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Abstract. In this paper we review the large and growing literature on continuous-
time multivariate non-Gaussian models based on Lévy processes applied to finance and
proposed in the literature in the last years. We explain the empirical motivation and the
idea behind each approach. Then, we study the models focusing on the parsimony of the
number of parameters, the properties of the dependence structure, and the computational
tractability. For each parametric class we analyze the main features, we provide the
characteristic function, the marginal moments up to order four, the covariances and the
correlations. Furthermore, we survey the methods proposed in literature to calibrate these
models on the time-series of log-returns, with a view toward practical applications and
possible numerical issues. Finally, to empirically assess the differences between models,
we conduct an analysis on a five-dimensional series of stock index log-returns.

Keywords: multivariate non-Gaussian processes, moments matching, two-step proce-
dure, expectation-maximization maximum likelihood, generalized method of moments.
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1 Introduction

Many problems of practical interest in finance, such as portfolio selection, multi-asset
derivative pricing, or the estimation of systemic risk measures are multi-dimensional. The
multivariate normal model is usually applied to solve these problems, mainly because both
the theoretical and practical complexity of a model increases as soon as one moves from
a Gaussian to a non-Gaussian framework. As observed by Roncalli (2020) in discussing
default correlation models, only classical models (i.e. Gaussian and Student-t copulas) are
really used by professionals. As far as we know, even if an extensive academic literature on
these topics is available, multivariate non-Gaussian models are usually put into practice
only by more sophisticated investment firms and hedge funds. It is well-known that the
multivariate normal distribution has two main drawbacks: (1) its margins are normally
distributed and, therefore, it is not capable of capturing heavy tails and asymmetries; (2)
its dependence structure is symmetric and, mostly, it is not able of generating asymmetry
of dependence during extreme market movements and the tails margins are asymptotically
independent.

It is notorious that the historical distribution of asset returns is asymmetric and heavy-
tailed. In particular, stock log-returns typically have a distribution characterized by a
negative skewness and a positive excess of kurtosis. Furthermore, asset price dynamics
exhibits spikes and jumps. These features are incompatible with the Gaussian distribution
hypothesis for asset log-returns and the geometric Brownian motion assumption for asset
price dynamics. A geometric Brownian motion presents continuous trajectories not able
to generate large and sudden price changes as those often found in stock markets. The
smile phenomenon observed in option prices provides further empirical evidence against
normality: implied volatilities depend on both the strike and the option maturity. On the
contrary, the geometric Brownian motion hypothesis implies a constant implied volatility.
Further empirical evidence for the presence of jumps in the price process of the underlying
is provided by the smile observed on short-term options.

Bedendo et al. (2010) showed that in calm market conditions the choice of the copula
function used to model the dependence structure between the underlying assets does not
significantly affect multi-asset option prices. Conversely, in volatile market scenarios both
linear correlation and tail dependence strengthen and the specification of the dependence
structure becomes much more relevant. For example, the dependence between the com-
ponents of a portfolio and the components of a basket have an impact on portfolio risk
measurement, in derivative pricing, or in the systemic risk estimation. Thus, multivariate
models able to capture also non-linear dependence among margins are necessary.

In light of the above, in this paper we review different multivariate non-Gaussian
models based on Lévy processes to capture the dynamics of log-returns processes. We
note that all the necessary technical background on Lévy processes can be found in the
following texts Applebaum (2009), Bertoin (1996) and Sato (1999). Lévy processes
with jumps are capable of producing trajectories that are consistent with the discontin-
uous large and sudden movements observed on asset prices and infinitely divisible return
distributions with heavy tails and skewness. Furthermore, exponential Lévy option pric-
ing models with jumps can lead to different smile patterns and to high skews for short
maturity options. Additionally, multivariate exponential Lévy models for asset prices are
able to generate both linear and non-linear dependence. For all analyzed models we look
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for consistent and computationally efficient estimation procedures.
A multivariate model should have the following properties: (a) the density function

can be written in closed form or in quasi-closed form (i.e. evaluated through an efficient
and well-known numerical method); (b) the characteristic function has a closed form
allowing one to explore the properties of the model or the change of measure needed
to price derivative contracts; (c) the distribution of a linear combination of the margins
can be easily obtained: in finance, the knowledge of the distribution of portfolio returns
(i.e. the weighted average of the individual asset returns) can be very useful to evaluate
portfolio risk measures and to solve portfolio optimization problems; (d) the model is
able to explain four stylized facts about financial time-series, that is heavy tails, negative
skewness, asymmetric dependence, and volatility clustering (see Allen and Satchell (2014)
and Bianchi et al. (2016)); (e) the model can be extended to price derivatives or, at least,
there is an efficient method to draw random samples from the model; (f) the number of
parameters with respect to the multivariate normal does not increase too much (possibly
linearly) by the number of margins, that is the model should be flexible enough but it
should not be overparameterized; (g) there is at least one robust estimation algorithm
and, ideally, there exists a package written in some commonly used programming language
allowing one to perform the estimation.

It should be noted that in this paper we review only continuous-time models based on
Lévy processes that usually are not capable of capturing neither the volatility clustering
effect nor the leverage effect. The volatility clustering effect is the tendency of large
changes in asset prices (either positive or negative) to be followed by large changes, and
small changes to be followed by small changes. The leverage effect is the empirically
observed fact that negative shocks have a stronger impact on the variance than positive
shocks of the same magnitude (i.e. bad news raises the future volatility more than good
news). From a practical perspective, it is possible to add volatility clustering dynamics by
preliminary filtering the log-return data through a GARCH model and subsequently by
calibrating the multivariate models on the standardized log-returns, as done for example
in Bianchi et al. (2016).

The empirical exercise conducted in this paper does not want to be a definitive or
fully comprehensive analysis on the models discussed in this paper. It is clear that it can
be improved under multiple perspectives, for example by considering a GARCH model
to filter the data, by comparing the models under a risk management perspective or by
studying a larger sample of stocks (see Bianchi and Tassinari (2020)). What we want to
do here is a step back before beginning these more numerical intensive and challenging
empirical studies. We would like to shed light on some theoretical, technical and prac-
tical aspects researchers and practitioners may face when they start implementing these
models. This work is something between a review paper and an advanced tutorial, or to
be even more precise, it is a welcome to the jungle of multivariate non-Gaussian models
based on Lévy processes applied to finance.

A multivariate non-Gaussian Lévy model can be built by following different ap-
proaches. It is possible (1) to consider a linear combination of independent Lévy pro-
cesses, as done for example by Kawai (2009), Kaishev (2013), Ballotta and Bonfiglioli
(2016) and Ballotta et al. (2019); (2) to time-change a multivariate Lévy process with a
univariate or a multivariate subordinator (e.g. Barndorff-Nielsen et al. (2001), Luciano
and Semeraro (2010b), Hitaj et al. (2018), and Semeraro (2019)); (3) to define its Lévy
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measure, as done by Rosinski (2007) and Bianchi et al. (2011); (4) to specify the uni-
variate models separately from the dependence structure, i.e. the Lévy copula, to form
a multivariate model (see Tankov (2016) for a review). As shown in Kallsen and Tankov
(2006), similarly to copulas for probability measures, Lévy copulas represent a flexible
approach for building multidimensional Lévy processes. More precisely, a Lévy copula
gives a representation of the Lévy measure of a multivariate Lévy process, which allows
to specify separately the Lévy measures of the marginal processes and their dependence
structure. In this paper we consider only the first two approaches. Even if the third and
fourth approaches are elegant from a theoretical perspective, they are not simple to use
in practical applications. Furthermore, models based on Lévy copulas can be estimated
when jumps are observable. This is the case, for instance, in insurance models where
jumps represent claims whose timing and amounts are known (see Tankov (2016)). How-
ever, this is not the case in most financial applications, unless some simplifying restrictive
assumptions are adopted.

In this work we discuss and empirically assess the fitting performance of several
continuous-time multivariate heavy-tailed and semi heavy-tailed models applied to fi-
nance and proposed in the literature in the last years. It is clear that there is a strict
connection between the multivariate non-Gaussian distributions reviewed in this paper
and continuous-time processes. In all cases it is always possible to define a multivari-
ate Lévy process whose increments are distributed as the multivariate random variables
described in this work and representing the multivariate time-series of log-returns.

For each model we analyze the main properties and the more useful formulas, that
is: the characteristic function, the probability density function (in the case it can be
written in closed form), the marginal moments up to order four, covariances and correla-
tions. After having described how to calibrate these models, analyzed the computational
tractability and possible numerical issues, we empirically compare them on a real market
dataset on the basis of some fitting error measures. Just for comparison purposes, we
calibrate also the multivariate normal model.

It is interesting to observe that there are several goodness-of-fit tests for the assessment
of univariate models. For example there is the well-known Kolmogorov-Smirnov test in
which the distance between the theoretical and the empirical cumulative distribution
function is considered. However, there are not leading approaches to assess the goodness-
of-fit of multivariate models. Considering the existing literature on this topic, in order
to compare the fitting performance of the multivariate models under analysis we also use
the distance between historical and model correlations and the nonparametric distance
between observed and simulated data defined by Li et al. (2009). We remind that in this
paper we do not compare the models under a risk management perspective, that is we do
not backtest them by considering the performance of portfolio allocation strategies or the
ability to produce good risk measures. As observed by Bossu (2014) and Meissner (2014),
correlation is almost as ubiquitous as volatility in quantitative finance and it is critical
in many areas such as investments, trading, and risk management, as well as in financial
crises and in financial regulation. For this reason it seems important to be able to fit
observed historical correlations together with marginal moments. However, it should be
noted that it is not obvious how the in-sample fit of marginal moments and correlations
affects the out-of-sample performance in portfolio allocation or in risk modeling. This
analysis goes beyond the aim of this paper and is left for future reasearch.
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The paper is organized as follows. In Section 2 we review the normal mean-variance
mixture models, where the mixing variable has a semi-heavy tailed distribution, and in
Section 3 we consider extensions based on a multivariate mixing distribution referred to
as one factor subordinated models. Both models belong to the class of time-changed
Brownian motions: while the former has a quasi-closed formula for the joint density
function, the latter does not but it may have a greater flexibility in fitting market data
thanks to its richer dependence structure. A multivariate model based on tempered
stable distribution and its major capability to fit the margins is discussed in Section 4.
A further extension is proposed in Section 5 where a more flexible multifactorial model
is considered. This model is able to capture dependence separately and independently
both in positive and negative jumps and in their finite and infinite activity components.
Multivariate models based on linear combinations of Lévy processes are presented in
Section 6. Differences in estimation methods are described in Section 7. In Section 8 we
describe the data analyzed in the empirical study, we discuss the main empirical results
and we identify some computational issues. After having summarized the main results,
Section 9 concludes. Finally, in the Appendix we provide the formulas of expected value,
variance, skewness, excess of kurtosis and correlation for each model described in the
paper. These formulas are generally useful in practical applications to finance.

2 Normal mean-variance mixture models

As observed by Arellano-Valle and Azzalini (2020), in the last few decades, a number
of models have been proposed where a multivariate normal variable represents the basic
constituent but with the superposition of another random component, either in the sense
that the normal mean value or the variance-covariance matrix or both these components
are subject to the effect of another random variable of continuous type. The multivariate
non-normal distributions analyzed in this section are based on this idea and they are
known as multivariate normal mean-variance (or variance-mean) mixtures. These dis-
tributions share much of the structure of the multivariate normal distribution, but they
allow asymmetry, heavy tails and both linear and non-linear dependence.

