⊤Bfk1/p = nΛrHfk1/p,

where H = HOLS1 = n−1Λ−1
r F̂⊤FB⊤B. Re-multiplying nΛr̂ fk1/p and nΛrHfk1/p by n−1(Λr/p)−1, Eq. (A.11) is verified.

Recalling that fk1 and ϵk1 are uncorrelated processes over the observations k1 = {1, . . . , n} by Assumption 3, we can
rove the following lemmas by simply applying the corresponding proofs in [22] and imposing Assumption 4.

emma 2. For i ∈ {1, . . . , r}: (i) n−1∑n
k2=1

(
1
np

∑n
k2=1 f̂k2,iE[ϵ

⊤

k2
ϵk1 ]

)2
= Op

(
n−1

)
; (ii) n−1∑n

k2=1 n
−1
(∑n

k2=1 f̂k2,iςk1k2
)2

=

Op
(
p−1

)
; (iii) n−1∑n

k2=1 n
−1
(∑n

k2=1 f̂k2,iηk1k2
)2

= Op
(
p−1

)
; (iv) n−1∑n

k2=1 n
−1
(∑n

k2=1 f̂k2,iξk1k2
)2

= Op
(
p−1

)
.

Proof. The proof of part (i) is analogous to the proof of Lemma 8(a) in [22], where

1
np

max
k2,k1

|E[ϵ⊤

k2ϵk1 ]| = max
k1≤n

1
n

n∑
k2=1

1
p
|E[ϵ⊤

k2ϵk1 ]| ≤
1
np

∥S∗
∥1 = Op

(
1
n

)
y the condition ∥S∗

∥1/p ≤ δ′

2 for some δ′

2 > 0, and because ϵk1 is uncorrelated across observations.
The proof of part (ii) is analogous to the proof of Lemma 8(b) in [22] under Assumption 4(a).
The proof of parts (iii) and (iv) are analogous to the proof of Lemma 8(c) and 8(d) in [22] under Assumption 4(b). □

Lemma 3. (i) maxk1≤n

(np)−1∑n
k2=1 f̂k2E[ϵ

⊤

k2
ϵk1 ]

 = Op
(
n−1/2

)
; (ii) maxk1≤n

n−1∑n
k2=1 f̂k2ςk1k2

 = Op
(
n1/4/p1/2

)
; (iii)

axk1≤n

n−1∑n
k2=1 f̂k2ηk1k2

 = Op
(
n1/4/p1/2

)
; (iv) maxk1≤n

n−1∑n
k2=1 f̂k2ξk1k2

 = Op
(
n1/4/p1/2

)
.

roof. The proof is analogous to the Proof of Lemma 2 with reference to the proof of Lemma 9 in [22]. □

Observing that the eigenvalues of (Λr/p)−1 scale to O(p1−αr ), due to Lemma 1, we obtain the following Lemma.

emma 4. (i)maxi≤r n−1∑n
k=1 (̂fk,i − Hfk,i)2 = Op

(
p2(1−αr )/n + p2(1−αr )/p

)
;

(ii) n−1∑n
k=1 ∥̂fk − Hfk∥2

= Op
(
p2(1−αr )/n + p2(1−αr )/p

)
;

(iii) maxk≤n
∑n

k=1 ∥̂fk − Hfk∥ = Op
(
p1−αr /

√
n + p1−αr n1/4/p1/2

)
.

roof. The proof is analogous to the proof of Lemma 10 in [22], and follows from the fact r̂ = r , Lemma 1, Lemmas 2
nd 3. Note that part (iii) derives a bound for the uniform rate of f̂k − Hfk over k ∈ {1, . . . , n}, that leads to part (ii) of
heorem 1, because p2−2αr /n = o(1). □

emma 5. (i) HH⊤
= Ir + Op

(
p1−αr
√
n +

p1−αr
p1/2

)
; (ii) H⊤H = Ir + Op

(
p1−αr
√
n +

p1−αr
p1/2

)
.

