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Abstract. We propose a model which nests a susceptible-infected-recovered-dead (SIRD)

model of epidemic into a dynamic macroeconomic equilibrium framework with agents’ mobil-

ity. The latter a↵ect both their income and their probability of infecting and of being infected.

Strategic complementarities among individual mobility choices drive the evolution of aggregate

economic activity, while infection externalities caused by individual mobility a↵ect disease dif-

fusion. The continuum of rational forward looking agents coordinates on the Nash equilibrium

of a discrete time, finite-state, infinite-horizon Mean Field Game.

We prove the existence of an equilibrium and provide a recursive construction method for the

search of an equilibrium(a), which also guides our numerical investigations.

We calibrate the model by using Italian experience on COVID-19 epidemic and we discuss

policy implications.
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1. Introduction

We propose an integrated assessment model, denoted by ESIRD, encompassing a susceptible-

infected-recovered-dead (SIRD) model of epidemic and a dynamic macroeconomic equilibrium

model of economy, where mobility choices of forward looking agents a↵ect both income (and

consumption) and the spread of epidemic. A calibrated version of the model illustrates the pos-

sibilities to use the model to design an e�cient policy of state-of-epidemic-dependent mobility

restrictions.

Pandemic crisis has shown that sudden drops in individual mobility have a substantial neg-

ative consequences on aggregate income and consumption (OCDE, 2020). The decrease of

individual mobility along COVID-19 crisis has been the joint outcome of individual decisions,

caused by the di↵usion of infection, and of containment measures imposed by national au-

thorities (lockdown, curfew, etc.). In turn, a reduction in individual mobility brings down

individual income (Huang et al., 2020) as well as epidemic dynamics, being higher individual

mobility associated to a higher probability of infecting and being infected (Nouvellet et al.,

2021). Therefore, entangled externalities and “equilibrium” e↵ects are at work; more precisely,

individual mobility decisions display i) strategic complementarities with mobility choice of other

agents, because the marginal impact on individual income of individual mobility is increasing

in the mobility (Bulow et al., 1985; Cooper and John, 1988); and, ii) negative externalities

on contagion dynamics, because of agents in their mobility choices internalize the risk of being

infected but not the e↵ect of infecting other people (Bethune and Korinek, 2020).1

In the model we focus on short-term mobility. Epidemic dynamics is driven by a general-

ized version of the SIRD model where the average number of contacts per person per time is

endogenous, as well as the transition rate, i.e. the flow of new infected, and depends on the

mobility choices of agents.

Agents maximize an inter-temporal discrete time utility function taking into account con-

sumption and mobility costs. Their choice of mobility for working (respectively for consuming)

depends on their state (susceptible, infectious or recovered), the aggregate level of economic

activity, the current and future policies on mobility restrictions, and on their future utility,

which, in turn, depends on the probabilities of being infected in the future and on the future

dynamics of economy. At each time, aggregate economic activity (consumption) depends on

the state of the epidemic and on the individual mobility choices.

We set the agent’s problem as a game with a continuum of players in a finite state space (the

four states of agents) and, in particular, the model can be seen as a discrete time, finite state,

infinite horizon Mean Field Game (MFG) (Lasry and Lions, 2007). The notion of equilibrium

used in the paper is basically borrowed – even if re-elaborated – from Jovanovic and Rosenthal,

1988 (their Definition 5.2), which we show to be equivalent to the more common notion of

Nash equilibrium of our Mean Field Game (Proposition 5.3). We then provide the proof of

the existence of the equilibrium for our Mean Field Game (Theorem 5.4), and finally propose

1Another possible source of externality, the healthcare congestion, is analysed by Jones et al. (2021).
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a recursive algorithm to identify and then numerically simulate such equilibrium (Section 5.2

and Theorem 5.6).

MFG literature deals with the behavior of Nash equilibria in di↵erential games as the number

of agents becomes large. There is extensive recent research activity on MFGs starting from the

pioneering works of Huang, Malhamé and Caines (Huang et al., 2006) and, independently, at

the same time by Lasry and Lions (Lasry and Lions, 2006a,b, 2007). In the large population

limit, one expects to obtain a game with a continuum of agents where, like in our case, the

e↵ects on the decision of any agent from the actions of the other agents are experienced through

the statistical distribution of states. Since perturbations from the strategy of an agent do not

influence the statistical states’ distribution, the latter acts as a parameter in each agent’s control

problem.

We calibrate the model by using Italian experience on COVID-19 epidemic in the period

February 2020 - May 2021. Numerical explorations under di↵erent configurations of state-of-

epidemic-dependent mobility restrictions highlight the presence of a trade-o↵ between economic

losses and fatalities due to pandemic, i.e. of a pandemic possibilities frontier as in Kaplan et al.

(2020) and Acemoglu et al. (2020). However, we argue that policy evaluation should take into

account two additional directions, the first related to the share of susceptible at the end of

period of evaluation, which can favor a fresh outbreak of epidemic in the future without an

e�cient vaccine; and, secondly, the social feasibility of prolonged mobility restrictions (Vollmer

et al., 2020).

Our paper makes four main contributes to literature. The first is to the epidemiological-

macroeconomic literature, which has recently received a burst from the COVID-19 outbreak.

Its main goal is to produce integrated assessment models, where the economic dynamics com-

plements epidemiological models. In particular, a strand of literature focuses on optimal policy

problem from a planner’s perspective without modeling individual behavior (see, e.g., Alvarez

et al., 2021; Piguillem et al., 2020; Moser and Yared, 2022; Atkeson, 2020), while another

one considers forward-looking agents and market determination of good and factor prices, as

in Eichenbaum et al. (2021), Toxvaerd (2020), Jones et al. (2021) and Kaplan et al. (2020).

With respect to these contributions we explicitly consider agents’ (short-term) mobility. There

are several good reasons for this focus: (i) in the epidemiological literature mobility is (not

surprisingly) identified as the key variable in containing the epidemic (Nouvellet et al., 2021);

(ii) mobility is an easily measurable variable and many datasets are actually freely available;

and, (iii) since mobility was/is the primary focus of several restrictive policies imposed by gov-

ernments, the proposed framework is a natural candidate to evaluate past and future policies

on mobility restrictions. As already argued, focusing on mobility implies taking into account

non-market interactions among individual choices: the presence of strategic complementarities

in individual decisions is an another element of novelty in our epidemiological-macroeconomic

model. This introduces substantial di�culties in the mathematical study of the model which

arise e.g. in proving the existence of a Nash equilibrium.
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An advantage of our analysis is to consider individuals with a long (infinite) time horizon,

which is crucial for understanding the interaction between the change in death risk, whose

e↵ects are to evaluate over years, and the epidemic dynamics, whose e↵ects are to be measured

over days. For example, in a two(or three)-period model (as for instance Bandyopadhyay et al.,

2021 or Bhattacharya et al., 2021), a strategy to reduce mobility (and consumption) in the short

run to decrease the death risk and wait for the end of epidemics cannot be correctly evaluated,

also for the non-linear dynamics of the epidemics and bringing the model to empirical data

would be problematic.

The second contribution is on methodological side. We have discussed above that our model

belongs to the class of discounted infinite horizon, discrete time, finite state space MFG which,

to the best of our knowledge, does not fall into the classes already studied in the literature,

among which Gomes et al. (2010), Doncel et al. (2019), Hadikhanloo and Silva (2019), and

Bonnans et al. (2021); Wiecek (2020). Hadikhanloo and Silva (2019) and Bonnans et al.

(2021) consider only finite horizon problems, while Gomes et al. (2010) (and similarly Wiecek,

2020) consider infinite horizon problems of ergodic type or with entropy penalization, where

the dependence of the agents’ utility from the choices of the other agents is more regular than

in our model. Doncel et al. (2019) consider an infinite horizon MFG, but where agents’ cost

does not depend on the strategies of the other agents, which instead happens in our model for

the presence of strategic complementarities. Hence, our theorems of existence of an equilibrium

and the recursive construction of an equilibrium are to be considered a novelty.

We also contribute to the literature focusing on the endogenous determination of the in-

fection rate and the reproduction rate of an epidemic (Avery et al., 2020). Infection rate

depends on a large number of aggregate factors (climate, geography, health system, etc.), but

also crucially revolves on individual choices. To endogenize infection rate has been proposed

several approaches, among which a purely epidemiological approach as Fenichel (2013), and

a behavioral approach as, e.g., in Engle et al. (2020) and Bisin and Moro (2021). Farboodi

et al. (2021), Toxvaerd (2020), and Eichenbaum et al. (2021) are instead more in line with our

approach, developing a settings where forward-looking individuals chose their actions facing a

epidemic-economic trade-o↵. However, no paper directly models mobility choices of individ-

uals taking into account strategic complementarities and negative externalities in an infinite

horizon equilibrium setting for explaining the dynamics of infection rate along the pandemic.

The advantage of our approach are evident in the interpretation of results, allowing for directly

correlating mobility and infection rate, and in the possibility to bring the model to data.