In particular, a random vector Y has a multivariate normal mean-variance mixture
distribution (NMV) if the following equality in law holds

Y = µ+ θS +
√
SQZ, (2.1)

where µ, θ ∈ Rn, Q is a square matrix of order n such that QQ′ is positive definite, S is
a positive random variable, Z ∼ N(0, In) and S is independent from Z.
Furthermore, if the mixing variable S is infinitely divisible then Y is infinitely divisible
and its law uniquely determines a time-changed Brownian motion whose subordinator at
time one has the law of S (see Barndorff-Nielsen et al. (2001) and Tassinari and Bianchi
(2014)). The time-changed Brownian motion construction is well known from the the-
ory of stochastic processes. In the theoretical work of Monroe (1978), it is shown under
what conditions a stochastic process is equivalent to a time-changed Brownian motion.
In particular, Monroe showed that any semimartingale can be written as a time-changed
Brownian motion. The application to finance dates back to Clark (1973) and it is based
on the following evidence: “The different evolution of prices series on different days is due
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to the fact that information is available to traders at a varying rate. On days when no
new information is available trading is slow, and the price process evolves slowly. On days
when new information violates old expectation, trading is brisk, and the price process
evolves much faster”. In periods of high volatility, time runs faster than in periods of low
volatility. The physical time in the Brownian motion is substituted by a non-negative
non-decreasing Lévy process, that is a subordinator (stochastic or business time) provid-
ing tail effects. By subordination, it is possible to capture empirically observed anoma-
lies that contradict the classical lognormality assumption for asset prices. Madan et al.
(1998) introduced the asymmetric version of the variance-gamma process as a model for
log-returns by time-changing a Brownian motion with drift with an independent Gamma
subordinator and they provided a methodology to explicitly compute European option
prices in this context based on the use of hypergeometric functions. Geman et al. (2001)
argued that price processes being semimartingales due to the no-arbitrage condition, they
are time-changed Brownian motions. They considered pure jump Lévy processes of finite
variation with an infinite arrival rate of jumps as models for the logarithm of asset prices,
expressed as the difference between two increasing random processes that account for the
upward and downward moves of the market, and they represented them as time-changed
Brownian motions. Specifically, the time changes considered in their work were repre-
sented by Poisson processes, gamma processes, general subordinators, and the inverse
local time of Brownian motion at zero.
The time-changed Brownian motion construction can be extended to a multivariate frame-
work. Indeed, it is possible to subordinate a multivariate Brownian motion by a univariate
or a multivariate stochastic time (see also Bianchi et al. (2019)).

Therefore, in order to model asset returns it is possible to build an n-dimensional Lévy
process whose increments follow an infinitely divisible NMV distribution by simply time-
changing a multivariate Brownian motion with a common one-dimensional subordinator.
While in Luciano and Schoutens (2006) and Tassinari and Corradi (2013) a model with
independent Brownian motions was proposed, in Leoni and Schoutens (2008), Tassinari
(2009), Wu et al. (2009), Tassinari and Corradi (2014), Tassinari and Bianchi (2014),
Bianchi et al. (2016), and Bianchi and Tassinari (2020) correlated Brownian motions were
considered. Furthermore, according to Frahm (2004), this family of distributions belongs
to the class of elliptical variance-mean mixtures. Elliptical and generalized elliptical
heavy-tailed distributions have been widely studied (see e.g. Kring et al. (2009), Dominicy
et al. (2013), Bianchi et al. (2019)).

Let Y = {Yt, t ≥ 0} be a multivariate process such that the following equality holds

Yt = µt+ θSt +DσWSt , (2.2)

where S = {St, t ≥ 0} is a one-dimensional subordinator, W = {Wt, t ≥ 0} is an n-
dimensional Wiener process with corr [Wj,t,Wk,t] = ρjk independent from S, and Dσ is
a diagonal matrix with diagonal elements σj > 0 for j = 1, ..., n. For each discrete time
step ∆t the distribution of the increments of the process belongs to the NMV family

Y∆t = µ∆t+ θS∆t +
√
S∆tDσAZ,

where S∆t denotes the distribution of the subordinator increments which is independent
from Z, A is the lower Cholesky decomposition of a correlation matrix Ω, that is, Ω1/2 = A
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and Q = DσA = Σ1/2. The characteristic function of Yt defined in equation (2.2) is given
by

ΨYt (u) = exp (itu′µ+ tlS1(φ(u))) , (2.3)

where lS1 (.) is the Laplace exponent of the subordinator, and φ (u) is the characteristic
exponent of the multivariate Brownian motion, that is

φ (u) = iu′θ − 1

2
u′Σu

=
n∑
j=1

iujθj −
1

2

n∑
j=1

n∑
k=1

ujukσjσkρjk,
(2.4)

where u ∈ Rn and the matrix Σ has elements Σjk = σjσkρjk. Since Σ is a variance-
covariance matrix, we can rewrite equation (2.4) using matrix notation, as follows

φ (u) = iu′θ − 1

2
u′DσΩDσu,

where Dσ is a diagonal matrix with diagonal σ ∈ Rn
+, and Ω is the correlation matrix of

the Brownian motions with elements ρjk.
In Sections 2.1 and 2.2 we will describe two parametric models belonging to the

NMV class: the multivariate generalized hyperbolic (MGH) and the multivariate normal
tempered stable (MNTS) model. Before going into details, we would like to describe the
main properties of the two models, to underline the main differences and to discuss some
practical aspects.

It is important to note that unlike the MNTS case, if the increments of the process at
a given time scale (e.g. daily) follow a MGH distribution, on a different time scale (e.g.
yearly) the increments follow an infinitely divisible distribution different from the MGH
(see Cont and Tankov (2003)), making the MGH distribution less convenient when one
needs to work with data with different time scales. This problem can arise, for example,
in options pricing models that make use of both daily returns and implied volatilities (see
Tassinari and Bianchi (2014) and Bianchi and Tassinari (2020)).

As shown in McNeil et al. (2005) the portfolio constructed as a linear combination of
generalized hyperbolic (GH) margins has a GH distribution. Kim et al. (2012) proved
that the same is true in the normal tempered stable (NTS) case. Thus, these models
can be easily applied to evaluate widely known portfolio risk measures and to solve asset
allocation and portfolio optimization problems (see Bianchi and Tassinari (2020)).

Unlike the MGH random variable, it is not possible to obtain in closed form the
probability density function of the MNTS random variable. However, the density of a
MNTS random variable can be obtained by a numerical integration that combines the
density of a multivariate normal distribution and the density of a univariate tempered
stable mixing distribution, which can be evaluated by means of a fast Fourier transform
(FFT) (see Stoyanov and Racheva-Iotova (2004) and Bianchi et al. (2017)).

In estimating these models, it is usually not possible to resort to direct maximiza-
tion of the likelihood function as the number of parameters is large. To overcome this
obstacle, in the estimation of the parameters of the multivariate normal mean-variance
mixture distributions, the use of the expectation-maximization (EM) maximum likeli-
hood estimation method is particularly convenient as it allows to find the parameters

7



of the multivariate Gaussian distribution and those of the mixing distribution separately
(see Protassov (2004), Hu (2005), and McNeil et al. (2005) in the MGH case, and Bianchi
et al. (2016) in the MNTS).

While the parameter estimation of the MGH model is well-known in the literature,
the estimation of the MNTS model is more challenging. As proposed by Fallahgoul et al.
(2016), the parameters µ and Σ of the model in equation (2) can be estimated using
the sample mean vector and sample variance-covariance matrix for stock market returns
and the parameters of the subordinator can be obtained by considering the average of
the margin estimates. Alternatively, Kim et al. (2012) conducted an empirical analysis
on the Dow Jones Industrial Average (DJIA) index and 29 of the 30 component stocks.
They estimated the subordinator parameters on the DJIA index returns and the vector
θ was estimated on the margins. Finally, both µ and Σ were estimated by considering
the sample covariances together with the univariate estimates (see also Kurosaki and
Kim (2021) and Kim (2022) for applications to portfolio allocation). However, we do not
explore these two methods in our empirical study, since we will rely on the EM estimation
approach as it will be described in Section 7.3.

Finally, from a practical perspective, the simulation of random draws from the mul-
tivariate distributions defined in equation (2.1) is simple: one only needs an efficient
algorithm to simulate the univariate mixing distribution and a standard procedure to
generate multivariate normal random samples.

2.1 The multivariate generalized hyperbolic distribution

The GH distribution, introduced by Barndorff-Nielsen (1977), has received a lot of atten-
tion in the financial-modeling literature (see Eberlein and Keller (1995), Prause (1999),
and Eberlein et al. (2002)). Many well known distributions, like for example the student’s
t, the skew-t, the variance gamma (VG) and the normal inverse Gaussian (NIG), belong
to the GH parametric family. In this section we review the multivariate extension of the
GH distribution.

Let S = {St, t ≥ 0} be a generalized inverse Gaussian process (GIG), i.e., a Lévy
process in which the law of S1 is generalized inverse Gaussian with parameters ϵ, ψ, χ,
where ψ and χ are both nonnegative and not simultaneously 0. Therefore, the number
of parameters to be estimated in case of a MGH distribution is (n2 + 5n)/2 + 3.

We denote the law of S1 as GIG (ϵ, χ, ψ). The density function of S1 is

f(x; ϵ, ψ, χ) =
1

2Kϵ

(√
χψ
) (ψ

χ

) ϵ
2

xϵ−1 exp

(
−1

2

(χ
x
+ ψx

))
, x > 0,

and its characteristic function is

ΨS1(u) =

(
1− 2iu

ψ

)− ϵ
2 Kϵ

(√
χ(ψ − 2iu)

)
Kϵ

(√
χψ
) . (2.5)

If in equation (2.2) we select a subordinator S = {St, t ≥ 0} such that the character-
istic function of S1 is (2.5), then the process Y = {Yt, t ≥ 0} is referred to as the MGH
process with parameters (ϵ, χ, ψ, θ, µ, Σ).
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Finally, using (2.3) we get the characteristic function of the MGH process with linear
drift

ΨYt (u) = exp (iu′µt)

(
1− 2

ψ

(
iu′θ − 1

2
u′Σu

))− ϵt
2

Kϵ

(√
χ
(
ψ − 2

(
iu′θ − 1

2
u′Σu

)))
Kϵ

(√
χψ
)


t

.

(2.6)

Setting ui = 0, ∀i ̸= j, into (2.6) we get the characteristic function of the log-return
process of the j-th underlying asset

ΨYj,t (uj) = exp (iujµjt)

(
1− 2

ψ

(
iujθj −

1

2
u2jσ

2
j

))− ϵt
2

Kϵ

(√
χ
(
ψ − 2

(
iujθj − 1

2
u2jσ

2
j

)))
Kϵ

(√
χψ
)


t

.

(2.7)

Setting t = 1 into (2.6) and into (2.7) we get the characteristic function of the MGH and
GH distributions.

Comparing the characteristic function of the MGH distribution with the one of Yt we
can notice that the GH distribution is infinitely divisible but not closed under convolution.
Thus, if Y1 is a MGH random variable, Yt is not. If ϵ = −1/2, G1 follows an inverse
Gaussian distribution with parameters γ =

√
χ and η =

√
ψ. If χ = 0, G1 follows a

gamma distribution α = ϵ and β = ψ/2. In the first case we get the multivariate normal
inverse Gaussian (MNIG) model and in the second one the multivariate variance gamma
(MVG) considered in Tassinari and Bianchi (2014).

2.2 The multivariate normal tempered stable distribution

The tempered stable family was introduced by Boyarchenko and Levendorskii (2000,
2002) and studied in deep by Rosinski (2007). The multivariate model discussed in this
section is based on the classical tempered stable (CTS) distribution as described by Kim
et al. (2012), Bianchi et al. (2016) and Bianchi and Tassinari (2020) and extends the
works of Prause (1999), Leoni and Schoutens (2008) and Wu et al. (2009) to the CTS
case. We refer to this model as multivariate normal tempered stable (MNTS). We observe
that the elliptical tempered stable (ETS) distribution defined in Fallahgoul et al. (2016) is
a subclass of the multivariate symmetric normal tempered stable (MSNTS) distribution,
and a symmetric MNTS is a subclass of the tempered infinitely divisible family introduced
by Bianchi et al. (2011).

The process S = {St, t ≥ 0} is said to be a CTS subordinator with parameters α,
λ > 0, C > 0, 0 < α < 1 if the characteristic function of St is given by

ϕSt(u) = E[exp(iuSt)] = exp (tCΓ(−α)((λ− iu)α − λα))) , (2.8)
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where u ∈ R and Γ(·) is the gamma function. From equation (2.8) it is possible to
compute the Laplace exponent of the CTS subordinator

lSt(u) = lnϕSt(−iu) = tCΓ(−α)((λ− u)α − λα).

