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Abstract

We propose and solve an optimal vaccination problem within a deter-
ministic compartmental model of SIRS type: the immunized population
can become susceptible again, e.g. because of a not complete immuniza-
tion power of the vaccine. A social planner thus aims at reducing the
number of susceptible individuals via a vaccination campaign, while min-
imizing the social and economic costs related to the infectious disease. As
a theoretical contribution, we provide a technical non-smooth verifica-
tion theorem, guaranteeing that a semiconcave viscosity solution to the
Hamilton-Jacobi-Bellman equation identifies with the minimal cost func-
tion, provided that the closed-loop equation admits a solution. Condi-
tions under which the closed-loop equation is well-posed are then derived
by borrowing results from the theory of Regular Lagrangian Flows. From
the applied point of view, we provide a numerical implementation of
the model in a case study with quadratic instantaneous costs. Amongst
other conclusions, we observe that in the long-run the optimal vaccina-
tion policy is able to keep the percentage of infected to zero, at least
when the natural reproduction number and the reinfection rate are small.

Keywords: SIRS model; optimal control; viscosity solution; non-smooth
verification theorem; epidemic; optimal vaccination
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1 Introduction

During the recent Covid-19 pandemic, policymakers have been dealing in a first
period with the implementation of severe lockdowns, while, in a second phase,
with the massive vaccination policy of the susceptible population. Simultane-
ously, the scientific community experienced a renewed interest for epidemic
mathematical models where an agent – typically a social planner – aims at
taming the spread of a disease by designing lockdown policies and/or vaccina-
tion strategies that minimize social and economic costs. The starting point of
the majority of this literature is the classical SIR model (cf. [22]), where, at
each point in time, each person in a population of N individuals is either Sus-
ceptible, Infectious, or Recovered from a disease and can dynamically change
her/his status according to a deterministic law of motions.

Modeling a social planner’s actions usually results into the introduction of
control variables in the dynamics of the considered compartmental epidemic
model. For example, the transmission rate becomes a control variable in the
generalized SIR models considered in [18], [23] and [26], and a controlled state-
variable in the stochastic version of [11]. More in detail, [18] considers a model
described by Volterra integral equations which contains some popular epidemic
models, such as SIR, as special cases; the analysis is especially focussed on
lockdown and reopening policies and investigates the economic consequences of
obtained optimal lockdown scenarios. The paper [23] introduces an additional
parameter in the dynamics, which is then used by the social planner in order to
control the rate at which the disease is transmitted; that parameter is meant
to capture the policymakers’ measures, such as social distancing, but also lock-
down of businesses, schools, universities and other institutions. Analogously, in
[26] the social planner controls both the instantaneous rate of pairwise meetings
between susceptible and infected and the instantaneous probability of conta-
gion, requiring that the percentage of infected individuals does not exceed the
ICU constraint, that is the capacity of the health-care system to treat infected
patients. Inspired by the previous papers and other different deterministic
models, [11] proposes a stochastic control-theoretic version of the classical SIR
model which, considering the transmission rate as a diffusive stochastic state
variable, incorporates random fluctuations in the disease’s transmission rate.
Time-dependent lockdown policies directly affect the dynamics of the mod-
els studied in [1], [2] and [8]. In particular, [1] develops a multi-group version
of the SIR model and highlights the significant benefits obtained through the
optimal targeted lockdown policies; [2] analyzes the optimal lockdown policy
in the controlled SIRD (Susceptible-Infected-Recovered-Dead) model, a mod-
ified version of SIR; finally, [8] provides a first step in the complete theoretical
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analysis of the dynamic programming approach to a class of controlled com-
partmental models (such as SIR, SIRD, and SEIR). Among the confinement
policies, social distancing also relying on private decisions is considered in
[25], which extends the classical SIR model to incorporate heterogeneity in
infection-induced mortality rates of the population. With respect to the lit-
erature on optimal confinement policies, that on optimal vaccination has a
longer history. The vaccination strategy that minimizes the social costs arising
from the spread of a disease evolving according to the SIR model is studied in
[20]. This contribution was communicated for publication on “Mathematical
Biosciences” by Richard Bellman and it perhaps represents one of the earli-
est applications of the dynamic programming techniques in epidemiology. A
related optimization problem is considered in [6], but in the context of a SIS
(Susceptible-Infected-Susceptible) model. The comparison between compul-
sory vaccination and market allocation is studied in [7], whereas [17] analyzes
the effect of infectious diseases on economic variables and explains how the
traditional methods of vaccination and isolation can stabilize the economic
fluctuations. The seminal work [14] starts observing that “of the roughly 40
vaccines on the market, only the smallpox vaccine has been successful in erad-
ication” by 1997. The study in [14] thus aims at understanding which forces
prevent the eradication through vaccines of a disease, and the authors conclude
that vaccinations yield a drop of infected individuals, which in turn leads to a
drop in the demand for vaccines, which finally implies the return of the infec-
tious disease. Disease’s eradication is also treated in [24] where it is stated that
“if eradication is impossible or possible only at tremendous costs, keeping the
pandemic under control [...] requires finding a path through territory that is
uncharted”. The authors propose a way to manage an epidemic providing an
optimal lockdown policy which takes into account the maximum capacity of
the healthcare system, whose level must not be exceeded. Further, the aware-
ness of a possible future vaccine employment does not substantially impact the
optimal policy dynamics until such an event actually occurs. In [21] the “Vac-
cinated” (V) compartment is included in the stochastic SIRV model. Later
on, [13] proposes a simplified version of SIRV aiming at studying the effect of
implementing treatments of uncertain efficacy to control an epidemic; in this
case, rather than focusing on the numerical optimal solution of the problem,
the authors develop tractable solutions, either analytical or perturbative. In
[12], the employed epidemiological model is a generalized SIRS models consid-
ering an additional V compartment. In this paper, the vaccine arrival, which
is considered as a random event with exogenous probability distribution, splits
up the epidemic time into two periods, namely Phase I and Phase II. Dur-
ing Phase I the only available policy is a stylized version of a “stay-at-home”,
whereas Phase II is characterized by the possibility to control the speed at
which the population can be vaccinated. In [3] both the “Asymptomatic” (A)
and the “Vaccinated” compartments are incorporated into the SAIVR model,
in which several parameters and initial conditions are set through machine
learning techniques; the resulting epidemic’s evolution, obtained for different
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values of roll-out daily rates and vaccine efficacy, is then deeply analyzed. In
the recent [16] it is studied how to best allocate a given time-varying sup-
ply of vaccines across individuals of different ages, and discuss the possible
sub-optimality (in terms of economic recovery) of the actual deployment path
that prioritized older retired individuals to younger working people. A similar
problem of optimal allocation of limited vaccines is considered in [28] as well.

