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Recently, Kim & Wilkening (Convergence of a mass-lumped finite element method for the Landau–
Lifshitz equation, Quart. Appl. Math., 76, 383–405, 2018) proposed two novel predictor-
corrector methods for the Landau–Lifshitz–Gilbert equation (LLG) in micromagnetics, which 
models the dynamics of the magnetization in ferromagnetic materials. Both integrators 
are based on the so-called Landau–Lifshitz form of LLG, use mass-lumped variational 
formulations discretized by first-order finite elements, and only require the solution of 
linear systems, despite the nonlinearity of LLG. The first(-order in time) method combines 
a linear update with an explicit projection of an intermediate approximation onto the unit 
sphere in order to fulfill the LLG-inherent unit-length constraint at the discrete level. In 
the second(-order in time) integrator, the projection step is replaced by a linear constraint-
preserving variational formulation. In this paper, we extend the analysis of the integrators 
by proving unconditional well-posedness and by establishing a close connection of the 
methods with other approaches available in the literature. Moreover, the new analysis 
also provides a well-posed integrator for the Schrödinger map equation (which is the 
limit case of LLG for vanishing damping). Finally, we design an implicit-explicit strategy 
for the treatment of the lower-order field contributions, which significantly reduces the 
computational cost of the schemes, while preserving their theoretical properties.
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1. Introduction

1.1. Dynamic micromagnetism

Reliable numerical simulations of magnetic processes occurring at submicrometer length scales are fundamental tools 
to optimize the design of many technological devices, e.g., magnetic sensors, magnetic logic gates, and hard disk drives. 
The theoretical background of most simulation packages is the theory of micromagnetism [13], a continuum theory which 
models the magnetic state of a ferromagnetic material at constant temperature in terms of a continuous vector field with 
constant magnitude, the magnetization. A well-accepted model to describe the dynamics of the magnetization is a nonlinear 
parabolic partial differential equation (PDE) usually referred to as Landau–Lifshitz–Gilbert equation (LLG) [33,28], which in the 
so-called Landau–Lifshitz (LL) form reads as

∂tm = − 1

1 + α2
m × heff(m) − α

1 + α2
m × (m × heff(m)). (1)

Here, m denotes the normalized magnetization, which satisfies the nonconvex unit-length constraint |m| = 1, heff(m) is the 
effective field, whose specific expression depends on the Gibbs free energy of the system (see (6) below), and α ≥ 0 is the 
Gilbert damping parameter, which incorporates energy dissipation into the model.

Alternative forms of LLG used in the literature, mathematically equivalent to the LL form (1), are the so-called Gilbert 
form of LLG

∂tm = −m × heff(m) + α m × ∂tm , (2)

and

α ∂tm + m × ∂tm = −m × (m × heff(m)), (3)

which we call the alternative form of LLG.
The aforementioned need of fast and reliable tools to perform micromagnetic simulations encouraged many works con-

cerned with the numerical analysis of LLG, which will also be the subject of the present paper.

1.2. State of the art

In the last three decades, mathematical questions arising from the micromagnetic theory have been the subject of several 
studies, from both the analytical and the numerical point of view. For analytical results for LLG, we refer, e.g., to the 
papers [43,5,29,15,35,22,24,20] and the references therein. For an overview of numerical methods proposed for LLG (up to 
2008), we refer to the monograph [39] and the review articles [32,27,17]. More recently, several numerical schemes with a 
rigorous convergence analysis have been proposed. They differ from each other in the LLG formulation they are based on 
(usually one among (1)–(3)), in the approach used to impose the unit-length constraint at the discrete level, and in the type 
of convergence result (plain convergence towards a weak solution of LLG with minimal regularity or convergence with rates 
towards a sufficiently regular strong solution).

Semi-implicit finite element methods based on (variants of) the LL form (1) of LLG are proposed in [26,7], where a priori
error estimates, which show their convergence towards a smooth solution of LLG, are also established.

A class of methods referred to as tangent plane schemes or projection methods [4,11,3,14,1,6,23,21,2] is based on a 
predictor-corrector approach: At each time-step, first, an update is computed by solving a linear variational problem posed 
in the discrete tangent space of the current magnetization; second, the update is used to obtain the magnetization at the 
next time-step. The methods proposed in [4,11,3,14,1,23] are based on a variational formulation of (3) discretized by first-
order finite elements to compute an approximation of the linear velocity ∂tm. The magnetization at the next time-step is 
then obtained via a first-order time-stepping. To impose the unit-length constraint at the vertices of the underlying mesh, 
the nodal values are projected onto the sphere in [4,11,3,14]. The projection is omitted from the time-stepping in [1,23]: 
In this case, the approximations do not fulfill the constraint (not even at the vertices of the mesh), but this error can be 
controlled by the time-step size (in particular, the constraint holds for the solution of LLG towards which the finite element 
approximation converges). High-order extensions of the tangent plane approach have been proposed in [6,21,2]. The main 
advantages of this class of methods are that they do not require any time-step restriction for convergence (unconditional
convergence) [3,14,1,6,23,21] and that, despite the nonlinear nature of LLG, only one linear system per time-step has to be 
solved.

A numerical scheme based on the Gilbert form (2) of LLG is considered in [10,38]. The method employs mass-lumped 
first-order finite elements for the spatial discretization and the second-order implicit midpoint rule for the time discretiza-
tion. The scheme is unconditionally convergent towards a weak solution of LLG, but requires the solution of a nonlinear 
system of equations per time-step. A similar method, but based on the LL form (1) of LLG, is proposed and analyzed in [18]. 
The latter approach is motivated by the interest in having an integrator which is robust with respect to the limit cases 
of (1) in which one of the two terms on the right-hand side tends to zero. Indeed, in the case heff(m) = �m, neglecting 
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the second (dissipative) term on the left-hand side of (1) (α → 0), one obtains the so-called Schrödinger map equation [41], 
whereas omitting the first (conservative) term, one is led to the harmonic map heat flow [34].