Proof. The proof is analogous to the proof of Lemma 11 in [22], and follows from the fact r̂ = r , Lemma 1, inequality
(A.3), and Lemma 4. □

At this stage, following [22], we can observe that b̂j − Hbj can be decomposed as follows:

b̂j − Hbj = A1,j + A2,j + A3,j,

with

A1,j =
1
n

n∑
k=1

Hfkϵk,j; A2,j =

n∑
k=1

xk,j (̂fk − Hfk); A3,j = H
n∑

k=1

(̂fk̂f⊤k − Ir )bj.

e note from Lemma 5 that ∥H∥ = Op(1) if n ≻ p2−2αr and αr > 1− 1/2 = 1/2. The second condition is always verified,
ecause αr > 1/2 by Assumption 1(a). Under the first condition, inequality (A.10) allows to conclude that

max
j≤p

∥A1,j∥ = Op

(
p
δ1
2

√
ln(p)
n

)
. (A.12)
17
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From Lemma 4, it follows that

max
j≤p

∥A2,j∥ = Op

(
p1−αr

n
1
2

+
p1−αr

p
1
2

)
, (A.13)

ecause E[xk,j] = O(1) for each k ∈ {1, . . . , n} by Assumptions 1(b) and 2(b).
Inequality (A.3) and Assumption 1(b) then ensure that, since ∥H∥ = Op(1) by Lemma 5,

max
j≤p

∥A3,j∥ = Op

(
1

√
n

)
. (A.14)

At this point, since α1 − αr ≤ δ1, the condition δ1/2≤1 − αr is always verified, because it must hold

α1 − αr ≤ δ1≤2 − 2αr ,

hat leads to α1≤2 − αr which is always true under Assumption 1(a).
Therefore, putting together (A.12), (A.13), (A.14), under the condition p2−2αr /n = o(1) we obtain that

max
j≤p

∥̂bj − Hbj∥ = Op (ωn) , (A.15)

here ωn =
√
ln(p)/n as p → ∞, because 1− αr −

1
2 < 0 is always verified under Assumption 1(a), due to the condition

αr > 1/2. Part (i) of Theorem 1 then follows.
Applying parts (i) and (ii), and Lemma 5, we can prove by Assumption 3, analogously to [22], that for each k ∈

{1, . . . , n}:

max
j≤p,i≤r

∥̂b⊤

j f̂k − b⊤

j fk∥ = Op

(
n1/4p1−αr

p1/2
+ ln(n)

1
c2

√
ln(p)
n

)
,

from which part (iii) of Theorem 1 follows. □

Lemma 6. Under Assumptions 1(b), 2(b) and 3,

∥Σ n − Σ ∗
∥∞ ≤ C ′

√
ln(p)
n
.

ith probability approaching one as n → ∞.

roof. Under Assumptions 1(b) and 3, with probability 1 − O(1/n2),

∥D1∥∞ ≤

1n
(

n∑
k=1

fkf⊤k − Ir

)
∞

∥BB⊤
∥∞ ≤ C ′

√
1
n
, (A.16)

ecause ∥BB⊤
∥∞ ≤ (maxj∈{1,...,p} ∥bj∥)2 ≤ r2∥B∥

2
∞

= O(1) for all p ∈ N.
Under Assumptions 2(b) and 3, (A.5) ensures that, with probability 1 − O(1/n2),

∥D2∥∞ = maxi,j≤p

⏐⏐⏐⏐1n
n∑

k=1

ϵi,kϵj,k − E(ϵi,kϵj,k)
⏐⏐⏐⏐ ≤ C ′

√
ln(p)
n
. (A.17)

Under Assumptions 1(b), 2(b) and 3, from (A.16) and (A.17) we get

∥D3∥∞ =

1n
n∑

k=1

fkϵ⊤

k


∞

≤ C ′

√
ln(p)
n
, (A.18)

ith probability 1 − O(1/n2). Putting together (A.16), (A.17), (A.18), the statement follows. □

roof of Theorem 2.
Let us define the following measure of transversality between two matrix varieties T1 and T2:

ϱ(T1, T2) = max
∥N∥2≤1

∥PT1N − PT2N∥2,

where PT1 and PT2 are the projection operators onto T1 and T2, respectively. Given two conformable matrices M1 and M2,
e define the standard Euclidean inner product ⟨M1,M2⟩ = tr(M′

1M2) = tr(M′

2M1), and we call A the addition operator,
uch that A(M1,M2) = M1 + M2, and A† its adjoint operator wrt the inner product above defined (see also page 1946
n [18]).

