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Abstract
We consider the problem of tracking an unknown time varying parameter that char-
acterizes the probabilistic evolution of a sequence of independent observations. To
this aim, we propose a stochastic gradient descent-based recursive scheme in which
the log-likelihood of the observations acts as time varying gain function. We prove
convergence in mean-square error in a suitable neighbourhood of the unknown time
varying parameter and illustrate the details of our findings in the case where data are
generated from distributions belonging to the exponential family.
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1 Introduction

When estimating unknown parameters in a dynamic model the optimum solution to
the parameter estimation problem may not remain constant. Specifically, the optimal
values of the model parameters may change through time because of the evolution of
the underlying process: finding them is, in general, not straightforward. A survey of
basic techniques for tracking the time-varying dynamics of a system is provided in
Ljung and Gunnarsson (1990) where recursive algorithms in non-stationary stochastic
optimization are analysed under different assumptions about the true system’s varia-
tions, see also Simonetto et al. (2020) for a review in a purely deterministic setting. In
Delyon and Juditsky (1995) the problem of tracking the random drifting parameters
of a linear regression system is tackled, and Zhu and Spall (2016) builds a computable
tracking error bound for how a stochastic approximation with constant gain keeps up
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with a non-stationary target. Successively, Wilson et al. (2019) introduces a frame-
work for sequentially solving convex stochastic minimization problems, where the
distance between successive minimizers is bounded. The minimization problems are
then solved by sequentially applying an optimization algorithm, such as stochastic
gradient descent (SGD). In a similar setting, Cao et al. (2019) establishes an upper
bound on the regret of a projected SGD algorithm with respect to the drift of the
dynamic optima, while Cutler et al. (2021) provides novel non-asymptotic conver-
gence guarantees for stochastic algorithms with iterate averaging.

We study time-varying stochastic optimization in a general statistical setting where
we assume we are given a sequence of independent observations {Xt }t∈N with associ-
ated densities possessing a parameter that changes through time. In such a framework
a problem of interest concerns finding a useful estimator of the time varying param-
eter at a certain time t - generalizing the classical problem of parameter estimation
from the static setting to the time varying parameter setting. Ideally, one would like
to find a sequence of estimators that track the time varying parameter through time as
closely as possible. We show that, under some assumptions, utilizing the celebrated
SGD algorithm (Robbins andMonro 1951) produces a sequence of estimators that will
eventually track the time varying parameter - up to a neighborhood - as the number of
observations increase.

Established in a general setting that intersects with the frameworks utilized in Cao
et al. (2019), Cutler et al. (2021) and Wilson et al. (2019), our results differ from
previous work mainly in one aspect: that our objective functions have the specific
form of expected log likelihoods, a dissimilarity that will be exploited by utilizing
their informational theoretical properties.

The work we present is also linked to the class of score driven models (Creal et al.
2013). Score driven models are a class of observation driven models (here we are
using the terminology introduced by Cox et al. (1981)) that update the dynamics of
the time varying parameter through the score of the conditional distribution of the
observations. Specifically, the same proof technique we utilize to obtain our result can
be used to show that a -so called- Newton-score update (Blasques et al. 2015), with the
parameter that multiplies the score appropriately chosen, will track the time varying
parameter of interest trough time even under possible model misspecificaiton.

A final way to interpret the results we present in this work is as robustness results
for a one batch stochastic gradient procedure in the case we are incorrectly assuming
that our observations are identically distributed. Indeed, the results show that even if
we incorrectly assumed that the true parameter is static (we have IID observations)
utilizing a stochastic gradient algorithm with a time dependent single sized batch to
optimize the log-likelihood allows us to track the pseudo true time varying parameter
up to a neighborhood if it is not moving wildly.

