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Two-level a posteriori error estimation for
adaptive multilevel stochastic Galerkin FEM∗

Alex Bespalov† , Dirk Praetorius‡ , and Michele Ruggeri‡

Abstract. The paper considers a class of parametric elliptic partial differential equations (PDEs), where the
coefficients and the right-hand side function depend on infinitely many (uncertain) parameters.
We introduce a two-level a posteriori estimator to control the energy error in multilevel stochastic
Galerkin approximations for this class of PDE problems. We prove that the two-level estimator
always provides a lower bound for the unknown approximation error, while the upper bound is
equivalent to a saturation assumption. We propose and empirically compare three adaptive algo-
rithms, where the structure of the estimator is exploited to perform spatial refinement as well as
parametric enrichment. The paper also discusses implementation aspects of computing multilevel
stochastic Galerkin approximations.

Key words. adaptive methods, a posteriori error analysis, two-level error estimation, multilevel stochastic
Galerkin method, finite element method, parametric PDEs

AMS subject classifications. 35R60, 65C20, 65N15, 65N30, 65N50

1. Introduction.

1.1. Multilevel stochastic Galerkin FEM. The effective numerical solution of partial dif-
ferential equations (PDEs) with uncertain or parameter-dependent inputs requires non-trivial
computational methods and efficient algorithms. Stochastic Galerkin finite element meth-
ods (SGFEMs) provide a powerful alternative to traditional sampling techniques for such
problems, in particular, when the inputs and solutions are sufficiently smooth functions of
parameters (for comparison between SGFEM and popular sampling methods, such as Monte
Carlo and stochastic collocation finite element methods, we refer to [32, 1, 29]). Appropriate
construction of the underlying approximation spaces and adaptivity are the keys to compu-
tationally efficient SGFEM implementations, particularly in the case of inputs depending on
infinitely many uncertain parameters.

Stochastic Galerkin approximations are typically represented in terms of a finite gener-
alized polynomial chaos (gPC) expansion with spatial coefficients residing in finite element
spaces. If all spatial coefficients reside in the same finite element space, the corresponding
SGFEM approximation space is termed single-level and its dimension has a multiplicative rep-
resentation (i.e., the total number of degrees of freedom is equal to the number of active terms
in the gPC expansion multiplied by the dimension of the finite element space). An alternative
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to this is a more flexible multilevel construction, where spatial gPC-coefficients may reside
in different finite element spaces. In this case, the dimension of the SGFEM approximation
space admits an additive representation (i.e., the total number of degrees of freedom is equal
to the sum of dimensions of all involved finite element spaces).

Multilevel SGFEMs have emerged in [14, 15, 31]. These works have provided a theoretical
benchmark for convergence analysis of the SGFEM. In particular, under some assumptions on
parametric inputs, they have proved the existence of a sequence of multilevel approximation
spaces such that the errors in the associated Galerkin solutions converge to zero with an opti-
mal rate (i.e., with the rate of the chosen FEM for the corresponding parameter-free problem).
Practical realizations of adaptive algorithms that generate these sequences of approximation
spaces and Galerkin solutions have been developed in [19] and more recently in [16]. While
the predicted optimal convergence behavior of multilevel SGFEM approximations has been
observed numerically for parametric problems with spatially regular [16] and spatially sin-
gular [19] solutions, a provable optimality result for the developed adaptive algorithms for
multilevel SGFEMs has so far remained an open problem.

Multilevel approaches based on hierarchies of spatial approximations have been studied
also for sampling methods. Remaining within the context of the numerical approximation of
elliptic PDEs with uncertain data, we refer, e.g., to [13] for multilevel Monte Carlo (MLMC)
methods, to [35] for multilevel quasi-Monte Carlo methods, and to [45] for multilevel stochastic
collocation (MLSC) methods. Adaptive strategies for MLMC and MLSC have been developed
recently in [34] and [36], respectively.

1.2. Main contributions and outline of the paper. In this paper, we consider the same
parametric model problem as studied in the above cited works [19, 16] (among very many
other works)—the steady-state diffusion equation with a spatially varying coefficient that has
affine dependence on infinitely many parameters.

For the numerical solution of this problem, we propose an adaptive algorithm that iterates
the following loop of four modules:

SOLVE −→ ESTIMATE −→ MARK −→ REFINE

(see Algorithm 7 below). Let us briefly describe each of these modules emphasizing their
specific features pertinent to the multilevel SGFEM.
• SOLVE: In this module, the multilevel SGFEM approximation is computed as a finite gPC

expansion with coefficients in the current set of finite element spaces. One of the challenges in
implementing multilevel SGFEMs is the efficient computation of nonsquare stiffness matrices
associated with two different finite element meshes. The existing implementations either
rely on projection techniques to compute these stiffness matrices approximately (see [19, 24])
or restrict themselves to spatial discretizations on nested uniform meshes (see [16]). In this
paper, we propose an effective procedure for direct computation of nonsquare stiffness matrices
for a pair of general, not necessarily nested meshes obtained from the same coarse mesh by
finitely many steps of a fixed mesh refinement rule (in our case, newest vertex bisection).
SGFEMs give rise to very large linear systems with block structure. Solving such linear
systems numerically is a non-trivial task that stimulated the development and analysis of
iterative solvers, preconditioning strategies, and low-rank approximation techniques; see, e.g.,



ADAPTIVE MULTILEVEL STOCHASTIC GALERKIN FEM 3

[28, 38, 46, 43, 27, 17, 3]. In order to solve the linear systems arising in the multilevel SGFEM,
we use a bespoke implementation of the Minimum Residual method from [42] with the mean-
based preconditioner from [28, 38].
• ESTIMATE: In this module, the error between the (unknown) exact solution and the

multilevel SGFEM approximation is estimated by suitable error indicators. The a posteriori
error estimation in multilevel SGFEMs has been addressed in [19, 16]. While explicit residual-
based error estimators are employed in [19], hierarchical-type error estimators are analyzed
in [16]. Building on the ideas in our recent works for a single-level SGFEM [6, 5], in this
paper, we propose a novel a posteriori error estimation strategy for multilevel SGFEM ap-
proximations. The estimator, which combines a two-level spatial estimator and a hierarchical
parametric estimator, allows to estimate the error contributions from finite element discretiza-
tions in the physical domain and those from the approximation (obtained via truncation) in
the parameter domain independently from each other. We prove that the combined error
estimator is always efficient, i.e., up to a multiplicative constant, it provides a lower bound for
the energy error, whereas its reliability (i.e., the upper bound for the error) is equivalent to a
saturation assumption (see subsection 4.1 below). This choice of the error estimation strategy
is motivated by a recent success in proving optimal convergence rates for adaptive algorithms
for deterministic problems; see [39]. Thus, we see our a posteriori error analysis in this paper
as an important step towards proving the optimality result for adaptive multilevel SGFEM
approximations by extending the methodology developed in [39] to the parametric setting.
• MARK: In this module, some of the spatial and parametric components of the current

multilevel SGFEM approximation are selected for refinement by assessing the values of the
error indicators computed in the module ESTIMATE. The application of the module MARK
highlights key differences between adaptive multilevel SGFEM and multilevel sampling meth-
ods (such as MLMC and MLSC). The latter methods typically require the number of active
parameters in approximations to be fixed a priori, and the balance between the spatial er-
ror (e.g., due to finite element discretization) and the parametric error (e.g., due to Monte
Carlo sampling or high-dimensional polynomial interpolation) is achieved by employing a pri-
ori bounds for spatial errors and by minimizing the cost functional (see, e.g., [32, section 3.4]
for MLMC and [45] for MLSC). Adaptive SGFEM algorithms are fundamentally different.
Firstly, they require no sampling. Secondly, the selection of active parameters, the trunca-
tion of the gPC expansion, and the balance between spatial and parametric components of
approximation errors are performed automatically using a posteriori error indicators and the
adopted marking criterion. The choice of the marking criterion is critical. In this work, we
propose three different marking strategies, all based on the bulk-chasing criterion proposed in
the deterministic setting by Dörfler [18]. In addition to two standard marking criteria that
lead to separate refinement of either spatial or parametric components at each iteration of the
adaptive loop (see, e.g., [19, 20, 10, 5, 16]), we also exploit the multilevel structure of the ap-
proximation space and perform a combined refinement at each iteration by employing Dörfler
marking on the joint set of spatial and parametric error indicators. While combined refinement
is prohibitively expensive for single-level SGFEM (because of the multiplicative dependence of
the dimension of the discrete space on the number of active terms in the gPC expansion), we
stress that multilevel SGFEM allows for combined refinement and our experiments indicate
optimal convergence behavior.
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• REFINE: In this module, the finite-dimensional space for computing the next multilevel
SGFEM approximation is generated by enriching the current finite-dimensional space with the
spatial and parametric components selected in the module MARK. Specifically, (i) the finite
element spaces are enriched by refining all marked elements of the current spatial meshes; and
(ii) new terms are added to the gPC expansion.

The paper is organized as follows. Section 2 introduces the model parametric problem
and its weak formulation. In section 3, we describe the main ingredients of the multilevel
SGFEM discretization, introduce the multilevel approximation space, and define the corre-
sponding Galerkin solution. Section 4 is focused on the a posteriori error analysis of multilevel
SGFEM approximations and includes the main theoretical result of this paper (Theorem 2).
Adaptive algorithms with three different marking criteria are formulated in section 5, whereas
implementation aspects of computing multilevel SGFEM approximations are discussed in sec-
tion 6. The effectiveness of our error estimation strategy and the performance of the proposed
adaptive algorithms are assessed in a series of numerical experiments presented in section 7.

2. Problem formulation. Let D ⊂ Rd (d = 2, 3) be a bounded Lipschitz domain with
polytopal boundary ∂D and let Γ :=

∏∞
m=1[−1, 1] denote the infinitely-dimensional hypercube.

We consider the elliptic boundary value problem

(2.1)
−∇ · (a∇u) = f in D × Γ,

u = 0 on ∂D × Γ,

where the scalar coefficient a and the right-hand side function f (and, hence, the solution u)
depend on a countably infinite number of scalar parameters, i.e., a = a(x,y), f = f(x,y),
and u = u(x,y) with x ∈ D and y = (ym)m∈N ∈ Γ. For the coefficient a, we assume linear
dependence on the parameters, i.e.,

(2.2) a(x,y) = a0(x) +
∞∑
m=1

ymam(x) for all x ∈ D and y ∈ Γ.