Hereafter, letΩ = Ω(S∗) and T = T (L∗), whereΩ is the space tangent to S(s) (see (9)) at S∗ and T is the space tangent
o L(r) (see (8)) at L∗. We define the Cartesian product Y = Ω × T ′, where T ′ is a manifold such that ϱ(T , T ′) ≤ ξ (T )/2.
18
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In light of these definitions, the following identities hold:

A†A(S, L) = (S + L, S + L); PYA†APY (S, L) = (S + PΩL,PT ′S + L); PY⊥A†APY (S, L) = (S + PΩ⊥L,PT ′⊥S + L).

We consider the following norm gγ :

gγ (̂L − L∗, Ŝ − S∗) = max
(

∥̂S − S∗
∥∞

γ
,
∥̂L − L∗

∥2

∥L∗∥2

)
, (A.19)

ith ψ0 = (1/ξ (T (L∗)))
√
ln(p)/n, ψ = pα1ψ0, ρ0 = ρ, γ = ρ0/ψ0, where ψ and ρ are the thresholds in (6). The norm

A.19) is the dual norm of the composite penalty ψ0∥ · ∥∗ + ρ0∥ · ∥1, with which the direct sum L(r) ⊕ S(s) is naturally
quipped. Obviously this gγ -consistency implies consistency in ℓ2 norm.

roposition 1. Suppose that γ ∈ [9ξ (T (L∗)), 1/(6µ(Ω(S∗)))]. Then, under Assumption 5, for all (S, L) ∈ Y such that
Y = Ω × T ′ with ϱ(T , T ′) ≤ ξ (T )/2, the following holds:

(i) gγ (PYA†APY (S, L)) ≥
1
2gγ (S, L);

(ii) gγ (PY⊥A†APY (S, L)) ≤
1
2gγ (S, L).

Proof. Since L ∈ T ′, S ∈ Ω , γ ∈ [9ξ (T ), 1/6µ(Ω)], and Assumption 5 ensures that the condition ξ (T )µ(Ω) ≤ 1/54
holds, the proof of Proposition 3.3 in [18] follows. □

We now consider the solution of the following algebraic problem:

(̂SΩ , L̂T ′ ) = argmin
L∈T ′,S∈Ω

1
2pα1

∥Σ n − (L + S)∥2
F + ψ0∥L∥∗ + ρ0∥S∥1. (A.20)

his is the constrained version of the minimization (6) which for convenience is rescaled by pα1 . The additional constraints
are needed to ensure that the Hessian of 1

2∥Σ n − (L+ S)∥2
F is positive definite, such that the optimum of (A.20) is unique.

Proposition 2. Let ϱ(T ′, T ) ≤ ξ (T )/2 and define r̃ = max{4[gγ (A†∆n)+ gγ (A†CT ′ )+ψ0], ∥CT ′∥2} where CT ′ = PT ′⊥ (L∗)
and ∆n = Σ n − Σ ∗. Then, under the conditions of Proposition 1, the solution of problem (A.20) (̂SΩ , L̂T ′ ) satisfies

gγ (̂SΩ − S∗, L̂T ′ − L∗) ≤ 2̃r.

Proof. The proof, analogous to the proof of Proposition 5.2 in [18], follows from Proposition 1 (cf. also Proposition 12
in [31]). □

Let us define the tangent space to L(r) in a generic L̃ ̸= L∗:

T̃ (̃L) = {M ∈ Rp×p
| M = UY⊤

1 + Y2U⊤
| Y1,Y2 ∈ Rp×r ,U ∈ Rp×r ,U⊤U = Ir ,U⊤̃LU ∈ Rr×rdiagonal, L̃ ∈ L(r)}.