In this paper we propose and study the problem of optimal vaccination
against an infectious disease that evolves according to a generalized SIRS
model. Differently to the classical SIR setting, where the compartment of recov-
ered individuals is an absorbing state, in the SIRS model immunized people
can become susceptible again at a given rate η > 0 (due, e.g., to a not com-
plete immunization power of vaccines). We consider a social planner that aims
at determining a vaccination strategy which reduces the number of suscepti-
ble individuals, while minimizing total social and economic costs. These are
due, e.g., to the arrangement of vaccination hubs and to the employment of
medical staff.

It is well known that determining an explicit solution to control problems
arising in epidemiology is extremely hard, if possible at all. As a matter of fact,
those dynamic optimization problems are typically multidimensional and the
dynamics of the controlled state-variables are nonlinear. Although we are not
able to determine the expression of the optimal vaccination policy in closed
form, in this paper we provide a thorough analysis of the optimal vaccination
problem, which actually leads to the identification of easily verifiable suffi-
cient conditions for the optimality of a candidate solution and to a numerical
implementation in a relevant case study. This is accomplished as we explain in
the following. First of all, we show that the assumed semiconcavity property
of the instantaneous cost function is inherited by the problem’s minimal cost
function V , so that the latter is shown to be a semiconcave viscosity solution
to the related Hamilton-Jacobi-Bellman (HJB) equation. A delicate technical
analysis then allows to prove a verification theorem for non-smooth (viscosity)
solutions to the HJB equation (see Theorem 4, our main theoretical result).
It is worth noticing that the proof of a verification theorem in the context of
viscosity solutions is far to be trivial, and it is typically a remarkable fact.
Our proof is inspired by that of Theorem 3.9 in [29]. However, in order to
achieve the result, the arguments therein needed to be thoroughly adapted and
expanded to the present setting, by properly exploiting the semiconcavity of V
and argument of convex analysis, namely the properties of supergradient (cf.
Proposition 4 below). Since the verification theorem assumes that a solution
to the so-called closed-loop equation exists, to proceed further in the analysis
we provide sufficient conditions for the well-posedness of the latter (cf. Propo-
sition 6), by suitably employing the theory of Regular Lagrangian Flows (cf.
[4, 5]). To the best of our knowledge, this is the first paper that combines the
theory of Regular Lagrangian Flows with the study an optimal control prob-
lem. As a corollary of the verification theorem and of the existence of a solution
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to the closed-loop equation, we then obtain that the minimal cost function V
is indeed the unique semiconcave viscosity solution to the HJB equation.

The latter uniqueness result paves the way for a numerical study of the
optimal vaccination problem. Indeed, as a complement to our theoretical anal-
ysis, we also provide a numerical implementation which is based on a recursion
of the HJB equation, initialized by the null function. For the numerical exer-
cise we assume a specification of the model with quadratic instantaneous costs,
under which the conditions of the verification theorem are satisfied. Fixing the
values of the model’s parameters, we study the evolution of the optimal vac-
cination policy, the evolution of the instantaneous reproduction number, as
well as the dynamics of the (optimally controlled) percentages of susceptible,
infected, and immunized (recovered) individuals. A numerical result suggests
that, following the optimal vaccination plan, the social planner is able in the
long-run to keep the number of infected individuals equal to zero. In particu-
lar, this happens when the reinfection parameter or the natural reproduction
number are sufficiently small. However, since the model prescribes reinfection
at rate η > 0, the disease cannot be eradicated in the strict sense, and the
vaccination campaign cannot be terminated if the aim is to maintain zero infec-
tions. Hence, if the social planner wishes to stop vaccinating the population,
other forms of control must be adapted, such as isolation. We also observe
that the social planner is allowed to relax the vaccination policy only after a
first time period where the maximal possible vaccination effort is made. As
expected, the length of such an initial phase increases when the number of
initial infected people increases.

The rest of this paper is organized as follows. Section 2 presents the model
and the problem’s formulation. Section 3 provides the theoretical analysis and
the solution to the optimal vaccination problem, while Section 4 discusses the
numerical results. Finally, conclusions are presented in Section 5.

2 Problem Formulation

2.1 The Generalized SIRS Model

We model the spread of the infection by relying on a variation of the classical
SIR model that dates back to the work by Kermack and McKendrick [22]. The
society has population N and it consists of three different groups. The first
group is formed by those people who are healthy, but susceptible to the disease;
the second group contains those who are infected, while the last cohort consists
of those who are immunized, that is recovered, dead or vaccinated. However,
differently to the classical SIR model, we assume that, once immunized, an
individual can become susceptible again, so that we face a SIRS epidemic
model. We denote by S(t) the fraction (within a society of N individuals) of
individuals who are susceptible at time t ≥ 0, by I(t) the fraction of infected,
and by R(t) the fraction of immunized (which, in the sequel, we will also call
recovered). Clearly, S(t) + I(t) +R(t) = 1 for all t ≥ 0.
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We briefly review the classical SIRS model and then introduce vaccination
policies within it. At time t ≥ 0, it is assumed that the fraction of infected
people I(t) grows at a rate which is proportional to the fraction S(t) of people
who are susceptible to the disease. In particular, letting β be the instanta-
neous transmission rate of the disease, during an infinitesimal interval of time
[t, t+ dt], each infected individual generates a fraction βS(t)dt of new infected
individuals. It thus follows that the fraction of susceptible individuals that get
infected within the interval of time [t, t+dt] is βI(t)S(t)dt. On the other hand,
in the same interval [t, t+ dt], the fraction of infected I(t) is reduced at a rate
γ > 0, the rate of recovering from the disease. Hence, it follows the dynamics

I ′(t) = βS(t)I(t)− γI(t).

Furthermore, in the infinitesimal interval of time [t, t + dt], the fraction of
susceptible people S(t) naturally decreases at the rate βS(t)I(t), because of
those people changing their status from being susceptible to being infected,
as previously discussed. However, the fraction of susceptible individuals also
gains mass, at a rate η > 0, from the fraction of recovered people R(t) who
becomes again susceptible to be re-infected. It thus follows that

S′(t) = −βS(t)I(t) + ηR(t).

Finally, the fraction of recovered people R(t) increases due to those infected
individuals who recover, and decreases because of the transition from being
recovered to being again susceptible to the disease. According to the discussion
above, we therefore have the dynamics

R′(t) = γI(t)− ηR(t).