The recent work [31] proposes two predictor-corrector schemes for LLG which aim to combine the features of some 
of the above integrators. In the first scheme, [31, Algorithm 1], which we denote by PC1 for the sake of brevity, the 
predictor is based on the LL form (1) of LLG (like the variational formulation used in [18]) and employs mass-lumping for 
its discretization (like [10,18]). However, it only requires the solution of one linear system per time-step and uses the nodal 
projection to impose the unit-length constraint (like the method of [3,14]). The second scheme, [31, Algorithm 2], which 
we refer to as PC2, uses the same predictor as PC1, but replaces the nodal projection step with a constraint-preserving 
mass-lumped (as in [10,18]), but linear (as in [3,14]), variational formulation. In the paper, adapting the proof of [3], the 
authors show convergence of the approximations generated by PC1 towards a weak solution of LLG. Moreover, the expected 
convergence order in time of both methods (first-order for PC1, second-order for PC2) is empirically verified by means of 
numerical experiments in 2D.

Note that in the above discussion we have restricted ourselves to methods employing the finite element method for the 
spatial discretization. For other approaches based on finite differences, we refer, e.g., to [44,19,30,45,16] and the references 
therein.

1.3. Novelty of the present work

In this work, we improve the theoretical understanding of the predictor-corrector methods proposed in [31].
First, we show that PC1 is unconditionally well-posed, i.e., for each time-step, the variational problem to be solved 

admits a unique solution, which is left open in the original paper. By closing this fundamental gap, we show that PC1 is 
not only closely related to the first-order tangent plane scheme of [3,14], but actually can even be interpreted as a slight 
modification of it, which explains why the convergence analysis of the two schemes is almost identical. Furthermore, follow-
ing [14], we propose an implicit-explicit (IMEX) version of PC1. When considering magnetization dynamics involving the 
full effective field—more precisely, dynamics including the nonlocal stray field—the proposed adaptation is computationally 
much more attractive: The IMEX version PC1+IMEX avoids the costly inner iteration in the solver of the original scheme, 
while preserving the experimental first-order accuracy of PC1, which we confirm by numerical studies in 3D.

Second, we consider the analysis of PC2. While the conservation of the unit-length constraint at the vertices of the 
mesh in PC1 is guaranteed (at machine precision) also in practical computations (since it is directly enforced in the method 
using the nodal projection), the one guaranteed by PC2, which follows from the variational formulation of the corrector, is 
lost in practice due to the inevitable use of inexact (iterative) solvers for the solution of the arising linear systems. Hence, 
although the predictors of PC1 and PC2 coincide in theory, the well-posedness analysis of (the predictor of) PC1 does not 
transfer to a practical version of PC2. To cope with this problem, we establish a decomposition of the finite element space, 
which does not only allow us to prove unconditional well-posedness of the practical version of PC2, but also to extend 
the result, for both PC1 and PC2 (theoretical and practical), to the limit case α = 0 (Schrödinger map equation). Moreover, 
following [38,21], we adopt the IMEX treatment also for PC2. In particular, in the presence of the nonlocal stray field, 
the proposed method PC2+IMEX is computationally much more attractive than its fully implicit counterpart PC2, while 
conserving the experimental second-order accuracy in time. Again, these claims are confirmed in our numerical studies. 
Stability and convergence of PC2, not addressed in [31], remain open also in our analysis and will be the subject of future 
research. In this paper, we shed some light on this question by means of some surprising numerical experiments.

1.4. Outline

We conclude this section by collecting some general notation and basic vector identities used throughout the work 
(Section 1.5). In Section 2, we formulate the initial boundary value problem for LLG in which we are interested, we recall 
the notion of a weak solution and introduce the basic ingredients of the discretization. Section 3 is devoted to the first-order 
method: After proving unconditional well-posedness of PC1 in Section 3.2, we propose an IMEX adaptation (Section 3.3) 
overcoming the inefficiency drawbacks of the original version, while preserving unconditional well-posedness, stability, 
convergence (Section 3.4), and accuracy. Section 4 is devoted to the second-order method: In Section 4.2, we first prove 
unconditional well-posedness of PC2. Subsequently, in Section 4.3, we extend the unconditional well-posedness result to 
the more general formulation of the second-order algorithm, where discrete unit-length of the iterates is not assumed. This 
covers, in particular, the practical version of the scheme incorporating the inevitable use of inexact (iterative) linear solvers. 
Section 4.4 closes with a second-order accuracy preserving IMEX modification overcoming the inefficiency drawbacks of
PC2. Section 5 provides numerical studies validating the applicability (Section 5.1) and the expected accuracy (Section 5.2) 
of the IMEX integrators proposed in this work. Finally, in Section 5.3, we numerically investigate the stability of PC2.

1.5. General notation and vector identities

Throughout this work, we use the standard notation for Lebesgue, Sobolev, and Bochner spaces and norms. Vector-valued 
functions are indicated by bold letters. Bold letters are also used for vector-valued and matrix-valued function spaces, e.g., 
both L2(�; R3) and L2(�; R3×3) are denoted by L2(�). We denote by 〈·, ·〉 and ‖·‖ the scalar product and the norm of 
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L2(�), respectively, while |·| denotes the Euclidean norm of a vector in R3 or the Frobenius norm of a matrix in R3×3. To 
abbreviate notation in proofs, we write A � B when A ≤ cB for some generic constant c > 0, which is clear from the context 
and always independent of the discretization parameters. For vector-valued functions f , g : � →R3 we use the notation

−g × ∇ f := ∇ f × g := (∂1 f × g, ∂2 f × g, ∂3 f × g) : � → R3×3 .

We conclude this section by recalling five vector identities used regularly in this work

a × b = −b × a, (4a)

(a × b) · a = 0, (4b)

a × (b × c) = (a · c) b − (a · b) c, (4c)

(a × b) · c = a · (b × c), (4d)

(a × b) · (c × d) = (a · c) (b · d) − (b · c) (a · d), (4e)

which hold true for arbitrary a, b, c, d ∈R3.