The final contribution is to the literature looking at the e↵ect of epidemics di↵usion on

mobility (see, e.g, Goolsbee and Syverson, 2021 and, for an epidemiological perspective, Meloni

et al., 2011 and Nouvellet et al., 2021 for an epidemiological perspective). Our contribution

provides a theoretical framework to evaluate restrictive policies going beyond the simple trade-

o↵ economic losses/fatalities as prospected in Kaplan et al. (2020), Acemoglu et al. (2020),

and Gollier (2020). It makes it possible, for instance, to take into account in the evaluation
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other key dimensions regarding the social feasibility of policies, the fragility of post-lockdown

situations with a high risk of fresh outbreaks, and the sustainability of health systems (see, in

particular, Sections 6 and 7).

The paper is organized as follows: Section 2 presents the model, Section 3 focuses on the

agent’s optimization problem while Section 5 provides a recursive construction method for the

search of an equilibrium(a). Section 6 calibrates the model to Italian data; Section 7 uses the

model to investigate the e↵ects of policies aiming at mitigating epidemic and their e↵ects on

economic activity; Section 8 concludes.

2. The epidemiologic-economic dynamic model

We consider an infinite horizon discrete time (t = 0, 1, 2...) world with a continuum set of

agents, whose individual mass is equal to zero so that actions of a single agent do not modify

the evolution of the global epidemic state and of the aggregate economic variables.

As in the classical SIRD framework (Chowell et al., 2016), at each time, the health status k

of an agent can be: susceptible (k = S); infected (k = I); recovered (k = R); and died (k = D).

We then denote the set of possible health status by K, i.e.

K := {S, I, R,D} .

We denote by µ(t, k) the share of the population in the health status k at time t and by µ(t) the

four-dimensional vector µ(t) = (µ(t, S), µ(t, I), µ(t, R), µ(t,D)) representing the health status

distribution of population.2

2.1. The agents’ utility. Each agent chooses at each time t her mobility rates (whose maximal

value is w.l.o.g. normalized to 1) for production, #p(t), and for consumption, #c(t).

The instantaneous utility at time t of the agent in the health state k(t) 2 K, undertaking

the actions #(t) := (#p(t),#c(t)) 2 [0, 1]2 is equal to 0 if k(t) = D, otherwise,

u(t, c(t), k(t),#(t)) := ln c(t)� �p (t, k(t),µ(t))#p(t)� �c (t, k(t),µ(t))#c(t)�M.

In the above expression c(t) is the individual consumption, M 2 R is the (exogenous) constant

utility of state dead, which “normalizes the utility of nonsurvival to zero” (Rosen, 1988, p. 2),

and �p (t, k(t),µ(t)) and �c (t, k(t),µ(t)) are, respectively, the marginal utility cost to move in

the labour market (and in general for the movements related to the productive activities of the

agent) and to move in the consumption market (or, more in general, for the movements related

to the individual consumption).

The functions �p and �c will be used to model public policies of mobility restriction. For

this reason, they may depend explicitly on time t (in the case of policies that intervene at

exogenously fixed times) or on the state of the epidemic (for example, in the case of policies that

change endogenously depending on the severity of the epidemiological situation). The mobility

cost structure is known by agents who will incorporate, in their inter-temporal choices, future

2The sum of the components of µ(t) is always equal to 1; hence, µ(t) is can be seen as a probability measure

on K.
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policy changes (both exogenous and endogenous). We make the following assumptions on the

marginal utility cost of mobility:

�p(t, R,µ)  �p(t, S,µ)  �p(t, I,µ) and �c(t, R,µ)  �c(t, S,µ)  �c(t, I,µ),

for any µ and t.

As described in detail in Subsections 2.4, at each time any susceptible person has a certain

probability of becoming infected, and each infected person has a certain probability of dying

and of recovering; hence, the evolution of the individual health status k(t) is represented by

a discrete stochastic process. The goal of each agent will be to maximize its total expected

inter-temporal utility given by:

(1) E
" 1X

t=0

(1� ⇢)tu(t, c(t), k(t),#(t))

#
,

where (1� ⇢) 2 (0, 1) is the exogenous discount factor.

2.2. Consumption and mobility. We suppose that the opportunity to move in the con-

sumption market produces a benefit for agents. Moving can indeed allow to access to a greater

number of goods and services and to a wider variety, satisfying more precisely the needs of the

agent or finding equivalent goods with inferior prices. Alternatively, we can suppose that the

e↵ective consumption is a↵ected by the mobility/time dedicated to the consumption activity

(Steedman, 2001).

To formalize as simple as possible this idea we suppose that the (real) price faced by the

agent for the consumption good depends on her (consumption-related) mobility choice #c(t)

and it is given by:

P (#c(t)) =
1

P0 + P1#c(t)
,

where

P0, P1 � 0

are exogenous constants.

In the model we do not consider the saving (and therefore the dynamics of accumulation of

capital) and therefore we impose, at every time, that the individual income is entirely destined

to consumption. We have then

y(t) = P (#c(t))c(t),

where we denoted by y(t) the individual income at time t. This implies that:

(2) c(t) = (P0 + P1#c(t)) y(t),

i.e. the consumption is decided by the level of income, but also by the mobility for consumption.
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2.3. Income and mobility. As for the need of mobility for consumption, we assume that

mobility a↵ects agent’s income, in particular a greater mobility positively contributes to the

latter. The idea here is intuitive: some jobs/activities require the presence of the worker and

can, or cannot, only be partially carried out by remote work. We also suppose that income is

a↵ected by health conditions of agents (obviously, sick people are less productive than healthy

ones), and that productivity, and therefore agent’s incomes, also depend on the macroeconomic

conditions, so that a greater macroeconomic activity, ceteris paribus, will lead to higher agents’

incomes. In the model Z(t) will denote the level of macroeconomic activity at time t and

its dependence on agents’ choices will be discussed shortly. All in all, we suppose that the

individual income has the following form:

(3) y(t) = Z(t)
�
Ak

0 + Ak
1#p(t)

�
,

where Ak
0 and e Ak

1 are the positive exogenous constant depending on the health status k of

agent. We will suppose that AS
1 = AR

1 so we will denote this value by ASR
1 , and we will suppose

that

0 < AI
0  ASR

0 and 0  AI
1  ASR

1 ,

where the second inequalities reflect the fact that that healthy (susceptible or recovered) agents

are more productive than infected.

From (2) the consumption of the agent in the health state k, when the epidemic is in the

state µ(t) and she undertakes the production-consumption choices #(t) = (#c(t),#c(t)), is then

given by

(4) c(t) = Z(t)
�
Ak

0 + Ak
1#p(t)

�
(P0 + P1#c(t)) .

The level of macroeconomic economic activity Z(t) depends on the choices of all agents on

their mobility for the participation to the productive activities, and thus it presents strategic

complementarities. More precisely we will suppose that it has the following shape:

Z(t) := �

✓
µ(t, S)#̄p(t, S), µ(t, I)#̄p(t, I), µ(t, R)#̄p(t, R)

◆
,(5)

where � : [0, 1]3 ! (0,1) is non-decreasing in all the components and such that �(0, 0, 0) > 0

and #̄p(t, S) (respectively #̄p(t, I) and #̄p(t, R)) is the average productive-mobility choice of

susceptible (respectively infected, recovered) agents. In the following we will focus on symmetric

equilibria in which all people of the same health status behave in the same way; hence, along

the equilibrium, #̄p(t, S), #̄p(t, I) and #̄p(t, R) will also be the (optimal) choices of any single

agent.

2.4. Agents mobility and epidemic dynamics. We model the evolution of the size of health

classes, i.e., the shares of population with di↵erent health status, following a standard SIRD

model without vital dynamics (newborns are not considered and people die only because of the

virus) adjusted for the mobility choices of the agents.
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To make the point clearer we recall that, in the standard SIRD model the number of new

infected agents is given by

(6) �
I(t)S(t)

N(t)
,

where I(t) (respectively S(t), N(t)) is the number of infected agents (respectively susceptible

agent, total number of agents) at time t and � is an exogenous factor representing the average

number of contacts per agent per time.

In the standard SIRD model � is constant and exogenous with respect to the state of epi-

demics and agents’ choices. The idea behind this formulation is that people meet by chance

independently of their epidemiological status; hence, the probability of a susceptible agent of

meeting an infected agent and to be infected at time t is

�
I(t)

N(t)
= �µ(t, I).

As a result, in the standard SIRD model, the share of the new infected people at time t is

�
I(t)

N(t)

S(t)

N(t)
= �µ(t, I)µ(t, S).

Based on the idea that the number of contacts depends on the mobility of agents, we enrich

this formulation adjusting the parameter � for the agents’ mobility choices. In particular, we

observe that it is natural to suppose that the number of contacts is proportional to the distance

covered by agents; for example, an agent walking 200 meters in a street meets a number of

agents on average twice with respect to an agent walking 100 meters. For the same reason, the

number of contacts is proportional to the average distance covered by other agents given the

mobility of the agent.

Therefore, since the maximal mobility is normalized to one and distinguishing the mobil-

ity for production and for consumption, the probability of a susceptible agent with mobility

(#p(t),#p(t)) of meeting an infected agent and to be infected is modeled as

(7) ⌧(t) =
�
�p#̄p(t, I)#p(t) + �c#̄c(t, I)#p(t)

�
µ(t, I),

where �p, �c > 0 are given constants that we assume to satisfy the condition �p + �c < 1.