So far, there is no control in the system, which evolves autonomously according
to the differential equations previously derived. We now introduce the pos-
sibility that a social planner intervenes on the system through a vaccination
policy, described by a function of time t 7→ u(t), in the sense that we formal-
ize below. Let U := [0, U ], for some U > 0, and assume that the vaccination
policy u(·) belongs to the set

U :=
{
u : R+ → U measurable

}
. (1)

The quantity u(t) here represents the rate of vaccination of susceptible people
at time t; precisely, u(t)S(t)dt is the fraction of susceptible individuals that,
due to vaccination, moves in the interval [t, t+dt] from the class S to the class
R. All in all, the controlled dynamics then become

S′(t) = −βS(t)I(t)− u(t)S(t) + ηR(t), t > 0, S(0) = s, (2)

I ′(t) = βS(t)I(t)− γI(t), t > 0, I(0) = i, (3)
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and
R′(t) = γI(t)− ηR(t) + u(t)S(t), t > 0, R(0) = r, (4)

for given nonnegative s, i and r such that s+i+r = 1. Given that u(·) ∈ U , the
previous system of ODEs is well posed in the Carathéodory sense, that is, there
exists a unique triple of absolutely continuous functions S, I,R such that (2),
(3), (4) are satisfied a.e.1 Notice also that for any t ≥ 0, and for any choice of
u(·) ∈ U , summing up the dynamics of S, I and R we have (S′+I ′+R′)(t) = 0
for all t > 0, which then implies that S(t) + I(t) + R(t) = 1 for all t ≥ 0 as
s+ i+r = 1. Given this fact, it is then sufficient to consider only the dynamics
of (S, I), being R(t) = 1− S(t)− I(t). Hence, we obtain

S′(t) = −βS(t)I(t)− u(t)S(t) + η(1− S(t)− I(t)), t > 0, S(0) = s, (5)

and

I ′(t) = βS(t)I(t)− γI(t), t > 0, I(0) = i. (6)

From (6), one has for any t ≥ 0

I(t) = i exp
{∫ t

0

(βS(q)− γ)dq
}
,

so that I(t) > 0 for any t ≥ 0 and for any u(·) ∈ U . Lemma 8 in the Appendix
shows that also S(t) > 0 and R(t) > 0 for any t ≥ 0, so that also S(t) < 1,
R(t) < 1, I(t) < 1 for any t ≥ 0. In the following, we assume that (s, i) ∈ (0, 1)2

are such that s+ i ∈ (0, 1)2.

2.2 The Social Planner Problem

The epidemic generates social costs. These might arise because of lost gross
domestic product (GDP) due to inability of working for infected, or because of
an overwhelming of the national health-care system etc. Also, one can imagine
that the more susceptible are, the larger is the probability of an additional wave
of the epidemic and, therefore, of additional societal stress. The social planner
thus employs a vaccination policy aiming at reducing the number of susceptible
individuals. These actions, however, come with a cost, which increases with the
amplitude of the effort. The cost is due, e.g., to the arrangement of vaccination
hubs and to the employment of medical staff.

In order to tackle the social planner problem with techniques from dynamic
programming, it is convenient to keep track of the initial values of (S(·), I(·)).

1The abbreviation ‘a.e.’ means almost everywhere, which is used to state that a property holds
for every element of a set, except for a subset of null (Lebesgue) measure.

2The choice of considering s + i < 1 – i.e. of having an initial strictly positive percentage
of immunized – is only done in order to deal with an open set in the subsequent mathematical
formulation of the problem. As a matter of fact, such a condition is not restrictive from the
technical point of view as our results still apply if s+ i < `, for some ` > 1, thus covering the case
s+ i = 1 as well.
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We therefore let x := (s, i) and set

M :=
{
x := (s, i) ∈ R2 : x ∈ (0, 1)2, s+ i < 1

}
. (7)

The social planner aims at minimizing the cost functional∫ ∞
0

e−rtC
(
S(t), I(t), u(t)

)
dt. (8)

Here, r ≥ 0 measures the social planner’s time preferences, and C : (0, 1)2 ×
R+ → R+ is a running cost function measuring the negative impact of the
disease on the socio-economic state and on the public health, as well as the
costs arising because of vaccination policies. The following requirements are
satisfied by C. Below, and in the rest of this paper, with a slight abuse of
notation, we indicate by | · | both the absolute value and the Euclidean norm
in R2.

Assumption 1

(i) C is continuous and bounded.
(ii) u 7→ C(s, i, u) is strictly convex for any (s, i) ∈ (0, 1)2.

(iii) C is Lipschitz continuous with respect to (s, i), uniformly in u; that is, there
exists K > 0 such that for any u ∈ U we have that

|C(s, i, u)− C(s′, i′, u)| ≤ K|(s, i)− (s′, i′)|, ∀(s, i), (s′, i′) ∈ (0, 1)2.

(iv) (s, i) 7→ C(s, i, u) is semiconcave uniformly with respect to u ∈ U ; that is,
there exists K > 0 such that for any u ∈ U and any µ ∈ [0, 1] one has
∀(s, i), (s′, i′) ∈ (0, 1)2

µC(s, i, u) + (1− µ)C(s′, i′, u)− C
(
µ(s, i) + (1− µ)(s, i′), u

)
≤

≤ Kµ(1− µ)|(s, i)− (s′, i)′|2.

Without loss of generality, we also take infM×U C = 0. Convexity of u 7→
C(s, i, u) describes that marginal costs of vaccinations are increasing: E.g., an
additional hiring of medical staff for vaccination might have a larger cost in a
society that has already devoted many resources to the fight of the epidemics.
Finally, the Lipschitz and semiconcavity property of C(·, ·, u) are technical
requirements that will be important in the next section.

As we already observed, by Lemma 8, the controlled dynamics of (S(·), I(·))
evolves within the setM. When needed, we stress the dependency of (S(·), I(·))
with respect to x ∈M and u(·) ∈ U by writing (Sx,u(·), Ix,u(·)). We shall also
simply set (Sx(·), Ix(·)) := (Sx,0(·), Ix,0(·)) to denote the solutions to (5) and
(6) when u(·) ≡ 0.
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Then, we introduce the problem’s value function

V (x) := inf
u(·)∈U

∫ ∞
0

e−rtC
(
Sx,u(t), Ix,u(t), u(t)

)
dt, x ∈M. (9)

Since C is nonnegative and bounded, we have the following.

Proposition 2 V is well defined, nonnegative, and bounded.

In the next section we will show that V is semiconcave, solves the corre-
sponding dynamic programming equation in the viscosity sense, and we will
also provide an optimal control in feedback form.

3 The Solution to the Social Planner Problem

Let x = (s, i) ∈M and set

b(x, u) := (−βsi− us+ η(1− s− i), βsi− γi), x ∈M. (10)

In light of the dynamic programming principle (see, e.g., [29]), we expect that
V should identify with a suitable solution to the Hamilton-Jacobi-Bellman
(HJB) equation

rv(x) = H(x,Dv(x)), x = (s, i) ∈M, (11)

where Dv := (vs, vi) denotes the gradient of v (being vs and vi the partial
derivatives in the s and i direction respectively) and

H(x, p) = inf
u∈U
Hcv(x, p; u), x = (s, i) ∈M, p = (ps, pi) ∈ R2,

with

Hcv(x, p; u) = 〈b(x, u), p〉+ C(x, u), x = (s, i) ∈M, p = (ps, pi) ∈ R2.