The paper is organised as follows: in Sect. 2 we list and discuss the assumptions of
our framework and state the main result. We then present a class of examples given
by the exponential family and discuss the performance of SGD with respect to the
one observation maximum likelihood estimator at each time. In the third section we
provide a detailed proof of our main result.
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2 Statement of themain result

Let {Xt }t∈N be a sequence of independentm-dimensional random vectors defined on a
common probability space (�,F , P). In the sequel we will writeE[·] for the expected
value with respect to the probability measure P, ‖ · ‖ for the Euclidean norm in R

d

and ‖ · ‖L2(�) for E[‖ · ‖2] 12 .
We assume that for any t ∈ N the random vector Xt possesses a joint probability

density function which depends on the d-dimensional parameter λ∗
t , in symbols Xt ∼

p(·|λ∗
t ). Our aim is to estimate the sequence {λ∗

t }t∈N through the observed values
{Xt }t∈N: To this aim we choose λ1 ∈ R

d and utilize the SGD algorithm

λt+1 := λt + α∇λ ln p(Xt |λt ), t ∈ N. (2.1)

Utilizing SGD to attempt to track λ∗
t is motivated by the principle underlying clas-

sical maximum likelihood estimation: in fact, under some canonical assumptions
we will present below, λ∗

t will be the maximum of the expected log-likelihood
λ → E [ln p(Xt |λ)]. Thus, finding a sequence of estimators that track the time varying
parameter as closely as possible is connected to finding the maxima of a sequence of
expected log-likelihoods, a generalization of the classical static framework. Since we
have no direct access to the expected log-likelihoods, but only a singe observation
for each time t , we categorize the problem as a time varying stochastic optimization
problem.

The assumptions we will require to obtain our result are the following.

Assumption 2.1 (Smoothness of the log-likelihood) The function

R
d � λ �→ ln p(x |λ) (2.2)

is twice continuously differentiable for all x ∈ R
m ; moreover,

∂λi ∂λ j E [ln p(Xt |λ)] = E
[
∂λ j ∂λ j ln p(Xt |λ)

]
,

for all i, j ∈ {1, ..., d} and t ∈ N.

Assumption 2.2 (Strong convexity) The function in (2.2) is strongly convex uniformly
with respect to x ∈ R

m : i.e., there exists a positive constant � such that for all x ∈ R
m

the matrix Hλ[− ln p(x |λ)] − �Id is positive semi-definite. Here, Hλ[− ln p(x |λ)]
stands for the Hessian matrix of the function in (2.2) while Id denotes the d × d
identity matrix.

Assumption 2.3 (Lipschitz continuity of the gradient) The function

R
d � λ �→ ∇λ ln p(x |λ)

is globally Lipschitz continuous uniformly with respect to x ∈ R
m : i.e., there exists a

positive constant L such that for all x ∈ R
m we have

‖∇λ ln p(x |ξ1) − ∇λ ln p(x |ξ2)‖ ≤ L‖ξ1 − ξ2‖, ξ1, ξ2 ∈ R
d .
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Assumptions 2.2 and 2.3 are classical in the optimization literature, see for instance
Boyd and Vandenberghe (2004) and Bottou et al. (2018); we have utilized the versions
of Nesterov (2014). We remark that Assumption 2.2 may seem excessively restrictive
at first glance, but we will present in Example 2.9 below a large family of examples
where it holds.

Remark 2.4 Assumptions 2.1 and 2.3 imply that

I(λ∗
t ) ≤ dL,

where we have denoted I(λ∗
t ) := E[‖∇λ ln p(Xt |λ∗

t )‖2], i.e. the trace of Fisher infor-
mation matrix of Xt . In fact,

I(λ∗
t ) = E[‖∇λ ln p(Xt |λ∗

t )‖2] =
d∑

j=1

E[(∂λ j ln p(Xt |λ∗
t ))

2] = −
d∑

j=1

E[∂2λ j
ln p(Xt |λ∗

t )]

=
d∑

j=1

E[∂2λ j
(− ln p(Xt |λ∗

t ))] =
d∑

j=1

E[〈Hλ(− ln p(Xt |λ∗
t ))e j , e j 〉]

≤
d∑

j=1

E[〈L Ide j , e j 〉] = dL.