Taking the average over the population of susceptibles, and multiplying by the portion of

susceptibles among the population, we find the share of the new infected agents; the latter

represent the (negative) variation in the share of the susceptible population, that is3

(8) µ(t+ 1, S) = µ(t, S)� �(t)µ(t, S)µ(t, I),

where

(9) �(t) := �p#̄p(t, I)#̄p(t, S) + �c#̄c(t, I)#̄c(t, S).

Therefore, in our ESIRD (economic SIRD) model �(t) of (9) is the counterpart of � in SIRD

model of (6).

3The assumptions of zero mortality for reasons di↵erent from the virus and of the zero natality are implicit

in (8).
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Apart for the role of mobility in �(t), we will stick to the classic structure of the SIRD

model and we suppose that ⇡D (respectively ⇡R) is the probability of an infected agent to die

(respectively to recover) at each time. At the aggregate level this means that a portion ⇡D

(respectively ⇡R) of infected agents dies (respectively recover) at each time. Hence, in our

model the evolution of the health status distribution of population is as follows:

(10) µ(t+ 1) = Q(t)µ(t),

where

Q(t) :=

0

BBBB@

1� �(t)µ(t, I) 0 0 0

�(t)µ(t, I) 1� ⇡R � ⇡D 0 0

0 ⇡R 1 0

0 ⇡D 0 1

1

CCCCA
.

From (9) we observe that the dependence of �(t) on agents’ mobility is proportional to the

product of individual mobilities, which generates strategic complementarities in the mobility

choices with aggregate negative e↵ects. In particular, infected agents do not internalize the

e↵ect of their mobility choice on the infection rate of susceptibles agents, and both susceptible

and infected agents do not internalized the e↵ect of the increased spread of the pandemic on the

level of macroeconomic activity Z(t). Therefore, in the decentralized equilibrium the agents’

mobility is too high with respect the optimal social mobility.

3. The agent’s optimization problem

We now look at the optimization problem of a single agent. As previously discussed, the

zero-mass agent assumption implies that the individual choices of any specific agent do not

modify the macro variables and, in particular, the evolution of the epidemic according to (10).

The latter only depends on the average choices of each group defined by agents’ health status.

This means that agents take the average strategies #̄(t) and the dynamics of µ(t) as given when

they make their decisions, i.e. we are considering a Mean Field Game (Lasry and Lions, 2007).

At the equilibrium we will impose that optimal individual decisions coincide with the average

decisions of the corresponding group defined by agents’ health status.

The epidemics dynamics µ(t) does not depend on the choices of the single agent; however, the

evolution of her epidemic status does. In particular, as we have already discussed in Section 2,

the probability of a susceptible agent to become infected is given by the endogenous probability

⌧(t) defined in (7), while the probabilities of an infected agent of dying and recovering are

exogenous and equal to ⇡D and ⇡R respectively. Hence, the state of the agent k(t) is represented

by a controlled Markov Chains, whose transition kernel at each time t is given by:

q(t) =

0

BBBB@

pSS(t) pIS(t) pRR(t) pDS(t)

pSI(t) pII(t) pRI(t) pDI(t)

pSR(t) pIR(t) pRR(t) pD(t)

pSD(t) pID(t) pRD(t) pDD(t)

1

CCCCA
=

0

BBBB@

1� ⌧(t) 0 0 0

⌧(t) 1� ⇡R � ⇡D 0 0

0 ⇡R 1 0

0 ⇡D 0 1

1

CCCCA
,
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where pk1k2(t) is the probability to switch from the status k1 at time t to the status k2 at time

t+ 1. Even if not emphasized in the notation, q depends on the individual decisions #(t) and

on the average decisions of other agents #̄(t).

Since we rely on dynamic programming, we let the initial time and state vary. Hence, we

assume that the agent starts at time t0 2 N in the state k(t0) 2 K, where (t0, k(t0)) 2 N⇥ K,

and that she chooses her strategies in the set:

A(t0) :=
n
# = (#p,#c) : {t0, t0 + 1, ...}⇥K ! [0, 1]2 s.t. #(·, D) = (0, 0)

o
.

In general, the set of admissible strategies depend on the time t0 and we should denote the set

of strategies by A(t0). At each time the strategy # can be chosen from all pairs (#p,#c) 2 [0, 1]2,

so with a slightly abuse of the notation (making abstraction of the translation for which the

strategy at time t0 is defined only for t � t0) we will denote A as the set of admissible strategy.

In the set of strategies each agent includes a complete plan of action for: i) the initial health

states di↵erent from the actual one of the same agent; and, ii) all possible future health status,

even though some of these are not attainable, e.g. recovered agents cannot become susceptible

or infected in the future.

The counterpart of the target (1) starting from (t0, k(t0)) depending on the initial health

status distribution µ(t0) and on the average strategies #̄(t, k) specified for all t � t0 and k 2 K
is

J(t0, k(t0),µ(t0), #̄(·, ·);#(·, ·)) := E
" 1X

t=t0

(1� ⇢)t�t0u(t, c(t), k(t),#(t, k(t)))

#
,

where c(t) is just an abbreviation.4

The value function of the agent is defined as

V (t0, k(t0),µ(t0), #̄(·, ·)) := sup
#(·,·)2A

J(t0, k(t0),µ(t0), #̄(·, ·);#(·, ·)).

By the dynamic programming principle, the value function is a solution (possibly not unique)

to the Bellman equation (with unknown v)

v(t0, k(t0)) = sup
#2[0,1]2

X

k2K

pk(t0)k(t0)
⇥
u(t0, c(t0), k(t0),#) + (1� ⇢)v(t0 + 1, k)

⇤
.(11)

4. The limits of our modelling strategies

In our model formulation, we adopt some shortcuts that need to be discussed deeper. The

positive relationship between utility and individual mobility is to be considered a reduced form

of the result of solving the equilibrium of an economy populated by firms producing heteroge-

neous goods and services in di↵erent locations and by consumers with heterogeneous preferences

incurring moving costs for their search for the best consumption basket. In equilibrium reduced

mobility should determine higher prices as the result of lower competition among firms; addi-

tionally, the same quantity of consumption should also lead to a lower utility for the possible

mismatch between the consumers’ heterogeneous preference and the specific local supply of

4In particular, from (4), c(t) = Z(t)
�
Ak

0 +Ak
1#p(t)

�
(P0 + P1#c(t)) and Z(t) is given by (5). Hence, c(t) does

depend on #̄ and µ.
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goods and services. A complementary explanation of the positive e↵ect of mobility on individ-

ual utility is that reduced mobility constrains the capacity of expenditure of individuals, which

turns out as a forced saving. In our framework where saving is absent, the reduced mobility,

therefore, corresponds to an increasing gap between income and consumption, i.e., between

the latter and utility. Also, the relationship between mobility and individual income is to be

taken as a reduced form of the equilibrium of an economy where the place of residence and

place of work di↵ers (i.e., there exists commuting); where the production activity needs some

mobility, e.g., for the need to transport commodities among di↵erent plants; and where the

place of production and the place of sale di↵ers, which is the most common case. As result,

in equilibrium, reduced mobility leads to a decrease in economic activity. Overall, considering

all these phenomena would add considerable complexity, but no significant insights, given our

focus on short-run dynamics, to our analysis.

5. Equilibrium: existence and recursive construction

In this section, first we provide the definition of an interteporal equilibrium for our economy,

which poses particularly hidden di�culties (see Section 5.1) and then provide a theorem of the

existence of an equilibrium. Finally, we discuss a recursive construction of equilibrium (see

Section 5.2), which is the basis of our numerical simulations.

5.1. The definition and existence of equilibrium. First, we give the definition of symmet-

ric Nash equilibrium for our Mean Field Game. Let P(K) be the set of probability distributions

on K, that is µ(t) 2 P(K) for every t � 0.

Definition 5.1 (Symmetric Nash equilibrium of the Mean Field Game) Let µ(0) 2 P(K) be

the health status distribution of population at t = 0. A Nash equilibrium for the Mean Field

Game is a strategy #̄(·, ·) 2 A such that,

(12) V (0, k(0),µ(0), #̄(·, ·)) = J(0, k(0),µ(0), #̄(·, ·); #̄(·, ·)) 8k 2 K.

Definition 5.1 states that, at the equilibrium, the optimal mobility choice of an agent, when

the average mobility choice of the other agents is #̄(·, ·), is exactly #̄, i.e. the equilibrium is

symmetric for all agents belonging to the same health status. Focusing on symmetric Nash

equilibria among all possible Nash equilibria is very common in the Mean Field literature (see,

e.g., Carmona and Delarue, 2018, Sec. 6.1.1.).

From another perspective our Mean Field Game can be viewed as an “anonymous sequential

game with a continuum of players, in which agent players a↵ect their opponents in ways that

are insignificant at the individual level but significant when aggregated, and in which factors

that are stochastic at the individual level become deterministic when aggregated” (Jovanovic

and Rosenthal, 1988). In particular, the following notion of equilibrium can be formulated:

Definition 5.2 (Equilibrium of the anonymous sequential game) An equilibrium starting from

µ(0) 2 P(K) is a couple (v(·, ·), #̂(·, ·)), with v : N ⇥ K ! R and #̂(·, ·) 2 A, such that, along

the trajectory of the health status distribution starting at µ(0) as result of the average strategy

#̂(·, ·), one has that:
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(i) v is bounded and satisfies
5
the Bellman equation (11) for every (t0, k(t0)) 2 N⇥K;

(ii) #̂(t0, k(t0)) is an optimizer of the right hand side of (11) for every (t0, k(t0)) 2 N⇥ K
when #̄(t0, k(t0)) = #̂(t0, k(t0)).