Here, and in the sequel, 〈·, ·〉 denotes the scalar product in R2.
Defining the linear operator

(Lv)(x) := βsi(vi(s, i)− vs(s, i) + η(1− s− i)vs(s, i)− γivi(s, i), (12)

with x = (s, i) ∈ M, v ∈ C1(M), we can separate the linear part in the HJB
equation (11) and write

(r − L)v(x) = C?(x, vs(x)), (13)
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where
C?(s, i, ps) = inf

u∈U
{C(s, i, u)− usps} , ps ∈ R.

For future frequent use, given an open set O ⊆ R2 and a function f :
O → R, we denote by D+f (resp., D−f) the supergradient (respectively,
subgradient) of f ; namely, for any x ∈ O,

D+f(x) :=
{
p ∈ R2 : lim inf

y→x

f(y)− f(x)− 〈p, y − x〉
|y − x|

≥ 0
}
, (14)

and

D−f(x) :=
{
p ∈ R2 : lim sup

y→x

f(y)− f(x)− 〈p, y − x〉
|y − x|

≤ 0
}
. (15)

Then, due to Assumption 1, we have the following preliminary result which
is the stationary version of Theorems 7.4.11 and 7.4.14 in [9] (by taking g ≡ 0
therein).

Theorem 3 V is semiconcave on M and solves the HJB equation (11) in the
viscosity sense on M; that is,

(subsolution) rV (x) ≤ inf
u∈U

{
〈b(x, u), p〉+C(x, u)

}
, ∀p := (ps, pi) ∈ D+V (x);

(supersolution) rV (x) ≥ inf
u∈U

{
〈b(x, u), p〉+C(x, u)

}
, ∀p := (ps, pi) ∈ D−V (x).

Let now

U?(s, i, ps) := argminu∈U {C(s, i, u)− usps} , (s, i, ps) ∈M× R, (16)

which, due to the strict convexity of C(x, ·) (cf. Assumption 1), exists unique
and is continuous onM×R by the Berge’s maximum theorem. In light of the
semiconcavity of V and of the proof of the next verification theorem, let us now
recall some well-known properties of semiconcave functions for the reader’s
convenience. Given O ⊆ Rn, x ∈ O and a semiconcave function f : O → R, we
denote by D∗f(x) the set of reachable gradients. We say that a vector p ∈ R2

is a reachable gradient of f at x if there exists {xn}n∈N which converges to x
and admits Df(xn) for each n ∈ N such that p = limn→∞Df(xn); i.e.

D∗f(x) :=
{

lim
n→∞

Df(xn) : ∃Df(xn) and xn → x
}
.

Also, given and fixed ξ ∈ Rn, we set

f±ξ (x) := lim
r→0±

f(x+ rξ)− f(x)

r

which exists by semiconcavity of f . Further, the notation ‘co’ denotes the
convex hull, that is the set of all convex combinations of points of the set.
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Proposition 4 Let O ⊆ Rn and f : O ⊆ Rn → R be semiconcave. Then the
following hold true:

(a) D+f(x) is nonempty, closed and convex for each x ∈ O.
(b) The multi-valued map x 7→ D+f(x) is locally bounded.
(c) f is a.e. differentiable over O.
(d) Given and fixed x ∈ O, we have

D+f(x) = coD∗f(x).

(e) Given and fixed ξ ∈ Rn we have

f+ξ (x) = min
p∈D+f(x)

〈p, ξ〉, f−ξ (x) = max
p∈D+f(x)

〈p, ξ〉. (17)

(f) D+f(x) is compact and convex.

Proof We simply provide precise reference for the reader’s convenience. Item (a)
follows by Proposition 3.1.5-(b) and Proposition 3.3.4-(c) in [9]; Item (b) is due to
Theorem 2.1.7 in [9]; Item (c) is then implied by Item (b) and Rademacher’s Theorem;
Items (d) and (e) follow by Theorem 3.3.6 in [9]; Item (f) is due to Item (d) and
the fact that the convex hull of a compact set - such as D∗f(x), by definition - is
compact (cf. Corollary A.1.7 in [9]). �

We are now ready to state and prove the main result of this section, namely
a verification theorem for viscosity solutions to the HJB equation (11). Its
proof is inspired by that of Theorem 3.9 in [29], which is, however, thoroughly
adapted and expanded to the present setting by suitably exploiting the semi-
concavity of V , and thus the subsequent properties of its supergradient (cf.
Proposition 4).

In the following, given a semiconcave function v :M→ R we set3

∂±vs := v±(1,0), ∂∗sv := {∂+s v, ∂−s v}.

Theorem 5 [Non-smooth Verification Theorem] Let v : M → R+ be semiconcave,
bounded and nonnegative. Then the following hold true:

1. If v is a viscosity subsolution to the HJB equation, then v ≤ V on M.
2. Recall (16). Let x := (s, i) ∈ M, let v be a viscosity supersolution to the

HJB equation, and let u? ∈ U be such that, denoting by (S?(·), I?(·)) the
state trajectory associated to u?, the following holds:

u?(t) ∈ U? (S?(t), I?(t), ∂∗sv(S?(t), I?(t))) , for a.e. t ≥ 0. (18)

Then v(s, i) ≥ J(s, i; u?).

3Hereafter, the superscript ± means, as usual, either + or −.
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Proof Recall b as in (10). Given an admissible control u(·) and the corresponding
controlled trajectory X(·) = (S(·), I(·)), for future use throughout this proof, define
the set

T = Tu(·) :=

{
t > 0 : v(X(·)) is differentiable and lim

h→0+

1

h

∫ t

t−h
b(X(s), u(s))ds

= lim
h→0+

1

h

∫ t+h

t
b(X(s), u(s))ds = b(X(t), u(t))

}
.

Notice that T has full measure. Indeed, b(X(·), u(·)) ∈ L1
loc(R

+); furthermore,
because of the Lipschitz property of t 7→ X(t) and the locally Lipschitz property
of v, which follows by semiconcavity, we have that t 7→ v(X(t)) is locally Lipschitz
continuous, and, hence, it is differentiable a.e. This last assertion simply follows by
applying Lebesgue’s differentiation theorem, see [15, Theorem 2.19], to v(X(·)).

Step 1. Let ū(·) be an admissible control and X̄(·) := (S̄(·), Ī(·)) be the asso-
ciated state trajectory. In order to simplify notation, from now on, we set b̄(t) :=
b(X̄(t), ū(t)).