If in equation (2.2) we select a subordinator S = {St, t ≥ 0} with characteristic
function (2.8), then the process Y = {Yt, t ≥ 0} is referred to as the MNTS process with
parameters (a, λ, C, θ, µ, Σ). If one selects α = a/2 and C = λ1−α/Γ(1 − α), equation
(2.8) can be written as

ϕSt(u) = exp

(
−t2λ

1−a
2

a

(
(λ− iu)

a
2 − λ

a
2

))
,

and the multivariate distribution Y∆t defined as

Y∆t = µ∆t+ θ(S∆t −∆t) +
√
S∆tDσAZ,

is the MNTS distribution analyzed by Kim et al. (2012).
Using (2.3) we get the characteristic function of the MNTS process with linear drift

ΨYt (u) = exp

(
t

(
iu′µ+ CΓ

(
−a
2

)((
λ− iu′θ +

1

2
u′Σu

)a
2

− λ
a
2

)))
. (2.9)

Setting ui = 0, ∀i ̸= j, into (2.9) we get the characteristic function of the j-th marginal
distribution

ΨYj,t (uj) = exp

(
t

(
iujµj + CΓ

(
−a
2

)((
λ− iujθj +

1

2
u2jσ

2
j

)a
2

− λ
a
2

)))
. (2.10)

In case of MNTS distribution the number of parameters to be estimated is (n2 + 5n)/2+3.

If ω = 1/2, S1 follows an inverse Gaussian distribution with parameters γ = −CΓ(−ω)√
2

and η =
√
2λ, and Y1 follows the MNIG distribution with parameters α = −CΓ(−ω)√

2
and

β =
√
2λ, and Y1 follows the MVG distribution described in Tassinari and Bianchi (2014).

3 Generalized NMV mixture models

A multivariate NMV distribution is based on a common one-dimensional mixing variable.
This corresponds to a multidimensional return process with a unique stochastic time-
change, which implies the uniqueness of the business time for all assets. As shown by
Harris (1986) this feature seems to be inconsistent with empirical evidence. A more
realistic assumption is that each return has its own change of time, that is each margin
has its own mixing variable. The multidimensional mixing distribution is based on the
empirical finding that different stocks are affected by both a common and an idiosyncratic
component. Semeraro (2010) discussed a generalization of the VG process, Luciano and
Semeraro (2010a) proposed a generalization of the definition of NMV distribution based
on an n-dimensional mixing variable. The authors had four desired features in mind:
(1) the existence of characteristic functions in closed form; (2) the ability to capture a
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wide range of linear and non-linear dependence; (3) the possibility of fitting separately the
marginal distributions and the correlation parameters; (4) the development of a consistent
framework in which assets and portfolio processes belong to the same class. Recently,
Rathgeber et al. (2019) conducted a large simulation study on these models in order to
identify the best fitting method for multivariate models.

A random vector Y has a multivariate generalized normal mean-variance mixture
distribution (GNMV) if the following equality in law holds

Y = µ+MDGθ +QD√
GZ, (3.1)

with µ, θ ∈ Rn, M and Q are square matrices of order n, QQ′ is positive definite, G is
an n dimensional positive random vector whose j-th component is Gj, DG and D√

G are

diagonal matrices with diagonal elements Gj and
√
Gj, respectively, and Z ∼ N(0, In)

is independent from G. If the mixing variable G is infinitely divisible then Y is infinitely
divisible and its law uniquely determines a Lévy process.

Following Luciano and Semeraro (2010a) the characteristic function of the random
variable Y can be written as

ΨY (u) = exp (iu′µ) exp

(
lG

(
iDθM

′u− 1

2
DQ′uQ

′u

))
,

where lG (.) is the Laplace exponent of the multivariate mixing variable G, Dθ and DQ′u

are diagonal matrices with diagonal elements the vectors θ and Q′u, respectively. If we
set M = In and Gj = S for all j in (3.1) we obtain (2.1).

Barndorff-Nielsen et al. (2001) proved that a random vector Y has GNMV distribu-
tion if and only if it is the law at time one of a Lévy process obtained by subordination
of a Rn

+-parameter Brownian motion with a multidimensional subordinator whose distri-
bution is given by G. Luciano and Semeraro (2010a) and Luciano and Semeraro (2010b)
built multivariate Lévy processes with GH, compound Poisson, NIG and VG margins us-
ing the multivariate subordination technique. In particular, they proposed two different
techniques to build n-dimensional Lévy processes through subordination leading to dif-
ferent multivariate models with the same marginal processes. We refer to these two class
of processes as the α-models and the ρα-models. Recently, an extension of the α-model
based on the VG distributional assumption and weak-subordination and allowing a wider
range of dependence has been proposed and applied to finance (see Buchmann et al.
(2017), Michaelsen and Szimayer (2018), Madan (2018) and Buchmann et al. (2019)).

3.1 The αGH distribution

Lo and Wang (2000) provided empirical evidence that business time as measured by
trades presents a significant common component. Semeraro (2010), Luciano and Semeraro
(2010a) and Luciano and Semeraro (2010b) proposed to build multivariate subordinators
able to capture both a time-change common to all assets and an idiosyncratic one. In
particular, they used the random additive effect distributions proposed by Barndorff-
Nielsen et al. (2001) to get a multivariate stochastic clock G = {Gt, t ≥ 0} containing
both a common and an asset specific time-change:

Gt = Xt + αSt, (3.2)
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where X = {Xt, t ≥ 0} is an n-dimensional subordinator with independent components,
S = {St, t ≥ 0} is a one-dimensional subordinator independent by X, α is a n× 1 vector
with positive elements. Let Y = {Yt, t ≥ 0} be a multivariate process such that the
following equalities hold

Yt = µt+ Y I
t

= µt+BGt

= µt+DGtθ +DσWGt ,

(3.3)

where

• Y I = {Y I
t , t ≥ 0} is constructed by subordinating an n-dimensional arithmetic

Brownian motion B = {Bt, t ≥ 0}, where Bt = θt + DσWt, with independent
components with the subordinator (3.2);

• W = {Wt, t ≥ 0} is an n-dimensional Wiener process with corr [Wj,t,Wk,t] = 0 for
j ̸= k;

• Dσ is a diagonal matrix with diagonal elements σj ∈ R+ for all j,

• θ ∈ Rn is a vector of parameters.

For each discrete time step ∆t the distribution of the increments of the process is
given by

Y∆t = µ∆t+DG∆t
θ +DσD√

G∆t
Z,

where G∆t denotes the distribution of the subordinator increments which is independent
of Z. The distribution of Y∆t belongs to the class of the GNMV distribution withM = In
and Q = Dσ.

The characteristic function of Yt defined in equation (3.3) is given by

ΨYt (u) = exp (itu′µ)ΨY I
t
(u)

= exp (itu′µ) exp

(
t

n∑
j=1

lXj,1
(ψj(uj))

)
exp

(
tlS1(

n∑
j=1

αjψj(uj))

)

= exp (itu′µ) exp

(
t

n∑
j=1

lXj,1
(iujθj −

1

2
u2jσ

2
j )

)
exp

(
tlS1(

n∑
j=1

αj(iujθj −
1

2
u2jσ

2
j ))

)
,

(3.4)

where lXj,1
(.) and lS1 (.) are the Laplace exponents of the subordinators Xj,t and St, re-

spectively. Choosing Xj,1, S1 and αj opportunely, Luciano and Semeraro (2010a) and
Luciano and Semeraro (2010b) proposed different multivariate models with GH, com-
pound Poisson, NIG and VG margins. The number of parameters to be estimated in
these multivariate distributions increase linearly with the number of margins. In this pa-
per, we review only the GH model, and we refer to it as αGH model. Following Luciano
and Semeraro (2010a) we build a multivariate subordinator G = {Gt, t ≥ 0} on Rn

+ with
dependent GIG margins Gj = {Gj,t, t ≥ 0}, j = 1, ..., n, by defining

Gj,t = Xj,t + αjSt = Rj,t + Pj,t +
1

ψj
St, (3.5)
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whereRj,1, Pj,1 and S1 are independent withRj,1 ∼ GIG (−ϵ, χj, ψj), Pj,1 ∼ Γ
(
ϵ− a,

ψj

2

)
,

and S1 ∼ Γ
(
a, 1

2

)
. If ϵ > 0, ψj > 0, 0 < a < ϵ, and χj ≥ 0 for all j, then

Gj,1 ∼ GIG (ϵ, χj, ψj), that is all the margins of the multivariate subordinator at time
one follow a generalized inverse Gaussian law.
Using (3.4) and setting t = 1 we get the characteristic function of the αGH distribution

ΨY1 (u) =
n∏
j=1

(
1− 2

ψj

(
iujθj −

1

2
σ2
ju

2
j

))a− ϵ
2 Kϵ

(√
χj
(
ψj − 2

(
iujθj − 1

2
u2jσ

2
j

)))
Kϵ

(√
χjψj

)
exp (iu′µ)

(
1−

n∑
j=1

2

ψj

(
iujθj −

1

2
σ2
ju

2
j

))−a

.

(3.6)

Setting ui = 0, ∀i ̸= j, into (3.6) we get the characteristic function (2.7) of the GH law.
Setting ϵ = 1 the marginal processes are hyperbolic and we get the αHYP. If a → 0

the αGH process degenerates into the MGH model with independent univariate GH
processes. If χj → 0 for all j, the αGH process degenerates into the αVG. If one sets
χj = δ2j , ψj = α2

j − β2
j , θj = βj, µj = 0, σj = 1 for all j, we get the αGH process of

Luciano and Semeraro (2010a).
The estimation of this model in Luciano and Semeraro (2010a) was performed in two

steps by fixing ϵ = 1. The restrictions on the parameters of the random variables Rj,1, Pj,1
and S1 in the right hand side of (3.5) ensure that the margins are still GH distributed.
Guillaume (2013), following Luciano and Semeraro (2010b) and Semeraro (2010), but
removing the restrictions on single variable parameters, proposed the generalized αVG
model whose margins are no longer VG distributed but still result to be infinitely divisible.
The same principle can be followed to generalize the αNIG and the αGH models.

3.2 The ραGH distribution

The α-models are obtained time changing a multivariate Brownian motion with inde-
pendent components with the subordinator (3.2). The only source of dependence among
different assets is due to the timing of the jumps. The ρα-models extend the α-models
allowing the dependence of both time and size of the jumps. The introduction of these
models is motivated by the search of a greater accuracy in fitting both marginal distribu-
tions and sample correlations. According to Luciano et al. (2016) a model should provide
a good fit of the marginal distributions and should be flexible enough to capture corre-
lations and portfolio returns. It should be noted that portfolio returns reflect linear and
non-linear dependence. Notwithstanding the greater flexibility of the ρα-models, assets
and portfolio distributions belong to the same class.

Let Y = {Yt, t ≥ 0} be a multivariate process such that the following equalities hold

Yt = µt+ Y I
t + Y ρ

t

= µt+BXt +Bρ
St

= µt+DXtθ +DσWXt +DStθ
α +DσαW ρ

St
,

where
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• Y I = {Y I
t , t ≥ 0} is constructed by subordinating an n-dimensional arithmetic

Brownian motion B = {Bt, t ≥ 0} with an n-dimensional subordinator X =
{Xt, t ≥ 0} with independent components Xj = {Xj,t, t ≥ 0};

• Y ρ = {Y ρ
t , t ≥ 0} is constructed by subordinating an n-dimensional Brownian

motion Bρ = {Bρ
t , t ≥ 0} with the common one-dimensional subordinator S =

{St, t ≥ 0};

• W = {Wt, t ≥ 0} and W ρ = {W ρ
t , t ≥ 0} are independent n-dimensional Wiener

processes, with corr [Wj,t,Wk,t] = 0 and corr
[
W ρ
j,t,W

ρ
k,t

]
= ρjk for j ̸= k;

• X = {Xt, t ≥ 0} and S = {St, t ≥ 0} are an n-dimensional and a one-dimensional
independent subordinators, independent of W = {Wt, t ≥ 0} and W ρ = {W ρ

t , t ≥
0};

• θα, σα and α are n-dimensional vectors with θα = θ×α, σα = σ×
√
α (the symbol

× stands for the component-wise product of two vectors), where αj ∈ R+, for all j;

• DXt , Dσ, DSt and Dσα are diagonal matrices with diagonal elements Xj,t, σj, St,
and σj

√
αj respectively, for all j.