2. Problem formulation

2.1. Landau–Lifshitz–Gilbert equation

Given a bounded Lipschitz domain � ⊂R3 and T > 0, we define the space-time cylinder �T := � × (0, T ). We consider 
the following initial boundary value problem

(1 + α2) ∂tm = −m × heff(m) − α m × (m × heff(m)) in �T , (5a)

∂nm = 0 on ∂� × (0, T ), (5b)

m(0) = m0 in �. (5c)

The unknown is the normalized magnetization m : �T → S2 = {x ∈R3 : |x| = 1}. In (5a), the effective field

heff(m) = �2
ex �m + π(m) + f (5d)

is the negative functional derivative of the Gibbs free energy

E(m) = �2
ex

2

∫
�

|∇m|2 dx − 1

2

∫
�

π(m) · m dx −
∫
�

f · m dx, (6)

where �ex > 0 is the exchange length, π : L2(�) → L2(�) is a linear, continuous, and self-adjoint operator which collects 
all lower-order contributions such as uniaxial magnetocrystalline anisotropy and the nonlocal stray field, and f : �T →R3

is the applied external field. The equation is supplemented with homogeneous Neumann boundary conditions (5b) and the 
initial condition (5c), where m0 : � →S2 denotes a given initial state.

Taking the scalar product of (5a) with m, (4b) yields that 0 = ∂tm · m in �T . Since 
∣∣m0

∣∣ = 1 in � by assumption and 
∂t(|m|2/2) = ∂tm · m = 0, it follows that |m| = 1 in �T . Moreover, any solution of (5a) satisfies the energy law

d

dt
E(m, f ) = −α

∫
�

|∂tm|2 dx −
∫
�

∂t f · m dx. (7)

From this, we see that the Gilbert damping constant α modulates the dissipation of the system. In particular, if α = 0 and 
f is constant in time, then the energy is conserved. The PDE inherent constraint |m| = 1 in �T and the energy law (7)
should be satisfied (at the discrete level) by any feasible numerical method.

2.2. Weak solution

We recall the notion of a weak solution of (5), which extends the one introduced in [5].

Definition 2.1. Let m0 ∈ H 1(�; S2) and f ∈ C1([0, T ]; L2(�)). A vector field m : �T →R is called a weak solution of (5), if 
the following properties are satisfied:

(i) m ∈ H 1(�T ) ∩ L∞(0, T ; H 1(�)) with |m| = 1 a.e. in �T ;
(ii) m(0) = m0 in the sense of traces;
36
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(iii) for all w ∈ H 1(�T ), it holds that

T∫
0

〈∂tm(t), w(t)〉 dt − α

T∫
0

〈m(t) × ∂tm(t), w(t)〉 dt

= �2
ex

T∫
0

〈m(t) × ∇m(t),∇w(t)〉 dt −
T∫

0

〈m(t) × π(m(t)), w(t)〉 dt

−
T∫

0

〈m(t) × f (t), w(t)〉 dt;

(8)

(iv) it holds that

E(m(T )) + α

T∫
0

‖∂tm(t)‖2 dt +
T∫

0

〈∂t f (t),m(t)〉 dt ≤ E(m0). (9)

We note that (8) is a variational formulation in space-time of the Gilbert form (2) of LLG, and that (9) is a weaker 
version of the energy law (7).

2.3. Discretization

For the temporal discretization, given L ∈N , we consider a partition {t�}�=0,...,L of the time interval [0, T ] with uniform 
time-step size k := T /L > 0, i.e., t� = �k for all � = 0, . . . , L. Given a finite sequence of functions {u�}�=0,...,L , we define

u�+1/2 := u�+1 + u�

2
and dt u�+1 := u�+1 − u�

k
for all � = 0, . . . L − 1.

For the spatial discretization, we consider a regular tetrahedral triangulation Th of � with mesh size h > 0. We denote 
by Nh the set of vertices of Th and by {φz}z∈Nh the classical nodal basis of the space S1(Th) of Th-piecewise linear 
and globally continuous discrete functions, i.e., φz(z′) = δz,z′ for all z, z′ ∈ Nh . With {e j} j=1,2,3 the standard basis of R3, 
{φze j}z∈Nh, j=1,2,3 gives a basis of S1(Th)3. Note that S1(Th)3 is a 3N-dimensional space, with N denoting the number of 
vertices in Nh . We introduce the set of admissible discrete magnetizations

Mh :=
{

mh ∈ S1(Th)
3 : |mh(z)| = 1 for all z ∈ Nh

}
and, for mh ∈Mh , the discrete tangent space of mh

Kh[mh] :=
{
ϕh ∈ S1(Th)

3 : mh(z) · ϕh(z) = 0 for all z ∈ Nh

}
.

We consider the nodal interpolant Ih : C0(�) → S1(Th), which is defined by Ih(v) = ∑
z∈Nh

v(z)φz for all v ∈ C0(�). We 
denote the vector-valued realization of the nodal interpolant by Ih : C 0(�) → S1(Th)3. In C 0(�), besides the standard 
L2(�)-scalar product 〈·, ·〉 , we consider the mass-lumped scalar product 〈·, ·〉h defined by

〈u, w〉h =
∫
�

Ih(u · w)dx for all u, w ∈ C 0(�).

Using the definition of the nodal interpolant, we see that

〈u, w〉h =
∑

z∈Nh

βz u(z) · w(z) for all u, w ∈ C 0(�), (10)

where βz := ∫
�

φz dx > 0 for all z ∈ Nh . For discrete functions, the induced norm ‖·‖h is equivalent to the standard L2(�)-
norm; see [9, Lemma 3.9], i.e., it holds that

‖wh‖ ≤ ‖wh‖h ≤ √
5‖wh‖ for all wh ∈ S1(Th)

3. (11)

We define the (negative) discrete Laplacian −�h : H 1(�) → S1(Th)3 by

−〈�h w, wh〉h = 〈∇w,∇wh〉 for all w ∈ H 1(�) and wh ∈ S1(Th)
3. (12)
37
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Let wh ∈ S1(Th)3. With a double application of the classical inverse estimate and the norm equivalence (11), we see that

‖�h wh‖2
h = 〈�h wh,�h wh〉h

(12)= −〈∇wh,∇�h wh〉 ≤ ‖∇wh‖ ‖∇�h wh‖
≤ Ch−2 ‖wh‖h ‖�h wh‖h .