Let now t ∈ T and let p̄(t) ∈ D+v(X̄(t)). We then have:

d

dt
e−rtv(X̄(t)) = lim

h→0+

−e−r(t−h)v(X̄(t− h)) + e−rtv(X̄(t))

h

= e−rt lim
h→0+

erhv(X̄(t))− erhv(X̄(t− h)) + v(X̄(t))− erhv(X̄(t))

h

= e−rt
(

lim
h→0+

erh
v(X̄(t− h) + hb̄(t) + o(h))− v(X̄(t− h))

h
+

− rv(X̄(t))

)
≥ e−rt

(
〈p̄(t), b̄(t)〉 − rv(X̄(t))

)
, (19)

where the last inequality follows by the fact that p̄(t) ∈ D+v(X̄(t)).
Since now v is a viscosity subsolution to the HJB equation, we find from (19)

d

dt
e−rtv(X̄(t)) ≥ −rv(X̄(t)) + 〈p̄(t), b̄(t)〉 ≥ −C(X̄(t), ū(t)). (20)

On the other hand, because of the Lipschitz property of v(X̄(·)) we can write, for
X̄(0) = x = (s, i) ∈M,

e−rT v(X̄(T ))− v(x) =

∫ T

0

d

dt
e−rtv(X̄(t))dt, (21)

and picking a measurable selection t 7→ p̄(t) ∈ D+v(X̄(t)) (see, e.g., page 277 in
[29]), and using (20) in (21), we find

v(x) ≤ e−rT v(X̄(T )) +

∫ T

0
e−rtC(X̄(t), ū(t))dt.

Since v and C are bounded, we safely take the limit as T →∞ obtaining

v(x) ≤
∫ ∞
0

e−rtC(X̄(t), ū(t))dt.

By the arbitrariness of ū and x it follows that v ≤ V on M, as claimed.

Step 2. For x ∈M given and fixed, let

P+(x) := argminp∈D+v(x)〈p, (1, 0)〉, P−(x) := argmaxp∈D+v(x)〈p, (1, 0)〉
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and notice that

〈p, (1, 0)〉 = ∂+s v(x), ∀p ∈ P+(x), 〈p, (1, 0)〉 = ∂−s v(x), ∀p ∈ P−(x).

Hence, since P±(x) is closed, bounded, and convex, it must have the structure

P±(x) = {∂±s v(x)} × [p±
i

(x), p̄±i (x)],

for some −∞ < p±
i

(x) ≤ p̄±i (x) <∞. The point (∂±s v(x), p±
i

(x)) is thus an extremal

point for the convex compact set D+v(x) (cf. Proposition 4-(e)), and by Proposition
4-(d) there exists a sequence x±n → x such that

∃Dv(x±n )→ (∂±s v(x), p±
i

(x)) ∈ D+v(x).

Since v is a viscosity supersolution we have

rv(x±n ) ≥ inf
u∈U

{
〈b(x±n , u), Dv(x±n )〉+ C(x±n , u)

}
,

which, taking the limit as n→∞, yields

rv(x) ≥ inf
u∈U
{〈b(x, u), (∂±s v(x), p±

i
(x)))〉+ C(x, u)}. (22)

Using the definition of U? as in (16), (22) gives

rv(x) ≥ 〈b(x, U?(x, ∂±s v(x)), (∂±s v(x), p±
i

(x))〉+ C(x, U?(x, ∂±s v(x))). (23)

Now, let u?(·) and X?(·) := (S?(·), I?(·)) as in the claim, and take t ∈ T ? =
Tu?(·). Also, let b?(·) := b(X?(·), u?(·)). Then

d

dt
e−rtv(X?(t)) = lim

h→0+

e−r(t+h)v(X?(t+ h))− e−rtv(X?(t))

h

= e−rt
(

lim
h→0+

e−rh
v(X?(t+ h))− v(X?(t))

h
− rv(X?(t))

)
= e−rt

(
lim
h→0+

e−rh
v(X?(t) + hb?(t) + o(h))− v(X?(t))

h
+

− rv(X?(t))

)
,

from which, using the definition of superdifferential (14) with f = v and x = X?(t),

d

dt
e−rtv(X?(t)) ≤ e−rt

(
−rv(X?(t)) + 〈b?(t), (∂±s v(X?(t)), p

i
(X?(t)))〉

)
, (24)

so that by (23)

e−rt
(
−rv(X?(t)) + 〈b?(t), (∂±s v(X?(t)), p

i
(X?(t)))〉

)
≤ −e−rtC(X?(t), u?(t)).

Therefore
d

dt
e−rtv(X?(t)) ≤ −e−rtC(X?(t), u?(t)). (25)

Because of the locally Lipschitz property of t 7→ v(X?(t)), we can write

e−rT v(X?(T ))− v(x) =

∫ T

0

d

dt
e−rtv(X?(t))dt, (26)

which, together with (26) and the assumed nonnegativity of v, yields

v(x) ≥ e−rT v(X?(T )) +

∫ T

0
e−rtC(X?(t), u?(t))dt ≥

∫ T

0
e−rtC(X?(t), u?(t))dt.
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Taking limits as T ↑ ∞ and using the monotone convergence theorem by nonnega-
tivity of C, we finally obtain

v(x) ≥
∫ ∞
0

e−rtC(X?(t), u?(t))dt.

Hence, v ≥ V on M, by arbitrariness of x. �

Combining the results of the previous theorem, we see that if both the
assumptions of Part (1) and Part (2) are satisfied, then we find that v(x) =
V (x) and u?(·) is optimal starting at x.

Part (2) of Theorem 5 assumes (18), which in turn holds if a solution to
the closed-loop differential inclusion S′(t) ∈ −βS(t)I(t)− S(t)U? (S(t), I(t), ∂∗sV (S(t), I(t))) +

+η(1− S(t)− I(t)),
I ′(t) = βS(t)I(t)− γI(t),

(27)

exists. In order to address this aspect, we consider the closed-loop equation S′(t) = −βS(t)I(t)− S(t)U? (S(t), I(t), ∂+s v(S(t), I(t))) +
+η(1− S(t)− I(t)),

I ′(t) = βS(t)I(t)− γI(t),
(28)

and look at it from the point of view of the theory of Regular Lagrangian
Flows; cf. [4] and [5], among others. Such theory has been introduced in order
to provide a good notion of flow maps even in situations when the associated
vector field exhibits little regularity. For this, we recall the following definition
(cf. Definition 1 in [4]):

Definition 1 Let d ≥ 1, denote by Ld the Lebesgue measure on Rd, and fix T > 0.
We say that X(t; x) is a Regular Lagrangian Flow associated to a vector field
m : Rd → Rd if:

1. For Ld-a.e. x ∈ Rd, t 7→ X(t; x) is an absolutely continuous solution on
[0, T ] to the ODE

d

dt
X(t; x) = m(X(t; x)), X(0; x) = x;

2. for some constant C > 0,

Ld
(
x ∈ Rd : X(t; x) ∈ B

)
≤ C · Ld

(
B
)
∀t ∈ [0, T ], ∀B ⊂ Rd Borel set.