We assume that f ∈L2
π(Γ;H−1(D)), where π=π(y) is a measure on (Γ,B(Γ)) with B(Γ) being

the Borel σ-algebra on Γ. We assume that π(y) is the product of symmetric Borel probability
measures πm on [−1, 1], i.e., π(y) =

∏∞
m=1 πm(ym).

For each m ∈ N0, the scalar functions am ∈ L∞(D) in (2.2) are required to satisfy the
following inequalities (cf. [40, Section 2.3]):

0 < amin
0 ≤ a0(x) ≤ amax

0 <∞ for almost all x ∈ D,(2.3)

τ :=
1

amin
0

∥∥∥∥ ∞∑
m=1

|am|
∥∥∥∥
L∞(D)

< 1 and

∞∑
m=1

‖am‖L∞(D) <∞.(2.4)

With the Sobolev space X := H1
0 (D), consider the Bochner space V := L2

π(Γ;X). Define the
following bilinear forms on V:

B0(u,v) :=

∫
Γ

∫
D
a0(x)∇u(x,y) · ∇v(x,y) dx dπ(y),(2.5)

B(u,v) := B0(u,v) +

∞∑
m=1

∫
Γ

∫
D
ymam(x)∇u(x,y) · ∇v(x,y) dx dπ(y).(2.6)
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An elementary computation shows that assumptions (2.2)–(2.4) ensure that the bilinear forms
B0(·, ·) and B(·, ·) are symmetric, continuous, and elliptic on V. Let ||| · ||| (resp., ||| · |||0) denote
the norm induced by B(·, ·) (resp., B0(·, ·)). Then, there holds

(2.7) λ |||v |||20 ≤ |||v |||2 ≤ Λ |||v |||20 for all v ∈ V,

where λ := 1− τ and Λ := 1 + τ . Note that 0 < λ < 1 < Λ < 2.
The parametric problem (2.1) is understood in the weak sense: Given f ∈L2

π(Γ;H−1(D)),
find u ∈ V such that

(2.8) B(u,v) = F (v) :=

∫
Γ

∫
D
f(x,y)v(x,y) dx dπ(y) for all v ∈ V.

The existence and uniqueness of the solution u ∈ V to (2.8) follow by the Riesz theorem.

3. Multilevel stochastic Galerkin FEM discretization. The weak formulation (2.8) is
discretized by constructing a finite-dimensional subspace V• ⊂ V and using the Galerkin
projection onto V•. In the spirit of [14, 31, 19, 16], this work considers approximation spaces
V• with a multilevel structure. Specifically, these spaces are constructed from tensor products
of different finite element subspaces of H1

0 (D) and multivariable polynomial spaces on Γ. We
describe each of these ingredients in the next two subsections.

3.1. Finite element spaces and mesh refinement. Let T• be a mesh, i.e., a conforming
triangulation of D into compact non-degenerate simplices T ∈ T• (i.e., triangles for d = 2)
and denote by N• the set of vertices of T•.

We consider the space of continuous piecewise linear finite elements

X• := S1
0 (T•) := {v• ∈ X : v•|T is affine for all T ∈ T•} ⊂ X = H1

0 (D).

For z ∈ N•, let ϕ•,z be the associated hat function, i.e., ϕ•,z is piecewise affine, globally
continuous, and satisfies the Kronecker property ϕ•,z(z

′) = δzz′ for all z′ ∈ N•. Recall that
{ϕ•,z : z ∈ N• \ ∂D} is the standard basis of X•.

For mesh refinement, we employ newest vertex bisection (NVB); see, e.g., [44, 33]. We
assume that any mesh T• employed for the spatial discretization can be obtained by applying
NVB refinement(s) to a given initial (coarse) mesh T0. In particular, we denote by refine(T0)
the set of all meshes obtained from T0 by finitely many steps of refinement.

For a given mesh T• ∈ refine(T0), let T̂• be the coarsest NVB refinement of T• such
that: (i) for d = 2, all edges of T• have been bisected once (which corresponds to uniform
refinement of all elements by three bisections); (ii) for d = 3, all faces contain an interior
node (we refer to [25] for further discussion). Then, N̂• denotes the set of vertices of T̂•, and
N+
• := (N̂• \ N•) \ ∂D is the set of new interior vertices created by this refinement of T•.

For a set of marked vertices M• ⊆ N+
• , let T◦ := refine(T•,M•) be the coarsest NVB

refinement of T• such that M• ⊂ N◦, i.e., all marked vertices are vertices of T◦. Since NVB
is a binary refinement rule, this implies that N• ⊆ N◦ ⊆ N̂• and (N◦ \ N•) \ ∂D = N+

• ∩N◦.
In particular, the choices M• = ∅ and M• = N+

• lead to the meshes T• = refine(T•, ∅) and
T̂• = refine(T•,N+

• ), respectively.
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The finite element space associated with T̂• is denoted by X̂• := S1
0 (T̂•), and {ϕ̂•,z : z ∈

N̂• \ ∂D} is the corresponding basis of hat functions. Later, we will exploit the (H1-stable)
two-level decomposition X̂• = X• ⊕ span{ϕ̂•,z : z ∈ N+

• }.
We note that there exist two constants K,K ′ ≥ 1 depending only on the initial mesh T0

such that

(3.1) #
{
z ∈ N+

• : |T ∩ supp(ϕ̂•,z)| > 0
}
≤ K <∞ for all T ∈ T•

and

(3.2) #{T ∈ T• : |T ∩ supp(ϕ̂•,z)| > 0} ≤ K ′ <∞ for all z ∈ N+
• ,

with K = 3 and K ′ = 2 for d = 2.

3.2. Polynomial spaces on Γ and parametric enrichment. First, we introduce the poly-
nomial spaces on Γ. For each m ∈ N, let (Pmn )n∈N0 denote the sequence of univariate poly-
nomials which are orthogonal with respect to πm such that Pmn is a polynomial of degree
n ∈ N0 with ‖Pmn ‖L2

πm (−1,1) = 1 and Pm0 ≡ 1. For convenience, we also define Pm−1 ≡ 0 and,
for each n ∈ N0 ∪ {−1}, we denote by cmn the leading coefficient of Pmn . It is well-known that
{Pmn : n ∈ N0} is an orthonormal basis of L2

πm(−1, 1). Moreover, there holds the three-term
recurrence formula

(3.3) βmn Pmn+1(ym) = ym P
m
n (ym)− βmn−1 P

m
n−1(ym) for all ym ∈ [−1, 1] and n ∈ N0,

where βmn−1 = cmn−1/c
m
n . With NN

0 := {ν = (νm)m∈N : νm ∈ N0 for all m ∈ N} and supp(ν) :=
{m ∈ N : νm 6= 0}, let I := {ν ∈ NN

0 : # supp(ν) < ∞} be the set of all finitely supported
multi-indices. Note that I is countable. With

Pν(y) :=
∏
m∈N

Pmνm(ym) =
∏

m∈supp(ν)

Pmνm(ym) for all ν ∈ I and all y ∈ Γ,

the set {Pν : ν ∈ I} is an orthonormal basis of P := L2
π(Γ); see [40, Theorem 2.12].

For any m ∈ N, let εm ∈ I be the m-th unit sequence, i.e., (εm)i = δmi for all i ∈ N. A
consequence of the three-term recurrence formula (3.3) is the identity

(3.4) ymPµ(y) = βmµmPµ+εm(y) + βmµm−1Pµ−εm(y) for all µ ∈ I, y ∈ Γ, and m ∈ N.

Note that the Bochner space V = L2
π(Γ;X) is isometrically isomorphic to X⊗ P and each

function v ∈ V can be represented in the form

(3.5) v(x,y) =
∑
ν∈I

vν(x)Pν(y) with unique coefficients vν ∈ X.

Moreover, there holds (see, e.g., [6, Lemma 2.1])

(3.6) B0(v,w) =
∑
ν∈I

∫
D
a0(x)∇vν(x) · ∇wν(x) dx for all v,w ∈ V
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and, in particular,

(3.7) |||v |||20 =
∑
ν∈I
||| vνPν |||20 =

∑
ν∈I
‖a1/2

0 ∇vν‖
2
L2(D) for all v ∈ V.

Let 0 = (0, 0, . . . ) denote the zero index, and let P• ⊂ I be a finite index set such that
0 ∈ P•. We denote by supp(P•) :=

⋃
ν∈P• supp(ν) the set of active parameters in P•.

Turning now to the parametric enrichment, we follow the same construction as in [10, 7, 6, 5].
For a fixed M ∈ N, we consider the detail index set

(3.8) Q• := {µ ∈ I \P• : µ = ν ± εm for all ν ∈ P• and all m = 1, . . . ,MP• +M},

where MP• := # supp(P•) ∈ N0 is the number of active parameters in the index set P•. Thus,
for a given P• ⊂ I, the detail index set represents an “active boundary” of P• that contains
multi-indices having up to MP• + M active parameters. Then, a parametric enrichment is
obtained by adding some marked indices M• ⊆ Q• to the current index set P•, i.e., P• ⊆
P◦ := P• ∪M• ⊆ P• ∪Q•.

3.3. Multilevel approximation spaces. For each index ν ∈ P•, let T•ν ∈ refine(T0) be
a mesh and X•ν := S1

0 (T•ν) be the corresponding finite element space. Furthermore, for all
indices ν ∈ I\P•, we set T•ν := T0. Following [19], our discretization of (2.8) is based on the
finite-dimensional subspace

(3.9) V• :=
⊕
ν∈P•

V•ν ⊂ V with V•ν := X•ν ⊗ span{Pν} = span
{
ϕ•ν,zPν : z ∈ N•ν

}
.

Note that the sum of the spaces V•ν in (3.9) is orthogonal and hence direct. We emphasize
that, in contrast to [20, 6, 5], where X•ν = X•µ =: X• for all ν, µ ∈ P• and, hence, V• = X• ⊗
span

{
Pν : ν ∈ P•

}
has the tensor product structure (the so-called single-level approximation

space), the approximation space V• defined in (3.9) has a multilevel structure that allows
X•ν 6= X•µ for µ 6= ν. Furthermore, while each mesh T•ν (ν ∈ P•) is obtained by a local
refinement of the same coarse mesh T0, any two meshes T•ν , T•µ (ν, µ ∈ P•) are not necessarily
nested. This is a more general construction than that considered in [16], where the meshes
T•ν , T•µ (ν 6= µ) were assumed to be nested.