This shows that

‖�h wh‖h ≤ Ch−2 ‖wh‖h for all wh ∈ S1(Th)
3, (13)

where C > 0 depends only on the quasi-uniformity of the triangulation Th . Finally, we define the mapping Ph : L2(�) →
S1(Th)3 by

〈Ph w, wh〉h = 〈w, wh〉 for all w ∈ L2(�) and wh ∈ S1(Th)
3. (14)

Using (10), it is easy to see that, for all w ∈ L2(�) and all z ∈ Nh , it holds that (Ph w)(z) = β−1
z

∫
�

wφz dx. In particular, 
the computation of Ph w does not require to solve any linear system.

3. First-order predictor-corrector scheme

In this section, we discuss the first-order scheme proposed in [31] and its connections with the integrators proposed 
in [10] and [3]. Our contribution is twofold: First, we prove unconditional well-posedness of the scheme, which fills a 
fundamental gap in the analysis of [31]. Second, we employ an explicit treatment of the (nonlocal) lower-order contributions 
to obtain a computationally superior IMEX version of the scheme, preserving (unconditional) convergence and experimental 
rates in time. We first consider the method for the case heff(m) = �2

ex�m. For the general case heff(m) = �2
ex�m +π(m) + f , 

we refer to Section 3.3.

3.1. Variational formulation

The following algorithm restates [31, Algorithm 1] written in terms of the discrete functions m�
h, v�

h, m�+1
h ∈ S1(Th)3, 

where m�
h ≈ m(t�), v�

h ≈ ∂tm(t�), and m�+1
h ≈ m(t�+1). In particular, the predictor (15) of Algorithm 3.1 reformulates the N

equations in R3 of the predictor of [31, Algorithm 1] as an equivalent variational formulation for v�
h in S1(Th)3. As for the 

tangent plane scheme [3], θ ∈ [0, 1] is a parameter modulating the ‘degree of implicitness’ of the scheme.

Algorithm 3.1 (PC1, variational form). Input: m0
h ∈ Mh.

Loop: For all time-steps � = 0, . . . , L − 1, iterate:

(i) Compute v�
h ∈ S1(Th)3 such that, for all wh ∈ S1(Th)3 , it holds that

(1 + α2)〈v�
h, wh〉h = −�2

ex〈m�
h × �h(m

�
h + θkv�

h), wh〉h

− α�2
ex〈m�

h × (m�
h × �h(m

�
h + θkv�

h)), wh〉h .
(15)

(ii) Define m�+1
h ∈Mh by

m�+1
h (z) := m�

h(z) + kv�
h(z)∣∣m�

h(z) + kv�
h(z)

∣∣ ∈ S2 for all z ∈ Nh. (16)

Output: Sequence of discrete functions 
{
(v�

h,m�+1
h )

}L−1

�=0
.

3.2. Unconditional well-posedness

The predictor (15) can be written as: Find v�
h ∈ S1(Th)3 such that

apre[m�
h](v�

h, wh) = Fpre[m�
h](wh) for all wh ∈ S1(Th)

3 ,

with the linear form Fpre[m�
h] and the bilinear form apre[m�

h] on S1(Th)3 reading

Fpre[m�
h](wh) := −�2

ex〈m�
h × �hm�

h, wh〉h − α�2
ex〈m�

h × (m�
h × �hm�

h), wh〉h ,

apre[m�
h](v�

h, wh) := (1 + α2)〈v�
h, wh〉h + �2

exθk〈m�
h × �h v�

h, wh〉h

+ α�2
exθk〈m�

h × (m�
h × �h v�

h), wh〉h .
38
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From the boundedness of m�
h in L∞(�) guaranteed by the nodal projection (16) and an inverse estimate on the discrete 

Laplacian (13) we have

apre[m�
h](wh, wh) ≥ (1 − Ckh−2)‖wh‖2

h .

Hence, assuming the CFL condition k = o(h2) implies the coercivity of apre[m�
h] for sufficiently small h and k. However, this 

undesirable restriction is a consequence of naively using the inverse estimate, and can be avoided.
For arbitrary α > 0 the upcoming refined analysis allows to drop any CFL-type assumptions on the discretization pa-

rameters: In Lemma 3.2, we first collect two basic properties of Algorithm 3.1, which turn out to be sufficient to prove 
unconditional well-posedness of the algorithm in Theorem 3.3; also see Remark 3.4.

Lemma 3.2. Let m�
h ∈ Mh. Suppose that the solution v�

h ∈ S1(Th)3 to (15) exists. Then, v�
h ∈ Kh[m�

h], and (16) provides a well-

defined m�+1
h ∈ Mh.

Proof. For arbitrary z ∈ Nh , with φz ∈ S1(Th) denoting the hat function with φz(z′) = δz,z′ for all z′ ∈ Nh , we choose 
wh := m�

h(z)φz ∈ S1(Th)3 in (15) to see

m�
h(z) · v�

h(z)
(10)= β−1

z 〈v�
h,m�

h(z)φz〉h
(15),(4b)= 0 .

Hence, v�
h ∈ S1(Th)3 belongs to Kh[m�

h].
Well-posedness of (16) follows immediately from v�

h ∈ Kh[m�
h] via

|m�
h(z) + kv�

h(z)|2 = |m�
h(z)|2 + k2|v�

h(z)|2 ≥ |m�
h(z)|2 = 1 for all � = 0, . . . , L − 1 .

Consequently, for all z ∈ Nh the denominator in (16) is bounded below by |m�
h(z)| = 1 and the corrector step of Algo-

rithm 3.1 is always well-posed.
The third claim m�+1

h ∈Mh follows directly from the explicit projection in (16). �
These two observations are already sufficient to prove the first main contribution of this work.

Theorem 3.3. Let α > 0. Then, Algorithm 3.1 is unconditionally well-posed for any input m0
h ∈ Mh, i.e., for all � = 0, . . . , L − 1 the 

predictor (15) admits a unique solution v�
h ∈ S1(Th)3 and the corrector (16) is well-posed providing m�+1

h ∈Mh.