Wewill use Remark 2.4 to bound the quantityE[‖∇λ ln p(Xt |λt )‖2]. In the general
setting utilized in the optimization literature a bound onE[‖∇λ ln p(Xt |λt )‖2] requires
an extra assumption, seeBottou et al. (2018) and the discussion inNguyen et al. (2018).
In our setting we manage to avoid this type of additional assumption thanks to the
properties of the Fisher information matrix.

Our last assumption concerns the evolution of the time varying parameter {λ∗
t }t∈N.

Assumption 2.5 (Lipschitz continuity of the true parameter) There exists a positive
constant K such that

‖λ∗
t+1 − λ∗

t ‖ ≤ K for all t ∈ N.

Assumption 2.5 has been used throughout the literature, see for example Simonetto
et al. (2020); Cao et al. (2019) and Wilson et al. (2019), since a limitation on the
behavior of the sequence of true parameters values must be imposed to be able to
track it.

We can now state our main theorem.

Theorem 2.6 Let Assumptions 2.1, 2.2, 2.3 and 2.5 hold. Then, for α ∈ [ 1
�+L , 1

L ]
running the SGD (2.1) we obtain

lim sup
t→+∞

‖λt+1 − λ∗
t ‖L2(�) ≤ ϕ(α, L)K + α

√
2dL

1 − ϕ(α, L)
, (2.3)

123



Maximum Likelihood with a Time Varying Parameter 2559

where ϕ(α, L) := √
1 − 2Lα + 2L2α2. Moreover, the minimum of the right hand side

in (2.3) is attained at α = 1
�+L and in this case the last inequality reads

lim sup
t→+∞

‖λt+1 − λ∗
t ‖L2(�) ≤ K

√
�2 + L2 + √

2dL

� + L − √
�2 + L2

. (2.4)

Remark 2.7 Notice thatλt+1 depends on X1, X2, . . . , Xt , so as an estimator it is natural
to compare it with λ∗

t .

Remark 2.8 In the case of model misspecification, i.e. when the true distribution of
the observations is not included in the parametric model {p(·|λ)}λ∈Rd , the same proof
technique can be utilized to show that the recursion (2.1) will track the so called
pseudo-true time varying parameter λ̃t which is defined as

λ̃t := arg max
λ∈Rd

E[ln p(Xt |λ)].

We recall that the pseudo-true time varying parameter λ̃t minimizes the Kullback
Leiber divergence between the law of the data generating process and the model
densities at each time t , see White (1982) and Akaike (1973) for additional details.

The only technical difference in the proof is that Remark 2.4 can’t be used since
E[‖∇λ ln p(Xt |λ̃t )‖2] is no longer related to the Fisher informationmatrix of Xt . Thus,
an additional assumption is needed to control E[‖∇λ ln p(Xt |λ̃t )‖2] but this is standard
practice in the optimization literature, see Nguyen et al. (2018) for a discussion on
this kind of assumption.

Example 2.9 The exponential family in canonical form provides a class of natural
examples where Theorem 2.6 holds. Take as the parameter of interest the natural
parameter of a distribution belonging to the exponential family put in canonical form,
i.e.

p(x |λ) = h(x) exp{〈λ, T (x)〉 − A(λ)}, x ∈ R
m

where h : R
m → R is a non-negative function, T : R

m → R
d is a sufficient statistic

and A : R
d → R must be chosen so that p(x |λ) integrates to one.

A standard result for exponential families, see for instance Theorem 1.6.3 in Bickel
andDoksum (2001), is that A is a convex function of λ; this fact togetherwith identities

∇λ ln p(x |λ) = T (x) − ∇λA(λ),

and

Hλ[− ln p(x |λ)] = −HλA(λ),

implies that one can find, restricting if necessary the range of λ (and hence of {λ∗
t }t∈N)

to a suitable convex compact set 	, the positive constants l and L required for the
validity of Assumptions 2.2-2.3.
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Note that the restriction of the range of λ to the convex compact set 	 is carried
out by simply modifying (2.1) as

λ̄t+1 := 
	

(
λ̄t + α∇λ ln p(Xt |λ̄t )

)
, t ∈ N,

where 
	 denotes the orthogonal projection onto the set 	. This alternative scheme
doesn’t affect the validity of Theorem 2.6; in fact, from the contraction property of

	 we get

‖λ̄t+1 − λ∗
t ‖2 = ‖
	(λ̄t + α∇λ ln p(Xt |λ̄t )) − λ∗

t ‖2 ≤ ‖λ̄t + α∇λ ln p(Xt |λ̄t ) − λ∗
t ‖2,

and this corresponds to the first step in the proof of Theorem 2.6 (see Sect. 3 below
for more details).