The parameter αj must be chosen so that

Yj,t = µjt+ Y I
j,t + Y ρ

j,t

= µjt+Bj,Xj,t
+Bρ

j,St

= µjt+ θjXj,t + σjWj,Xj,t
+ θjαjSt + σj

√
αjW

ρ
j,St

(3.7)

can be written as a time-changed Brownian motion

Yj,t = µjt+ θjGj,t + σjWGj,t
,

where Gj,t = Xj,t + αjSt for all j. For each discrete time step ∆t the distribution of the
increments of the process can be written as

Y∆t = µ∆t+DX∆t
θ +DσD√

X∆t
Z(1) + θαS∆t +

√
S∆tD

α
σAZ(2),

whereX∆t and S∆t denote the distributions of the subordinators increments, Z(i) (i = 1, 2)
are independent N (0, In) random vectors, A is the lower Cholesky decomposition of the
correlation matrix of W ρ.

As shown in Luciano and Semeraro (2010b), the characteristic function of Yt defined
in equation (3.7) is given by

ΨYt (u) = exp (itu′µ)ΨY I
t
(u)ΨY ρ

t
(u)

= exp (itu′µ) exp

(
t

n∑
j=1

lXj,1
(φj(uj))

)
exp (tlS1(φ

ρα(u)))

= exp (itu′µ) exp

(
t

n∑
j=1

lXj,1
(iujθj −

1

2
u2jσ

2
j )

)
exp

(
tlS1(iu

′θα − 1

2
u′Σραu)

)
,

(3.8)
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where lXj,1
(.) and lS1 (.) are the Laplace exponents of the subordinators Xj,t and St,

respectively, and Σρα = V ar (Bρ
1) is a positive definite matrix with elements Σρα

jk =
σjσk

√
αj
√
αkρjk.

Choosing Xj,1, S1 and αj opportunely, Luciano and Semeraro (2010b) and Luciano
et al. (2016) proposed different multivariate models with compound Poisson, VG, NIG,
and GH margins. We review only the last model and we refer to it as ραGH model.

Considering the GIG subordinator defined in (3.5) and using (3.8) for t = 1, we get
the characteristic function of the ραGH distribution

ΨY1 (u) =
n∏
j=1

(
1− 2

ψj

(
iujθj −

1

2
σ2
ju

2
j

))a− ϵ
2 Kϵ

(√
χj
(
ψj − 2

(
iujθj − 1

2
u2jσ

2
j

)))
Kϵ

(√
χjψj

)
exp (iu′µ)

(
1− 2

(
iu′θα − 1

2
u′Σραu

))−a

.

(3.9)

Setting ui = 0, ∀i ̸= j, into (3.9) we get the characteristic function (2.7) of the GH law.
Setting ϵ = 1 the marginal processes are hyperbolic and we get the ραHYP. If a→ 0

the ραGH process degenerates into the MGH model with independent univariate GH
processes. If ρjk = 0 for all j ̸= k then we obtain the αGH model. If χj → 0 for all
j, the ραGH process degenerates into the ραVG process which includes both the MVG
and the αVG. Observe that it is not possible to obtain the MGH model and, since by
construction ϵ must be positive, it is not possible to obtain multivariate models with NIG
marginal processes. If one sets ϵ = λ, θα = µρ, χj = δ2j , ψj = γ2j − β2

j , θj = βj, µj = 0,
σj = 1 for all j, we get the ραGH process of Luciano and Semeraro (2010b).

4 The multivariate mixed TS distribution

In almost all the models reviewed in this paper the number of parameters increases
quadratically with the number of margins, except in the case of the multivariate distri-
butions described in Section 3.1 and 6.2. In practice it is difficult to estimate highly
parametrized models. This problem is well known if we deal with portfolio allocation,
especially when the investment universe is large. Inspired by the simplicity of the mul-
tivariate αVG distribution considered in Luciano and Semeraro (2010b) and Semeraro
(2010), the multivariate mixed tempered stable (MMixedTS) distribution has been pro-
posed in Hitaj et al. (2018). According to the authors the reason of proposing the
MMixedTS distribution was due to the fact that, nevertheless the simplicity of the αVG
model, this one is not able to capture all the stylized facts of assets returns as shown in
Hitaj and Mercuri (2013). In particular, the multivariate αVG distribution is not able
to generate negatively correlated margins with skewness of the same sign and positively
correlated margins with skewness of opposite sign.

The multivariate mixed tempered stable model is built on the basis of the standardized
classical tempered stable (stdCTS) distribution. A process Y = {Yt, t ≥ 0} with values
in Rn is called MMixedTS if for each margin j the following equality holds

Yj,t = µjt+ βjVj,t +
√
Vj,tXj,t,
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where Vj = {Vj,t, t ≥ 0} is the j-th component of the multivariate subordinator V =
{Vt, t ≥ 0}, defined as

Vj,t = Gj,t + ajΛt,

in which Gj,t and Λt are nonnegative infinitely divisible random variables with Gj,t and
Λt mutually independent, aj ≥ 0 and

Xj,t|Vj,t ∼ stdCTS
(
αj, λ+,j

√
Vj,t, λ−,j

√
Vj,t

)
.

for j from 1 to n.
In particular, if for each j, Gj,t ∼ Γ(cjt,mj), Λt ∼ Γ(n̄t, k), and aj = k

mj
, then

Vj,t ∼ Γ((cj + n̄) t,mj) that guarantees infinite divisibility, necessary for the definition
of multivariate MixedTS-Γ. In this case the number of parameters to be estimated is
7n+ 1.

Using matrix notation the MMixedTS distribution can be written as

Y = µ+DβV +D
1
2
VX

where µ ∈ Rn, Dβ ∈ Rn×n with Dβ = diag (β1, . . . βn), V ∈ Rn is a random vec-
tor with positive elements, DV is a random matrix positive defined, such that DV =
diag (V1, . . . Vn), and X is a stdCTS random vector.

The characteristic function of the MMixedTS process is

ΨYt(u) = exp

(
i

n∑
j=1

ujµjt+ tlΛ1

(
n∑
j=1

(iajujβj + ajφstdCTS (uj;λ+,j, λ−,j, αj))

))
n∏
j=1

exp
(
tlGj,1

(iujβj + φstdCTS (uj;λ+,j, λ−,j, αj))
)
,

where the φstdCTS (u;α, λ+, λ−) is the characteristic exponent of a stdCTS random vari-
able defined as

φstdCTS (u; λ+, λ−, α) =
(λ+ − iu)α − λα+ + (λ− + iu)α − λα−

α (α− 1)
(
λα−2
+ + λα−2

−
) +

iu
(
λα−1
+ − λα−1

−
)

(α− 1)
(
λα−2
+ + λα−2

−
) .

Hitaj et al. (2018) showed that the MMixtedTS-Γ model is able to overcome the limits
of the multivariate αVG distribution preserving its simplicity. A first application of the
MMixedTS distribution to portfolio selection is considered in Hitaj et al. (2019).

5 Multifactorial subordinated models

As described in Luciano and Semeraro (2010a) a multivariate Brownian motion can be
subordinated by considering a single factorG defined as an n-dimensional positive random
vector. This model can be extended to a multifactorial model as proposed by Marfé
(2012a). Further extensions of this model have been proposed by Marfé (2012b) and
Boen and Guillaume (2019b). Marfé (2012a) introduced a flexible multidimensional pure
jump model with generalized variance gamma (GVG) margins. In particular, the model
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is able to describe very different patterns of nonlinear dependence once margins are
fixed, and also when linear dependence is fixed. The model flexibility is provided by two
separate dependence structures for the positive and the negative jump components of the
margins. Additionally, for each jump component it is possible to introduce dependence
separately in its finite activity part, that is in large and rare jumps, and in its infinite
activity part, that is in small and frequent jumps. In this section we first describe
the multivariate generalized gamma (MGG) process. Then, we review the multivariate
generalized variance gamma (MGVG) process. Similarly to the VG process, which can
be built either as a difference of two independent gamma processes or by time-changing
a Brownian motion with an independent gamma process, the MGVG process can be
obtained either as difference of two independent MGG processes, or through Brownian
motion subordination using the MGG process as a subordinator. We analyze in details
only this second approach.

A MGG process is the Lévy process Ĝ = {Ĝt, t ≥ 0} on Rn
+, where each component

Ĝj = {Ĝj,t, t ≥ 0}, j = 1, ..., n, is defined as the linear combination of independent
subordinators, that is

Ĝj,t = Gj,t + qjGc,t +G∗
j,Nj,t

+ pjG
∗
c,Nc,t

= Gj,t + qjGc,t +Xj,t + pjXc,t

with Gj,1 ∼ Γ
(

1−kj
qj

− c1,
1
qj

)
, Gc,1 ∼ Γ (c1, 1), G

∗
j,1 ∼ Γ

(
1, 1

pj

)
, G∗

c,1 ∼ Γ (1, 1), Nj,1 ∼

Poiss
(
kj
pj

− c2

)
, Nc,1 ∼ Poiss (c2), Xj,1 ∼ CP

(
kj
pj

− c2, 1,
1
pj

)
and Xc,1 ∼ CP (c2, 1, 1)

where 0 < c1 < minj
1−kj
qj

, 0 < c2 < minj
kj
pj
, and CP (λ, α, β) denotes the law at time one

of a compound Poisson process with jump intensity λ and jump size Γ(α, β).
The construction in equation (5) allows to express each margin as linear combina-

tion of two common factors, Gc,t and Xc,t, and two idiosyncratic factors, Gj,t and Xj,t.
Each marginal process can be decomposed into the sum of an infinite activity component,
Gj,t+qjGc,t, and a finite activity part, Xj,t+pjXc,t. Furthermore, all the margins at time

one follow a generalized gamma law and we denote this writing Ĝj,1 ∼ Γ̂ (1− kj, qj, kj, pj).

The joint characteristic function of Ĝ = {Ĝt, t ≥ 0} is given by

ΨĜt
(u) =

n∏
j=1

ΨGj,t
(uj)ΨXj,t

(uj)ΨGc,t

(
n∑
j=1

ujqj

)
ΨXc,t

(
n∑
j=1

ujpj

)

=
n∏
j=1

exp

(
ituj (kj − c2pj)

1− iujpj

)
(1− iujqj)

t

(
kj−1

qj
+c1

)

exp

(
itc2

∑n
j=1 ujpj

1− i
∑n

j=1 ujpj

)(
1− i

n∑
j=1

ujqj

)−tc1

.

(5.1)

Setting ui = 0, ∀i ̸= j, into (5.1) we get the characteristic function of Ĝj = {Ĝj,t, t ≥ 0}

ΨĜj,t
(uj) = exp

(
iujtkj

1− iujpj

)
(1− iujqj)

t
kj−1

qj .

Marfé (2012a) defined the MGVG process as the Lévy process Y = {Yt, t ≥ 0} on
Rn obtained as the difference of two independent MGG processes. This construction
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allows to model explicitly dependence separately and independently both in positive and
negative jumps and in their finite and infinite activity components.