Proof. Well-posedness of the corrector (16) and m�+1
h ∈ Mh follow from Lemma 3.2. Transforming (15) into a coercive 

system in the discrete tangent space, we prove well-posedness of the predictor in three steps:

• Step 1: The predictor of Algorithm 3.1 can be reformulated as a well-posed system.

We claim that v�
h ∈ S1(Th)3 satisfies (15) for all wh ∈ S1(Th)3, if and only if it satisfies v�

h ∈ Kh[m�
h] as well as

α〈v�
h,ϕh〉h + 〈m�

h × v�
h,ϕh〉h = �2

ex〈�h(m
�
h + θkv�

h),ϕh〉h for all ϕh ∈Kh[m�
h] . (17)

This formulation can be written as follows: Find v�
h ∈ Kh[m�

h] such that

aalt[m�
h](v�

h,ϕh) = �2
ex〈�hm�

h,ϕh〉h for all ϕh ∈Kh[m�
h],

where the bilinear form aalt[m�
h] : Kh[m�

h] ×Kh[m�
h] →R is defined by

aalt[m�
h](v�

h,ϕh) := α〈v�
h,ϕh〉h + 〈m�

h × v�
h,ϕh〉h − �2

exθk〈�h v�
h,ϕh〉h.

For α > 0, the bilinear form satisfies the ellipticity property

aalt[m�
h](ϕh,ϕh) = α

∥∥ϕh

∥∥2
h + �2

exθk
∥∥∇ϕh

∥∥2 for all ϕh ∈Kh[m�
h] ,

and the problem (17) is well-posed by the Lax–Milgram theorem. To conclude the proof, it remains to show the claimed 
equivalence of (15) and (17).

• Step 2: Any solution v� ∈ S1(Th)3 of (15) also solves (17).
h
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Given arbitrary ϕh ∈Kh[m�
h], we choose wh = Ih(αϕh + ϕh × m�

h) ∈ S1(Th)3 in (15) to obtain

(1 + α2)α〈v�
h,ϕh〉h + (1 + α2)〈v�

h,ϕh × m�
h〉h = −α�2

ex〈m�
h × �h(m

�
h + θkv�

h),ϕh〉h

− �2
ex〈m�

h × �h(m
�
h + θkv�

h),ϕh × m�
h〉h − α2�2

ex〈m�
h × (m�

h × �h(m
�
h + θkv�

h)),ϕh〉h

− α�2
ex〈m�

h × (m�
h × �h(m

�
h + θkv�

h)),ϕh × m�
h〉h . (18)

By (4d) the left-hand side of (18) resembles the left-hand side of (17) scaled by (1 +α2). From m�
h ∈ Mh and ϕh ∈Kh[m�

h], 
we infer Ih(|m�

h|2) = 1 and Ih(m�
h · ϕh) = 0 in �. Hence, using the vector identities (4b)–(4e), the first and the last term on 

the right-hand side of (18) cancel out, and (18) equivalently reads

(1 + α2)
(
α〈v�

h,ϕh〉h + 〈m�
h × v�

h,ϕh〉h
) = (1 + α2)�2

ex〈�h(m
�
h + θkv�

h),ϕh〉h .

Now multiplying (18) by 1/(1 + α2), we conclude that any v�
h ∈ S1(Th)3 satisfying (15) necessarily satisfies (17) and, 

according to Lemma 3.2, belongs to Kh[m�
h] itself.

• Step 3: Any solution v�
h ∈ Kh[m�

h] of (17) also solves (15).

Given arbitrary wh ∈ S1(Th)3, we choose ϕh = Ih
(
m�

h × wh + αm�
h × (wh × m�

h)
) ∈ Kh[m�

h] in (17) to obtain

α〈v�
h,m�

h × wh〉h + α2〈v�
h,m�

h × (wh × m�
h)〉h

+ 〈m�
h × v�

h,m�
h × wh〉h + α〈m�

h × v�
h,m�

h × (wh × m�
h)〉h (19)

= �2
ex〈�h(m

�
h + θkv�

h),m�
h × wh〉h + α�2

ex〈�h(m
�
h + θkv�

h),m�
h × (wh × m�

h)〉h .

From m�
h ∈ Mh and v�

h ∈ Kh[m�
h], we infer Ih(|m�

h|2) = 1 and Ih(m�
h · v�

h) = 0 in �. Hence, by the vector identities (4b)–(4e), 
the first and the last term on the left-hand side of (19) cancel out, while the second and third term on the left-hand side 
of (19) add up to the left-hand side of (15). Further, by (4d) the right-hand side of (19) resembles the right-hand side 
of (15). We conclude that any v�

h ∈ Kh[m�
h] ⊂ S1(Th)3 satisfying (17) necessarily satisfies (15). Ultimately, we have shown 

that (15) is equivalent to (17), which always allows for a unique solution as shown in Step 1. �
Remark 3.4. (i) Let w : � →R3 be an arbitrary smooth test function. Writing m� := m(t�) and v� := ∂tm(t�), the variational 
formulation of the LL form (5a) of LLG at time t� ∈ (0, T ) reads

(1 + α2)〈v�, w〉 = −�2
ex 〈m� × �m�, w〉 − α�2

ex 〈m� × (m� × �m�), w〉 . (20)

The discrete variational formulation (15) can be seen as a discrete mass-lumped version of (20), where the effective field is 
treated implicitly in time.
(ii) The core of the proof of Theorem 3.3 is the equivalent reformulation of the predictor step (15) as well-posed system (17)
in the discrete tangent space Kh[m�

h]. For α > 0, the reformulated system is unconditionally well-posed and corresponds to 
a discretization of the alternative form of LLG (3). Using (4c) and |m|2 ≡ 1, the formulation (3) is directly obtained from the 
LL form (5a) via (α · (5a) + m × (5a))/(1 + α2). Step 3 of the proof of Theorem 3.3 resembles the analogous computations 
on a discrete level. We emphasize, that the mass-lumped scalar product 〈·, ·〉h as well as m�

h ∈ Mh and v�
h ∈ Kh[m�

h] are 
the crucial ingredients in the proof of Theorem 3.3.
(iii) With the reformulation (17), we fully understand the real nature of the first-order integrator from [31]: It is a predictor-
corrector scheme which combines the approaches of Bartels & Prohl [10] (mass-lumping (10), discrete Laplacian (12)) 
and Alouges [3] (degree of implicitness θ , projection update (16), unknown approximates time derivative). The predictor 
step (15) is a mass-lumped discrete variational formulation of the LL form (5a) of LLG. The equivalent variational formula-
tion (17) is a mass-lumped variational formulation of the alternative form (3) of LLG and, in particular, is the mass-lumped 
version of the predictor step of the tangent plane scheme from [3]. Analogously to the tangent plane scheme, the corrector 
step of Algorithm 3.1 employs the nodal projection to enforce the modulus constraint at the vertices of the triangulations.
(iv) While the proof of Theorem 3.3 emphasizes the close relation of Algorithm 3.1 to the first-order tangent plane scheme, 
it is restricted to α > 0. In fact, Theorem 3.3 can also be proved for the limit case α = 0; see Remark 4.6(iii)–(iv) below.

3.3. Including lower-order contributions

In this section, we discuss the extension of the scheme to the general case heff(m) = �2
ex �m + π(m) + f . We start by 

recalling the definition (14) of the mapping Ph : L2(�) → S1(Th)3 and assume that we are given an operator πh : L2(�) →
L2(�) which approximates π , e.g., in the case of the nonlocal stray field π (m) = hs, πh is a method for the approximation of 
the magnetostatic Maxwell equations, e.g., via the hybrid finite element / boundary element method (FEM-BEM) from [25]. 
This approach exploits the special structure of the full-space equation and requires only the sequential solution of two FEM 
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problems for the interior Poisson equation, where inhomogeneous Dirichlet conditions are obtained with a double-layer 
boundary integral operator. We refer to [38, Algorithm 12] for a precise statement of the hybrid FEM-BEM method directly 
applicable to our setting (and used in the numerical experiments in Section 5 below).

In the original first-order integrator from [31], the lower-order contributions are treated implicitly in time. Rewritten as 
a mass-lumped discrete LL formulation like (15), the predictor step of [31, Algorithm 1] reads as follows: Find v�

h ∈ S1(Th)3

such that

(1 + α2)〈v�
h, wh〉h = −〈m�

h × [�2
ex�h(m

�
h + θkv�

h) + Ph(πh(m
�
h + θkv�

h) + f �+θ )], wh〉h

− α〈m�
h × (m�

h × [�2
ex�h(m

�
h + θkv�

h) + Ph(πh(m
�
h + θkv�

h) + f �+θ )]), wh〉h (21)

for all wh ∈ S1(Th)3. Here, f �+θ = f (t� + θk) for all � = 0, . . . , L − 1. However, this approach for the inclusion of the lower-
order terms is not very attractive from the computational point of view: Indeed, the variational formulation comprises the 
term πh(v�

h) which requires to solve a (possibly nonlocal) problem for the unknown. An implementation of this scheme 
would then be based on a costly inner iteration.

From our previous work on the tangent plane scheme [14,21] and on the midpoint scheme [38], we know that an explicit 
treatment is favorable: Therefore, we change the above variational formulation: Find v�

h ∈ S1(Th)3 such that

(1 + α2)〈v�
h, wh〉h = −〈m�

h × [�2
ex�h(m

�
h + θkv�

h) + Ph(πh(m
�
h) + f �)], wh〉h

− α〈m�
h × (m�

h × [�2
ex�h(m

�
h + θkv�

h) + Ph(πh(m
�
h) + f �)]), wh〉h

for all wh ∈ S1(Th)3. Only the leading-order exchange contribution is treated implicitly in time, while the lower-order 
contributions are treated explicitly. This does not spoil the convergence result of the scheme (since the nodal projection 
already restricts the scheme to first-order in time) and it is computationally much more attractive. To sum up, we consider 
the following implicit-explicit (IMEX) algorithm.

Algorithm 3.5 (PC1+IMEX). Input: m0
h ∈ Mh.

Loop: For all time-steps � = 0, . . . , L − 1, iterate:

(i) Compute Ph(πh(m�
h)) ∈ S1(Th)3 .

(ii) Compute v�
h ∈ S1(Th)3 such that, for all wh ∈ S1(Th)3 , it holds that

(1 + α2)〈v�
h, wh〉h = −〈m�

h × [�2
ex�h(m

�
h + θkv�

h) + Ph(πh(m
�
h) + f �)], wh〉h (22)

− α〈m�
h × (m�

h × [�2
ex�h(m

�
h + θkv�

h) + Ph(πh(m
�
h) + f �)]), wh〉h .

(iii) Define m�+1
h ∈ Mh by

m�+1
h (z) := m�

h(z) + kv�
h(z)∣∣m�

h(z) + kv�
h(z)

∣∣ ∈ S2 for all z ∈ Nh. (23)

Output: Sequence of discrete functions 
{
(v�

h,m�+1
h )

}L−1

�=0
.

3.4. Stability of Algorithm 3.5

Well-posedness of Algorithm 3.5 follows from well-posedness of Algorithm 3.1 (Theorem 3.3), as the system matrices for 
the linear systems corresponding to the left-hand sides of (22) and (15), respectively, coincide.

For stability of Algorithm 3.5, we assume that all off-diagonal entries of the stiffness matrix A = (az,z′ )z,z′∈Nh are non-
positive, i.e., it holds that

az,z′ = 〈∇φz′ ,∇φz〉 ≤ 0 for all z, z′ ∈ Nh with z �= z′. (24)

This requirement, usually referred to as angle condition1, ensures that the nodal projection wh �→ Ih
[

wh/ |wh| ] does not 
increase the exchange energy of a discrete function, i.e., it holds that∥∥∇Ih

[
wh/ |wh|

]∥∥ ≤ ‖∇wh‖ , (25)

for all wh ∈ S1(Th)3 with |wh(z)| ≥ 1 for all z ∈ Nh; see [8, Lemma 3.2]. Moreover, we assume that the discrete operator 
πh : S1(Th)3 → L2(�) is stable in the sense that

1 The assumption (24) is usually referred to as angle condition, because in 3D it is satisfied, e.g., if all dihedral angles of all tetrahedra of Th are ≤ π/2.
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‖πh(wh)‖ ≤ C ‖wh‖ for all wh ∈ S1(Th)
3 , (26)

which is met in many practical situations; see [14]. Under these assumptions, there holds stability of Algorithm 3.5.