We say that a Regular Lagrangian Flow is unique if, given X(t; x) and X̃(t; x)
Regular Lagrangian Flows starting from Ld-measurable sets Bi ⊂ Rd, i = 1, 2, we
have that

X(t; x) = X̃(t; x), for Ld − a.e.x ∈ B1 ∩B2.
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Proposition 6 Let v : M → R+ be a semiconcave, bounded, and nonnegative
viscosity solution to (11). Set

Ũ?(s, i) := U?
(
s, i, ∂+s v(s, i)

)
and assume that

(i) (s, i, ps) 7→ U?(s, i, ps) is locally Lipschitz-continuous on M× R;

(ii) (s∂Ũ
?

∂s )+ ∈ L∞(M).

Then, the Regular Lagrangian Flow (closed-loop equation){
S′(t) = −βS(t)I(t)− Ũ? (S(t), I(t))S(t) + η(1− S(t)− I(t)),

I ′(t) = βS(t)I(t)− γI(t),
(29)

with initial data (S(0), I(0)) = (s, i) ∈M exists and is unique.

Proof It is enough to embed the closed-loop equation (29) in the setting of Definition
1, and apply Theorem 7 in [4] (see also Theorems 6.2 and 6.4 in [5]), after checking
the validity of its hypothesis.

In order to accomplish that, we set

x = (x1, x2) =: (s, i) ∈M, X(t; x) = (X1, X2)(t; x) =: (S(t), I(t))

and

m(x) :=
(
− βx1x2 − x1Ũ?(x1, x2) + η(1− x1 − x2), βx1x2 − γx2

)
, x ∈M,

(being extended to R2 by defining it equal to (0, 0) on Mc).
Firstly, since v is semiconcave by Theorem 3, it follows by Theorem 3 at page 240

of [10] that ∂+s v is locally of bounded variation onM. Then, as (s, i, ps) 7→ U?(s, i, ps)

is locally Lipschitz-continuous by assumption, it follows that Ũ? is locally of bounded
variation on M too by Theorem 4 in [19], so that m is locally of bounded variation
on R2.

Secondly, given the fact that (x1, x2) ∈ M and Ũ? ∈ [0, U ], it is readily seen

that
|m(x)|
1+|x| is integrable over R2. Furthermore, explicit computations yield inM, for

some K ≥ 0, (
divm

)− ≤ K +
(
− x1

∂Ũ?

∂x1

)−
= K +

(
x1
∂Ũ?

∂x1

)+
.

Since
(
s∂Ũ

?

∂s

)+ ∈ L∞(M) by assumption, we conclude. �

As a corollary of Theorems 3 and 5, and of Proposition 6, we obtain
uniqueness of viscosity solution to HJB (11).

Corollary 7 Let Assumption 1 and the assumptions of Proposition 6 hold. Then V
is the unique bounded locally semiconcave viscosity solution to (11).

Proof We need to prove uniqueness. By Proposition 6, a solution to (28) exists for
almost every (s, i) ∈M. This provides the control u? required by Part (1) of Theorem
5. Hence, given any other bounded locally semiconcave viscosity solution v to (11),
we get v(s, i) = V (s, i) for a.e. (s, i) ∈ M. Since semiconcavity implies continuity,
we conclude that v = V on M. �
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4 A Case Study with Numerical Illustrations

In this section we introduce a case study and provide numerical simulations.
This section simply aims at illustrating the results of the proposed model and
no empirical study will be developed. This in particular means that real data
will not be employed in order to provide estimations of the model’s parameters
and no fit of the model on real data will be performed. Indeed, we believe
that, though relevant, a similar empirical analysis falls outside the scopes of
the present paper and it is left for future research.

In order to proceed with our illustrations, it is useful to preliminarly con-
sider as benchmark the dynamical system (5)-(6) in absence of vaccination.
We assume that Ro = β/γ > 1. In this case the dynamical system has two
equilibria:

(S(1,o)
∞ , I(1,o)∞ ) =

(
γ

β
,

η

γ + η

(
1− γ

β

))
, (S(2,o)

∞ , I(2,o)∞ ) = (1, 0). (30)

The convergence of the system to the first of the above equilibria means that
the disease becomes endogenous; the convergence to the second one means

that the disease goes to extinction. It is shown in [27] that (S
(1,o)
∞ , I

(1,o)
∞ ) is

globally asymptotically stable when Ro = β/γ > 1, whereas (S
(2,o)
∞ , I

(2,o)
∞ ) is

globally asymptotically stable when Ro = β/γ < 1.
We assume that the cost function has the following quadratic form

C(s, i, u) =
1

2

(
ai2 + b(us)2

)
, a, b > 0, (s, i) ∈M, u ∈ U.

The latter can be interpreted as a second-order Taylor approximation of any
smooth, convex, separable cost function with global minimum in (0, 0). The
parameter a can be taken, for instance, as a = ῑ−1, where ῑ ∈ (0, 1) repre-
sents the maximal percentage of infected people that the health-care system
can handle; on the other hand, b represents the sensitivity of the policy
maker with respect to the vaccination costs. Under this specification of the
cost function, for each (s, i) ∈ M, given v as in Proposition 6, we have

Ũ?(s, i) = U?(s, i, ∂+s v(s, i)), where

U?(s, i, ps) =


0 if ps ≤ 0,

ps
bs if 0 < ps < bUs,

U if ps ≥ bUs,
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Now, (s, i, ps) 7→ U?(s, i, ps) is clearly locally Lipschitz continuous. Moreover,
we notice that

∂U?

∂s
(s, i, ps) =

{
0, if ps /∈ (0, bUs),

− ps
bs2 , if ps ∈ (0, bUs),

∂U?

∂ps
(s, i, ps) =

{
0, if ps /∈ (0, bUs),
1
bs , if ps ∈ (0, bUs).

Therefore, ∂U?

∂s ≤ 0 and we have (in the sense of distributions)

s
∂Ũ?

∂s
(s, i) = s

∂U?

∂s
(s, i, ∂+s v(s, i)) + s

∂U?

∂ps
(s, i, ∂+s v(s, i)) · ∂

∂s

(
∂+s v

)
(s, i)

≤ 1

b

∂

∂s

(
∂+s v

)
(s, i).

Then, the semiconcavity of v allows to conclude (s∂Ũ
?

∂s )+ ∈ L∞(M), so that
Corollary 7 applies and V is the unique bounded, locally semiconcave viscosity
solution to (11).

4.1 Details of numerical scheme

Our numerical method consists of two parts: the construction of the dynamics
of (S, I) (see (5) and (6)) for each initial value (s, i) ∈ M and, based on
the previous discussion, a recursive routine on the HJB equation (11). More
precisely, starting from v[0] ≡ 0, we use the recursive algorithm:

(r − L)v[n+1] = C?(s, i, v[n]s ), n ≥ 0.