The Galerkin discretization of (2.8) reads as follows: Find u• ∈ V• such that

(3.10) B(u•,v•) = F (v•) for all v• ∈ V•.

Again, the Riesz theorem proves the existence and uniqueness of the solution u• ∈ V•. More-
over, the mapping V 3 u 7→ u• ∈ V• is the orthogonal projection onto V• with respect to the
bilinear form B(·, ·). Therefore, there holds the best approximation property

|||u− u• ||| = min
v•∈V•

|||u− v• |||.

4. A posteriori error estimation.



8 A. BESPALOV, D. PRAETORIUS, AND M. RUGGERI

4.1. Saturation assumption. Given a multilevel subspace V• from (3.9), we adopt the
approach of [10, Remark 4.3] and consider an enriched subspace V̂• ⊇ V• defined as

(4.1) V̂• :=
⊕
ν∈P•

[
X̂•ν ⊗ span{Pν}

]
⊕
⊕
ν∈Q•

[
X0 ⊗ span{Pν}

]
⊂ V,

where we recall that T•ν = T0 for all ν ∈ Q• ⊂ I\P•. Note that V• ⊆ V◦ ⊆ V̂•, where V◦ is
obtained from V• by one step of (adaptive) refinement/enrichment, i.e., V◦ is represented in
the form (3.9) with

P◦ = P• ∪M• ⊆ P• ∪Q•,(4.2a)

T◦ν = refine(T•ν ,M•ν) for all ν ∈ P• and T◦ν = T0 for all ν ∈ P◦\P•.(4.2b)

Let û• ∈ V̂• be the unique Galerkin solution to

(4.3) B(û•, v̂•) = F (v̂•) for all v̂• ∈ V̂•.

Existence and uniqueness of the solution û• ∈ V̂• follow from the Riesz theorem. We empha-
size that û• ∈ V̂• is only needed for analysis and will not be computed throughout.

We suppose that there exists a uniform constant 0 < qsat < 1 such that the following
saturation assumption holds:

(4.4) |||u− û• ||| ≤ qsat |||u− u• |||.

We recall the orthogonal decomposition

|||u− û• |||2 + ||| û• − u• |||2 = |||u− u• |||2.

Elementary calculation thus proves that the saturation assumption (4.4) is equivalent to

(4.5) ||| û• − u• |||2 ≤ |||u− u• |||2 ≤
1

1− q2
sat

||| û• − u• |||2,

i.e., the Galerkin error |||u−u• ||| of the (computed) coarse-space solution u• ∈ V• is equivalent
to the error reduction ||| û• − u• ||| with respect to the (non-computed) fine-space solution
û• ∈ V̂•.

Remark 1. The saturation assumption (4.4) is a strong restriction (which may even fail in
general [12]), if required for all discrete subspaces V•. In practice, however, it is only required
for the sequence of nested discrete subspaces generated by an adaptive solution process.

4.2. Error estimator and main result. The error in multilevel stochastic Galerkin ap-
proximations has two principal components: the parametric error arising from the choice of
the index set P• and the spatial error due to finite element discretizations for each ν ∈ P•.
We estimate the contributions to the error from each of these two components separately. To
abbreviate notation, let 〈w , v〉D :=

∫
D a0∇w ·∇vdx be the energy scalar product on the space

X = H1
0 (D) in the physical domain and let ‖ · ‖D := ‖a1/2

0 ∇(·)‖L2(D) be the induced energy
norm on X.
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The parametric error is estimated by means of hierarchical error indicators (cf. [4, 10])

(4.6a) τ•(ν) := ‖e•ν‖D for all ν ∈ Q•,

where e•ν ∈ X0 is the unique solution of

(4.6b) 〈e•ν , v0〉D = F (v0Pν)−B(u•, v0Pν) for all v0 ∈ X0.

In order to estimate the errors due to spatial discretizations, we employ the two-level
error estimation strategy, which has been analyzed in [6] for single-level approximation spaces.
Specifically, we define the two-level error indicators

(4.7) τ•(ν, z) :=
|F (ϕ̂•ν,zPν)−B(u•, ϕ̂•ν,zPν)|

‖ϕ̂•ν,z‖D
for all ν ∈ P• and all z ∈ N+

•ν .

Overall, we thus consider the computable a posteriori error estimate

(4.8) τ• :=

( ∑
ν∈P•

∑
z∈N+

•ν

τ•(ν, z)
2 +

∑
ν∈Q•

τ•(ν)2

)1/2

.

The following theorem is the main theoretical result of this work.

Theorem 2. Let V• be a given multilevel approximation space (3.9), and let V̂• be the
enriched space as defined in (4.1). Then, for two Galerkin approximations u• ∈ V• and
û• ∈ V̂• satisfying (3.10) and (4.3), respectively, there holds

(4.9) C−1
est ||| û• − u• ||| ≤ τ•

(4.8)
=

( ∑
ν∈P•

∑
z∈N+

•ν

τ•(ν, z)
2 +

∑
ν∈Q•

τ•(ν)2

)1/2

≤ Cest ||| û• − u• |||.

Furthermore, if u ∈ V is the solution to problem (2.8), then, under the saturation assump-
tion (4.4), the estimates (4.9) are equivalent to

(4.10)
(1− q2

sat)
1/2

Cest
|||u− u• ||| ≤ τ• ≤ Cest |||u− u• |||,

i.e., the proposed error estimator is reliable (under the saturation assumption) and (always)
efficient. The constant Cest ≥ 1 in (4.9)–(4.10) is generic and depends only on uniform shape
regularity of the refinements of T0, the mean field a0, and the constant τ > 0 from (2.4).

4.3. Auxiliary results in deterministic setting. Throughout this section, we denote by
T? ∈ refine(T0) an arbitrary refinement of the initial mesh. Recall that X = H1

0 (D) and
X? := S1

0 (T?). The proof of Theorem 2 will employ the (spatial) orthogonal projections

G? : X→ X? and Ĝ?,z : X→ X̂?,z := span{ϕ̂?,z} for z ∈ N+
?

defined by

〈G?w , v?〉D = 〈w , v?〉D for all v? ∈ X?,(4.11)

〈Ĝ?,zw , v̂?,z〉D = 〈w , v̂?,z〉D for all v̂?,z ∈ X̂?,z.(4.12)

First, we recall the norm equivalence from [6, Proof of Lemma 3.4, Steps 1–2].
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Lemma 3. For all z ∈ N+
? , let ŵ?,z ∈ span{ϕ̂?,z}. Then, there holds

(4.13) K−1
∥∥∥ ∑
z∈N+

?

ŵ?,z

∥∥∥2

D
≤
∑
z∈N+

?

‖ŵ?,z‖2D ≤ Cloc

∥∥∥ ∑
z∈N+

?

ŵ?,z

∥∥∥2

D
.

Here, Cloc > 0 depends only on the shape regularity of T̂? and the mean field a0, whereas
K > 0 is the constant from (3.1).

Second, we recall that nodal interpolation is stable on finite-dimensional subspaces; see [6,
Proof of Lemma 3.5, Step 1].

Lemma 4. For v̂? ∈ X̂?, let v? :=
∑

z∈N? v̂?(z)ϕ?,z be the nodal interpolation onto X?.
Then

(4.14) v̂? − v? =
∑
z∈N+

?

ŵ?,z with ŵ?,z ∈ span{ϕ̂?,z}

and there holds

(4.15) ‖v̂? − v?‖D ≤ Cstb ‖v̂?‖D,

where Cstb > 0 depends only on the shape regularity of T̂? and the mean field a0.

4.4. Proof of Theorem 2. Recall the orthogonal projectors G? : X → X? and Ĝ?,z :

X → X̂?,z defined in (4.11) and (4.12), respectively. The following lemma provides the key
argument for the proof of Theorem 2.

Lemma 5. For any v̂• =
∑

ν∈P• v̂•νPν +
∑

ν∈Q• v•νPν ∈ V̂•, where v̂•ν ∈ X̂•ν for ν ∈ P•
and v•ν ∈ X•ν = X0 for ν ∈ Q•, the following estimates hold

(4.16) C−1
Y ||| v̂• |||

2
0 ≤

∑
ν∈P•

(
‖G•ν v̂•ν‖2D +

∑
z∈N+

•ν

‖Ĝ•ν,z v̂•ν‖2D
)

+
∑
ν∈Q•

‖v•ν‖2D ≤ 2K ||| v̂• |||20.

Here, CY ≥ 1 depends only on the shape regularity of T̂ and the mean field a0, whereas K > 0
is the constant from (3.1). Moreover, the upper bound holds with the constant K (instead of
2K) if G•ν v̂•ν = 0 for all ν ∈ P•.

Proof. Using (3.7), we have

(4.17) ||| v̂• |||20 =
∑
ν∈P•

‖v̂•ν‖2D +
∑
ν∈Q•

‖v•ν‖2D.

For all ν ∈ P•, we apply Lemma 4 to v̂•ν ∈ X̂•ν in order to find v•ν ∈ X•ν and ŵ•ν,z ∈
span{ϕ̂•ν,z} for all z ∈ N+

•ν such that (4.14)–(4.15) hold.
Step 1. First, we prove the lower bound in (4.16). The Cauchy inequality yields that

‖v̂•ν‖2D
(4.14)

=
〈
v̂•ν , v•ν +

∑
z∈N+

•ν

ŵ•ν,z

〉
D

= 〈G•ν v̂•ν , v•ν〉D +
∑
z∈N+

•ν

〈Ĝ•ν,z v̂•ν , ŵ•ν,z〉D

≤
(
‖G•ν v̂•ν‖2D +

∑
z∈N+

•ν

‖Ĝ•ν,z v̂•ν‖2D
)1/2(

‖v•ν‖2D +
∑
z∈N+

•ν

‖ŵ•ν,z‖2D
)1/2

.
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Stability (4.15) shows that

‖v•ν‖D ≤ ‖v̂•ν‖D + ‖v̂•ν − v•ν‖D
(4.15)

≤ (1 + Cstb)‖v̂•ν‖D.

The upper bound in (4.13) proves that

∑
z∈N+

•ν

‖ŵ•ν,z‖2D ≤ Cloc

∥∥∥ ∑
z∈N+

•ν

ŵ•ν,z

∥∥∥2

D
= Cloc ‖v̂•ν − v•ν‖2D

(4.15)

≤ ClocC
2
stb ‖v̂•ν‖2D.