Consider the solution pair

(̂SΩ , L̂T̃ ) = argmin
L∈T̃
S∈Ω

1
2pα1

∥Σ n − (L + S)∥2
F + ψ0∥L∥∗ + ρ0∥S∥1. (A.21)

roposition 3. Let γ ∈ [9ξ (T (L∗)), 1/(6µ(Ω(S∗)))] and suppose that the minimum eigenvalue of L∗ is such that λr (L∗) >
Lψ0/ξ

2(T ) and ∥S∗
∥min,off > δSψ0/µ(Ω) with δL and δS finite positive reals. Suppose also that

gγ (A†∆n) ≤
ψ0

18
,

with ∆n = Σ n −Σ ∗. Then, there exists a unique T̃ satisfying Proposition 1 when setting T̃ = T ′ therein, and a corresponding
unique solution pair

(̂
SΩ , L̂T̃

)
of (A.21), such that: (i) ϱ(T , T̃ ) ≤ ξ (T )/4; (ii) rk(̂LT̃ ) = r, sgn(̂SΩ,ij) = sgn(S∗

ij) for all
i, j ∈ {1, . . . , p}; (iii) gγ (A†CT̃ ) ≤ ψ0/18, with CT̃ = PrT̃ ⊥ (L∗); (iv)

(̂
SΩ , L̂T̃

)
is also the unique solution of problem (6).

Proof. The proof is analogous to the proof of Proposition 5.3 in [18], by noticing that λr (L∗) > δLψ0/ξ
2(T ) and ∥S∗

∥min,off >

Sψ0/µ(Ω) hold under Assumption 6, Propositions 1 and 2 hold under Assumption 5 with γ ∈ [9ξ (T (L∗)), 1/(6µ(Ω(S∗)))],
nd 1

2∥Σ n − (L + S)∥F has 2nd derivative wrt L and S equal to Ip ⊗ Ip. □

At this point, we note that, if δ1 ≤ αr/3, Assumptions 1, 2, 5, and 6 are always compatible for all p ∈ N as n → ∞

and p2−2δ1 ln(p)/n = o(1) (see Remarks 3 and 4). Then, we note that under Assumptions 1, 2, 3, with probability tending
19
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o one as n → ∞, it holds:

gγ (A†∆n) = gγ (Σ n − Σ ∗,Σ n − Σ ∗) ≤ max
(

∥Σ n − Σ ∗
∥∞

γ
,
∥Σ n − Σ ∗

∥2

∥Σ ∗
∥2

)
≤ max

(
∥Σ n − Σ ∗

∥∞

γ
,
∥Σ n − Σ ∗

∥2

pα1

)
≤

C ′

9ξ (T )

√
ln(p)
n

his result descends from Lemma 6, from the condition γ ∈ [9ξ (T (L∗)), 1/(6µ(Ω(S∗)))] of Proposition 1, and from
emma 1, under Assumptions 1, 2, 3.
Since we have set ψ0 = (1/ξ (T ))

√
ln(p)/n, the condition of Proposition 3 can be written as gγ (A†∆n) ≤ ψ0/18 ≤

pδ1kL/(18
√
r))(

√
ln(p)/n) by Assumption 5. Therefore, setting C = kL/(18

√
r) and C ′

= 1/2, under Assumptions 1, 2, 3, 5
and 6 Proposition 3 (parts (i), (iii) and (iv)) ensures that the solution (̂S, L̂) of (6) satisfies

gγ (̂S − S∗, L̂ − L∗) ≤ C
80
9
ψ0 ≤ κ

pδ1
√
n
,

where κ = (80 × kL)/(9 × 18
√
r). Recalling the definition of gγ in (A.19), we can thus write ∥̂L − L∗

∥2 ≤ Cpα1 80
9 ψ0 ≤

pα1+δ1

√
ln(p)
n , ∥̂S − S∗

∥∞ ≤ C 80
9 γψ0 ≤ κ

√
ln(p)
n . This proves parts (i) and (ii) of Theorem 2. Finally, Proposition 3 (parts

(ii) and (iv)) ensures that Pr(rk(̂L) = r) → 1, Pr(sgn(̂S) = sgn(S∗)) → 1, as n → ∞. This proves parts (iii) and (iv) of
Theorem 2. □

Proof of Corollary 1.
Suppose that all the assumptions and conditions of Theorem 2 hold, and recall that the pair (̂S, L̂) is the solution of

6). Then, part (i) holds true because of Theorem 2 part (ii) and Assumption 2(a), as

∥̂S − S∗
∥2 ≤ κδ2pδ1

√
ln(p)
n
,

here we used arguments analogous to (A.7), (A.8), (A.9).
Part (ii) holds true under Assumption 1(a) and 2(a) because

∥Σ̂ − Σ ∗
∥2 ≤ ∥̂L − L∗

∥2 + ∥̂S − S∗
∥2 ≤ κpα1+δ1

√
ln(p)
n

+ κδ2pδ1
√

ln(p)
n
.