An important question concerning applied settings is whether the estimator λt
defined in (2.1) performs asymptotically better than the maximum likelihood estima-
tor λ̂t calculated by optimizing the one observation log-likelihood ln p(Xt |λt ). The
following example will showcase that there are indeed cases when utilizing (2.1) is
beneficial.

Example 2.10 Referring to Example 2.9 and setting m = d = 1 for ease of notation,
we consider a sequence of independent observations {Xt }t∈N with

Xt ∼ p(x |λ∗
t ) := h(x) exp{λ∗

t T (x) − A(λ∗
t )}, x ∈ R.

We assume in addition that λ �→ A′′(λ) is continuous and we restrict the parameter
space to	 = [λm, λM ] for suitable real numbers λm < λM . Observe that Assumptions
2.2 and 2.3 hold in this case with

� = min
λ∈	

A′′(λ), L = max
λ∈	

A′′(λ).

In Theorem 2.6 we obtained an upper bound for the asymptotic mean-square error
of λt as defined in (2.1). We now want to compare it with the mean-square error of the
sufficient statistic T (Xt ), which we assume to be unbiased; this means considering
the quantity

√
E[|T (Xt ) − λ∗

t |2] = √
V[T (Xt )] = √

A′′(λ∗
t ), (2.5)

where the last equality follows from Theorem 1.6.2 in Bickel and Doksum (2001).
Therefore, our estimator λt , performs asymptotically better than T (Xt ) if

K
√

�2 + L2 + √
2L

� + L − √
�2 + L2

≤ √
A′′(λ∗

t ) for all t ∈ N. (2.6)

Here, the left hand side corresponds to right hand side in (2.4) with d = 1 while the
right hand side follows from (2.5). We want this inequality to hold for all possible
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values of the sequence {λ∗
t }t∈N and this is achieved by taking the infimum of the right

hand side of (2.6), i.e., we want

K
√

�2 + L2 + √
2L

� + L − √
�2 + L2

≤ √
�. (2.7)

A simple investigation of the previous inequality shows that the left hand side increases
for small values of � or large values of L; hence, there exist �̄ and L̄ such that for all
�̄ ≤ � ≤ L ≤ L̄ the asymptotic mean-square error of λt is lower than the mean-square
error of the sufficient statistic T (Xt ). Figures2 and 3 provide an illustration of this fact.
Finally, notice that there are caseswhen the sufficient statistic of the exponential family
is unbiased and coincides with the one observation maximum likelihood estimator, as
is the case if we choose as the parameter of interest the variance of a Gaussian.

Example 2.11 A specific member of the exponential family of distributions that leads
to pleasing computations is the case of the Gaussian with parameter of interest the
mean μ. Setting m = d = 1, for ease of notation, the log-likelihood of a Gaussian
with mean μ and variance σ 2 is quadratic in μ:

ln p(x |μ) = −1

2
ln

(
2πσ 2

)
− 1

2σ 2 (x − μ)2.

The second derivative of the negative log-likelihood is

− ∂2

∂μ2 ln p(x |μ) = 1

σ 2 ,

so it follows that Assumptions 2.2 and 2.3 hold with � = L = 1
σ 2 . It is also well

known that Assumption 2.1 holds in the Gaussian case. Thus, in the specific case of
the mean of a Gaussian, Theorem 2.6 tells us that for α = 1

�+L = σ 2

2 running the SGD
(2.1) we obtain

lim sup
t→+∞

‖μt+1 − μ∗
t ‖L2(�) ≤ σ(K

√
2 + √

2d)

2 − √
2

. (2.8)