Combining the latter three estimates, we conclude that

‖v̂•ν‖D ≤
[
(1 + Cstb)2 + ClocC

2
stb

]1/2 (‖G•ν v̂•ν‖2D +
∑
z∈N+

•ν

‖Ĝ•ν,z v̂•ν‖2D
)1/2

.

Using this estimate together with (4.17), we prove the lower bound in (4.16) with CY =
(1 + Cstb)2 + ClocC

2
stb ≥ 1.

Step 2. To prove the upper bound in (4.16), we proceed analogously. For all ν ∈ P•,
there holds

‖G•ν v̂•ν‖2D +
∑
z∈N+

•ν

‖Ĝ•ν,z v̂•ν‖2D = 〈G•ν v̂•ν , v̂•ν〉D +
∑
z∈N+

•ν

〈Ĝ•ν,z v̂•ν , v̂•ν〉D

=
〈
G•ν v̂•ν +

∑
z∈N+

•ν

Ĝ•ν,z v̂•ν , v̂•ν
〉
D
≤
∥∥∥G•ν v̂•ν +

∑
z∈N+

•ν

Ĝ•ν,z v̂•ν
∥∥∥
D
‖v̂•ν‖D.

Using the lower bound in (4.13) and the fact that K ≥ 1, we prove that∥∥∥G•ν v̂•ν +
∑
z∈N+

•ν

Ĝ•ν,z v̂•ν
∥∥∥2

D
≤ 2

(
‖G•ν v̂•ν‖2D +

∥∥∥ ∑
z∈N+

•ν

Ĝ•ν,z v̂•ν
∥∥∥2

D

)
≤ 2K

(
‖G•ν v̂•ν‖2D +

∑
z∈N+

•ν

‖Ĝ•ν,z v̂•ν‖2D
)
.

The latter two estimates imply that(
‖G•ν v̂•ν‖2D +

∑
z∈N+

•ν

‖Ĝ•ν,z v̂•ν‖2D
)1/2

≤
√

2K ‖v̂•ν‖D.

By substituting this estimate into (4.17), we conclude the proof.

Proof of Theorem 2. The equivalence of estimates (4.9) and (4.10) is an immediate con-
sequence of (4.5). Therefore, it only remains to prove (4.9). The proof consists of three steps.

Step 1. Define ê• :=
∑

ν∈P• ê•νPν+
∑

ν∈Q• e•νPν ∈ V̂•, where e•ν ∈ X0 = X•ν for ν ∈ Q•

is given by (4.6), while ê•ν ∈ X̂•ν for ν ∈ P• is the unique solution to

(4.18) 〈ê•ν , v̂•ν〉D = B(û• − u•, v̂•νPν) for all v̂•ν ∈ X̂•ν .
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For all ν ∈ P•, Galerkin orthogonality implies that

〈ê•ν , v•ν〉D = B(û• − u•, v•νPν) = 0 for all v•ν ∈ X•ν .

Hence, we see that G•ν ê•ν = 0 for all ν ∈ P•. In conclusion, Lemma 5 yields that

||| ê• |||20 '
∑
ν∈P•

∑
z∈N+

•ν

‖Ĝ•ν,z ê•ν‖2D +
∑
ν∈Q•

‖e•ν‖2D
(4.6a)

=
∑
ν∈P•

∑
z∈N+

•ν

‖Ĝ•ν,z ê•ν‖2D +
∑
ν∈Q•

τ•(ν)2.

Step 2. The orthogonal projection onto the one-dimensional space span{ϕ̂•ν,z} takes the
explicit form

Ĝ•ν,zv =
〈v , ϕ̂•ν,z〉D
‖ϕ̂•ν,z‖2D

ϕ̂•ν,z for any v ∈ X.

Hence, for all ν ∈ P• and for each z ∈ N+
•ν , there holds

‖Ĝ•ν,z ê•ν‖D =
|〈ê•ν , ϕ̂•ν,z〉D|
‖ϕ̂•ν,z‖D

=
|B(û• − u•, ϕ̂•ν,zPν)|

‖ϕ̂•ν,z‖D
(4.7)
= τ•(ν, z).

This leads to the equivalence

||| ê• |||20 '
∑
ν∈P•

∑
z∈N+

•ν

τ•(ν, z)
2 +

∑
ν∈Q•

τ•(ν)2 = τ2
• ,

where the hidden constants depend only on uniform shape regularity of the meshes T? ∈
refine(T0), the (local) mesh-refinement rule, and the mean field a0.

Step 3. It remains to prove the equivalence ||| ê• |||0 ' ||| û• − u• |||. To that end, we note
that the variational formulation (4.18) implies that

B0(ê•, v̂•) = B(û• − u•, v̂•) for all v̂• ∈ V̂•.

Hence, using norm equivalence (2.7), we obtain that

||| ê• |||20 = B(û• − u•, ê•) ≤ ||| û• − u• |||||| ê• ||| ≤ Λ1/2 ||| û• − u• |||||| ê• |||0

and

||| û• − u• |||2 = B0(ê•, û• − u•) ≤ ||| ê• |||0||| û• − u• |||0 ≤ λ−1/2 ||| ê• |||0||| û• − u• |||.

This concludes the proof.

Remark 6. Let V◦ be a multilevel approximation space that is obtained from V• by one
step of (adaptive) refinement/enrichment (see (4.2)) such that V• ⊆ V◦ ⊆ V̂•. For d = 2,
newest vertex bisection ensures that ϕ̂•ν,z = ϕ◦ν,z for all ν ∈ P• and for each z ∈ N+

•ν ∩ N◦ν .
If u• ∈ V• and u◦ ∈ V◦ are two Galerkin approximations, then by arguing as in the proof of
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Theorem 2, we obtain that

(4.19) C−1
est |||u◦ − u• ||| ≤

( ∑
ν∈P•

∑
z∈N+

•ν∩N◦ν

τ•(ν, z)
2 +

∑
ν∈Q•∩P◦

τ•(ν)2

)1/2

≤ Cest |||u◦ − u• |||.

Therefore, in this setting (at least in 2D), the two-level estimator allows to control the error
reduction due to adaptive enrichment of the multilevel approximation space V•.

5. Adaptive algorithms. In this section, we present adaptive algorithms with three dif-
ferent Dörfler-type marking criteria (and hence, different refinement strategies). These algo-
rithms generate sequences of successively enriched multilevel approximation spaces, as well as
the corresponding Galerkin approximations and error estimates.

We consider the following standard adaptive loop

SOLVE −→ ESTIMATE −→ MARK −→ REFINE,

where the precise marking strategy is to be specified in the subsections below.

Algorithm 7. Input: P0 = {0} and T0ν := T0 for all ν ∈ P0 ∪Q0; marking criterion. Set
the counter ` := 0.

(i) Compute the discrete solution u` ∈ V` by solving (3.10).
(ii) Compute spatial error indicators τ`(ν, z) from (4.7) for all ν ∈ P` and all z ∈ N+

`ν .
(iii) Compute parametric error indicators τ`(ν) from (4.6) for all ν ∈ Q`.
(iv) Use marking criterion to determine M`ν ⊆ N+

`ν for all ν ∈ P` and M` ⊆ Q`.
(v) For all ν ∈ P`, set T(`+1)ν := refine(T`ν ,M`ν).
(vi) Set P`+1 := P` ∪M` and T(`+1)ν := T0 for all ν ∈ Q`+1.

(vii) Increase the counter ` 7→ `+ 1 and goto (i).
Output: For all ` ∈ N0, the algorithm returns the multilevel stochastic Galerkin approxima-
tion u` ∈ V` as well as the corresponding error estimate τ`.

5.1. Separate spatial and parametric marking/enrichment. The two marking criteria
presented below follow the same approach as utilized in [4, 10, 7, 5] in the case of single-level
stochastic Galerkin FEM. Under this approach, either a spatial refinement or a parametric
enrichment is performed at each iteration. The choice between the two is made by comparing
the respective contributions to the total error estimate τ• given by (4.8) (Criterion A) or by
comparing the associated error reduction indicators (Criterion B; cf. Remark 6).

Criterion A. Input: error indicators {τ`(ν, z) : ν ∈ P`, z ∈ N+
`ν} and {τ`(ν) : ν ∈ Q`};

marking parameters 0 < θX, θP ≤ 1, and ϑ > 0.
• If ϑ

∑
ν∈Q` τ`(ν)2 ≤

∑
ν∈P`

∑
z∈N+

`ν
τ`(ν, z)

2, then proceed as follows:

◦ Set M` := ∅.
◦ Determine M`ν ⊆ N+

`ν for all ν ∈ P` such that

(5.1) θX
∑
ν∈P`

∑
z∈N+

`ν

τ`(ν, z)
2 ≤

∑
ν∈P`

∑
z∈M`ν

τ`(ν, z)
2,

where the cumulative cardinality
∑

ν∈P` #M`ν is minimal (amongst all sets
which satisfy (5.1)).
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• Otherwise, if ϑ
∑

ν∈Q` τ`(ν)2 >
∑

ν∈P`
∑

z∈N+
`ν
τ`(ν, z)

2, then proceed as follows:

◦ Set M`ν := ∅ for all ν ∈ P`.
◦ Determine M` ⊆ Q` such that

(5.2) θP
∑
ν∈Q`

τ`(ν)2 ≤
∑
ν∈M`

τ`(ν)2,

where the cardinality #M` is minimal (amongst all sets which satisfy (5.2)).
Output: M`ν ⊆ N+

`ν for all ν ∈ P` and M` ⊆ Q`.

Criterion B. Input: error indicators {τ`(ν, z) : ν ∈ P`, z ∈ N+
`ν} and {τ`(ν) : ν ∈ Q`};

marking parameters 0 < θX, θP ≤ 1, and ϑ > 0.

• Determine M̃`ν ⊆ N+
`ν for all ν ∈ P` such that

(5.3) θX
∑
ν∈P`

∑
z∈N+

`ν

τ`(ν, z)
2 ≤

∑
ν∈P`

∑
z∈M̃`ν

τ`(ν, z)
2,

where the cumulative cardinality
∑

ν∈P` #M̃`ν is minimal (amongst all sets which
satisfy (5.3)).
• Define R̃`ν := N+

`ν ∩ Ñ`ν for all ν ∈ P`, where Ñ`ν is the set of vertices of T̃`ν =

refine(T`ν ,M̃`ν).