Hovewer, Marfé (2012a) provided an alternative way to build a MGVG process through
subordination using the MGG process as a subordinator. As already observed, we analyse
in details only this second approach. Let Y = {Yt, t ≥ 0} be a multivariate process such
that the following equalities in law hold

Yt = µt+ Y 1,I
t + Y 2,I

t + Y 1,ρ
t + Y 2,ρ

t

= µt+B1,I
Gt

+B2,I
Xt

+B1,ρ
Gc,t

+B2,ρ
Xc,t

,

where

• Y 1,I = {Y 1,I
t , t ≥ 0} is constructed by subordinating an n-dimensional arithmetic

Brownian motion B1,I = {B1,I
t , t ≥ 0} with an n-dimensional subordinator G =

{Gt, t ≥ 0} with independent components Gj = {Gj,t, t ≥ 0}, i.e B1,I
G = {DGtθ +

DσW
1,I
Gt
, t ≥ 0};

• Y 2,I = {Y 2,I
t , t ≥ 0} is constructed by subordinating an n-dimensional arithmetic

Brownian motion B2,I = {B2,I
t , t ≥ 0} with an n-dimensional subordinator X =

{Xt, t ≥ 0} with independent components Xj = {Xj,t, t ≥ 0}, i.e B2,I
X = {DXtθ +

DσW
2,I
Xt
, t ≥ 0};

• Y 1,ρ = {Y 1,ρ
t , t ≥ 0} is constructed by subordinating an n-dimensional Brownian

motion B1,ρ = {B1,ρ
t , t ≥ 0} with the common one-dimensional subordinator Gc =

{Gc,t, t ≥ 0}, i.e B1,ρ
Gc

= {DGc,tθ
q +DσqW 1,ρ

Gc,t
, t ≥ 0};

• Y 2,ρ = {Y 2,ρ
t , t ≥ 0} is constructed by subordinating an n-dimensional Brownian

motion B2,ρ = {B2,ρ
t , t ≥ 0} with the common one-dimensional subordinator Xc =

{Xc,t, t ≥ 0}, i.e B2,ρ
Xc

= {DXc,tθ
p +DσpW 2,ρ

Xc,t
, t ≥ 0};

• W l,I = {W l,I
t , t ≥ 0} and W l,ρ = {W l,ρ

t , t ≥ 0} are independent n-dimensional

Wiener processes, with corr
[
W l,I
j,t ,W

l,I
k,t

]
= 0 and corr

[
W l,ρ
j,t ,W

l,ρ
k,t

]
= ρjk for j ̸= k

and l = 1, 2;

• G, X, Gc and Xc are independent subordinators, independent of W
l,I and W l,ρ for

l = 1, 2;

• DGt , DXt , DGc,t , DXc,t , Dσ, Dσq and Dσp are diagonal matrices with diagonal
elements Gj,t, Xj,t, Gc,t, Xc,t, σj, σj

√
qj and σj

√
pj, respectively, with σj, qj and pj

∈ R+ for all j.

• µ, θ, θq and θp are vectors in Rn with θq = θ × q, θp = θ × p where q and p ∈ Rn
0+ .

From independence and following (3.8) we get the characteristic function of the MGVG
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process

ΨYt (u) =
n∏
j=1

(
1− qj

(
iujθj −

1

2
u2jσ

2
j

))t( kj−1

qj
+c1

)
exp

(
t (kj − c2pj)

(
iujθj − 1

2
u2jσ

2
j

)
1− pj

(
iujθj − 1

2
u2jσ

2
j

) )
(
1−

(
iu′θq − 1

2
u′Σqu

))−tc1
exp

(
t

(
iu′µ+

c2
(
iu′θp − 1

2
u′Σpu

)
1−

(
iu′θp − 1

2
u′Σpu

))) ,
(5.2)

where Σq = V ar
(
B1,ρ

1

)
and Σp = V ar

(
B2,ρ

1

)
are positive definite matrices with elements

Σq
jk = σjσk

√
qj
√
qkρjk and Σp

jk = σjσk
√
pj
√
pkρjk. Setting ui = 0, ∀i ̸= j, into (5.2) we

get the characteristic function of the j-th marginal GVG process

ΨYj,t (u) =

(
1− qj

(
iujθj −

1

2
u2jσ

2
j

))t kj−1

qj

exp

(
t

(
iujµj +

kj
(
iujθj − 1

2
u2jσ

2
j

)
1− pj

(
iujθj − 1

2
u2jσ

2
j

))) .
Marfé (2012a) suggested to estimate the MGVG process in two steps. First, estimate

the margins with maximum likelihood estimation, recovering the density function from
the characteristic function by using the FFT algorithm. Then, given the estimates of
margins, estimate the common parameters to calibrate the empirical correlations or the
empirical co-skewnesses or both at the same time.

6 Linear combination of Lévy processes

As observed by Ballotta et al. (2019), Lévy processes offer agile distribution modeling
for asset prices, but they also present significant estimation challenges, especially in a
multivariate setting. A consistent and computationally efficient estimation procedure is
needed for portfolio risk measurement and management. While in the previous Sections
we reviewed models obtained through subordination, here we analyze a different approach.
We discuss how to construct multivariate Lévy models using affine linear transformations
of random vectors with independent Lévy components as proposed in Kawai (2009),
Kaishev (2013) and further studied by Ballotta and Bonfiglioli (2016) and Ballotta et al.
(2019). The main idea is to follow the divide and conquer approach, which allows one
to solve the curse of dimensionality because each estimation procedure involves only a
subsection of the overall parameter space. After a linear trasnformation, a multivariate
estimation is splitted into many univariate estimations. These approaches are based on
the independent component analysis (ICA) and the principal component analysis (PCA).

6.1 ICA based multivariate linear models

The idea behind this approach is to find a matrix A ∈ Rn×n and a random vector
X = (X1, . . . , Xn)

′ with infinitely divisible, independent, and standardized components
such that the law of the vector AX approximates the law of the standardized log-returns
while the correlation matrix of AX approximates a given correlation matrix.

19



We define a new random vector Z with n entries as follows

Z = AX + b, (6.1)

where b ∈ Rn. Requiring that X is a square integrable random vector and assuming,
without loss of generality, E [XX ′] = In with E [X] = 0, we have that the following
equality holds

var [Z] = AA′.

If X is an infinitely divisible random vector, we have that Z inherits this property from
which it is possible to determine its Lévy measure and the associated characteristic func-
tion. The corresponding Lévy process Z = {Zt, t ≥ 0} is defined as follows:

Zt = AXt + bt. (6.2)

Assuming that each component of the vectorX is not normally distributed it is possible to
separate the estimation of matrix A from the estimation of parameters of each component
in X, through the ICA proposed in Comon (1994). In the ICA approach, the dependence
structure of the components in the vector Z is described through the matrix A, called
mixing matrix, that can be easily computed using the FastICA algorithm developed in
Hyvärinen and Erkki (2000). Through this approach, Madan and Yen (2004) developed
a multivariate VG model for asset returns and introduced a portfolio selection procedure
based on the maximization of the expected CARA utility function. This approach has
been further investigated in Hitaj et al. (2015) and Mercuri and Rroji (2018), where the
components of the vector X are assumed to be independent and mixed tempered stable
distributed.

In the following, we discuss two alternative approaches for constructing multivariate
Lévy models through a scheme described in equation (6.1). The first method proposed
in Kawai (2009) and based on the CTS distribution, and the second one proposed in
Kaishev (2013) in which a multivariate Lévy process is built as a linear combination of
independent gamma processes.

In both cases analyzed in Sections 6.1.1 and 6.1.2, we first standardize the margins
and then we apply the FastICA algorithm to find the independent components of the
vector X. For each margin j we have

Yj − µj
σj

= Zj = AjX + bj, (6.3)

where µj and σj are the empirical mean and empirical standard deviation of Yj, bj is
equal to zero and Aj is the j-th row of the matrix A. We assume that theoretical means
and standard deviations are estimated without errors. By construction means, standard
deviations and correlation matrix of the model in equation (6.3) correspond with the
empirical ones. The equation (6.3) allows one to obtain the characteristic function of Yj
given the estimates of the standardized independent component X. The characteristic
function of the linear combination in equation (6.2) can be written as follows

ΨZt(u) = exp(iu′bt)ΨXt(A
′u).

Additionally, given the moments of the independent components, it is possible to
compute the moments of the original margin Yj, for j from 1 to n. From the homogeneity
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property and the additivity property of independent random variables, it follows that the
cumulant of order k of a linear combination of independent random variables is a linear
combination of their cumulants of the same order with coefficients raised to the power k.

Thus, these models can be estimated by considering the moment matching approach
as described in Section 7.1 or by applying a maximum likelihood estimation on each
standardized univariate independent component, and by computing, then, the density of
each margin Yj as linear combination of the independent standardized components.

6.1.1 Multivariate linear classical tempered stable model

As proposed in Kawai (2009), assume that X = {Xt, t ≥ 0} is a Lévy process in Rn

without a Gaussian component and

var [X1,t] = . . . = var [Xn,t] = tξ2 (6.4)

holds, with ξ > 0. The j-th component of the stochastic process Y = {Yt, t ≥ 0} is
defined by the equality

Yj,t =
n∑
l=1

cj,lXl,t.

For a fixed correlation matrix ℧, the transformation matrix K such that KK ′ = ℧ can
be obtained for example through a singular value decomposition. The restriction (6.4)
implies additional constraints on the marginal parameters of Xj,t during the calibration
procedure. In order to be in the Kawai’s framework and to avoid this additional con-
straint in the calibration algorithm, we apply the FastICA algorithm to the standardized
multivariate returns as in equation (6.3). Then on each independent component j we esti-
mate a univariate standardized tempered stable model having the following characteristic
function with parameters (αj, λj+, λj−)

ϕXj
(u) = E[exp(iuXj)] = exp

(
− iu

(
CΓ(1− αj)(λ

αj−1
j+ − λ

αj−1
j− )

)
+ CΓ(−αj)((λj+ − iu)αj − λ

αj

j+ + (λj− + iu)αj − λ
αj

j−)
)

where
C = (Γ(2− αj)(λ

αj−2
j+ + λ

αj−2
j− ))−1,

and the cumulants are c1(Xj) = 0, c2(Xj) = 1,

c3(Xj) = CΓ(3− αj)(λ
αj−3
j+ − λ

αj−3
j− ),

and
c4(Xj) = CΓ(4− αj)(λ

αj−4
j+ − λ

αj−4
− ).

We refer to this multivariate Lévy process built as linear combination of independent CTS
processes as multivariate linear classical tempered stable (MLCTS) model. While Kawai
(2009) considered a process under the so-called mean-correcting martingale measure,
we estimate the model under the historical measure where the mean of each margins
corresponds to the empirical one.
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6.1.2 Multivariate linear gamma model

Kaishev (2013) proposed a new class of processes defined as linear combination of inde-
pendent gamma processes, called LG processes. In this paper we consider and estimate a
special case of this processes, where the univariate standardized independent components
are define as sum of independent gamma processes, that is:

Xj =
d∑

k=1

dkGk,t,

where Gk,t ∼ Γ (akt, λ). We refer to it as multivariate linear gamma (MLG) model. We
assume d = 2 and on each independent component j we estimate a univariate linear
gamma model having the following characteristic function with parameters (λ, aj+, aj−)

ϕXj
(u) = E[exp(iuXj)] = exp

(
aj+ log(λ)− aj+ log(λ− idj+u)

+ aj− log(λ)− aj− log(λ+ idj+u)
)
,

where

dj+ =λ

√
aj−

aj+(aj+ + aj−)
,

dj− =λ

√
aj+

aj−(aj+ + aj−)
,

and the cumulants are c1(Xj) = 0, c2(Xj) = 1,

c3(Xj) = 2λ−3(aj+d
3
j+ − aj−d

3
j−)

and
c4(Xj) = 6λ−4(aj+d

4
j+ + aj−d

4
j−).

6.2 PCA based multivariate linear models

A further approach to build multivariate models based on linear combination of indepen-
dent Lévy processes has been recently proposed by Ballotta and Bonfiglioli (2016) and
Ballotta et al. (2019). This approach can be viewed as a further extension of the methods
described in Section 6, even if Ballotta et al. (2019) proposed an estimation approach
based on the principal component analysis (PCA).

For the case of an n-dimensional model, the authors suggested a 2-step estimation
procedure in which a common factor Υ has to be estimated first and then n univariate
estimations should be conducted, one per each idiosyncratic component. The model is
defined as linear combination of two independent Lévy processes, the first representing
a common risk component, the second representing the idiosyncratic risks. The first
component is the first principal component defined through the PCA. Even if it is possible
to extend the model to the first k principal components to capture k different common
risk factors, we consider only the first one in the empirical application.
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Let Xj = {Xj,t, t >= 0} and Υ = {Υt, t >= 0} be two independent Lévy processes
belonging to the same parametric family (e.g. CTS Lévy processes with possible different
parameters), then Yj = {Yj,t, t >= 0} can be defined as follows

Yj = Xj + fjΥ,

where fj is the j-th component of the vector f ∈ Rn. Given the characteristic functions of
Xj and Υ, it is simple to obtain the characteristic function of Yj as well as its cumulants.
According to equation (3) in Ballotta et al. (2019), it can be shown that the correlation
is given by the following formula

corr(Yj, Yk) =
fjfkvar[Υ]√

var[Yj]
√
var[Yk]

.