According to Definition 5.2, the notion of equilibrium requires that for each t0 > 0 each agent

optimizes her objective functional given its health status k(t0) and the health status distribution

µ(t0) (Point (ii) in Definition 5.2) and that such optimization is sequentially consistent; that is,

k(t0 + 1) and µ(t0 + 1) are the outcome of the optimizing behaviour at time t0; then, k(t0 + 2)

and µ(t0 + 2) are the outcome of the optimizing behaviour at time t0 + 1; etc. (Point (i) in

Definition 5.2).

The importance of Definition 5.2 of equilibrium will be clearer below in Section 5.2, where

we will deal with the recursive construction of the equilibrium, the basis of our numerical

investigation of the properties of equilibrium. Notably, the use of Definition 5.2 in the rest of

analysis is legitimated by its equivalence with Definition 5.1, as proved in Proposition 5.3.

Proposition 5.3 Definitions 5.1 and 5.2 are equivalent.

neglect

Proof. See Appendix A. ⇤

Proposition 5.3 states that Definitions 5.1 and 5.2 identify the same equilibria, i.e. when

our Mean Field Game is viewed as an anonymous sequential game, its equilibrium is a Nash

equilibrium and viceversa.

We conclude the section with a result of existence of an equilibrium given in Theorem 5.4.

Theorem 5.4 Given the Definition 5.2 of the equilibrium of our Mean Field Game, such

equilibrium exists for each µ(0) 2 P(K).

Proof. See Appendix A. ⇤

The proof of existence is based on the Tikhonov’s fixed point Theorem (see Theorem A.1 in

Appendix A), which however does not guarantee the uniqueness of equilibrium. This is not

surprising given the very weak definition of equilibrium used in Theorem 5.4.

5.2. The recursive construction of the equilibrium. In Algorithm 5.5 we illustrate a

recursive algorithm, inspired by Definition 5.2, which allows to compute an equilibrium of our

Mean Field Game. The importance of Algorithm 5.5 is shown by Theorem 5.6, which states

under which conditions the computed equilibrium is both a Nash equilibrium and an anonymous

sequential game equilibrium, i.e. satisfies Definitions 5.1 and 5.2.

Algorithm 5.5 (The algorithm for the computation of an equilibrium) .

1. At time 0, set µ̂(0) = µ(0), v̂(0, D) = 0, and arbitrarily assign v̂(0, k) for k 2 {S, I, R}.

5The trajectory of health status distribution starting at µ(0) enters into (11) by the sequence of pk(t0)k, in

turn depending on ⌧(t0) of (7), i.e. the probabilities to change individual health status pk(t0)k depend on the

share of infected agents on population µI .
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2. At time t � 0, given µ̂(t) and v̂(t, ·), according to the corresponding optimization in the

Bellman equation (cf. (20)-(21)), we set, for k 2 {R, I}6,

(13) #̂(t, k) :=

✓✓✓
1

�p(t, k, µ̂(t))
� Ak

0

Ak
1

◆
_ 0

◆
^ 1,

✓✓
1

�c(t, k, µ̂(t))
� P0

P1

◆
_ 0

◆
^ 1

◆
.

3. Then, to perform the optimization in the Bellman equation for k = S (cf. (22)), we set

â(t) := µ̂(t, I)#̂p(t, I), b̂(t) := µ̂(t, I)#̂c(t, I).

and, fixing the di↵erence ⇠ := v(t0 + 1, S)� v(t0 + 1, I) as a parameter, we set

#̂⇠(t, S) = (#̂⇠
p(t, S), #̂

⇠
c(t, S)),

where

#⇠
p(t, S) =

1

�p(t, S, µ̂(t)) + (1� ⇢)â(t)⇠
� AS

0

AS
1

,

#⇠
c(t, S) =

1

�c(t, S, µ̂(t)) + (1� ⇢)b̂(t)⇠
� P0

P1
.

Then, (22) can be rewritten in terms of ⇠ leading to the algebraic equation

(14) v̂(t, S) = (1� ⇢)v̂⇠(t+ 1, I) + (1� ⇢)⇠ + f(t, ⇠),

where:

(15) f(t, ⇠) = u(t, ĉ⇠(t, S), S, #̂⇠(t, S))� (1� ⇢)
⇣
�pâ(t)#̂

⇠
p(t, S) + �cb̂(t)#̂

⇠
c(t, S)

⌘
⇠,

4. Given the parametric value ⇠ := v(t0+1, S)�v(t0+1, I), we set the value of the corresponding

variables:

Ẑ⇠(t) = �

✓
µ̂(t, S)#̂⇠

p(t, S), µ̂(t, I)#̂p(t, I), µ̂(t, R)#̂p(t, R)

◆
;

ĉ⇠(t, k) = Ẑ⇠(t)
⇣
Ak

0 + Ak
1#̂p(t, k)

⌘⇣
P0 + P1#̂c(t, k)

⌘
, for k = R, I;

ĉ⇠(t, S) = Ẑ⇠(t)
⇣
Ak

0 + Ak
1#̂

⇠
p(t, S)

⌘⇣
P0 + P1#̂⇠

c(t, S)
⌘
;

v̂⇠(t+ 1, R) =
1

1� ⇢

⇣
v̂(t, R)� u(t, ĉ⇠(t, R), R, #̂(t, R)

⌘
;

v̂⇠(t+ 1, I) =
1

1� ⇡R � ⇡D

"
v̂(t, I)� u(t, ĉ⇠(t, I), I, #̂(t, I))

1� ⇢
� ⇡R v̂⇠(t+ 1, R)

#
;

v̂⇠(t+ 1, S) = ⇠ + v̂⇠(t+ 1, I).

5. Assuming that (14) admits a unique solution ⇠̂, we set

(16) #̂(t, S) = #̂⇠̂(t, S),

6Hereafter, given a, b 2 R, we denote a _ b = max{a, b}, a ^ b = min{a, b}.
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and the values of the variables at time t+ 1 as

(17)

8
>>>>>><

>>>>>>:

v̂(t+ 1, R) = v̂⇠̂(t+ 1, R),

v̂(t+ 1, I) = v̂⇠̂(t+ 1, I),

v̂(t+ 1, S) = v̂⇠̂(t+ 1, S),

v̂(t+ 1, D) = 0,

and

µ̂(t+ 1) = Q̂(t)µ̂(t),

where

Q̂(t) :=

0

BBBB@

1� �̂(t)µ̂(t, I) 0 0 0

�̂(t)µ̂(t, I) 1� ⇡R � ⇡D 0 0

0 ⇡R 1 0

0 ⇡D 0 1

1

CCCCA
,

where

�̂(t) := �p#̂p(t, I)#̂p(t, S) + �c#̂c(t, I)#̂c(t, S).

6. We repeat steps 2-4 with the updated µ̂(t+ 1) and v̂(t+ 1, ·).

Theorem 5.6 Let µ(0) the initial health status distribution and let v̂(0, ·) be assigned with

v̂(0, D) = 0. Consider Algorithm 5.5 and assume that ⇠̂ is well defined for every t 2 N and that

v̂ is bounded. Then the couple (v̂, #̂) is an equilibrium starting at µ(0) according to Definition

5.2.

Proof. See Appendix A. ⇤

The logic behind the use of Algorithm 5.5 together with Theorem 5.6 is that the search

for the equilibrium of our Mean Field Game can be traced back to the search for the initial

value v(0, ·) such that the implied dynamics of v(t, ·), starting from the initial health status

distribution µ(0), is consistent with the optimal conditions and v(t, ·) is both non negative

(we have normalized v(t,D) = 0 for each t by an appropriate choice of M) and bounded from

above.

6. Calibration of the model

In the calibration of the model we focus on the recent Italian experience for COVID-19. Italy

was unfortunately the first Western country severely hit by COVID-19; the epidemic shock was

sudden and unexpected as well as the deep impact on Italian mobility and production (see

Figure 1 below). At the same time, Italy was also the first Western country to adopt strict

restrictions in mobility in March 2020. Overall, this makes the Italian case particularly well-

adapted to calibrate/estimate the relationship between mobility, production and dynamics of

epidemic.7

7Data and codes are available at https://people.unipi.it/davide_fiaschi/ricerca/.
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The first step in the numerical calibration of the model is to specify the Z(t) in (3). In

order to take as small as possible the number of model’s parameters, we consider the following

one-parameter specification:

(18) Z(t) ⌘ 1� exp
�
�g
⇥
#̄p(t, S)µ(t, S) + #̄p(t, I)µ(t, I) + #̄p(t, R)µ(t, R)

⇤�
,

where g measures the sensitivity of individual income to aggregate mobility, i.e. the comple-

mentarities between individual and aggregate mobility in determining the level of individual

income. In this respect we expect that g is greater than 0. Taking (18) into account, overall

we have to set 19 parameters, which are listed in Table 1. Below we provide more details on

the method used to set their values.