Then, Proposition 3 (part (iv)) ensures part (iii) of the Corollary, as Ŝ ≻ 0 because Ŝ ∈ S(s) as n → ∞. Part (iv) of the
Corollary descends by Proposition 3 (parts (ii) and (iv)), because Pr(rk(̂L) = r) → 1 as n → ∞ (part (iii) of Theorem 2),
and Σ̂ ≻ 0 because λp(Σ̂ ) ≥ λp (̂L) + λp (̂S) > 0 + λp (̂S) > 0, by dual Lidksii inequality and part (iii) of the Corollary.

Part (v) of the Corollary holds because ∥̂S−1
− S∗−1

∥ ≤ λp(S∗)−1λp (̂S)
−1

∥̂S − S∗
∥, λp(S∗) = O(pα1−1−ε) for some

ε > 0 by assumption, and λp (̂S) tends to λp(S∗) as n → ∞. Analogously, part (vi) holds because ∥Σ̂
−1

− Σ ∗−1
∥ ≤

λp(Σ ∗)−1
λp(Σ̂ )

−1
∥Σ̂ − Σ ∗

∥, λp(Σ ∗) = O(pα1−1−ε) for some ε > 0 by assumption, and λp(Σ̂ ) tends to λp(Σ ∗) as
n → ∞. □

Proof of Theorem 3.
We start by noticing that, under all the assumptions and conditions of Theorems 1 and 2, problems (3) and (6) are

equivalent as p, n → ∞, provided that ψ/p → 0. To see that, it is enough to consider problem (A.20), and to observe
that, under Assumption 5, ψ0 = O

(
pδ1/

√
n
)
and ρ0 = O(1). It follows that, in problem (6), ψ = O

(
pα1+δ1/

√
n
)
. As a

onsequence, in order to have ψ/p → 0, there is an additional error term to be controlled for, that is O
(
p1−α1−δ1/

√
n
)
.

his leads to the condition p2(1−α1−δ1)/n → 0 as p, n → ∞. At this stage, we can observe that such condition is inactive
under the condition p2(1−αr )/n → 0 unless α1 − αr > δ1. It follows that the assumption α1 − αr ≤ δ1 is enough to make
heorem 1 hold for B̂ALCE1, F̂ALCE1, HALCE1 in the place of B̂OLS1, F̂OLS1, and HOLS1. Since the assumption α1−αr ≤ δ1 is already
mposed in Theorem 1, Theorem 3 follows. □

roof of Theorem 4.
Let us define Ypre and Zpre as the last updates of Algorithm 1 (Section 1 in the Supplement), with Σ pre = Ypre+Zpre. We

ote that the matrices Ypre, Zpre and Σ pre completely depend on the sample covariance matrix Σ n. Therefore, assuming
s in Theorem 4 that Σ n is fixed, we can decompose the minimization problem (17) assuming as fixed the matrices Ypre
nd Zpre.
We start considering the loss ∥Σ n − (L + S)∥2 with reference to Ypre and Zpre. By the triangular inequality, we can

rite

∥Σ n − (L + S)∥2 = ∥Σ n − Σ pre + Σ pre − (L + S)∥2 ≤ ∥Σ n − Σ pre∥ + ∥Σ pre − (L + S)∥2

≤ ∥Σ − Σ ∥ + ∥L − Y ∥ + ∥S − Z ∥ , (A.22)
n pre 2 pre 2 pre 2

20
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w

t

here Σ n −Σ pre is fixed. Therefore, in order to minimize ∥Σ n − (L+ S)∥2 under the given constraints, we can focus on
the problems argminL∈L̂(̂rA) ∥L − Ypre∥2 and argminS∈Ŝdiag ∥S − Zpre∥2.