The estimation of this model can be conducted by maximum likelihood estimation (MLE)
through the FFT: it is fast to implement, and its complexity does not increase with the
number of components of the multivariate model. First, the parameters of Υ are esti-
mated, then n independent MLE are performed to estimate the parameters of Xj and
the vector f . By construction, this second step can be parallelized in a straightfor-
ward way. While Ballotta et al. (2019) conducted the empirical analysis by considering
NIG and Merton jump-diffusion processes, we assume that the risk components are CTS
distributed. We refer to this multivariate Lévy process built as linear combination of
independent CTS processes as multivariate linear classical tempered stable (MLCTS)
model.

7 Estimation methods

From a theoretical standpoint, a good estimator should satisfy the following properties:
(1) the expected value of the estimator should be equal to the true value of the parameter
(unbiasedness); (2) as the dimension of the sample increases the estimator should converge
in probability to the true value of the parameter (consistency); (3) among the unbiased
estimators the selected one should be that with the smallest variance (efficiency). The
knowledge of the sample distribution of an estimator allows to perform hypothesis testing
on model parameters. In this section we discuss different estimation methods used in the
literature. For each method, we explain the underlying theoretical requirements that
ensure proper statistical properties of estimators. Recall that the aim is to estimate the
parameters of the log-returns process Y = {Yt, t ≥ 0}.

7.1 Moments matching (or brute force)

The knowledge of the characteristic function of a multivariate parametric model allows
to derive the theoretical moments of the margins and of the joint distribution. Since the-
oretical moments are expressed as a function of the unknown parameters, it is possible to
estimate model parameters by minimizing the distance between empirical and theoreti-
cal moments. This simple approach can be applied to estimate all multivariate models
discussed in this contribution. We refer to this sort of moments matching estimation
method as the brute force approach. More in details we minimize the Euclidean norm of
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the difference between the first four empirical and theoretical marginal moments and the
Frobenius norm of the difference between empirical and theoretical correlation matrices,
that is

min
Θ

(
4∑
i=1

wi∥m∗
i −mi(Θ)∥+ wρ∥ρ∗i − ρ(Θ)∥F

)
, (7.1)

where m∗
i and mi(Θ) are the empirical and the theoretical marginal moments of order i,

ρ∗ and ρ(Θ) are the empirical and theoretical correlation matrices, wi and wρ are weights.
To take into account the characteristics of each model, including the number of pa-

rameters, and to avoid numerical errors in the optimization algorithm, we use different
weights wi and wρ (see Section 8 for the choice of the weights). Since this type of ap-
proach strictly depends on the starting point in the optimization algorithm, we randomly
draw 100 different starting points and select as result the point of minimum distance
among the 100 solutions. A careful selection of both the upper and lower parameters
bounds is needed to have a satisfactory performance of the optimization algorithm. Since
the theoretical moments have a closed form formula, the algorithm is fast for all models.
A similar approach will be used in the two-step approach described in Section 7.4 to
minimize the distance between empirical and theoretical correlation matrices to find the
common parameters governing the dependence structure.

It should be noted that for some models to ensure a proper correlation matrix we
apply the hypersphere decomposition as described in Rebonato and Jäckel (1999), that is
the correlation matrix of dimension n is decomposed as the product of a lower triangular
matrix B and its transpose B′. This lower triangular matrix is function of n(n − 1)/2
angles and BB′ is by construction a correlation matrix.

7.2 Maximum likelihood estimation

Let us consider a multivariate random vector, that is a random variable Y that assumes
values on Rn with an assigned probability law. Given a set of T observations {Y k =
Ytk − Ytk−1

}k=1,...,T , the log-likelihood function can be written as

LL(Θ;Y 1, . . . , Y T ) =
T∑
k=1

log fY (Y
k; Θ), (7.2)

where Θ is the set of parameters. The idea behind the MLE is to choose the vector Θ that
maximizes the likelihood, or equivalently, the logarithm of the likelihood of the observed
sample, that is

max
Θ

LL(Θ;Y 1, . . . , Y T ). (7.3)

Under mild conditions, the method ensures the consistency property while the efficiency
is attained only asymptotically. Moreover, estimators converge in law to the Gaussian
distribution with rate 1√

T
. The procedure can be used if it exists a closed form formula of

the joint density function. However, as soon as the dimension increases, the optimization
problem in equation (7.3) becomes infeasible.

We will consider the MLE algorithm only in the univariate case to estimate the pa-
rameter of the margins (e.g. in the two-step procedure described in Section 7.4 or for
estimating the linear models described in Section 6). In the GH case there is a closed form
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formula for the density function, therefore the likelihood function is simple to compute.
In all other cases we will compute the density function by means of the FFT as discussed
in details in Bianchi et al. (2019).

7.3 Expectation maximization MLE method

In the subclass of multivariate infinitely divisible distributions that can be written as a
mixture, the maximum likelihood approach can be performed using the expectation max-
imization (EM) algorithm proposed by Dempster et al. (1977). In the class of normal
mean-variance mixtures it is necessary to be able to evaluate the posterior distribution
of the mixing random variable. For univariate distributions explicit expressions for esti-
mators of parameters have been given in Dimitris (2002) for the univariate NIG and in
Loregian et al. (2012) for the univariate VG. Liu and Rubin (1994), Hu (2005) and Mc-
Neil et al. (2005) study the EM-based maximum likelihood algorithm for estimating the
parameters of the MGH distribution. Bianchi et al. (2016) proposed a simple expectation-
maximization maximum likelihood estimation procedure for the MNTS model where the
density function of the mixing random variable is computed by means of a FFT procedure.

The density function of a normal mean-variance mixtures distribution can be written
as

fY (y; Θ) =

∫ ∞

0

fY |S(y|s;µ, θ,Σ)h(s; Θh)ds, (7.4)

where Y |S ∼ N(µ + θS, SΣ) (see Hu (2005)), h is the density function of the mixing
random variable with parameter set Θh (e.g. the set of parameters of the GIG distribution
in the MGH case), and Θ is the set of all model parameters. In the MNTS case the density
function h is computed by means of a FFT procedure, that is the characteristic function
is inverted to calculate the density function h and the density fY in equation (7.4) has
to be found by numerical integration.

Given a set of T observations {Y k = Ytk − Ytk−1
}k=1,...,T , the log-likelihood can be

written as

LL(Θ;Y 1, . . . , Y T ) =
T∑
k=1

log fY (Y
k; Θ). (7.5)

We consider the following likelihood function instead of the likelihood in equation (7.5)

LL(Θ;Y 1, . . . , Y T , S1, . . . , ST ) =
T∑
k=1

log fY,S(Y
k, Sk; Θ)

=
T∑
k=1

log fY |S(Y
k|Sk;µ, θ,Σ) +

T∑
k=1

log hS(S
k; Θh)

= L1(µ, θ,Σ;Y |S) + L2(Θh;S),

(7.6)

where {Sk = Stk − Stk−1
}k=1,...,T the latent mixing variables. In order to find a MLE

based on (7.6), we consider the following iterative algorithm.

1. Set i = 1 and select a starting value for Θ(1), that is µ(1) ∈ Rn is the sample mean,
θ(1) ∈ Rn is the zero vector, V ∈ Rn × Rn is the sample covariance matrix.
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2. By considering that

fS|Y k(s;Y k,Θ) =
fY |S(Y

k|s;µ, θ,Σ)h(s; Θh)

fY (Y k; Θ)
, (7.7)

compute the following weights

δ
(·)
k = E(Sk

−1|Y k,Θ(·)),

η
(·)
k = E(Sk|Y k,Θ(·)),

ρ
(i)
k = (Y k − µ(i))′

(
Σ(i)
)−1

(Y k − µ(i)),

(7.8)

The expectations in equation (7.8) are evaluated by numerical integration. In equa-
tion (7.7), fY |S can be written in closed form since Y |Sk ∼ N(µ + θSk, SkΣ) (see
Hu (2005)). While in the MNTS case the density h is computed by means of a FFT
procedure, and the denominator is evaluated by numerical integration, in the MGH
case both functions have a closed form formula.

3. Evaluate the average values

δ̄(i) =
T∑
k=1

δ
(i)
k , η̄(i) =

T∑
k=1

η
(i)
k .

4. Get the estimates

θ(i+1) =
N−1

∑T
k=1 δ

(i)
k (Ȳ − Y k)

δ̄(i)η̄(i) − 1
,

µ(i+1) =
N−1

∑T
k=1 δ

(i)
k Y

k − θ(i+1)

δ̄(i)
,

Ψ =
1

N

T∑
k=1

δ
(i)
k (Y k − µ(i+1))(Y k − µ(i+1))′ − η̄(i)θ(i+1)θ(i+1)′,

Σ(i+1) =
|V |1/nΨ
|Ψ|1/n

.

5. Set Θ(i′) = {Θ(i)
h , θ

(i+1), µ(i+1),Σ(i+1)} and calculate the new weight η̄(i
′) as done in

Steps 2 and 3.

6. To complete the calculation of Θ(i+1), find Θh that maximize the likelihood function
in equation (7.5), that is

LL(Θ(i+1);Y 1, . . . , Y T ) =
T∑
k=1

log fY (Y
k; Θ(i+1)),

where Θ(i+1) = {a, λ, C, θ(i+1), µ(i+1),Σ(i+1)}.

7. If i < 1, 000 and LL(i)−LL(i− 1) > 1e− 5, increment iteration count i and go to
step 2, otherwise, stop the algorithm.
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As discussed in McNeil et al. (2005), the algorithm converges to the MLE because it
produces improved parameter estimates at each step, in the sense that the value of the
original likelihood is continually increased. In the applications contained in this paper,
the algorithm converges long before reaching 1,000 iterations.

7.4 Two-step procedure

In literature several authors have considered a two-step procedure for the estimation of
non-Gaussian multivariate models. The idea is to split parameters into two groups: the
parameters of the first group can be estimated on the margins, usually by MLE, while
the parameters of the second group, used to capture the dependence structure, can be
estimated by minimizing some distance between the theoretical and empirical higher co-
moments. While marginal parameters are estimated using the MLE method discussed
in Section 7.2, the Frobenius norm is usually applied to minimize the distance between
theoretical and empirical correlation matrices (see Section 7.1). A two-step procedure
was used in Marfé (2012a), Hitaj and Mercuri (2013), Luciano et al. (2016) and Boen
and Guillaume (2019a).

Here we discuss the conditions required for applying this method and statistical prop-
erties of estimators. If it is not possible to identify the set of parameters that completely
characterize the margins this method should not be applied. For example this is the case
of NMV as the parameters governing the dependence structure affect all margins. A situ-
ation when the two-step procedure can be applied refers to the case where the dependence
structure is introduced through a multivariate mixing random variable as for example in
Luciano and Semeraro (2010b). Notice that it is necessary to impose constraints on the
parameters of the subordinator leading to marginal distributions which become functions
only of parameters of the first group (see Guillaume (2013) for a discussion about these
constraints in case of multivariate αVG and αNIG).

7.5 Estimation methods based on the characteristic function

Most of the multivariate models reviewed in this paper do not have a closed form formula
for the density function. This makes the likelihood-based estimation inconvenient. How-
ever, these models can be represented through some transformations of the probability
function such as the characteristic function or the Laplace transform. We discuss briefly
the generalized method of moments (GMM) proposed in Hansen (1982) that can be used
for the estimation of all the multivariate models described in this paper. The aim of this
procedure is to estimate the vector of parameters Θ ∈ Rp from a model based on the
following vector of q unconditional moment conditions:

E [g (Θ, Y )] = 0 (7.9)

where g (·) : Ξ×Rn → Rq, Ξ ⊂ Rp is a compact space. For a given sample Y 1, Y 2, . . . , Y T ,
we replace the expectation in (7.9) with the sample mean and obtain:

ḡT (Θ) =
1

T

T∑
k=1

g
(
Θ, Y k

)
.
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The GMM estimator depends on the choice of a positive definite weighting matrix FT ∈
Rq×q and is the solution of the following minimization problem

Θ̂ (FT ) = min
Θ∈Ξ

ḡT (Θ)′ FT ḡT (Θ) . (7.10)

To find an estimator, we need at least as many moment conditions as the number of
parameters. In particular we have the classical method of moments (MM) for q = p and
the GMM for q > p. Under mild conditions, for any positive definite weighting matrix
FT , the GMM produces consistent estimators. Moreover the asymptotic distribution of
Θ̂ is √

T
(
Θ̂−Θ

)
∼ N (0, H)

where H is the asymptotic variance-covariance matrix defined as

H = (J ′FJ)
−1
J ′FRFJ (J ′FJ)

−1

with J ∈ Rq×p

J = E

[
∂g (Θ, Y )

∂Θ′

]
and R ∈ Rq×q

R = E
[
g (Θ, Y ) g (Θ, Y )′

]
,

and FT
P→ F as T → ∞. An appropriate choice of matrix F improves the efficiency

within the class of GMM type estimators. The most efficient estimator is obtained if

FT
P→ R−1 (7.11)

and, in that case, the variance-covariance matrix H becomes

H =
(
J ′R−1J

)−1
. (7.12)

Several algorithms have been proposed in literature in order to obtain an estimator with
variance-covariance matrix that approaches matrix H in (7.12).