• Determine M̃` ⊆ Q` such that

(5.4) θP
∑
ν∈Q`

τ`(ν)2 ≤
∑
ν∈M̃`

τ`(ν)2,

where the cardinality #M̃` is minimal (amongst all sets which satisfy (5.4)).
• If ϑ

∑
ν∈M̃`

τ`(ν)2 ≤
∑

ν∈P`
∑

z∈R̃`ν τ`(ν, z)
2, then proceed as follows:

◦ set M` := ∅ and M`ν := M̃`ν for all ν ∈ P`.
• Otherwise, if ϑ

∑
ν∈M̃`

τ`(ν)2 >
∑

ν∈P`
∑

z∈R̃`ν τ`(ν, z)
2, then proceed as follows:

◦ set M` := M̃` and M`ν := ∅ for all ν ∈ P`.
Output: M`ν ⊆ N+

`ν for all ν ∈ P` and M` ⊆ Q`.

5.2. Combined marking/enrichment. In the case of single-level approximation spaces
(where T•ν = T• for all ν ∈ P• ∪Q•), a combined enrichment of spatial and parametric com-
ponents at each iteration of the adaptive algorithm is prohibitively expensive due to the multi-
plicative increase of the total number of degrees of freedom (i.e., dimV• = (#P•)·dimS1

0 (T•)).
The situation is considerably different for multilevel approximation spaces defined by (3.9), for
which combined enrichment always results in additive increase in the total number of degrees
of freedom, i.e., dimV• =

∑
ν∈P• dimS1

0 (T•ν). In the context of Algorithm 7, this enrichment
is steered by the Dörfler marking performed on the joint set of all spatial and parametric error
indicators, as presented in the following marking criterion.

Criterion C. Input: error indicators {τ`(ν, z) : ν ∈ P`, z ∈ N+
`ν} and {τ`(ν) : ν ∈ Q`};

marking parameter 0 < θ ≤ 1.
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• Determine the sets M`ν ⊆ N+
`ν for all ν ∈ P` and the set M` ⊆ Q` such that

(5.5) θ

( ∑
ν∈P`

∑
z∈N+

`ν

τ`(ν, z)
2 +

∑
ν∈Q`

τ`(ν)2

)
≤
∑
ν∈P`

∑
z∈M`ν

τ`(ν, z)
2 +

∑
ν∈M`

τ`(ν)2,

where the overall cardinality #M` +
∑

ν∈P` #M`ν is minimal (amongst all sets which
satisfy (5.5)).

Output: M`ν ⊆ N+
`ν for all ν ∈ P` and M` ⊆ Q`.

In what follows, we will write, e.g., Algorithm 7.A to refer to the algorithm obtained by
employing Criterion A in Step (iv) of Algorithm 7.

6. Computing multilevel stochastic Galerkin approximations: implementation aspects.
The adaptive multilevel strategies outlined in section 5 are implemented within the open-
source MATLAB toolbox Stochastic T-IFISS [8]. The toolbox has been developed as an
extension of the FEM software package T-IFISS [41] to compute stochastic Galerkin approxi-
mations of PDE problems with parametric or uncertain inputs. Overall, this software aims at
creating an environment for testing different discretization and error estimation strategies, ex-
ploring new algorithms, as well as for replication, validation and verification of computational
results (see [9] for a recent review).

In this section, we briefly discuss some implementation aspects of the multilevel stochastic
Galerkin FEM. In particular, we focus on assembling components of the Galerkin matrix and
solving the resulting linear system.

6.1. Matrix formulation of the multilevel stochastic Galerkin FEM. For each µ ∈ P•,
we denote by N•µ the dimension of the finite element space X•µ = S1

0 (T•µ) (i.e., N•µ =
#(N•µ \ ∂D)). Recalling (3.9), the multilevel stochastic Galerkin approximation u• ∈ V• can
be represented as follows:

(6.1) u•(x,y) =
∑
µ∈P•

N•µ∑
j=1

u•µ,zjϕ•µ,zj (x)Pµ(y).

Hence, by taking test functions v• = ϕ•ν,ziPν for all ν ∈ P• and all i = 1, 2, . . . , N•ν , the
discrete formulation (3.10) yields a linear system Au = b for finding the unknown coefficients
u•µ,zj ∈ R in (6.1).

Since the approximation space V• is built from tensor products of different subspaces of
X = H1

0 (D) and P = L2
π(Γ) (see (3.9)), the matrix A and the vectors u and b have block

structure, with individual blocks indexed by multi-indices of P• as follows:

RN•×N• 3 A = (Aνµ)ν,µ∈P• , RN• 3 b = (bν)ν∈P• , RN• 3 u = (uµ)µ∈P• ,

where N• := dimV• =
∑

ν∈P• N•ν ,

[Aνµ]ij = [Aµν ]ji = B(ϕ•µ,zjPµ, ϕ•ν,ziPν), [bν ]i = F (ϕ•ν,ziPν), [uµ]j = u•µ,zj
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for i = 1, . . . , N•ν and j = 1, . . . , N•µ. Hence, recalling (2.5), (2.6), (3.6) and (2.8), we find

[Aνµ]ij = δνµ

∫
D
a0(x)∇ϕ•µ,zj (x) · ∇ϕ•ν,zi(x) dx

+
∞∑
m=0

∫
Γ
ymPµ(y)Pν(y) dπ(y)

∫
D
am(x)∇ϕ•µ,zj (x) · ∇ϕ•ν,zi(x) dx

and

[bν ]i =

∫
Γ

∫
D
f(x,y)ϕ•ν,zi(x)Pν(y) dx dπ(y).

Thus, for all ν, µ ∈ P•, the νµ-th block in the Galerkin matrix A is given by

(6.2) Aνµ =
∞∑
m=0

[Gm]νµK
νµ
m =

M∑
m=0

[Gm]νµK
νµ
m ,

where, for m ∈ N0,

(6.3) [Gm]νµ =

{
δνµ if m = 0,∫

Γ ymPµ(y)Pν(y) dπ(y)
(3.4)
= βmµmδµ+εm,ν + βmµm−1δµ−εm,ν if m ∈ N

and Kνµ
m are the finite element (stiffness) matrices defined by

(6.4) [Kνµ
m ]ij =

∫
D
am(x)∇ϕ•µ,zj (x) · ∇ϕ•ν,zi(x) dx

for i = 1, . . . , N•ν and j = 1, . . . , N•µ, whereas M = # supp(P•) is the number of active
parameters in P•; here, we used the fact that Gm = 0 for all m /∈ supp(P•) (due to the
symmetry of the measure πm on Γm = [−1, 1] for all m ∈ N) and implicitly assumed that
supp(P•) = {1, 2, . . . ,M}. For a detailed study of the properties of the matrices {Gm}Mm=1,
we refer, e.g., to [26].

At first glance, there are (M+1)(#P•)
2 stiffness matrices to compute; see (6.2). However,

as discussed in [16, Section 3.1], the actual number of matrices that need to be computed is
significantly less. Indeed, it follows from (6.2) that one only needs to compute the matrix
Kνµ
m if the corresponding entry [Gm]νµ is nonzero. The matrices Gm are very sparse: while

G0 is the identity matrix, it follows from (6.3) that the matrices {Gm}Mm=1 have at most two
nonzero entries per row (see also [37, Theorem 9.59]). This reduces the number of stiffness
matrices to be computed to (2M + 1)#P• at most. Furthermore, since the measure πm is
symmetric on Γm = [−1, 1] for all m ∈ N, the matrices Gm, m ∈ N, are also symmetric and
have zero diagonal entries. In addition to the sparsity and symmetry of Gm, we observe that
Kνµ
m = (Kµν

m )T for all m = 0, 1, . . . ,M and ν, µ ∈ P•. Therefore, the number of stiffness
matrices one actually needs to compute is at most (M + 1)#P•.

6.2. Computation of stiffness matrices. Let us now address the computation of the
stiffness matrices Kνµ

m given by (6.4). To that end, we fix m ∈ {1, 2, . . . ,M} (the computation
process is the same for each m) and set µ = ν ± εm ∈ P• for some ν ∈ P•; cf. (6.3).
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Note that the entries of Kνµ
m are the spatial integrals involving finite element basis functions

associated with the meshes T•ν and T•µ, which may be different and not necessarily nested. As
a consequence, Kνµ

m are in general non-square if T•ν 6= T•µ, and efficient computation of these
matrices is the main difficulty in the implementation of the multilevel stochastic Galerkin
FEM.

The assembly of stiffness matrices in the context of the multilevel stochastic Galerkin FEM
has been previously discussed in [30, 19, 16]. In [30], the action of any non-square stiffness

matrix K
ν(ν±εm)
m (in the context, e.g., of the preconditioned conjugate gradient method) is

approximated via a projection Πν±εm
ν : X•(ν±εm) → X•ν , such that only square matrices Kνν

m

need to be assembled. A more elaborate and computationally expensive approach involving the
union of meshes T•ν and T•(ν±εm) is proposed in [19, Section 10]. Again, only square stiffness
matrices need to be assembled. On the other hand, assuming that the meshes {T•ν : ν ∈ P•}
(and, hence, the corresponding finite element spaces X•ν in (3.9)) are nested, it is shown
in [16] that non-square stiffness matrices Kνµ

m can be computed quickly and efficiently without
resorting to approximations involving square matrices.

In our implementation, we aim for direct computation of non-square stiffness matrices Kνµ
m

for a pair of general, not necessarily nested, meshes T•ν 6= T•µ ∈ refine(T0) (ν, µ = ν ± εm ∈
P•).

First, exploiting the fact that the finite element basis functions ϕ•ν,z in our construction
of V• are piecewise linear, we find

[Kνµ
m ]ij

(6.4)
=

∫
D
am(x)∇ϕ•µ,zj · ∇ϕ•ν,zi dx

=
∑

Tν∈T•ν

∑
Tµ∈T•µ
|Tµ∩Tν |6=0

(
∇ϕ•µ,zj |Tµ · ∇ϕ•ν,zi |Tν

) ∫
Tµ∩Tν

am(x) dx.(6.5)

Thus, efficient identification of all intersections Tµ ∩ Tν is critical for the whole computation.
The key observation here is that NVB is a binary refinement rule. Note that every element
T ∈ T• ∈ refine(T0) naturally comes with a level that can be defined in the following inductive
way:

• for all T ∈ T0, define level(T ) := 0;
• if T ∈ T• ∈ refine(T0) is bisected into two elements T1 and T2, then define level(T1) :=

level(T ) + 1 =: level(T2).
Now, for any T ∈ T• ∈ refine(T0), we denote by T0(T ) the unique element of the initial mesh
T0 such that T ⊆ T0(T ). Then, the above definition implies that

(6.6) |T |/|T0(T )| = 2− level(T ).