First, we can note that argminL∈L̂(̂rA) ∥L−Ypre∥2 = L̂UNALCE, because of the optimal approximation property of principal
components, proved in [21], and since L̂UNALCE is derived by the top r̂ principal components of Ypre. Part (i) of Theorem 4
hen follows because, by the triangular inequality,

∥L − L∗
∥2 = ∥L − Ypre + Ypre − L∗

∥2 ≤ ∥L − Ypre∥2 + ∥Ypre − L∗
∥2, (A.23)

and Ypre − L∗ is fixed. Note that, as explained in Remark 10, the inequality in (A.23) tends to an equality if δ1 > 0 and p
is large enough, because Ypre ∈ L̂(̂rA), L∗

∈ L(r), and Proposition 3 part (i) ensures that ϱ(L(r),L(̂rA)) → 0 as p → ∞.
The problem in S can be rewritten as follows. Suppose that, by exploiting the assumption of Theorem 4 diag(L) +

diag(S) = diag(Σ̂ALCE), we constrain our search within the set of matrices S such that diag(S) = diag(Σ̂ALCE) − diag(L),
with L ∈ L̂(̂rA). Then, also assuming the invariance of the off-diagonal elements in Ŝ as in Theorem 4, we can write

min
S∈Ŝdiag

∥S − Zpre∥2 = min
L∈L̂(̂rA)

∥diag(Σ̂ALCE − L) − diag(Σ pre − Ypre)∥2

≤ min
L∈L̂(̂rA)

∥diag(L − Ypre)∥2 + ∥diag(Σ̂ALCE − Σ pre)∥2 ≤ r min
L∈L̂(̂rA)

∥L − Ypre∥2 + ∥diag(Σ̂ALCE − Σ pre)∥2.

Since Σ̂ALCE − Σ pre is fixed, from part (i) it follows that argminmaxS∈Ŝdiag ∥S − Zpre∥2 = ŜUNALCE. From the triangular
inequality

∥S − S∗
∥2 = ∥(S − Zpre) + (Zpre − S∗)∥2 ≤ ∥S − Zpre∥2 + ∥Zpre − S∗

∥2

part (ii) of Theorem 4 then follows, because Zpre − S∗ is fixed.
From parts (i) and (ii), it also follows from (A.22) that

argmin max
L∈L̂(̂rA),S∈Ŝdiag

∥Σ n − (L + S)∥2 =
(̂
LUNALCE, ŜUNALCE

)
,

under all the assumptions and conditions of Theorem 4.
The problem in Σ = L + S can be rewritten as

min
L∈L̂(̂rA),S∈Ŝdiag

∥(L + S) − Σ ∗
∥2 = min

L∈L̂(̂rA),S∈Ŝdiag
∥L − L∗

+ S − S∗
∥2 ≤ min

L∈L̂(̂rA)
∥L − L∗

∥2 + min
S∈Ŝdiag

∥S − S∗
∥2

such that, from parts (i) and (ii) of Theorem 4, part (iii) follows.
Finally, the same optimality properties are transmitted to Ŝ−1

UNALCE and Σ̂
−1
UNALCE. In fact, under the conditions of

Corollary 1, it holds ∥̂S−1
− S∗−1

∥2 ≤ ∥̂S−1
∥2∥̂S − S∗

∥2∥S∗−1
∥2 ≤ λp (̂S)−1λp(S∗)−1

∥̂S − S∗
∥2 with λp (̂SUNALCE) >

λp (̂SALCE) − λp (̂UALCEψ̆Ir Û⊤

ALCE), and

−
rψ̆
p

≤ −λp (̂UALCEψ̆Ir Û⊤

ALCE) ≤ 0, (A.24)

where rψ̆/p is close to 0 if Theorem 3 holds, provided that p is large enough. Part (iv) then follows.
Similarly, it holds ∥Σ̂

−1
− Σ ∗−1

∥2 ≤ ∥Σ̂
−1

∥2∥Σ̂ − Σ ∗
∥2 × ∥Σ ∗−1

∥2 ≤ λp(Σ̂ )−1λp(Σ ∗)−1
∥Σ̂ − Σ ∗

∥2 with
λp(Σ̂UNALCE) > λp (̂LUNALCE) + λp (̂SUNALCE) > 0 + λp (̂SUNALCE), such that part (v) follows under the conditions of Corollary 1
and Theorem 3 by (A.24). □

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmva.2023.105244.
Additional information for this article is available, in the form of an online supplement containing the pseudo-code of
the solution algorithm of problem (6), some further technical results, the criterion used to select the optimal threshold
pair (ψ, ρ) while solving (6), a wide simulation study and a real data example.
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