In this paper we use the R package gmm developed in Chaussé (2010), where the op-
timal matrix F is estimated using the heteroskedastic auto-correlation consistent (HAC)
approach proposed in Newey and West (1987). Then, as g we select the distance between
the empirical and theoretical characteristic function. For a given grid uj ∈ Rn, with j
from 1 to q, g is defined as

g (Θ, Y, uj) = ei⟨uj ,Y ⟩ −ΨY,Θ (uj) ,

where ⟨ , ⟩ is the scalar product. The moment conditions require

E [g (Θ, Y, uj)] = 0,

where the j-th element of the vector function ḡT (Θ) is

ḡT,j (Θ) =
1

T

T∑
k=1

(
ei⟨uj ,Y k⟩ −ΨY k,Θ (uj)

)
. (7.13)

It is evident that the choice of the grid is crucial (see Section 8 for the choice of the grid).
Increasing the grid size uj implies numerical instability and R−1 may not be defined.
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8 Empirical analysis

In this paper we have tried to highlight the differences between various multivariate dis-
tributions applied to finance. Also, different estimation methods have been discussed. In
order to select a good multivariate model it is necessary to understand the most important
features we want to be able to replicate, the computational burden of the choice and the
characteristics of the algorithm selected in the estimation. In this section we compare the
different multivariate non-normal models with the multivariate normal one to which we
refer to as MNormal. This model is completely characterized through the mean vector µ
and covariance matrix Σ.

In Table 1 the number of parameters as a function of the number of margins is reported
for each multivariate model. The models with a linear dependence on the number of
margins are the MMixedTS, the αGH and the PCA based linear model with k equal to
1. For the other models the dependence is quadratic.

Model number of parameters simulation algorithms

MNormal n2+3n
2 rnorm

MGH n2+5n
2 + 3 rnorm, rgig

MNTS n2+5n
2 + 3 rnorm, FFT

αGH 5n+ 2 rnorm, rgig

ραGH n2+9n
2 + 2 rnorm, rgig

MMixedTS 7n+ 1 rgamma, FFT

MGVG n2+11n
2 + 2 rnorm, rgamma, rpois

ICA MLG n2 + 5n rgamma or FFT
ICA MLCTS n2 + 5n FFT
PCA MLCTS 5n+ (n+ 5)k FFT

Table 1: Number of parameters as a function of the number of margins n and possible simulation
algorithms implemented in R. The number of principal components is equal to k. We refer to the inverse
transform algorithm based on the fast Fourier transform as FFT.

In this section we report the estimation results of the models we discussed. We cali-
brate each model with three different algorithms (only the MMixedTS is estimated with
two different approaches). We estimate the models under the so-called historical prob-
ability measure, that is by using observed market returns without relying on additional
data, like for example option prices (see Bianchi and Tassinari (2020)).

The analysis is performed on Datastream daily dividend-adjusted closing prices from
July 1, 2003 through June 29, 2018 for five stock indexes: the Deutsche Aktienindex 30
(ticker DAX), the Cotation Assistée en Continu 40 (ticker CAC), the Financial Times
Stock Exchange Milano Indice di Borsa (ticker FTSEMIB), Índice Bursátil Español (ticker
IBEX), Amsterdam Exchange Index (ticker AEX) representing five major European in-
dexes. Table 2 reports the summary of statistics, for each European indexes, calculated
on daily log-returns. The time period in this study includes the high volatility period
after the Lehman Brothers filing for Chapter 11 bankruptcy protection (September 15,
2008), the eurozone sovereign debt crisis, during which, in November 2011, the spread
between the 10-year Italian BTP and the German Bund with the same maturity exceeded
500 basis points, and the recent Italian political turmoil at the end of May 2018.
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min max mean std skewness ex.kurtosis
DAX -0.074 0.1080 0.03% 1.31% -0.0510 6.2406
CAC -0.0947 0.1059 0.01% 1.34% -0.0458 6.9923
FTSEMIB -0.1333 0.1088 -0.0% 1.50% -0.2547 6.1572
IBEX -0.1319 0.1348 0.01% 1.41% -0.1459 8.3714
AEX -0.0959 0.1003 0.02% 1.26% -0.1998 8.8435

Table 2: Summary statistics of daily log-returns.

We estimate the models using the methods discussed in Section 7. The code is imple-
mented in R language. Three estimation error measures based on the distance between
theoretical and empirical distribution function are considered.

The first error measure is the Kolmogorov-Smirnov distance (KS)

KS = sup
x

∣∣∣F̂ (x)− F (x)
∣∣∣ , (8.1)

applied to all margins. If the margins do not have closed form formula for the density
function, the evaluation of equation (8.1) is conducted by means of the FTT as discussed
in details in Bianchi et al. (2019). Given the number of observations, the KS distance
provides a satisfactory result if it is less than 0.03 (i.e. the KS test has a p-value grater
than 0.05). The estimation error, in terms of margins (calculated using KS distance),
is reported in Table 3, columns labeled KS1, KS2, KS3, KS5, for all the models under
analysis.

The second measure is represented by the distances between empirical and theoretical
moments considered in Section 7.1. The estimation error in terms of moments is reported
in Table 3, columns labeled, mean, sd, skewness, ex-kurtosis. The distance between
historical and model correlations is reported in the column labeled rho.

The third error measure is given by the norm of the vector ḡT,j defined in equation
(7.13), which gives the average distance between the empirical and the theoretical charac-
teristic function given a grid uj ∈ Rn, with j from 1 to 50. The average distance between
the empirical and the theoretical characteristic function is reported in Table 3, column
labeled ∥ḡ∥2 .

As fourth error measure, we evaluate a distance between multivariate densities, using
the nonparametric approach as proposed in Li et al. (2009) that considers all components
together and implemented in the npdeneqtest function of the R package np (see also
Xia and Grabchak (2022)). This distance is based on kernel density estimators between
observed and simulated data. For each model, we compare the 5-dimensional market
data to the simulated samples based on parameters estimated for the ten models. The
number of observations of the simulated sample is the same of the observed one (i.e. 3,843
trading days). The estimates of the considered multivariate distance, to which we refer
to as md, are reported in the last column of Table 3.

It should be noted that for all the ten models analyzed in this paper there is a stochas-
tic representation allowing us to simulate random variates from these non-normal models
by drawing random samples from the multivariate normal and univariate random vari-
ables (see Table 1). While the simulation of the Gamma, Poisson, generalized inverse
Gaussian random variables are obtained through the rgamma and rpois of the stats pack-
age of R and the rgig function of the ghyp package of R, the simulation of CTS random
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draws is not a simple task and an ad-hoc implementation is needed. We consider the in-
verse transform algorithm and the cumulative distribution function is evaluated through
the fast Fourier transform (see Bianchi et al. (2017) and Bianchi et al. (2019) for a detailed
description).

A visual assessment of the empirically findings explored in this paper are provided
in Figure 1 where we show the simulated log-returns drawn from the ten parametric
models fitted on market data and compare them to observed market log-returns. For
each model we take the parameters of the best performing estimation method. The
number of simulations is equal to the number of observed market data. The scatterplots
shown in Figure 1 seem coherent with the results reported in Table 3.

Analyzing the results in Table 3 and by looking at Figure 1, as expected, even if the
estimation method based on the moments (i.e. the brute force approach) is very simple
to implement, it does not always provide a satisfactory estimation error. However, it can
be a good starting point for the other estimation algorithms considered in this study.
Due to the large number of parameters, in some cases it is not easy to understand which
can be a good starting point for the optimization procedure. The brute force approach
gives the possibility to explore a multivariate model without having to implement complex
algorithms or without having to wait too long for the algorithm convergence. However, in
some cases the estimation error is large if compared to more robust methods (e.g. the EM
or the GMM algorithm). Even if the GMM algorithm can be applied to all models having
a characteristic function in closed form, the computing time of this algorithm as well as
possible numerical issues may be an obstacle for large scale practical applications. The
GMM is a very general estimation approach and for this reason it may be more difficult
to use in comparison with ad-hoc estimation approaches implemented for specific cases.
However, with a proper selection of the grid and of the parameter boundaries, the GMM
provide satisfactories results.

As starting points of the moments-matching approach, we draw 100 random starting
points in the parameters space. The wi and wρ depend on the selected parametric model
and the choice is done after exploring the dataset and the algorithm itself. We try to
select the weights in a way that all moments have a similar importance in the optimization
algorithm. For the MNTS, the MGH, the αGH and the MLCTS model based on PCA we
consider only mean, standard deviation and correlation in equation (7.1); for the ραGH
we consider also the skewness; for the MGVG and the MMixedTS we consider also both
skewness and excess kurtosis; for the multivariate linear models based on ICA we consider
all marginal moments up to order four. This is the reason why in Table 3 in both the
MNTS and the MGH case the error in fitting the skewness and the excess kurtosis is
large and in the other cases the error in fitting moments of order higher than two is not
so big.

Both the EM and the two-step approaches are reasonably fast: the maximization of
the likelihood function is conducted only on univariate models. The EM approach applied
to the MGH and MNTS models works properly even for large scale practical applications
(see Bianchi and Tassinari (2020) and Bianchi et al. (2020)). Our optimization algorithms
in R do not rely on parallel computing techniques and the code implements the L-BFGS-
B method. However, while it is not so simple to parallelize the optimization algorithm, it
should be noted that the n independent MLE steps of the models leveraging on univariate
MLE can be run in parallel without great effort (e.g. it is possible to write an efficient
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Figure 1: Bivariate scatterplots of market and simulated data. The DAX (x-axis) and
the FTSEMIB (y-axis) indexes are considered. Depicted market data are daily log-returns
from July 1, 2003 through June 29, 2018. The densities of the margins are reported on
the secondary axes.
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R code with the packages foreach and doParallel). This is the case for the two-step
approaches and the linear models (i.e. αGH, ραGH, MGVG, MLG and MLCTS) which
are based on the divide et impera concept: the estimation procedure is simplified, the
dimensionality problem is solved and the models provide a consistent and parallelizable
parameters estimation.

In the GMM estimation the multivariate grid of dimension n is selected as follows. For
the first dimension we consider a vector of q equally spaced points in the interval between
minimum and maximum observed returns. Then, after having fixed a seed, to obtain
the vector representing the second dimension, we randomly permute the vector obtained
for the first dimension. The same approach is considered for all other dimensions up to
n. The value of q depends on the model and it ranges from 15 to 50. As starting point
we consider the estimates obtained through the moments-matching approach. First, we
obtain a preliminary estimate by considering as weighting matrix the identity matrix,
then we conduct a second estimation with the weighting matrix given in equation (7.11).
The selection of the starting point and of the grid largely affects the final result of the
optimization procedure. The estimates obtained through the GMM approach are usually
not far from the starting point. The GMM approach seems to work better for models with
a simpler dependence structure and a smaller number of parameters (i.e. the MMixedTS
model). A proper selection of q is needed to avoid possible numerical issues of the R
package gmm. Even if the GMM approach is reasonably fast, it is not always simple to
obtain satisfactory results in terms of margins fitting and convergence properties. This
may be caused by the large number of parameters involved in the optimization problem.
In order to speed up the GMM algorithm and to avoid loops, the characteristic function
should take as input a matrix u, instead of a vector u, and implement the code leveraging
on matrix operations. This can be done for all parametric models analyzed in this work.