Furthermore, there holds the following lemma, which, in particular, proves that the intersec-
tion Tµ ∩ Tν is either Tµ, or Tν , or a set of measure zero.

Lemma 8. Let T•, T ′• ∈ refine(T0). Let T ∈ T• and T ′ ∈ T ′• . Let sT ∈ T denote the center
of mass of T . Then, there hold the following statements (i)–(ii):

(i) If level(T ) = level(T ′), then there holds either T = T ′ or |T ∩ T ′| = 0. Moreover,
T = T ′ is equivalent to sT ∈ interior(T ′).
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(ii) If level(T ) > level(T ′), then there holds either T $ T ′ or |T ∩ T ′| = 0. Moreover,
T $ T ′ is equivalent to sT ∈ interior(T ′).

Proof. Since NVB is a binary refinement rule, the intersection T ∩ T ′ satisfies one of the
following four conditions:

• |T ∩ T ′| = 0;
• T ∩ T ′ = T = T ′;
• T ∩ T ′ = T $ T ′;
• T ∩ T ′ = T ′ $ T .

Due to (6.6), knowing the element’s level is sufficient for determining its size. Moreover, the
center of mass of an element always lies in the interior of all of its NVB ancestors.

Thus, given two meshes T•ν , T•µ ∈ refine(T0) for µ 6= ν, the computation of the matrix
entries [Kνµ

m ]ij in (6.5) essentially boils down to the construction of two sets Uνµ, U◦µν ⊂
T•ν × T•µ satisfying the following properties (U1)–(U3):

(U1) For all (Tν , Tµ) ∈ Uνµ, there holds Tν ⊆ Tµ;
(U2) For all (Tν , Tµ) ∈ U◦µν , there holds Tµ $ Tν ;
(U3) T•ν ⊕ T•µ := {Tν : (Tν , Tµ) ∈ Uνµ} ∪ {Tµ : (Tν , Tµ) ∈ U◦µν} is a mesh1 of D.

Indeed, with the sets Uνµ, U◦µν at hand, the formula (6.5) for computing [Kνµ
m ]ij can be written

as follows:

[Kνµ
m ]ij =

∑
(Tν ,Tµ)∈Uνµ

(
∇ϕ•µ,zj |Tµ · ∇ϕ•ν,zi |Tν

) ∫
Tν

am(x) dx

+
∑

(Tν ,Tµ)∈U◦µν

(
∇ϕ•µ,zj |Tµ · ∇ϕ•ν,zi |Tν

) ∫
Tµ

am(x) dx.

The following searching algorithm provides a simple and surprisingly effective strategy for
constructing the sets Uνµ and U◦µν . In this algorithm, for each simplex T , we denote by sT ∈ T
the center of mass of T . Furthermore, we denote by λT,1(x), λT,2(x), λT,3(x) the barycentric
coordinates of x ∈ D with respect to T , i.e., x =

∑3
j=1 λT,j(x)zT,j and

∑3
j=1 λT,j(x) = 1,

where zT,1, zT,2, zT,3 are the vertices of T . We recall that λT,j(x) are uniquely defined for
given x and T , and x ∈ T is equivalent to λT,1(x), λT,2(x), λT,3(x) ≥ 0.

Algorithm 9 (construction of Uνµ and U◦µν). Input: Meshes T•ν and T•µ.

1: for all T0 ∈ T0 do
2: Define T•ν |T0 := {Tν ∈ T•ν : Tν ⊆ T0} ⊆ T•ν .
3: Define T•µ|T0 := {Tµ ∈ T•µ : Tµ ⊆ T0} ⊆ T•µ.
4: for all Tν ∈ T•ν |T0 do
5: Define V•µ(Tν) := {Tµ ∈ T•µ|T0 : level(Tµ) ≤ level(Tν)} ⊆ T•µ|T0.
6: Compute λTµ,i(sTν ) for all i = 1, 2, 3 and Tµ ∈ V•µ(Tν).
7: if there exists (a unique) Tµ ∈ V•µ(Tν) with λTµ,i(sTν ) > 0 for all i = 1, 2, 3 then
8: Assign (Tν , Tµ) to Uνµ (because Tν ⊆ Tµ).
9: else

1Note that the notation used in (U3) is deliberate, in the sense that T•ν ⊕ T•µ is indeed the overlay of the
meshes T•ν and T•µ (i.e., their coarsest common refinement).
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10: Compute λTν ,i(sTµ) for all i = 1, 2, 3 and Tµ ∈ T•µ|T0 \ V•µ(Tν).
11: Define W•µ(Tν) := {Tµ ∈ T•µ|T0 \ V•µ(Tν) : λTν ,i(sTµ) > 0 for all i = 1, 2, 3}.
12: Assign (Tν , Tµ) to U◦µν for all Tµ ∈ W•µ(Tν) (because Tµ $ Tν if Tµ ∈ W•µ(Tν)).
13: end if
14: end for
15: end for

Output: Sets Uνµ and U◦µν satisfying (U1)–(U3).

Algorithm 9 has a computational complexity of O((#T•ν)(#T•µ)) in the worst case. How-
ever, its only intention is to show that unlike [19] it is possible to compute stiffness matrices
associated to different meshes exactly (up to quadrature). We conjecture that one can build
the matrix Kνµ

m from (6.5) in log-linear complexity O((#T•ν + #T•µ) log(#T•ν + #T•µ)) by
exploiting the binary tree structure of NVB. This aspect of the implementation will be the
subject of future research.

6.3. Numerical solution of Galerkin system. Efficient linear solver is an important in-
gredient of any stochastic Galerkin implementation. Sparse factorizations of the (full) system
matrix A are memory intensive and computationally costly, therefore, performing those ef-
ficiently is not feasible. In fact, the coefficient matrix A is never explicitly assembled in
stochastic Galerkin FEM implementations (see, e.g., [19, 16, 9]). Instead, ‘matrix-free’ itera-
tive solvers are employed, where the matrix-vector products with A are computed blockwise
from individual matrix components of A as follows:

[Ax]ν =
∑
µ∈P•

Aνµxµ
(6.2)
=

∑
µ∈P•

M∑
m=0

[Gm]νµK
νµ
m xµ, x = (xµ)µ∈P• , ν ∈ P•.

The default iterative solver in Stochastic T-IFISS is a bespoke implementation of the Minimum
Residual method, called ESTMINRES [42] (an alternative solver based on the conjugate
gradient method and utilizing the built-in MATLAB function pcg is included as an option).

For the iterative solver to be fast, it requires a suitably chosen preconditioner. In the
context of stochastic Galerkin FEM, particularly for parametric PDEs with coefficients having
linear dependence on the parameters, the mean-based preconditioner [28, 38] is a standard
choice (for alternative approaches, we refer, e.g., to [46, 43, 3]). Specifically, we employ
a block-diagonal preconditioner with diagonal blocks given by the stiffness matrices Kνν

0 ,
ν ∈ P•, defined in (6.4). Thus, the action of the inverse of the preconditioner on residual
vectors can be effected blockwise. For each ν ∈ P•, this is done by computing sparse triangular
factorizations of Kνν

0 , followed by forward and backward substitutions on the corresponding
block of the residual vector. In agreement with theoretical results in [38] for the single-level
stochastic Galerkin FEM, our experiments with multilevel approximations have shown that
the number of preconditioned ESTMINRES iterations needed to satisfy the default tolerance
of 10−9 is less than 20, independent of #P• and the resolution of finite element meshes in the
multilevel construction.

7. Numerical experiments. In this section, we present a collection of numerical results
that illustrate the effectiveness of the error estimation strategy developed in section 4 and
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demonstrate the performance of the multilevel adaptive algorithms described in section 5.
Here, we stay within the context of the two-dimensional diffusion problem (2.1) with the
parametric coefficient a = a(x,y) in the affine form (2.2) satisfying assumptions (2.3)–(2.4).
In addition, we assume that the parameters y = (ym)m∈N are images of independent uniformly
distributed mean-zero random variables on [−1, 1], i.e., dπm(ym) = dym/2 for all m ∈ N.
All computations have been performed using the MATLAB toolbox Stochastic T-IFISS; see
section 6.

In our experiments, we use five adaptive algorithms: two multilevel algorithms with sep-
arate spatial and parametric enrichments (i.e., Algorithm 7.A and Algorithm 7.B from sec-
tion 5), their single-level precursors (see, e.g., Algorithms 4.A and 4.B in [5], respectively),
and the novel multilevel algorithm with combined enrichment (Algorithm 7.C). For the sake of
brevity, we will refer to these five algorithms as ML-A, ML-B, SL-A, SL-B, and ML-C, respectively.
The parameters in these algorithms are selected as follows:

• We set the marking parameters θX = θP = 0.5 in ML-A, ML-B, SL-A, SL-B and θ = 0.5
in ML-C.
• For the parameter M in (3.8), we choose M = 1 in subsection 7.1 and M = 9 in sub-

section 7.2.
• Except in the last experiment in subsection 7.2, the parameter ϑ modulating the

choice of the enrichment type in the algorithms with separate spatial and parametric
enrichments (i.e., ML-A, ML-B and SL-A, SL-B) is chosen to be ϑ = 1.

7.1. Benchmark problem. The following problem has been considered in several works
addressing the numerical approximation of parametric PDEs (see, e.g., in [19, 20, 10, 22, 7,
16, 5]) and has thus become a benchmark problem for testing novel discretization strategies.
Let f ≡ 1 in (2.1) and choose the expansion coefficients in (2.2) to represent planar Fourier
modes of increasing total order; for x = (x1, x2), these coefficients are given by

a0(x) = 1, am(x1, x2) = Am−σ cos(2πβ1(m)x1) cos(2πβ2(m)x2) for m ∈ N,

where A, σ > 0 are constants, β1(m) = m − k(m)[k(m) + 1]/2, β2(m) = k(m) − β1(m), and
k(m) = b−1/2 +

√
1/2 + 2mc. With this choice, the diffusion coefficient a(x,y) trivially

satisfies (2.3) with amin
0 = amax

0 = 1. Furthermore, we set σ = 2 (yielding a slow decay of the
coefficients) and choose A = 0.9/ζ(σ) ≈ 0.547, so that both inequalities in (2.4) are satisfied
(here, ζ(·) denotes the Riemann zeta function).