InFig. 1we simulate theSGD(2.1) givenGaussian observationswith constant variance
and a time varying mean

Example 2.12 An example outside of the exponential family of distributions is pro-
vided, for instance, by a Student-t scale model with exponential link function, i.e.,

X = exp(λ)ε
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Fig. 1 The trajectory of the SGD (2.1), starting from μ1 = 2, when Gaussian observations have constant
variance (σ 2 = 1) and a time varying mean that evolves linearly

where ε has a Student-t distribution with degrees of freedom parameter ν. Such a
model has, up to additive constants, a log-likelihood given by

ln p(x |λ) = −λ − ν + 1

2
ln

(
1 + x2

ν exp(2λ)

)
,

the derivative of the log-likelihood with respect to the parameter of interest λ is

∂

∂λ
ln p(x |λ) = (ν + 1)x2

ν exp(2λ) + x2
− 1.

Furthermore, we have that

− ∂2

∂λ2
ln p(x |λ) = 2ν(ν + 1)x2 exp(2λ)

(ν exp(2λ) + x2)2
,

which is strictly positive and uniformly bounded from above and below, so Assump-
tions 2.2 and 2.3 hold. A model that utilizes a Student-t scale probability distribution
with exponential link function in applications is the Beta-t-EGARCH originally pro-
posed by Harvey and Chakravarty (2008), see also Harvey (2013). Other practical
settings with a suitable stochastic framework ripe for applications can be found in the
actuarial domain, see Maciak et al. (2021).

3 Proof of themain result

Using (2.1) and expanding the squared Euclidian norm we can write

‖λt+1 − λ∗
t ‖2 =‖λt − λ∗

t + α∇λ ln p(Xt |λt )‖2

123



Maximum Likelihood with a Time Varying Parameter 2563

Fig. 2 Plot of the surface z = min

{
K

√
�2+L2+√

2 L
�+L−

√
�2+L2

− √
�, 0

}
from (2.7) with x = l, y = L − � and

K = 1

Fig. 3 Plot of the surface z = min

{
K

√
�2+L2+√

2 L
�+L−

√
�2+L2

− √
�, 0

}
from (2.7) with x = l, y = L − � and

K = 2

=‖λt − λ∗
t ‖2 + 2α〈λt − λ∗

t ,∇λ ln p(Xt |λt )〉 + α2‖∇λ ln p(Xt |λt )‖2
=‖λt − λ∗

t ‖2 + 2α〈λt − λ∗
t ,∇λ ln p(Xt |λt ) − ∇λ ln p(Xt |λ∗

t )〉
+ 2α〈λt − λ∗

t ,∇λ ln p(Xt |λ∗
t )〉 + α2‖∇λ ln p(Xt |λt )‖2

=‖λt − λ∗
t ‖2 + A1 + 2α〈λt − λ∗

t ,∇λ ln p(Xt |λ∗
t )〉 + A2, (3.1)

where we set

A1 := 2α〈λt − λ∗
t ,∇λ ln p(Xt |λt ) − ∇λ ln p(Xt |λ∗

t )〉
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and

A2 := α2‖∇λ ln p(Xt |λt )‖2.

To treat A1 we employ Theorem 2.1.12 from Nesterov (2014); with C1 := �L
�+L and

C2 = 1
�+L this gives

A1 ≤ − 2αC1‖λt − λ∗
t ‖2 − 2αC2‖∇λ ln p(Xt |λt ) − ∇λ ln p(Xt |λ∗

t )‖2; (3.2)

moreover, using inequality ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2 we get

A2 ≤ 2α2‖∇λ ln p(Xt |λt ) − ∇λ ln p(Xt |λ∗
t )‖2 + 2α2‖∇λ ln p(Xt |λ∗

t )‖2. (3.3)

Combining (3.1) with (3.2) and (3.3) we obtain

‖λt+1 − λ∗
t ‖2 ≤(1 − 2αC1)‖λt − λ∗

t ‖2 + 2α〈λt − λ∗
t ,∇λ ln p(Xt |λ∗

t )〉
+ 2α(α − C2)‖∇λ ln p(Xt |λt ) − ∇λ ln p(Xt |λ∗

t )‖2
+ 2α2‖∇λ ln p(Xt |λ∗

t )‖2.