6.1. Calibration of the epidemiological parameters. The calibration of the epidemiolog-

ical parameters focuses on daily dynamics as standard in epidemiology (Ferguson et al., 2020).

Several studies provide basic information on COVID-19 main epidemiological characteristics.

In particular, Voinsky et al. (2020) report that the average number of days for recovering from

COVID-19 is 14, which implies ⇡R = 0.07142. Flaxman et al. (2020), instead, document an

overall probability to die once infected of 0.94% in Italy and an average number of days from

infection to death of 18, which implies ⇡D = 0.00052.

Finally, for setting �p and �c we assume that they are equal, so that observed infection rate

is the product between �p (�c) and the average mobility of infected agents once mobility of

susceptible is normalized to one in an economy without infected, i.e. #̄(0, S) = (1, 1) (see Sys-

tem of (10)). Day (2020) report that the prevalence rate of symptoms of COVID-19 in infected

people is about 30%, i.e. 70% of infected people are asymptomatic. Assuming that the latter

maintain the same mobility, we set average mobility of infected agent 30% less than the one of

susceptible, i.e. #̄(0, I) = (0.7, 0.7). Since the observed infection rate at time 0 can be expressed

as �(0) = (⇡D + ⇡R)R0, then �(0) = �p#̄p(0, S)#̄p(0, I) + �c#̄c(0, S)#̄c(0, I) = (⇡D + ⇡R)R0,

therefore 2�p#̄p(0, I) = (⇡D + ⇡R)R0, and, finally, �p = �c = (1/1.4) (⇡D + ⇡R)R0 = 0.14902,

given a basic reproduction rate R0 of COVID-19 equal to 2.9 for Italy.8

6.2. Calibration of economic part. The calibration of parameters governing the relationship

between income and mobility are based on the Italian experience in the period February 15,

2020 - May 31, 2021 reported in Figure 1.

Italian economic activity as estimated by OECD Weekly Tracker of GDP growth9 appears

very correlated with mobility for workplaces as reported by Google Mobility Trend. 10 The

strong drop in mobility in the period between February 23, 2020 and March 8, 2020 (almost

- 10%) well before the first introduction of mobility restrictions at national level in the week

of March 8, 2020, supports our idea of an endogenous response of agent to epidemic evolution,

which burst in Italy at the end of February 2020. The severe restrictions on mobility imposed

in two steps in March 2020 leaded to a drop in mobility and economic activity of about 70%

8
https://en.wikipedia.org/wiki/Basic_reproduction_number.

9
https://www.oecd.org/economy/weekly-tracker-of-gdp-growth/.

10
https://www.google.com/covid19/mobility/).
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Parameter Meaning Value Method used to set the value

⇡R Daily probability of recovering

when infected

0.07143 Taken from literature on COVID-19 (Voinsky

et al., 2020)

⇡D Daily probability of death when in-

fected

0.00052 Taken from literature on COVID-19 (Flaxman

et al., 2020)

�p The impact of mobility for produc-

tion on infection

0.14902 Calculated on the base of an R0 equal to 2.9 for

Italy (https://en.wikipedia.org/wiki/Basic_

reproduction_number) and on the fact that mo-

bility of infected is on average 30% less as result

of prevalence rate of symptoms of COVID-19 in

infected people (Day, 2020)

�c The impact of mobility for con-

sumption on infection

0.14606 Calculated on the base of an R0 equal to 2.9 for

Italy (https://en.wikipedia.org/wiki/Basic_

reproduction_number) and on the fact that mo-

bility of infected is on average 30% less as result

of prevalence rate of symptoms of COVID-19 in

infected people (Day, 2020)

⇢ Discount rate of utilities 0.000296 Taken from Laibson et al. (2007)

�p(S), �p(I),

and �p(R)

Cost of mobility for production for

di↵erent types of agents in baseline

scenario

0.29795, 0.42564, and

0.29795

Calibrated in order to have mobility and produc-

tion equal to 1 in a free-epidemic economy for sus-

ceptibles and recovered and mobility equal to 0.7

for infected

�c(S), �c(I),

and �c(R)

Cost of mobility for consumption

for di↵erent types of agents in base-

line scenario

0.21375, 0.22840, and

0.21375

Calibrated in order to have mobility and produc-

tion equal to 1 in a free-epidemic economy for sus-

ceptibles and recovered and mobility equal to 0.7

for infected

ASR
0 and AI

0 Sensibility of individual income

to aggregate mobility independent

from individual mobility

0.70229 and 0.49160 For susceptible and recovered estimated from the

relation between mobility and production in Italy

in the period February 2020 - May 2021 (see Fig-

ure 1). For infected people calibrated at 70% of

other agents based on the prevalence of symptoms.

ASR
1 and AI

1 Sensibility of individual income to

individual mobility

0.29805 and 0.29805 Estimated from the relation between mobility and

production in Italy in the period February 2020 -

May 2021 setting mobility and production equal

to 1 in a pre-epidemic economy (see Figure 1)

P0 and P1 Sensibility of individual consump-

tion to individual mobility

0.47187 and 0.12828 Estimated from the relation between average

propensity to consume and mobility for retail and

recreation in Italy in the period February 2020 -

May 2021

g Sensibility of individual income to

aggregate mobility

7.741615 Estimated from the relation from mobility and

production in Italy in the period February 2020

- May 2021 (see Figure 1)

M Utility to be dead -1.30 Calibrated to avoid negative lifetime utility for

each survival agent

µ(0, S),

µ(0, I), and

µ(0, R)

Initial state of epidemic 1 � 1/60.000.000,

1/60.000.000, and 0

Calibrate on an economy of 60 millions of agents

as Italy in 2020

Table 1. List of model’s parameters, their values and notes on how they are calcu-

lated/calibrated/estimated.
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Figure 1. The relationship between weakly mobility for workplace and weakly economic activity

in the period February 15, 2020 - May 31, 2021 (Italian holiday weeks are not reported). Dashed

lines indicate weeks of new imposed mobility restrictions at national level (March 9, 202, March 22,

2020, October 8, 2020 and October 24, 2020) and of a relax in mobility restrictions (May 4, 2020,

May 18, 2020, and November 24, 2020). Source: Google Mobility Trend (https://www.google.com/

covid19/mobility/) and OECD Weekly Tracker of GDP growth (https://www.oecd.org/economy/

weekly-tracker-of-gdp-growth/)

and 25% with respect to reference period respectively. The relax in restriction in May 2020

led to a bounce back in both variables, but recover was not complete. In the autumn of 2020,

as result of the second pandemic wave, Italy again experienced new mobility restrictions, with

associated reduction in economic activity.

Normalizing economic activity and mobility to 1 in an economy with only susceptible and

taking (3) and (18) to formulate a (nonlinear) relationship between mobility and economic

activity, a nonlinear estimation procedure produces an estimate of g, ASR
0 and ASR

1 of 0.70229,

0.29805 and 7.74162 respectively. AI
0 and AI

1 are set to 0.49160 and 0.29805 to respect the

assumption that mobility of infected agent is 70% of susceptible.

As regard P0 and P1, they are set observing that, according to (3) and (4), average propensity

to consume can be expressed as a function of consumption mobility, P0, and P1. Taking as

proxy for consumption mobility the mobility for retail and recreation from Google Mobility

Trend11 and the quarterly average propensity to consume from Italian national account, we

estimate P0 = 0.47187 and P1 = 0.12828. Finally, the utility of state dead M is set equal to

�1.3 to avoid that, independent of state of epidemic and economic activity, lifetime utility of

survival agents can be negative.

11
https://www.google.com/covid19/mobility/.
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Table 2. SIRD versus economic SIRD (ESIRD) model with endogenous mobility. Numerical experi-

ments based on the parameters reported in Table 1.

Model Peak

preva-

lence

Cumulative

deaths

Minimum

of pro-

duction

Minimum

of mo-

bility

Economic

loss

Mobility

loss

µ(425, S) µ(425, I) µ(425, R) µ(425, D)

(death

rate)

SIRD 17, 784, 284 408, 678 0.87 0.79 �0.011 �0.019 0.062 0.000 0.932 0.007

ESIRD 5, 858, 062 297, 577 0.883 0.693 �0.032 �0.082 0.314 0.003 0.678 0.005

6.3. SIRD versus economic SIRD (ESIRD) model. Table 2 and Figure 2 highlight the

importance of considering endogenous mobility choice in the analysis. In particular, the com-

parison between the “dumb” SIRD, where mobility of susceptible, infected and recovered is

maintained constant for the whole period of simulation and equal to their initial baseline val-

ues, and the ESIRD model, where individual mobility is decided in an optimizing framework

without any imposed restriction, points out the 30% more cumulative deaths of dumb SIR as

opposed to a lower drop in mobility and production (both as peak and as cumulative impact).

After 425 days from its outbreak epidemic is substantially ended in both models, i.e. µ(I) is

almost zero, but the optimized mobility of agent in ESIRD has led to a non negligible mass of

susceptible equal 31.4% in day 425 and substantially lower death rate (0.5% versus 0.7%).
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(a) Dynamics of epidemic, economic activity and

mobility with ”dumb” agents
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(b) Dynamics of epidemic,economic activity and

mobility with agents optimizing their mobility choices.

Figure 2. Comparison between “dumb” SIRD model versus SIRD model with endogenous mobility.