7.1.1. Square domain. Let us numerically solve the benchmark problem on the square
domain D = (0, 1)2. For all algorithms, we choose the initial mesh T0 to be a uniform mesh
of 512 right-angled triangles and we terminate computations when the error estimate τ` given
by (4.8) falls below the tolerance tol = 6 · 10−4.

In the first experiment, we assess the effectiveness of our error estimation strategy by
computing the error estimate τ` at each iteration of the adaptive loop and comparing τ` with
the energy norm of the true error u− u` approximated by

|||u− u` ||| =
(
|||u |||2 − |||u` |||2

)1/2 ≈ (|||uref |||2 − |||u` |||2
)1/2

.

Here, the equality follows from the Galerkin orthogonality and the unknown energy |||u ||| is
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Figure 1: Experiments in subsection 7.1.1: Effectivity indices ζ` for the error estimates τ` in
the SGFEM approximations generated by single-level (left) and multilevel (right) adaptive
algorithms.

approximated by the energy of a sufficiently accurate reference solution uref computed with
quadratic (Q2) SGFEM approximations; cf. [10, Section 6]. The effectivity index

ζ` :=
τ`(

|||uref |||2 − |||u` |||2
)1/2

is then computed at each iteration of the adaptive loop.
In Figure 1, for all adaptive algorithms, we plot the effectivity indices ζ` versus the total

number of degrees of freedom (DOFs) N` in SGFEM approximations. For each algorithm, the
effectivity indices vary in a range between 0.68 and 0.87 throughout all iterations. The error
is therefore slightly underestimated. For single-level approximations generated by SL-A and
SL-B, this is in agreement with the results presented in [5, Figure 3]. Thus, this experiment
provides a numerical evidence that in terms of effectivity, our error estimation strategy for
multilevel SGFEM approximations is on a par with similar strategies for single-level approx-
imations. The presented results also suggest that by employing the two-level spatial error
estimates we underestimate the true energy error more than by using hierarchical spatial esti-
mates; see [7] and [16] for hierarchical spatial estimates in adaptive single-level and multilevel
SGFEMs, respectively. However, the better accuracy of hierarchical estimators comes at the
price of solving extra linear systems when computing spatial contributions to the total error
estimate at each iteration.

Figure 2 (left) shows the decay of the error estimates τ` versus the total number of de-
grees of freedom N` in SGFEM approximations generated by five adaptive algorithms. For
single-level approximations, the error estimates decay with suboptimal rate O(N−0.33

` ); the
same rate was observed in [7]. For multilevel approximations, the decay rate is much faster.
In particular, for approximations generated by ML-C, the error estimates decay with the opti-
mal rate O(N−0.5

` ), which is the convergence rate of linear (P1) FEM for the corresponding
parameter-free problem. As a consequence, multilevel SGFEM approximations reach the pre-



22 A. BESPALOV, D. PRAETORIUS, AND M. RUGGERI

103 104 105 106 107

10−3

10−2

O(N−0.33
` )

O(N−0.5
` )

number of DOFs, N`

to
ta

l
er

ro
r

es
ti

m
at

e,
τ `

Square domain

SL-A

SL-B

ML-A

ML-B

ML-C

103 104 105 106 107

10−2

10−1

O(N−0.33
` )

O(N−0.5
` )

number of DOFs, N`

to
ta

l
er

ro
r

es
ti

m
a
te

,
τ `

L-shaped domain

SL-A

SL-B

ML-A

ML-B

ML-C

Figure 2: Experiments in subsection 7.1.1 (left) and subsection 7.1.2 (right): Total error
estimates τ` versus the number of degrees of freedom N` for all adaptive algorithms.

scribed accuracy with significantly less degrees of freedom than their single-level counterparts
(in the asymptotic regime, the number of degrees of freedom in multilevel approximations are
less by at least one order of magnitude compared to the number of degrees of freedom in the
single-level approximations having the same accuracy).

7.1.2. L-shaped domain. Let us now consider the benchmark problem on the L-shaped
domain D = (−1, 1)2 \ (−1, 0]2. In contrast to the problem in subsection 7.1.1, the exact
solution u now exhibits a geometric singularity at the reentrant corner. For this problem,
we run all five adaptive algorithms with the same initial mesh T0 (a uniform mesh of 384
right-angled triangles) and the same stopping tolerance tol = 2.5 · 10−3.

In Figure 2 (right), for all adaptive algorithms, we plot the error estimates τ` against the
number of degrees of freedom N`. Despite the singular behavior of the exact solution, we
observe the same empirical convergence rates as in the previous experiment on the square
domain. In particular, the error estimates for all multilevel approximations decay much faster
than those for single-level approximations, while the latter converge with suboptimal rate
O(N−0.33

` ).
Let us look in more detail at the performance of multilevel algorithms in this experiment.

In Figure 3, for the algorithms ML-A, ML-B and ML-C, we plot the total error estimates τ` along
with their spatial and parametric components given by

τX` :=

( ∑
ν∈P`

∑
z∈N+

`ν

τ`(ν, z)
2

)1/2

and τP` :=

( ∑
ν∈Q`

τ`(ν)2

)1/2

,

respectively, and the reference energy error |||uref−u` |||, where uref denotes a reference solution
computed by running the algorithm ML-C to a lower tolerance. Note that τ2

` = τ2
X` + τ2

P`
;

see (4.8). For the algorithms with separate spatial and parametric enrichments (i.e., ML-A and
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Figure 3: Experiments in subsection 7.1.2: Decay of the error estimates (total, spatial, and
parametric) and the reference errors computed at each iteration of the adaptive multilevel
algorithms.

ML-B), the plots in Figure 3 look very similar. For both these algorithms, we observe that the
parametric error estimates τP` remain essentially constant during mesh refinement iterations,
whereas the spatial error estimates τX` exhibit a noticeable increase at the iteration following
each parametric enrichment. The latter observation is a consequence of assigning the coarse
mesh T0 to every new index introduced by the parametric enrichment. As a result, the decay
rates of the total error estimates τ` for ML-A, ML-B are still suboptimal.

By looking at the plot for the algorithm with combined enrichment (i.e., ML-C) we see
a completely different behavior. The balanced enrichment of spatial and parametric com-
ponents of Galerkin approximations that was inherent to ML-A and ML-B is completely lost
in ML-C. Instead, ML-C clearly privileges parametric enrichment by activating significantly
more indices than ML-A and ML-B (see also Table 1). This is a consequence of the combined
marking strategy (5.5) and the fact that a small number of parametric error indicators are
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ML-A ML-B ML-C

L 28 28 17
τL 2.32526 · 10−3 2.26684 · 10−3 2.26429 · 10−3

NL 511 812 569 321 318 897
#PL 17 17 207

degPL 4 4 7
MPL

7 7 17

P` ` = 0 (0 0) ` = 0 (0 0) ` = 0 (0 0)

` = 1 (1 0) ` = 1 (1 0) ` = 1 (1 0)

` = 7 (0 1) ` = 7 (0 1) ` = 2 (0 1)
(2 0)

` = 10 (2 0) ` = 9 (2 0) ` = 3 (0 0 1)
(1 1 0)
(3 0 0)

` = 13 (0 0 1) ` = 13 (0 0 1) ` = 4 (0 0 0 1)
(1 0 1 0)

` = 16 (1 1 0) ` = 15 (1 1 0) ` = 5 (0 0 0 0 1)
(3 0 0) (3 0 0) (2 1 0 0 0)

` = 19 (0 0 0 1) ` = 18 (0 0 0 1) ` = 6 (0 0 0 0 0 1)
(1 0 1 0) (1 0 1 0) (1 0 0 1 0 0)

(2 0 1 0 0 0)
(0 2 0 0 0 0)
(4 0 0 0 0 0)

` = 21 (0 0 0 0 1) ` = 21 (0 0 0 0 1) ` = 7 5 indices
(2 1 0 0 0) (2 1 0 0 0) ` = 8 5 indices

` = 24 (0 0 0 0 0 1) ` = 24 (0 0 0 0 0 1) ` = 9 7 indices
(2 0 1 0 0 0) (2 0 1 0 0 0) ` = 10 8 indices
(1 0 0 1 0 0) (1 0 0 1 0 0) ` = 11 9 indices

` = 27 (0 2 0 0 0 0 0) ` = 26 (0 2 0 0 0 0 0) ` = 12 19 indices
(0 0 0 0 0 0 1) (0 0 0 0 0 0 1) ` = 13 16 indices
(4 0 0 0 0 0 0) (4 0 0 0 0 0 0) ` = 14 16 indices

` = 15 33 indices
` = 16 38 indices
` = 17 35 indices

Table 1: Experiments in subsection 7.1.2: Final outputs and evolution of the index set for
adaptive multilevel algorithms.

larger in magnitude than a significant proportion of spatial error indicators. This results in
the parametric error estimates τP` decaying much faster than their spatial counterparts τX` .
However, the total error estimate τ` decays with fully optimal rate O(N−0.5

` ).
In Table 1, for each multilevel adaptive algorithm, we show the total number of iterations

L, the final value of the total error estimate τL, the number of degrees of freedom in the
final SGFEM approximation, as well as the cardinality of the final index set PL, the (total)
degree degPL := maxν∈PL

∑
j≥1 νj of polynomials in the associated polynomial space, and

the number of active parameters MPL in PL. We also show the evolution of the index set
throughout each computation. By looking at these results, we observe that in order to reach
the prescribed tolerance, the algorithm with combined enrichment requires significantly less
iterations and generates the final Galerkin approximation with significantly less degrees of
freedom than either of the algorithms with separate enrichments. In addition to this, these
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Figure 4: Experiments in subsection 7.1.2: Coefficients uLν ∈ XLν = S1(TLν) of the final
SGFEM approximation generated by ML-C (top plots) and the associated adaptively refined
meshes TLν (bottom plots) for three indices ν ∈ PL.

two types of multilevel algorithms generate Galerkin approximations with remarkably different
distributions of spatial and parametric degrees of freedom. Specifically, while ML-A and ML-B

produce relatively small index sets and fine meshes for most of the indices, ML-C generates a
much larger index set but very coarse meshes for the majority of indices. The latter feature
resembles that of multilevel sampling methods, where very few deterministic PDE solves are
performed on fine spatial meshes while the majority of solves use coarse meshes.