Theorem 3.6. Let Th such that (25) holds true. For input m0
h ∈ Mh, let 

{
(v�

h,m�+1
h )

}L−1

�=0
be the output of Algorithm 3.5. Then, for all 

J = 0, . . . , L − 1, there holds the stability estimate

�2
ex

2

∥∥∥∇m J
h

∥∥∥2 + αk
J−1∑
�=0

∥∥∥v�
h

∥∥∥2 + �2
ex(θ − 1/2)k2

J−1∑
�=0

∥∥∥∇v�
h

∥∥∥2

≤ �2
ex

2

∥∥∥∇m0
h

∥∥∥2 + k
J−1∑
�=0

〈v�
h,πh(m

�
h) + f �〉.

(27)

Proof. To abbreviate notation we define

himex
eff,h (m�

h, v�
h) := �2

ex�h(m
�
h + θkv�

h) + Ph(πh(m
�
h) + f �) ∈ S1(Th)

3 .

Testing (22) with wh = v�
h , wh = himex

eff,h (m�
h, v�

h), and wh = Ih(m�
h × himex

eff,h (m�
h, v�

h)), respectively, leads to

(1 + α2)

∥∥∥v�
h

∥∥∥2

h
= 〈m�

h × v�
h,himex

eff,h (m�
h, v�

h)〉h + α〈v�
h,himex

eff,h (m�
h, v�

h)〉h, (28a)

α
∥∥∥m�

h × himex
eff,h (m�

h, v�
h)

∥∥∥2

h
= (1 + α2)〈v�

h,himex
eff,h (m�

h, v�
h)〉h , (28b)∥∥∥m�

h × himex
eff,h (m�

h, v�
h)

∥∥∥2

h
= (1 + α2)〈m�

h × v�
h,himex

eff,h (m�
h, v�

h)〉h , (28c)

where we used Ih(|m�
h|2) = 1 and Ih(m�

h · v�
h) = 0 in � together with the identities (4b)–(4e). Combining (28a)–(28c) gives

α
∥∥∥v�

h

∥∥∥2

h
= 〈v�

h,himex
eff,h (m�

h, v�
h)〉h .

Plugging in the definition of himex
eff,h (m�

h, v�
h), we see

�2
ex〈∇v�

h,∇m�
h〉 = −α

∥∥∥v�
h

∥∥∥2

h
− �2

exθk
∥∥∥∇v�

h

∥∥∥2 + 〈v�
h,πh(m

�
h) + f �〉. (29)

Using the angle condition, we deduce that

�2
ex

2

∥∥∥∇m�+1
h

∥∥∥2 − �2
ex

2

∥∥∥∇m�
h

∥∥∥2 (25)≤ �2
ex

2

∥∥∥∇(m�
h + kv�

h)

∥∥∥2 − �2
ex

2

∥∥∥∇m�
h

∥∥∥2

= �2
exk〈∇m�

h,∇v�
h〉 + �2

ex

2
k2

∥∥∥∇v�
h

∥∥∥2

(29)= −αk
∥∥∥v�

h

∥∥∥2

h
− �2

ex(θ − 1/2)k2
∥∥∥∇v�

h

∥∥∥2 + k〈v�
h,πh(m

�
h) + f �〉.

Summing over � = 0, . . . , J − 1, we obtain that

�2
ex

2

∥∥∥∇m J
h

∥∥∥2 + αk
J−1∑
�=0

∥∥∥v�
h

∥∥∥2

h
+ �2

ex(θ − 1/2)k2
J−1∑
�=0

∥∥∥∇v�
h

∥∥∥2

≤ �2
ex

2

∥∥∥∇m0
h

∥∥∥2 + k
J−1∑
�=0

〈v�
h,πh(m

�
h) + f �〉.

Finally, the norm equivalence (11) yields (27). �
Remark 3.7. (i) The stability (27) is the very same estimate that one obtains for the first-order tangent plane scheme 
from [3]; see, e.g., [14, Lemma 3.5]. Combining this estimate with the stability of πh from (26), one obtains boundedness of 
the discrete solutions, which allows to apply the standard compactness argument for parabolic PDEs to prove convergence; 
see, e.g., [3, Section 3] or [14, Section 3.5].
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(ii) Consequently, for both Algorithm 3.1 and Algorithm 3.5, one obtains a convergence result identical to [3, Theorem 2, 
Remark 1]. In particular, as h, k → 0, for 1/2 < θ ≤ 1 no coupling of the discretization parameters is necessary, while the 
CFL conditions k = o(h) and k = o(h2) are proved to be sufficient for θ = 1/2 and 0 ≤ θ < 1/2, respectively.
(iii) We note that [31, Theorem 2.2] and its proof are slightly inaccurate and, in particular, the CFL condition k = o(h) is 
missing for θ = 1/2.

We briefly comment on a projection-free modification of PC1+IMEX.

Remark 3.8. As pointed out in Remark 3.4, Algorithm 3.5 and the first-order tangent-plane scheme from [3] coincide up 
to mass-lumped integration in the predictor (22). Hence, an obvious modification of Algorithm 3.5 in the spirit of the 
projection-free tangent-plane scheme from [1, Algorithm 6] is omitting the projection in the corrector (23), i.e., defining 
m�+1

h := m�
h + kv�

h ∈ S1(Th)3. For this projection-free variant of Algorithm 3.5, at first glance, one could hope for the same 
desirable theoretical features as for the projection-free tangent plane scheme — namely stability and weak convergence [1]
without the angle condition (24) and even strong convergence [23], both at the price of a slight deterioration from nodewise 
unit-length m�

h �∈ Mh . In contrast to the projection-free tangent plane scheme, the projection-free variant of Algorithm 3.5
is unconditionally well-posed even for the limit case α = 0; see Remark 4.6(iii)–(iv) below. Further, it satisfies a discrete 
energy law, which, e.g., in the exchange-only case for θ = 1/2 reads

�2
ex

2

∥∥∥∇m J
h

∥∥∥2 + α

1 + α2
�4

exk
J−1∑
�=0

∥∥∥m�
h × �h(m

�
h + (k/2)v�

h)

∥∥∥2

h
= �2

ex

2

∥∥∥∇m0
h

∥∥∥2
.