Numerical experiments based on the parameters reported in Table 1.
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7. Questioning the ESIRD

In this section we discuss how our framework could be used to evaluate alternative policies

of mobility restriction. The high peak prevalence reported for ESIRD in Table 2 explains

why several countries imposed strong mobility restrictions in 2020. A peak of infected of

5,858,062 agents would correspond to a need of about 398,749 beds in hospitals, taking 6.8%

the proportion of infected individuals hospitalised (Verity et al., 2020). For example, Italy in

February 2020 had about 190,000 available beds in hospital, making “laissez faire” approach to

COVID-19 not practicable (not considering the advantage to take time in waiting for a vaccine).

In the following we therefore study some mitigation strategies as defined in Ferguson et al.

(2020) (page 3), i.e. “to use NPIs (non-pharmaceutical intervention) not to interrupt transmis-

sion completely, but to reduce the health impact of an epidemic” in the hope (as it is e↵ectively

happened) of a rapid development of a vaccine. In particular, we will focus on policies that,

by increasing mobility costs (�s), reduce individual mobility and therefore the infection rate

and the peak prevalence. In this regard, Nouvellet et al. (2021) provide strong evidence that

reducing mobility is the key factor for bringing down COVID-19 transmission, while Vollmer

et al. (2020) present scenario analysis based on di↵erent mobility in Italy.

At the same time, reduction mobility hurts production, putting policy maker in front a trade-

o↵ between economic losses and fatalities due to COVID-19, i.e. it is possible to point out a

pandemic possibilities frontier as in Kaplan et al. (2020) and Acemoglu et al. (2020). However,

we add two dimensions in the discussion, the first related to the share of remaining susceptible

at the end of the period of analysis, which could make easier a fresh outbreak of epidemic in

the future, and the second related to the social feasibility of some policies based on a long

reduction of individual mobility.

Table 3 reports the e↵ect of di↵erent policies increasing (in the same percentage) the cost of

mobility for production and consumption with respect to the baseline model when the share

of infected individuals exceeds 3% and to maintain this increase until the share of infected

individual gets down to 0.5% or to 0.1% in the more severe scenario (mrs).

Peak prevalence decreases up to a rise of 30% in mobility cost and then it is almost rigid to

further increment (see Table 3). Peak prevalence of 1,275,206 individuals would amount to a

need of 86,801 beds in hospitals. Not reported numerical investigations show that to decrease

this peak prevalence would require to start mobility restrictions with a lower share of infected

individuals than 3%.

However, increasing mobility costs have also a growing negative impact both on economic

activity and a death rate. This trade-o↵ is represented in Figure 3a, which corresponds to the

pandemic possibilities frontier discussed in Kaplan et al. (2020) and Acemoglu et al. (2020) but

calculated in a very di↵erent theoretical framework. We can appreciate from Figure 3a how a

scenario with 30% of additional cost and an exit threshold of 0.1% from mobility restriction

Pareto dominate the scenarios both with 40% and 50% of additional cost and an exit threshold

of 0.5%.
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Table 3. Alternative scenarios of restriction of mobility (severity of lockdown) and exit from these

restrictions (mrs adopts a more strict threshold for relaxing the restrictions). Numerical experiments

based on the parameters reported in Table 1.

Scenario Peak

preva-

lence

Cumulative

deaths

Minimum

of pro-

duction

Minimum

of mo-

bility

Economic

loss

Mobility

loss

µ(425, S) µ(425, I) µ(425, R) µ(425, D)

(death

rate)

Baseline ESIRD 5, 858, 062 297, 577 0.883 0.693 �0.032 �0.082 0.314 0.003 0.678 0.005

Cost +10% 3, 594, 938 248, 258 0.877 0.651 �0.056 �0.165 0.424 0.006 0.566 0.004

Cost +20% 1, 633, 960 160, 311 0.867 0.603 �0.083 �0.254 0.626 0.005 0.365 0.003

Cost +30% 1, 275, 206 107, 837 0.837 0.518 �0.092 �0.280 0.732 0.020 0.246 0.002

Cost +40% 1, 258, 593 113, 914 0.800 0.439 �0.103 �0.299 0.729 0.010 0.260 0.002

Cost +50% 1, 249, 959 111, 359 0.753 0.357 �0.113 �0.310 0.733 0.011 0.254 0.002

Cost +30% (mrs) 1, 241, 037 75, 794 0.835 0.515 �0.100 �0.307 0.824 0.002 0.173 0.001

Cost +50% (mrs) 1, 256, 080 67, 485 0.747 0.348 �0.122 �0.335 0.841 0.004 0.154 0.001
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Figure 3. Trade-o↵s in alternative scenarios of mobility restrictions and exit from these restrictions.

Numerical experiments based on the parameters reported in Table 1.

However, the former scenario presents two additional non favourable characteristics with

respect to the latter. First, as reported in Figure 3b, the share of susceptible after 425 days

from the outbreak of epidemics is substantially higher (82.4% versus 73.3%); moreover, as

highlighted by Figures 4e and 5e, it requires a prolonged period of mobility restrictions (almost

one year!). In this respect, scenarios with 30% of additional cost and an exit threshold of 0.5%

or with 50% of additional cost and an exit threshold of 0.1% endogenously present a succession

of periods with and without mobility restrictions making this scenario more socially feasible.
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(b) Infection rate when lockdown

implies an increase of 20% of cost

of mobility
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(c) Infection rate when lockdown

implies an increase of 30% of cost

of mobility
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(d) Infection rate when lockdown

implies an increase of 50% of cost

of mobility
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(e) Infection rate when lockdown

implies an increase of 30% of cost

of mobility and more restrictive

conditions for the exit of lockdown
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(f) Infection rate when lockdown

implies an increase of 50% of cost

of mobility and more restrictive

conditions for the exit of lockdown

Figure 4. Dynamics of infection rate in di↵erent scenarios of mobility restriction (severity of lockdown)

and exit from these restrictions (threshold for relaxing the restrictions). Numerical experiments based

on the parameters reported in Table 1.

We conclude observing that, even though individuals are perfectly informed of restriction

policy and on the behaviour of pandemic, several scenarios include waves of infections, as

result of the endogenous switching between a regime with mobility restrictions and one without

any restriction (see, e.g., Figures 5c-5f).

8. Concluding remarks

We provide a dynamic macroeconomic equilibrium model with pandemic, denoted ESIRD,

where perfect-foresight forward looking agents’ (short-term) mobility positively a↵ects their in-

come (and consumption), but also contributes to the spread of pandemic in an extended SIRD

model. Dynamics of economy and pandemic is jointly driven by strategic complementaries in

production and negative externalities on infection rates of individual mobilities. We therefore

address one of the main economic-driven leverages of compartmental epidemiological models,

i.e. the endogenization of reproduction rate of epidemic (Avery et al., 2020). After having
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of mobility
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(c) Dynamics when lockdown

implies an increase of 30% of cost

of mobility
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(d) Dynamics when lockdown

implies an increase of 50% of cost

of mobility
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(e) Dynamics when lockdown

implies an increase of 30% of cost

of mobility and more restrictive

conditions for the exit of lockdown
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Figure 5. Dynamics of epidemics and of main economic variables in alternative scenarios of mobility

restrictions and exit from these restrictions. Numerical experiments based on the parameters reported

in Table 1.

proved the existence of a Nash equilibrium and studied the recursive construction of equilib-

rium(a), we conduct some numerical investigations on the forward-backward system resulting

from individual optimizing behaviour, calibrating model’s parameters on Italian experience on

COVID-19 in 2020-2021.

In our ESIRD model the forward-looking behavior of agents tends to smooth the peak preva-

lence of pandemic with respect to the simplest SIRD model with “dumb” agents, but in our

numerical explorations peak prevalence appears to be still too high to be sustainable for the Ital-

ian health system (e.g. in relation to the number of available beds in hospital). Once establish

that self-regulation of individual mobility decisions is not su�cient to manage the pandemic12,

12The model allows to give an answer to the provocative question posed, among others, by Cochrane (2020)

on the viability of a containment policy based only on self-confinement of individuals free of any governmental

restrictions on mobility. At least for the Italian experience in 2020, our model suggests that a policy only based

on self-confinement would have resulted in a peak prevalence of nearly six million infected people (see Section

7), which corresponds to a need of about four hundred thousand of beds in hospitals. This would have been



MOBILITY DECISIONS, ECONOMIC DYNAMICS AND EPIDEMIC 23

we evaluate di↵erent regimes of mobility restrictions, which can be easily accommodate within

our theoretical framework.

In particular, we argue that regimes compatible with the saturation of healthcare system must

be evaluated in terms of trade-o↵ between economic losses and fatalities as proposes, e.g., by

Kaplan et al. (2020); Acemoglu et al. (2020), but also for their social feasibility of maintaining

prolonged periods of mobility restrictions and for leaving higher shares of susceptible at the end

of the period, which makes fresh outbreak of epidemic more likely. In this respect, we point

out that successive small waves of epidemic can be the result of an e�cient regime of mobility

restrictions.

Our analysis raises a series of issues for future research.

We ignore heterogeneity of population in terms of “risk groups” (typically, in case of Cavid-19,

age cohorts, see Salje et al., 2020 and Acemoglu et al., 2020), and therefore we cannot evaluate

any policy conditioned to individual characteristics, as, for instance, done by Brotherhood et al.