In Figure 4, for the final SGFEM approximation

uL =
∑
ν∈PL

uLνPν ∈ VL

generated by ML-C, we plot the coefficients uLν ∈ XLν and the associated meshes TLν for ν ∈{
(0 1), (1 1), (4 0)

}
⊂ PL. Meshes with similar patterns were produced by all other multilevel

algorithms. We observe that adaptively refined meshes identify the geometric singularity
at the reentrant corner (affecting all coefficients in the same way) and the regions with steep
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gradient (which are different for each coefficient). All the identified areas exhibit much stronger
mesh refinement than elsewhere in the domain. More importantly, finer meshes are produced
for those coefficients that are more ‘influential’ in the Galerkin solution (i.e., the coefficients
whose indices are activated earlier); cf. the values of #TLν in Figure 4. This illustrates how
the flexibility in allocating degrees of freedom ensures greater efficiency of multilevel methods,
compared to the single-level SGFEM.

7.2. Cookie problem. Our second example of parametric problem (2.1)–(2.2) is the so-
called cookie problem; cf. [2, 23]. We consider the square domain D = (0, 1)2 that contains nine
circular inclusions Dm ⊂ D (m = 1, . . . , 9). For all i, j ∈ {1, 2, 3}, the subdomain Di+3(j−1) is
the disk with center at the point ((2i − 1)/6, (2j − 1)/6) and radius r = 1/8. We set f ≡ 1
in (2.1) and select the expansion coefficients in (2.2) as follows:

(7.1) am(x) =



1 for m = 0,

0.5χDm(x) for m = 1, 3, 7, 9,

0.7χDm(x) for m = 2, 4, 6, 8,

0.9χDm(x) for m = 5,

0 for m > 9

for all x ∈ D,

where χDm denotes the characteristic function of the subdomain Dm. Thus, the diffusion
coefficient a(x,y) in this example depends on finitely many parameters y1, . . . , y9 ∈ [−1, 1];
furthermore, assumptions (2.3)–(2.4) are satisfied (with amin

0 = amax
0 = 1 and τ = 0.9).

We emphasize that, in contrast to the benchmark problem in subsection 7.1, where the
amplitude of the coefficient am in the expansion (2.2) decays as m increases, which induces
a hierarchy of the parameters (with ym being more ‘important’ than y` if m < `), in this
example the ‘importance’ of the parameters cannot be directly inferred from the ordering of
the terms in expansion (2.2). Hence, one should not a priori prescribe any specific order in
which the parameters are activated. That is why, when running adaptive algorithms for the
cookie problem, we set M = 9 in (3.8) (note that in this example I := N9

0). This way, when it
comes to the first parametric enrichment, all parameters are available for activation, and the
order in which they are activated is determined by the associated parametric indicators.

In computations with all five adaptive algorithms for this problem, we set the stopping
tolerance tol = 8.0 · 10−4 and use the same initial mesh T0 as in subsection 7.1.1.

In Figure 5, for all adaptive algorithms, we plot the error estimates τ` against the number
of degrees of freedom N`. The results are in agreement with those presented in subsection 7.1:
(i) For single-level approximations, the error estimates decay with suboptimal rate O(N−0.33

` );
(ii) The decay rates for the multilevel approximations generated by ML-A and ML-B are faster
than O(N−0.33

` ) but not optimal; (iii) For the multilevel approximations generated by ML-C,
the error estimates decay with fully optimal rate O(N−0.5

` ).
In Figure 6, for algorithms ML-A, ML-B and ML-C, we plot the total error estimates τ` along

with their spatial and parametric components τX` and τP` , as well as the reference energy
error |||uref−u` |||, where uref denotes a reference solution computed by running the algorithm
ML-C to a lower tolerance (tol = 2.0 · 10−4).

In Table 2, we show the outputs for the multilevel algorithms. Each algorithm activates all



ADAPTIVE MULTILEVEL STOCHASTIC GALERKIN FEM 27

103 104 105 106 107

10−3

10−2

O(N−0.33
` )

O(N−0.5
` )

number of DOFs, N`

to
ta

l
er

ro
r

es
ti

m
a
te

,
τ ` SL-A

SL-B

ML-A

ML-B

ML-C

Figure 5: Experiments in subsection 7.2: Total error estimates τ` versus the number of degrees
of freedom N` for all adaptive algorithms.

ML-A ML-B ML-C

L 37 37 21
τL 7.60064 · 10−4 7.55016 · 10−4 6.86986 · 10−4

NL 1 188 953 1 223 401 897 023
#PL 73 73 629

degPL 8 8 17
MPL

9 9 9

Table 2: Experiments in subsection 7.2: Final outputs for adaptive multilevel algorithms.

nine relevant parameters y1, . . . , y9. While we do not observe significant differences between
ML-A and ML-B, we see that ML-C reaches the prescribed tolerance with less iterations, a smaller
number of degrees of freedom, a richer index set, and a higher polynomial degree than the
two other algorithms (see also Figure 7, where we show the evolution of #P`). This is again
in agreement with the results presented in subsection 7.1.

In Figure 8, we consider an intermediate SGFEM approximation u` ∈ V` generated
by ML-C (` = 16). For five indices in P`, namely ν = 0, three unit indices ν = ε1, ε2, ε5,
and ν = (1 0 0 1), we plot the coefficients u`ν ∈ X`ν and the associated adaptively refined
meshes T`ν . Note that the coefficient associated with ν = 0 represents the expectation of
the SGFEM approximation. Looking at the mesh associated with ν = 0, we observe that the
intensity of local mesh refinement at the boundary of each subdomain reflects the ‘importance’
of the corresponding parameter (cf. (7.1)). Moreover, we observe that for each m = 1, 2, 5,
the subdomain Dm is identified by the mesh associated with the index εm. In the same way,
the mesh associated with ν = (1 0 0 1) identifies the subdomains D1 and D4.

Next, we consider the final index set PL generated by ML-C (L = 21) and assess the
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Figure 6: Experiments in subsection 7.2: Decay of the error estimates (total, spatial, paramet-
ric) and the reference errors computed at each iteration of the adaptive multilevel algorithm.

maximum polynomial degree activated for each parameter ym (m = 1, . . . , 9):

max
ν∈PL

νm =


6 for m = 1, 3, 7, 9,

9 for m = 2, 4, 6, 8,

17 for m = 5.

We see that the maximum polynomial degrees assigned to the parameters mirror the hierarchy
of the parameters induced by the coefficients (cf. (7.1)). This result, together with those
reported in Figure 8, illustrate the capability of our multilevel fully adaptive algorithm to
capture the anisotropy of the inclusions and allocate degrees of freedom according to the
‘importance’ of both the individual parameters and the gPC expansion modes.

In our final experiment, we investigate whether appropriately selecting the parameter
ϑ > 0, which modulates the choice between mesh refinement and parametric enrichment, can
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Figure 7: Experiments in subsection 7.2: Evolution of the cardinality of the index set P`.
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Figure 8: Experiments in subsection 7.2: Coefficients u`ν ∈ X`ν = S1(T`ν) of an intermediate
SGFEM approximation (` = 16) generated by ML-C (top plots) and the associated adaptively
refined meshes T`ν (bottom plots) for five indices ν ∈ P`.

lead to a decay of the error estimate with fully optimal rate O(N−0.5
` ) also for ML-A and ML-B.

In Figure 9, we compare the decay of the error estimates τ` obtained for ϑ = 1, 2, 4, 8. We
observe that each choice ϑ > 1 leads to a significant improvement of the convergence rate,
which is optimal for ϑ = 4, 8. This behavior is in agreement with the results obtained for
ML-C presented in Figure 3 and Figure 6, where we see that the combined marking strategy
automatically favors parametric enrichments over spatial refinements.



30 A. BESPALOV, D. PRAETORIUS, AND M. RUGGERI

103 104 105 106

10−3

10−2 O(N−0.44
` )

O(N−0.5
` )

number of DOFs, N`

to
ta

l
er

ro
r

es
ti

m
a
te

,
τ `

ML-A

ϑ = 1

ϑ = 2

ϑ = 4

ϑ = 8

103 104 105 106

10−3

10−2 O(N−0.44
` )

O(N−0.5
` )

number of DOFs, N`

to
ta

l
er

ro
r

es
ti

m
a
te

,
τ `

ML-B

ϑ = 1

ϑ = 2

ϑ = 4

ϑ = 8

Figure 9: Experiments in subsection 7.2: Total error estimates τ` versus the number of degrees
of freedom N` for all ML-A and ML-B and different values of ϑ.

7.3. Conclusions on numerical experiments. Overall, the reported results of numerical
experiments indicate that:
• the proposed error estimation strategy in the context of the multilevel SGFEM is as

effective as the error estimators for single-level and multilevel SGFEMs investigated in [5]
and [16], respectively;
• for the considered test problems, adaptive multilevel SGFEM outperforms its single-level

counterpart in terms of convergence rates and in terms of the number of degrees of freedom
required to reach the prescribed tolerance; this is a consequence of a greater flexibility of the
multilevel SGFEM in allocating degrees of freedom compared to the single-level SGFEM;
• the error estimates for multilevel SFGEM approximations generated by the algorithm

with combined marking/enrichment (Algorithm 7.C) decay with the optimal rate; on the
other hand, the optimal decay rate for approximations generated by the algorithms with sep-
arate marking/enrichment (Algorithm 7.A and Algorithm 7.B) can be ensured by prioritizing
parametric enrichments over spatial refinements (by setting ϑ > 1 in the associated marking
criterion);
• all adaptive algorithms proposed in this paper are effective in identifying the most

‘important’ modes in the gPC expansion of the solution to the parametric problem, including
the case of infinitely many parameters (as in the test problem in subsection 7.1) and the case
when ‘importance’ of parameters cannot be directly inferred from the ordering of terms in the
coefficient expansion (as in the test problem in subsection 7.2).

The application of our algorithms to other classes of parametric PDE problems (e.g.,
the problems with non-affine coefficient expansions in terms of a finite number of bounded
parameters) is possible (see, e.g., [11] for adaptive single-level SGFEM). However, for more
challenging problems (e.g., the problems with lognormal parametric coefficients), the efficiency
of the algorithms will significantly benefit from combining adaptivity with compression tech-
niques (e.g., low-rank tensor methods [17]), as developed recently in [21] in the context of
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the single-level SGFEM. The extension of this methodology to adaptive multilevel SGFEM
approximations will be considered in future research.

Acknowledgments. The authors are grateful to David Silvester (University of Manches-
ter) for useful discussions and advice on the implementation of iterative solvers in multilevel
stochastic Galerkin FEM.

REFERENCES
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