Imposing that 2α(α − C2) ≥ 0, or equivalently α ≥ C2, we can utilize the Lipschitz
continuity of the gradient in the second line above to get

‖λt+1 − λ∗
t ‖2 ≤ (1 − 2αC1 + 2α(α − C2)L

2)‖λt − λ∗
t ‖2

+ 2α〈λt − λ∗
t ,∇λ ln p(Xt |λ∗

t )〉 + 2α2‖∇λ ln p(Xt |λ∗
t )‖2. (3.4)

Notice that according to the definitions of C1 and C2 we can write

1 − 2αC1 + 2L2α(α − C2) = 1 − 2α(C1 + L2C2) + 2L2α2

= 1 − 2α

(
�L

� + L
+ L2

� + L

)
+ 2L2α2

= 1 − 2Lα + 2L2α2.

therefore, setting ϕ(α, L) := √
1 − 2Lα + 2L2α2 inequality (3.4) now reads

‖λt+1 − λ∗
t ‖2 ≤ϕ(α, L)2‖λt − λ∗

t ‖2 + 2α〈λt − λ∗
t ,∇λ ln p(Xt |λ∗

t )〉
+ 2α2‖∇λ ln p(Xt |λ∗

t )‖2.

Taking the conditional expectation with respect to the sigma-algebra Ft−1 :=
σ(X1, ..., Xt−1) of both sides above we obtain

E[‖λt+1 − λ∗
t ‖2|Ft−1] ≤ϕ(α, L)2‖λt − λ∗

t ‖2 + 2α〈λt − λ∗
t , E[∇λ ln p(Xt |λ∗

t )|Ft−1]〉
+ 2α2

E[‖∇λ ln p(Xt |λ∗
t )‖2|Ft−1]
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=ϕ(α, L)2‖λt − λ∗
t ‖2 + 2α〈λt − λ∗

t , E[∇λ ln p(Xt |λ∗
t )]〉

+ 2α2
E[‖∇λ ln p(Xt |λ∗

t )‖2]
≤ϕ(α, L)2‖λt − λ∗

t ‖2 + 2α2dL. (3.5)

Here, we have utilized that

• λt is by construction Ft−1-measurable for all t ∈ N;
• the Xt ’s are independent;
• the expectation of the score is zero, this follows from Assumptions 2.1 and 2.2
and by the fact that λ∗

t is the maximum of the log-likelihood λ → ln p(Xt |λ);
• Remark 2.4.

We now compute the expectation of the first and last members of (3.5) to get

E[‖λt+1 − λ∗
t ‖2] ≤ ϕ(α, L)2E[‖λt − λ∗

t ‖2] + 2α2dL,

which together with inequality
√
a + b ≤ √

a + √
b gives

‖λt+1 − λ∗
t ‖L2(�) ≤ ϕ(α, L)‖λt − λ∗

t ‖L2(�) + α
√
2dL.

The last step involves using Assumption 2.5 in the previous estimate to obtain

‖λt+1 − λ∗
t ‖L2(�) ≤ ϕ(α, L)‖λt − λ∗

t−1‖L2(�) + ϕ(α, L)K + α
√
2dL,

which upon iteration yields

‖λt+1 − λ∗
t ‖L2(�) ≤ ϕ(α, L)t−1‖λ2 − λ∗

1‖L2(�) + (ϕ(α, L)K + α
√
2dL)

1 − ϕ(α, L)t−1

1 − ϕ(α, L)
.

If α < 1
L , then ϕ(α, L) < 1; we can therefore take the limit as t tends to infinity of

both sides to get

lim sup
t→+∞

‖λt+1 − λ∗
t ‖L2(�) ≤ ϕ(α, L)K + α

√
2dL

1 − ϕ(α, L)
;

moreover, the minimum of the right hand side above is attained at α = 1
l+L (in view

of the constraints needed on α to recover inequality (3.4)).
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