Those equations are then solved using the representation formula

v[n+1](s, i) =

∫ ∞
0

e−rtC?
(
Ss,it , Is,it , v[n]s (Ss,it , Is,it )

)
dt, (s, i) ∈M. (31)

Such an approach overcomes the issue of the lack of appropriate boundary con-
ditions for the HJB equation (11). As a matter of fact, the boundary ∂M is
unattainable for the underlying controlled dynamical system, so that no natu-
ral conditions for V on ∂M arise. It is worth noticing that although no evidence
on the theoretical convergence of the above recursive procedure is provided in
the current analysis, the convergence of iteration (31) has been verified through
the performed numerical tests. Indeed, if the procedure converges, then the
limit is the unique viscosity solution to (11) (see Corollary 7).

The numerical algorithm is designed using MatLab® and all computations
are performed on a Quad-Core Intel Core i5 processor (at 2.3 GHz) running
macOS. More in detail, the numerical implementation is performed using a
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regular grid on the space (0, 1)2 with 80× 80 nodes and uniform grid’s size δ.
We consider a discretization of M represented by the set

M̂ := {(ksδ, kiδ) | ks, ki ∈ N \ {0} and (ks + ki)δ ≤ 0.95}.

The evaluation of ∂+s v
[n] at a point of M̂ depends on the position of the point

in the set. If (ks + ki + 2)δ ≤ 0.95, then ∂+s v
[n]((ks, ki)δ) is approximated by

using the forward finite difference scheme

∂+s v
[n]((ks, ki)δ) ≈

− 3
2v

[n]((ks, ki)δ) + 2v[n]((ks + 1, ki)δ)− 1
2v

[n]((ks + 2, ki)δ)

δ3

+O(δ2);

if (ks + ki + 2)δ > 0.95 and (ks + ki + 1)δ ≤ 0.95, then the evaluation of
∂+s v

[n]((ks, ki)δ) is performed using the first-order accuracy formula

∂+s v
[n]((ks, ki)δ) ≈

−v[n]((ks, ki)δ) + v[n]((ks + 1, ki)δ)

δ2
+O(δ);

finally, if (ks + ki + 1)δ > 0.95, then ∂+s v
[n]((ks, ki)δ) is replaced by the left

derivative approximation

∂−s v
[n]((ks, ki)δ) ≈

1
2v

[n]((ks − 2, ki)δ)− 2v[n]((ks − 1, ki)δ) + 3
2v

[n]((ks, ki)δ)

δ3

+O(δ2).

Note that this last choice is justified by Theorem 5, whose statement could
indeed have been equivalently given through the notions of viscosity super-
solution and subgradient. The algorithm stops when |v[n+1] − v[n]| < ε, with
ε = 10−4. Throughout this section, the unit of time will be the week.

4.2 Optimal vaccination vs. no vaccination

We set the following values for the parameters. The transmission rate of the
disease is β = 0.7; the average length of infection and reinfection are assumed
to be equal to 21 and 180 days respectively, so that γ = 1

3 and η = 7
180 ; we

set r = 0.005
52 (i.e. a yearly discount rate of 5%) and a = 0.08 and b = 0.016.

We fix U = 7
120 . Since e−52U ≈ e−3, one observes that the health-care system

vaccinating at the maximal rate U is able to vaccinate about 95% of the total
population in 1 year. Finally, we initialize the system as

S(0) = 75%, I(0) = 20%.

Figure 1 provides a comparison between the optimal vaccination policy and
the no-vaccination policy. As outcome, we see that in both cases the system
oscillates in a first phase and then converges towards an equilibrium.
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Fig. 1 Comparison between the optimal social planner vaccination policy (upper panel) and
the case of no vaccination (lower panel). The figures in the first column show the evolution
of the vaccination policy through the optimal control ut; the ones in the second column
show the evolution of the instantaneous reproduction number Rt = β

γ
S(t); the ones in the

third column show evolution of the percentage of susceptible (in blue), infected (in red) and
recovered (in green) individuals.

Our numerical simulations suggest that the optimal policy u? always con-
verges towards a limit value u?∞. Assuming that such an equilibrium u?∞ indeed
exists, we see that the optimally controlled system has again two long-run
equilibria (cf. (30)):

(S(1)
∞ , I(1)∞ ) =

(
γ

β
,

η

η + γ

(
1− γ

β

)
− γ

η + γ

u?∞
β

)
(S(2)
∞ , I(2)∞ ) =

(
η

η + u?∞
, 0

)
,

whenever I
(1)
∞ > 0. Repeating the arguments in [27] (easily adjusted to our

setting), it can be proved that (S
(1)
∞ , I

(1)
∞ ) is globally asymptotically stable

when u?∞ < γ.
We can observe that in the case of no vaccination the disease becomes

endogenous, whereas the optimal vaccination is able in the long-run to keep
the number of infected to zero. More precisely, in the case of no vaccination,
the long-run percentage of susceptible and infected individuals, 47% and 6%,
respectively, is achieved in about 3 years. On the contrast, if the policy maker
adopts the optimal vaccination policy, the vaccination campaign starts with
maximum intensity U and then it fluctuates for a period of about 28 weeks.
After that, it stabilizes at the value U . In this case, the equilibrium point

(S
(2)
∞ , I

(2)
∞ ) is approached counting about 40% of susceptible individuals and

almost no infected in less than 1 year. Still, to avoid a new outbreak of the
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disease, the vaccination policy U must be kept to move individuals from the
class S to the class R.

Finally, in the case of vaccination, we briefly discuss the computational time
of the numerical simulations. In the defined setting, the first part of the numeri-
cal method, i.e. the construction of the dynamics of (S, I), approximately takes
55.6s, whereas the computational speed of the second part, consisting of the
recursive routine on the HJB equation (see (31)), is theoretically dependent on
the stopping criterion |v[n+1] − v[n]| < ε. In Table 1 we report the algorithmic
time taken to compute the value function V for different values of the threshold
ε. As expected, we note that the greater the required accuracy is, the slower is
the algorithmic procedure to return V , although such an effect appears to be
negligible if compared to the running time of the whole numerical procedure.

Table 1 Computational time to approximate the value
function V using different values of the stopping criterion’s
parameter ε.

ε 10−4 10−6 10−8 10−10 10−12 10−14

Time 0.22s 0.42s 0.57s 0.60s 0.70s 1.16s

4.3 Variation of the parameter η

In this subsection we study how the optimal vaccination rate, the optimal
reproduction number Rt and the optimally controlled dynamics of susceptible,
infected and recovered depend on the reinfection rate η. We assume that the
average period of reinfection is equal to 60 or 360 days, so that either η = 7

360
or η = 7

60 , respectively. All the other parameters are instead kept fixed to the
values assumed in Section 4.2.

As expected, from Figure 2 we observe that the optimal vaccination rate
increases when increasing η. However, the more vigorous optimal vaccination
rate employed when η = 7

60 is not such to let infections to zero. As a matter
of fact, the lower row of Figure 2 shows that the number of infected stabilizes
asymptotically around the level 0.05. On the other hand, the infected popula-
tion disappears in the long run through a weaker vaccination policy when the
reinfection average period is of 1 year circa.