From an estimation error standpoint, some models have a very good performance
in fitting the margins, but they show a bad correlation fitting (e.g. the MMixedTS
and the MGVG). For the MMixedTS the large error in fitting the empirical correlation
matrix seems to be due to the number of parameters, too small to explain the behavior
of both margins and correlations. The MMixedTS is the best performer in fitting the
margins. The MGH and the MNTS models have a satisfactory performance, even if the
correlation fitting is not as good as for other competitors. At least for the data analyzed
in this paper, the ραGH seems to show the better mix between estimation errors and
computational tractability, even if the two-step procedure is not elegant from a pure
statistical perspective. The ICA based linear models are simple to estimate, mainly
because the multivariate estimation problem is converted to a set of univariate problems.
However, the performance is not always good enough and some numerical issues in the
FFT inversion of the characteristic function may affect the evaluation of the estimation
errors. These issues are caused by the fact that the model parameters are estimated on the
independent components and the margins are obtained by multiplying these components
by small numbers, that is by the elements of the matrix A and of the vector σ (see
equation (6.3)). The PCA based linear model with CTS components is more efficient
from a computational standpoint and it is simpler to implement, at least if one considers
the first principal component only. In our view, this last model is very promising, even if
it has a less flexible dependence structure in comparison with the ραGH. The estimation
procedure has a computational complexity equivalent to the estimation of a non-normal
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univariate model.
We recall that there exists a tradeoff between model fitting, prediction accuracy and

parsimony. In practice, the return generating process in unknown and selecting a model
on the basis of fitting accuracy may increase the propensity to choose an unnecessarily
complicated models. This is due to the fact we do not know when we are using observa-
tions advantageously to characterize the model and when we are fitting observation noise.
This last will contaminate the model and probably degrading its predictive capabilities.
In general simplicity or complexity does not equal accuracy, but finding the middle ground
that provides the most accurate predictions is problematic. In this paper we deal with
estimation and fitting accuracy of the multivariate non-Gaussian distributions but we do
not deal with the predictive accuracy of the models.

9 Conclusions

In this paper we provide a guide for the use of continuous-time multivariate non-Gaussian
models based on Lévy processes with a view toward applications to finance. After a
detailed analysis of the theoretical structure behind a sample of multivariate models pro-
posed in the financial literature, we observed their performance in terms of fitting on a
five-dimensional series of log-returns. The contribution of the paper is not only to present
models with a unifying notation but also to give some inputs for the practical implemen-
tation of their estimation algorithms. For each model we provide the necessary formulas
and methods needed to find a preliminary estimate that can be used as starting point
of more complex and robust algorithms. Additionally, we propose different estimation
methods which can be used in practical applications.

The parametric models reviewed is this paper have a different level of complexity
from both a theoretical and practical standpoint. We show that it is not always true
that a greater level of complexity provides a better estimation performance, at least for
the data considered in this study. In most cases the multivariate estimation problem can
be decomposed in different steps with computational complexity similar to a univariate
estimation problem. When this decomposition is not possible, we show how to perfom a
satisfactory parameters estimation.

Empirical motivation, statistical properties of estimators and computational tractabil-
ity are important features that should be taken into accout when selecting a model to be
used in practice. This work should be read as a tutorial allowing one to have a practical
view on different multivariate non-Gaussian models based on Lévy processes proposed in
the quantitative finance literature in the last years. The work does not pretend to be an
integrative survey providing a complete picture of the existing literature and solving the
still open problems.
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R. Rebonato and P. Jäckel. The most general methodology to create a valid correlation
matrix for risk management and option pricing purposes. Journal of Risk, 2(2):17–27,
1999.

T. Roncalli. Handbook of financial risk management. Chapman and Hall/CRC, 2020.

J. Rosinski. Tempering stable processes. Stochastic processes and their applications, 117:
677–707, 2007.
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Moments

In this Appendix we provide the formulas of expected value, variance, skewness, excess
kurtosis and correlation of the models described in the paper. Recall that the cumulant
of order j of a random variable X with cumulant generating function φX(u) can be
computed as

cj(X) =
∂j

∂uj
φX(u)|u=0,

and the following equalities hold

E[X] = c1(X),

var[X] = c2(X),

skew[X] =
c3(X)

c2(X)3/2
,

kurt[X] = 3 +
c4(X)

c2(X)2
.

MNTS model

E [Yj,1] = µj + E [S1] θj,

var [Yj,1] = var [S1]

(
θ2j +

σ2
jλ

1− ω

)
,

skew [Yj,1] = skew [S1]

(
θ3j +

3θjσ
2
jλ

2− ω

)(
θ2j +

σ2
jλ

1− ω

)− 3
2

,

kurt [Yj,1] = 3 + (kurt [S1]− 3)

[
θ4j +

3σ2
jλ

3− ω

(
2θ2j +

σ2
jλ

2− ω

)](
θ2j +

σ2
jλ

1− ω

)−2

,

corr [Yj,1;Yk,1] =
θjθk +

σjkλ

1−ω√(
θ2j +

σ2
jλ

1−ω

)(
θ2k +

σ2
kλ

1−ω

) ,
where

E [S1] = −ωCΓ(−ω)λω−1,

var [S1] = ω(ω − 1)CΓ(−ω)λω−2,

skew [S1] = (2− ω) [ω(ω − 1)CΓ(−ω)λω]−
1
2 ,

kurt [S1] = 3 + (ω − 2)(ω − 3) [ω(ω − 1)CΓ(−ω)λω]−1 .
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MGH model

E [Yj,1] = µj + E [G1] θj,

var [Yj,1] = E [G1]σ
2
j + var [G1] θ

2
j ,

skew [Yj,1] =
c3 [Yj,1]

var [Yj,1]
3/2
,

kurt [Yj,1] = 3 +
c4 [Yj,1]

var [Yj,1]
2 ,

corr [Yj,1;Yk,1] =
σjk + θjθk∆

(
χ
ψ

) 1
2√[

σ2
j + θ2j∆

(
χ
ψ

) 1
2

] [
σ2
k + θ2k∆

(
χ
ψ

) 1
2

] ,
where

c3 [Yj,1] = 3var [G1] θjσ
2
j + c3 [G1] θ

3
j ,

c4 [Yj,1] = 3var [G1]σ
4
j + 6c3 [G1] θ

2
jσ

2
j + c4 [G1] θ

4
j ,

cov [Yj,1;Yk,1] = E [G1]σjk + var [G1] θjθk,

∆ =

(
Kϵ+2

(√
χψ
)

Kϵ+1

(√
χψ
) − Kϵ+1

(√
χψ
)

Kϵ

(√
χψ
) ) ,

and with

E [G1] =

(
χ

ψ

) 1
2 Kϵ+1

(√
χψ
)

Kϵ

(√
χψ
) ,

var [G1] =

(
χ

ψ

)Kϵ+2

(√
χψ
)

Kϵ

(√
χψ
) −

(
Kϵ+1

(√
χψ
)

Kϵ

(√
χψ
) )2

 ,
c3 [G1] =

(
χ

ψ

) 3
2

Kϵ+3

(√
χψ
)

Kϵ

(√
χψ
) −

3Kϵ+2

(√
χψ
)
Kϵ+1

(√
χψ
)

K2
ϵ

(√
χψ
) + 2

(
Kϵ+1

(√
χψ
)

Kϵ

(√
χψ
) )3

 ,
c4 [G1] =

(
χ

ψ

)2
Kϵ+4

(√
χψ
)

Kϵ

(√
χψ
) −

4Kϵ+3

(√
χψ
)
Kϵ+1

(√
χψ
)

K2
ϵ

(√
χψ
) − 3

(
Kϵ+2

(√
χψ
)

Kϵ

(√
χψ
) )2

+

+ 6

(
χ

ψ

)2
2Kϵ+2

(√
χψ
)
K2
ϵ+1

(√
χψ
)

K3
ϵ

(√
χψ
) −

(
Kϵ+1

(√
χψ
)

Kϵ

(√
χψ
) )4

 .
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αGH model

The margins are GH distributed with parameters (µj, θj, σj, χj, ψj, ϵ), for each j = 1, .., n.
While marginal moments are as in MGH case, the correlations are given by

corr [Yj,1;Yk,1] =
4a (ψjψk)

−1 θjθk√[
E [G1,j]σ2

j + var [G1,j] θ2j
]
[E [G1,k]σ2

k + var [G1,k] θ2k]
,

where

E [Gj,1] =

(
χj
ψj

) 1
2 Kϵ+1

(√
χjψj

)
Kϵ

(√
χjψj

) , (9.1)

and

var [Gj,1] =

(
χj
ψj

)Kϵ+2

(√
χjψj

)
Kϵ

(√
χjψj

) −

(
Kϵ+1

(√
χjψj

)
Kϵ

(√
χjψj

) )2
 . (9.2)

ραGH model

The margins are GH distributed with parameters (µj, θj, σj, χj, ψj, ϵ), for each j = 1, .., n.
While marginal moments are as in MGH case, the correlations are given by

corr [Yj,1;Yk,1] =
2a (ψjψk)

−1 (σjσkρjk√ψj
√
ψk + 2θjθk

)√[
E [G1,j]σ2

j + var [G1,j] θ2j
]
[E [G1,k]σ2

k + var [G1,k] θ2k]

where E [Gj,1] and var [Gj,1] are as in equations (9.1) and (9.2).

MMixedTS model

E [Yj,1] = µj + βj
cj + n̄

mj

,

var [Yj,1] =

(
1 +

β2
j

mj

)
(cj + n̄)

mj

,

skew [Yj,1] =
c3 [Yj,1]

var [Yj,1]
3/2
,

kurt [Yj,1] = 3 +
c4 [Yj,1]

var [Yj,1]
2 ,

corr [Yj,1, Yk,1] =

βjβk
mjmk

n̄√(
1 +

β2
j

mj

)
(cj+n̄)

mj

√(
1 +

β2
k

mk

)
(ck+n̄)
mk

.

where

c3 [Yj,1] =

[
(2− αj)

λ
αj−3
+,j − λ

αj−3
−,j

λ
αj−2
+,j + λ

αj−2
−,j

+

(
3 + 2

β2
j

mj

)
βj
mj

]
(lj + n̄)

mj

,
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c4 [Yj,1] = β4
j

(
3 +

6

lj + n̄

)
(lj + n̄)2

m4
j

+ 6β2
j

lj + n̄

m3
j

(lj + n̄+ 2)+

+ 4βj (2− αj)

(
λ
αj−3
+,j − λ

αj−3
−,j

λ
αj−2
+,j + λ

αj−2
−,j

)
lj + n̄

m2
j

+ (3− αj) (2− αj)

(
λ
αj−4
+,j + λ

αj−4
−,j

λ
αj−2
+,j + λ

αj−2
−,j

)
lj + n̄

mj

.

MGVG model

E [Yj,1] = µj + E
[
Ĝj,1

]
θj = µj + θj,

var [Yj,1] = E
[
Ĝj,1

]
σ2
j + var

[
Ĝj,1

]
θ2j = σ2

j + (1− kj) qjθ
2
j + 2kjpjθ

2
j ,

skew [Yj,1] =
c3 [Yj,1]

var [Yj,1]
3/2
,

kurt [Yj,1] = 3 +
c4 [Yj,1]

var [Yj,1]
2 ,

corr [Yj,1;Yk,1] =
σjσkρjk

(
c1
√
qjqk + c2

√
pjpk

)
+ θjθk (c1qjqk + 2c2pjpk)√

var [Yj,1] var [Yk,1]

where

c3 [Yj,1] = 3var
[
Ĝj,1

]
θjσ

2
j + c3

[
Ĝj,1

]
θ3j

c4 [Yj,1] = 3var
[
Ĝj,1

]
σ4
j + 6c3

[
Ĝj,1

]
θ2jσ

2
j + c4

[
Ĝj,1

]
θ4j

cov [Yj,1;Yk,1] = E
[
Ĝj,1

]
σjk + var

[
Ĝj,1

]
θjθk,

and with
E
[
Ĝj,1

]
= 1,

var
[
Ĝj,1

]
= (1− kj) qj + 2kjpj,

c3

[
Ĝj,1

]
= 2(1− kj)q

2
j + 6kjp

2
j ,

c4

[
Ĝj,1

]
= 6 (1− kj) q

3
j + 24kjp

3
j .
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