(2020) or Gollier (2020). We also focus on a world before the vaccine, that is standard in this

kind of models (Boppart et al., 2020) and consistent with the period used to calibrate the

model. However, in a world with vaccine, or with an expected date of its availability, di↵erent

questions arises for the timing, targets and costs of vaccination (Hung and Poland, 2021) as well

as on the timing of mobility restrictions. Finally, we did not include other non-pharmaceutical

interventions, and in particular we do not model testing policies, as, for instance, in Eichenbaum

et al. (2022).

Some extensions of empirical analysis appear very promising. Firstly, the possibility to

study scenarios where mobility restrictions are (mostly) focused on mobility for production or

on mobility for consumption. For example, in Europe the second waves of restrictive measures

in the period Oct 2020 - May 2021, largely revolved around mobility for consumption.13 A

second extension concerns the more precise estimation of the relationship between individual

mobility, aggregate mobility and production in presence of strategic complementarities, which

poses non trivial issue of identification (Manski, 2000).

We also neglect the possibility of introducing masking and using alternative protective equip-

ment against the epidemic. In the case their use is mandatory, it should be equivalent to an

exogenous reduction of �p and �c in Eq. (7) that, by reducing the infection rate, would lead to

an increase in the individuals’ mobility. Much more complicated is the case in which their use

is an individual choice, and their use involves a cost. We should consider a possible free-riding

problem because the net benefits of using a mask are decreasing if other individuals are already

using a mask.

From the theoretical point of view, we leave open the question of the uniqueness of equilibrium

and to obtain stronger properties of the equilibria. A possible answer is to look at the Master

unsustainable for a country having, in February 2020, about 190,000 beds in hospitals, most of them already

occupied by patients with COVID-19 independent pathologies.
13See for instance, for France, JORF 0080, 3 April 2021, Text 28, https://www.legifrance.gouv.fr/jorf/

id/JORFTEXT000043327303.
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Equation associated to our model, as suggested in Section 1.4 in Cardaliaguet and Porretta

(2020).
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Appendix A. Proofs

Proof of Proposition 5.3. (a) Let µ(0) 2 P(K), let (v, #̂) be an equilibrium in the sense of Definition 5.2, and

let k(0) 2 K. By standard verification arguments in optimal control, it is clear that, since v is bounded, it

coincides with the value function (of the agent) and that the control #̂ 2 A is optimal (for the agent) when

# = #̂. Hence, (12) is verified showing that #̂ is a Nash equilibrium in the sense of Definition 5.1.

(b) Let µ(0) 2 P(K) and let #̂ be a Nash equilibrium in the sense of Definition 5.1. Set, for each t0 � 0,

v(t0, k(t0)) := V (t0, k(t0),µ(t0),#) with # = #̂ and consider the couple (v, #̂). By the dynamic programming

principle, v(t0, k(t0)) satisfies (11) at each t0 � 0, so part (i) of Definition 5.2 is satisfied. Part (ii) of the same

definition is satisfied by (12). ⇤

Theorem A.1 (Tikhonov’s fixed point Theorem) Let V be a locally convex topological vector space, let Q ✓ V
be a nonempty compact convex set, and let F : Q ! Q be a continuous function. Then F has a fixed point.

Proof. See, e.g., Theorem (1.10), p. 147 of Granas and Dugundji (2003). ⇤

Proof of Theorem 5.4. Fix µ(0) 2 P(K) and k(0) 2 K. Consider the space of sequences

V :=

⇢
q = (qR, qI , qS , qD) : N ! R8

�

endowed with the topology of pointwise convergence. The latter is a locally convex topological vector space,

since the topology is induced by the family of seminorms

pt(q) = |q(t)|R8 , t 2 N,

where q(t) is the t�th component of q. Then, consider

Q :=

⇢
q = (qR, qI , qS , qD) : N ! [0, 1]2 ⇥ [0, 1]2 ⇥ [0, 1]2 ⇥ {(0, 0)}

�
⇢ V.

Q is convex and, by Tikhonov’s compactness Theorem, it is compact in V. We consider the one-to-one corre-

spondence M : Q ! A defined by

(Mq)(t, k) ⌘ qk(t), (t, k) 2 N⇥K.

Let µq be the solution to (10) associated to # = M(q) and let

F : Q ! Q, F (q)(t, k) := (#̂p(t, k; q), #̂c(t, k; q)), (t, k) 2 N⇥K.

where #̂(t, k; q) = (#̂p(t, k; q), #̂c(t, k; q)) is the unique the maximizer over [0, 1]2 of

# 7!
X

k02K
pkk0(t)

⇥
u(t, c(t), k,#(t)) + (1� ⇢)V (t+ 1, k0,µq(t+ 1), (Mq)(t+ 1, k0))

⇤
.

Clearly, if q⇤ is a fixed point of F , then (V (·, ·,µ(0),M(q⇤)),M(q⇤)) is an equilibrium according to Definition

5.2. Given a sequence (qn) ⇢ Q converging to q 2 Q, we have

V (t, k,µqn(t),M(qn)) ! V (t, k,µq(t),M(q))

for each t � 0. Consequently, by strict concavity and regularity of # 7! u(t, c(t), k,#), we also have the

convergence #̂(t, k; qn) ! #̂(t, k; q). This shows that F is continuous. We conclude by Theorem A.1. ⇤
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Proof of Theorem 5.6. We show that (i) and (ii) of Definition 5.2 hold for the couple (v̂, #̂), which is assumed

to be well defined by induction (as ⇠̂ is so at each step).

We preliminarily notice that, given (t0, k(t0)) 2 N⇥ {S, I, R}, the function

[0, 1]2 ! R, # = (#p,#c) 7! u(t0, c(t0), k(t0),#)

is strictly concave, since

D#u(t0, c(t0), k(t0),#) =

 
Ak(t0)

1

Ak(t0)
0 +Ak(t0)

1 #p

� �p(t0, k(t0), µ(t0)),
P1

P0 + P1#c
� �c(t0,k(t0), µ(t0))

!
,

and

D2
#u(t0, c(t0), k(t0),#) =

0

BBB@

� (Ak(t0)
1 )2

(Ak(t0)
0 +Ak(t0)

1 #p)2
0

0 � P 2
1

(P0 + P1#c)2

1

CCCA
.

Now we fix t0 2 N and show that v̂(t0, ·) solves the dynamic programming equation on the various occurrences

of k(t0) 2 K and that #̂(t0, ·) defined as in the algorithm are the maximizers of the right hand side of (11) .

• Case k(t0) = D. In this case the unique admissible control is #(t0, D) := (0, 0) and the Bellman

equation reduces to

v(t0, D) = u(t0, 0, D, (0, 0)) + (1� ⇢)v(t0 + 1, D) = (1� ⇢)v(t0 + 1, D).(19)

It is clear that the above constructed v̂ is always zero on D and hence satisfies the above equation.

The maximizer #̂(t0, D) is the unique admissible control, i.e. #̂(t0, D) = (0, 0).

• Case k(t0) = R. In this case the Bellman equation reduces to

v(t0, R) = sup
#2[0,1]2

�
u(t0, c(t), R,#) + (1� ⇢)v(t0 + 1, R)

�
= (1� ⇢)v(t0 + 1, R) + sup

#2[0,1]2
u(t0, c(t), R,#).(20)

The optimization above leads to the unique maximum point

#̂ = (#̂p, #̂c) =
�
(#̃p ^ 1) _ 0, (#̃c ^ 1) _ 0

�
,

where 8
>>>>><

>>>>>:

#̃p =
AR

1 � �p(t0, I,µ(t0))AR
0

�p(t0, R,µ(t0))AR
1

=
1

�p(t0, R,µ(t0))
� AR

0

AR
1

,

#̃c =
P1 � �c(t0, R,µ(t0))P0

�c(t0, R,µ(t0))P1
=

1

�c(t0, R,µ(t0))
� P0

P1
.

We therefore get

v(t0 + 1, R) =
v(t0, R)� u(t0, c(t0), R, #̂)

1� ⇢
.

Hence v̂(t0, ·) defined as in (17) satisfies by construction the Bellman equation (11) with maximizer

#̂(t0, R) given by (13).

• Case k(t0) = I. In this case the dynamic programming equation reduces to

v(t0, I) = sup
#2[0,1]2

⇣
u(t0, c(t0), I,#) + (1� ⇢) ((1� ⇡R � ⇡D)v(t0 + 1, I) + ⇡Rv(t0 + 1, R))

�

= (1� ⇢) ((1� ⇡R � ⇡D)v(t0 + 1, I) + ⇡Rv(t0 + 1, R)) + sup
#2[0,1]2

u(t0, c(t0), I,#).(21)

The optimization above leads to the unique maximum point

(#̂p, #̂c) =
�
(#̃p ^ 1) _ 0, (#̃c ^ 1) _ 0

�
,
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where 8
>>>>><

>>>>>:

#̃p =
AI

1 � �p(t0, I, µ̂(t0))AI
0

�p(t0, I, µ̂(t0))AI
1

=
1

�p(t0, I, µ̂(t0))
� AI

0

AI
1

,

#̃c =
P1 � �c(t0, I, µ̂(t0))P0

�c(t0, I, µ̂(t0))P1
=

1

�c(t0, I, µ̂(t0))
� P0

P1
.