4.4 Variation of the ratio β
γ

In this section we consider strategies corresponding to different values of the
natural reproduction number Ro = β

γ ; precisely, we take β
γ = 3 and β

γ = 3
2 . All

the other parameters are instead kept fixed to the values assumed in Section
4.2. A comparison of the optimal social planner vaccination policy is shown in
Figure 3.

It is interesting to notice that the two choices of Ro are such that the
dynamical system of susceptible and infected stabilizes around the equilibria in
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Fig. 2 Comparison between the optimal social planner vaccination policy when the average
length of reinfection is 60 days (first row) or 360 days (second row). The figures in the first
column show the evolution of the vaccination policy through the optimal control ut; the
ones in the second column show the evolution of the instantaneous reproduction number
Rt = β

γ
S(t); the ones in the third column show the evolution of the percentage of susceptible

(in blue), infected (in red) and recovered (in green) individuals.

Fig. 3 Comparison between the optimal social planner vaccination policy when Ro = 3
(first row) or Ro = 3/2 (second row). The figures in the first column show the evolution of
the vaccination policy through the optimal control ut; the ones in the second column show
the evolution of the instantaneous reproduction number Rt = β

γ
S(t); the ones in the third

column show the evolution of the percentage of susceptible (in blue), infected (in red) and
recovered (in green) individuals.

which the disease becomes endogenous or achieves zero infections. As a matter
of fact, when Ro = 3, the optimal strategy is constantly equal to U = 7

120

and the dynamical system converges to the equilibrium point (S
(1)
∞ , I

(1)
∞ ) ≈
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(0.33, 0.11). On the other hand, if Ro = 3
2 , the optimal strategy stabilizes

around to the value u?∞ ≈ 0.028 and the dynamical system converges to the

equilibrium point (S
(2)
∞ , I

(2)
∞ ) ≈ (0.56, 0). Hence, a lower natural reproduction

number Ro has the effect of making it possible to asymptotically keep the
number of infected to zero through the optimal vaccination policy.

4.5 Optimal vaccination policy for different values of
initial infected individuals

In this section we study how the optimal vaccination policy reacts to different
initial percentages of the infected population. All the parameters are set as in
Section 4.2, βγ = 1.5, and the percentage I(0) of the initial infected individuals

is 1%, 5% and 10%. The results of the numerical study are presented in Figure
4. We observe that, in all the considered cases, the optimal vaccination rate

Fig. 4 Comparison between the optimal social planner vaccination policy in the case the
initial infected individuals are 1% (first row), 5% (second row) and 10% (third row). The
figures in the first column show the evolution of the vaccination policy through the value of
the optimal control ut; the ones in the second column show the evolution of the instantaneous
reproduction number Rt = β

γ
S(t); the ones in the third column show the evolution of the

percentage of susceptible (in blue), infected (in red) and recovered (in green) individuals.

asymptotically stabilizes around the equilibrium level u∞ ≈ 0.028, so that,
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under the optimal vaccination policy, I∞ = 0 after circa 20 weeks. In all the
cases, the vaccination policy starts at the maximal rate, then the vaccination
campaign is relaxed, and it is finally kept at the constant rate u∞ ≈ 0.028.
However, the starting date of this final phase of constant vaccination rate
is different: it is circa 15 weeks when I(0) = 1%; it is circa 30 weeks when
I(0) = 5%; it is circa 54 weeks if I(0) = 10%. That is, the social planner is
allowed to stabilize the vaccination rate only after a first time period, whose
length increases when the number of initial infected people increases.

5 Conclusions

Within a SIR model with reinfection possibility, we have considered the prob-
lem of a social planner that aims at reducing the number of individuals
susceptible to an infectious disease via a vaccination policy that minimizes
social and economic costs. The resulting optimal control problem is nonlinear
and nonconvex, due to the nonlinear dynamics of the percentage of susceptible,
infected and recovered (immunized) populations. Combining refined techniques
of viscosity theory and results from the theory of Regular Lagrangian flows,
we are able to provide verifiable sufficient conditions under which the minimal
cost function identifies with the unique semiconcave viscosity solution to the
corresponding HJB equation. A recursion on the latter is then employed in
order to provide a numerical implementation in a case study with quadratic
costs. Our experiments show that it is possible to maintain asymptotically the
number of infected to zero, at least when the disease is not too infective. How-
ever, given that the model allows reinfection with positive probability, this
comes at the cost of keeping vaccinating at a constant rate in the long-run.
Further, in most of the numerical results, the optimal control, given in feed-
back form, fluctuates during the first period (approximately 6-7 months) as it
substantially follows the oscillations of the underlying dynamical system. From
a practical viewpoint, following the optimal strategy’s fluctuations is certainly
challenging for a policymaker. Nevertheless, employing a policy that averages
those oscillations out may represent an effective guide for the social planner’s
actions.

There are several directions towards which this research can be extended
and continued. First of all, from a technical point of view, it would be inter-
esting to grasp a deeper understanding of how the theory Regular Lagrangian
Flows can be helpful for proving the well-posedness of the closed-loop equation
arising in nonlinear optimal control problems, as those arising in mathemat-
ical epidemiology. Second of all, from a modeling perspective, stochastic and
partial observation features should be included in the model, as the evolution
of an infectious disease is clearly far to obey completely observable determin-
istic law of motions. Thirdly, it would be intriguing to study the problem of
optimal vaccination problem from a moral-hazard point of view, thus leading
to a principal-agent problem where the social planner designs benefits which
should induce the agents (the susceptible population) to get vaccinated. These



Springer Nature 2021 LATEX template

24 Epidemic Control via Vaccination

aspects are clearly outside the scope of the present work and are therefore left
to future research.

A A Technical Result

Lemma 8 Recall (2), (3) and (4). One has S(t) > 0, I(t) > 0 and R(t) > 0 for all
t ≥ 0.

Proof Let (S(0), I(0), R(0)) =: (s, i, r) ∈ (0, 1)3 and define τ := inf{t ≥ 0 : S(t) ≤
0} ∧ inf{t ≥ 0 : I(t) ≤ 0} ∧ inf{t ≥ 0 : R(t) ≤ 0}. For the sake of contradiction,
suppose that τ < ∞. Then, let t ∈ [0, τ) and, by using (2), (3) and (4), the chain
rule yields:

ln
(
S(t)I(t)R(t)

)
= ln(s, i, r) +

+

∫ t

0

(
− βI + η

R

S
+ βS − (γ + η + u) + γ

I

R
+ u

S

R

)
(q)dq

≥ ln(s, i, r)− β
∫ t

0
I(q)dq − (γ + η + U)t

≥ ln(s, i, r)− (γ + η + U)t− t max
q∈[0,t]

I(q), (32)

where in the penultimate inequality we have used that 0 ≤ u(·) ≤ U . The contradic-
tion now follows by taking limits as t→ τ . �
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