We therefore get

v(t0 + 1, I) =
1

1� ⇡R � ⇡D

"
v(t0, I)� u(t0, c(t0), I, #̂)

1� ⇢
� ⇡Rv(t0 + 1, R)

#
.

Hence v̂(t0, ·) defined as in (17) satisfies by construction the Bellman equation (11) with maximizer

#̂(t0, I) given by (13).

• Case k(t0) = S. In this case the Bellman equation reduces to

v(t0, S) = sup
#2[0,1]2

⇣
u(t0, c(t0), S,#) + (1� ⇢) ((1� ⌧(t0))v(t0 + 1, S) + ⌧(t0)v(t0 + 1, I))

�
,(22)

which can be rewritten as

v(t0, S) = (1� ⇢)v(t0 + 1, I) + (1� ⇢)(v(t0 + 1, S)� v(t0 + 1, I))(23)

+ sup
#2[0,1]2

⇣
u(t0, c(t0), S,#)� (1� ⇢)⌧(t0)(v(t0 + 1, S)� v(t0 + 1, I))

⌘
,(24)

Set ⇠ := v(t0 + 1, S)� v(t0 + 1, I) and consider the optimization above in terms of the parameter ⇠ 2 R+. The

maximization leads to the unique maximum point

#̂⇠ = (#̂⇠
p, #̂

⇠
c) =

�
(#̃⇠

p ^ 1) _ 0, (#̃⇠
c ^ 1) _ 0

�
,

where

#̃⇠
p =

1

�p(t0, S, µ̂(t0)) + (1� ⇢)â(t0)⇠
� AS

0

AS
1

, #̃⇠
c =

1

�c(t0, S, µ̂(t0)) + (1� ⇢)b̂(t0)⇠
� P0

P1
,

where

â(t0) = µ̂(t0, I)#̂p(t0, I), b̂(t0) = µ̂(t0, I)#̂c(t0, I).

Recalling the definition of f given in (15), the Bellman equation reduces to the algebraic equation in the variable

⇠ 2 R+

v(t0, S) = (1� ⇢)v(t0 + 1, I) + (1� ⇢)⇠ + f(t, ⇠).

By assumption this equation has a unique solution ⇠̂. Hence v̂(t0, ·) defined as in (17) satisfies by construction

the Bellman equation (11) with maximizer #̂(t0, S) given by (16). ⇤
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Appendix B. Procedure of simulation

NOTE: In this appendix the notation is lightened from that used in the body of the article to avoid making

the formulas too heavy thinking and di�cult to read.

(A) The maximum in the lifetime utilities. As t goes to infinitum the number of infected agents converges

to zero, i.e. limt!1 µ (t, I) = 0 and limt!1 µ (t, R) � 0 and the lifetime utilities is maximum in this state

of no pandemic. Then:

U(S)max = lim
t!1

U(t, S) = lim
t!1

(t, µ(t, I), SR) + ln(1 + Z(t))

⇢
=

=
(1, 0, SR) + ln

�
1 + 1/�p(1, 0, SR)�ASR

0 /ASR
1

�

⇢
;

U(R)max = lim
t!1

U(t, R) = lim
t!1

(t, µ(t, I), SR) + ln(1 + Z(t))

⇢
=

=
(1, 0, SR) + ln

�
1 + 1/�p(1, 0, SR)�ASR

0 /ASR
1

�

⇢
;

U(I)max = lim
t!1

U(t, I) =
⇢(1, 0, I) + (1� ⇢)⇡R(1, 0, SR)

⇢ [1� (1� ⇢) (1� ⇡R � ⇡D)]
+

+
[1� (1� ⇢) (1� ⇡R)] ln

�
1 + 1/�p(1, 0, SR)�ASR

0 /ASR
1

�

⇢ [1� (1� ⇢) (1� ⇡R � ⇡D)]
.

where:

(t, µI , SR) := ln

✓
ASR

1

�p(t, µI , SR)

◆
+ �p(t, µI , SR)

ASR
0

ASR
1

+ ln

✓
P1

�c(t, µI , SR)

◆
+ �c(t, µI , SR)

P0

P1
� 2;

and

(t, µI , I) := ln

✓
AI

1

�p(t, µI , I)

◆
+ �p(t, µI , I)

AI
0

AI
1

+ ln

✓
P1

�c(t, µI , I)

◆
+ �c(t, µI , I)

P0

P1
� 2.

(B) The feasible set of individual lifetime utilities. From Point (A), together with the appropriate choice

of M in order to make U(t, k) � 0 for t � 0 and 8k 2 K, the feasible set of individual lifetime utilities is

defined as follows:

T := {(x, y, z) 2 (0, U(R)max)⇥ (0, U(I)max)⇥ (0, U(R)max) : y  x  z} .(25)

This gives a bound for the lifetime utilities in the spirit of Theorem 5.6.

(C) Set the health status distribution of population at time 0 as:

µ(0, S) = 1� ✏;

µ(0, I) = ✏;

µ(0, R) = 0;

µ(0, D) = 0,

with ✏ very small.

(D) Set the initial value of utilities in the three states in the feasible set T by choosing �I , �S , �R � 0.

U(0, R) = U(R)max(1� �R);

U(0, S) = U(0, R)(1� �S);

U(0, I) = U(0, S)(1� �I)

(E) Calculate a(0) and b(0):

a(0) = �p ⇥ µ(0, I)⇥ #p(0, µ(0, I), I)

b(0) = �c ⇥ µ(0, I)⇥ #c(0, µ(0, I), I),
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where

#p(0, µ(0, I), I) =
1

�p(0, µ(0, I), I)
� AI

0

AI
1

and

#c(0, µ(0, I), I) =
1

�c(0, µ(0, I), I)
� P0

P1
.

(F) Find �U(1, S, I) := U(1, S)� U(1, I) by solving the following implicit equation

0 = �(1� ⇢) (1� ⇡R � ⇡D)�U(1, S, I) + (1� ⇡R � ⇡D)U(0, S)� U(0, I) + ⇡RU(0, R)+

� ⇡R(1, µ(0, I), R) + (1, µ(0, I), I)� (1� ⇡R � ⇡D)� (�U(1, S, I)) + ⇡D ln (1 + Z (�U(1, S, I))) ,

where

� (�U(1, S, I)) :=

ln

✓
ASR

1

�p(1, µ(0, I), S) + (1� ⇢)a(0)�U(1, S, I)

◆
+

+
ASR

0

ASR
1

{�p(1, µ(0, I), S) + (1� ⇢)a(0)�U(1, S, I)}+

+ ln

✓
P1

�c(1, µ(0, I), S) + (1� ⇢)b(0)�U(1, S, I)

◆
+

+
P0

P1
{�c(1, µ(0, I), S) + (1� ⇢)b(0)�U(1, S, I)}� 2

and

Z(0) = Z (�U(1, S, I)) = µ(0, S)⇥


1

�p(1, µ(0, I), S) + (1� ⇢)a(0)�U(1, S, I)
� aSR

0

aSR
1

�
+

+ µ(0, I)⇥ ✓p(0, µ(0, I), I) + µ(0, R)⇥ ✓p(0, µ(0, I), R).

where

✓p(0, µ(0, I), R) =
1

�p(0, µ(0, I), R)
� aSR

0

aSR
1

and

✓c(0, µ(0, I), R) =
1

�c(0, µ(0, I), R)
� P0

P1
,

where we set µ(1, k) ⇡ µ(0, k) 8k 2 K, to simplify the calculations. This approximation is more and more

accurate as time scale of simulation is smaller, in the limit of continuos time is exact.

(G) Calculate the movement of susceptible

#p(0, µ(0, I), S) =
1

�p(0, µ(0, I), S) + (1� ⇢)a(0)�U(1, S, I)
� ASR

0

ASR
1

;

#c(0, µ(0, I), S) =
1

�c(0, µ(0, I), S) + (1� ⇢)b(0)�U(1, S, I)
� P0

P1
.

(H) Calculate the level of lifetime utilities at time 1

U(1, R) =
U(0, R)� ln (1 + Z (0))� (0, µ(0, I), R)

1� ⇢
;

U(1, I) =
U(0, I)� ⇡RU(0, R) + ⇡R(0, µ(0, I), R)� (0, µ(0, I), I)� (1� ⇡R) ln (1 + Z (0))

(1� ⇢) (1� ⇡R � ⇡D)
;

U(1, S) = �U(1, S, I) + U(1, I);
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(I) Upgrade the health status distribution of population at time 1

µ(1, S) = µ(0, S)
⇥
1� a(0)#p(0, µ(0, I), S)� b(0)#c(0, µ(0, I), S)

⇤
,

µ(1, I) = µ(0, S)
⇥
a(0)#p(0, µ(0, I), S) + b(0)#c(0, µ(0, I), S)

⇤
+ µ(0, I)(1� ⇡R � ⇡D),

µ(1, R) = µ(0, I)⇡R + µ(0, R),

µ(1, D) = µ(0, D) + µ(0, I)⇡D.

(J) Check if Condition (25) is satisfied. If not start with a new set of �s at point D. If Condition

(25) is satisfied and the number of periods is lower of a given threshold repeat points E-I by

taking the new level of µs at point I.
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