However, due to the loss of nodewise unit-length m�
h �∈ Mh , equivalence of the predictor of the projection-free version of 

Algorithm 3.5 and the discrete tangent space system (17) in Kh[m�
h] does not hold anymore. Consequently, the analysis for 

the projection-free tangent plane scheme from [1,23] does not (directly) transfer, and a rigorous analysis of the projection-
free version of Algorithm 3.5 remains open.

4. Second-order predictor-corrector scheme

In this section, we discuss the second-order scheme proposed in [31]. Our contribution is threefold: In theory, well-
posedness (for the predictor) of the scheme (which was left open in [31]) follows already from our analysis in Section 3.2. 
When accounting for the use of inexact (iterative) linear solvers, which is inevitable in practice, however, discrete unit-
length m�

h ∈ Mh is lost and therefore a conceptually new analysis is required to guarantee well-posedness in practice. We 
fill this fundamental gap in the analysis of [31] for their second-order scheme, by proving unconditional well-posedness not 
only for the proposed predictor-corrector scheme, but also for its practical version incorporating inexact (iterative) linear 
solvers. Again, we first consider the method for the case heff(m) = �2

ex�m. The general case heff(m) = �2
ex�m + π(m) + f

is treated in Section 4.4, where we employ an explicit treatment of the (nonlocal) lower-order contributions to obtain 
a computationally superior IMEX version of the scheme, preserving experimental rates in time. We numerically confirm 
the applicability and the formal second-order of the proposed IMEX scheme in Section 5. Theoretical stability (and hence 
convergence) of the second-order scheme remains open (like in [31]), but is experimentally investigated in a numerical 
study in Section 5.3.

4.1. Variational formulation

The following algorithm restates [31, Algorithm 2] written in terms of the discrete functions m�
h, v�

h, m�+1
h ∈ S1(Th)3. In 

particular, the corrector (31) of Algorithm 4.1 reformulates the N equations in R3 of the corrector of [31, Algorithm 2] as 
an equivalent variational formulation for m�+1

h in S1(Th)3. The predictor step coincides with step (i) of Algorithm 3.1, i.e., 
(30) coincides with (15). As in Section 3, the parameter θ ∈ [0, 1] modulates the ‘degree of implicitness’ (in the predictor) 
of the scheme.

Algorithm 4.1 (PC2, variational form). Input: m0
h ∈ Mh.

Loop: For all time-steps � = 0, . . . , L − 1, iterate:

(i) Compute v�
h ∈ S1(Th)3 such that, for all wh ∈ S1(Th)3 , it holds that

(1 + α2)〈v�
h, wh〉h = −�2

ex〈m�
h × �h(m

�
h + θkv�

h), wh〉h

− α�2
ex〈m�

h × (m�
h × �h(m

�
h + θkv�

h)), wh〉h .
(30)

(ii) Compute m�+1
h ∈ Mh such that, for all wh ∈ S1(Th)3 , it holds that

(1 + α2)〈dtm�+1, wh〉h = −�2
ex〈m�+1/2 × �h(m

� + (k/2)v�), wh〉h (31)
h h h h
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− α�2
ex〈m�+1/2

h × [(m�
h + (k/2)v�

h) × �h(m
�
h + (k/2)v�

h)], wh〉h .

Output: Sequence of discrete functions 
{
(v�

h,m�+1
h )

}L−1

�=0
.

The corrector step of Algorithm 3.1, which combines a linear first-order time-stepping with the nodal projection, is 
replaced by the linear system (31). The 2D numerical results of [31, Figure 3] indicate that the method is of second-order 
in time. In Section 5.2, we confirm this observation for a numerical example in 3D.

4.2. Unconditional well-posedness, exact solver

In Lemma 4.2, we first collect two basic properties of Algorithm 4.1, which, for α > 0, turn out to be sufficient to prove 
unconditional well-posedness of the algorithm in Theorem 4.3.

Lemma 4.2. Let m�
h ∈ Mh. Suppose that the solutions v�

h ∈ S1(Th)3 and m�+1
h ∈ S1(Th)3 to (30) and (31) exist, respectively. Then, 

v�
h ∈Kh[m�

h], and m�+1
h ∈ Mh.

Proof. The claim v�
h ∈ Kh[m�

h] follows as in the proof of Lemma 3.2. We show that m�
h ∈ Mh implies m�+1

h ∈ Mh due to 
the corrector system (31): For arbitrary z ∈Nh , we choose wh := m�+1/2

h (z)φz ∈ S1(Th)3 in (31) to see

(1 + α2)βz

2k

(
|m�+1

h (z)|2 − |m�
h(z)|2

)
(10)= (1 + α2)〈dtm�+1

h ,m�+1/2
h (z)φz〉h

(31),(4b)= 0 .

This shows that |m�+1
h (z)| = |m�

h(z)| for all z ∈ Nh . Hence, m�
h ∈ Mh implies that m�+1

h ∈ Mh . The assumption m0
h ∈ Mh

concludes the proof. �
We show unconditional well-posedness of the corrector (31), while with Lemma 4.2 unconditional well-posedness of the 

predictor is inferred from our analysis in Section 3.2.

Theorem 4.3. Let α > 0. Then, Algorithm 4.1 is unconditionally well-posed for any input m0
h ∈ Mh, i.e., for all � = 0, . . . , L − 1, the 

predictor (30) admits a unique solution v�
h ∈ S1(Th)3 , and the corrector (31) admits a unique solution m�+1

h ∈Mh.

Proof. By Lemma 4.2 it holds that m�
h ∈ Mh and v�

h ∈ Kh[m�
h] for all � = 0, . . . , L − 1. Hence, as for the predictor of 

Algorithm 3.1, the predictor system (30) is equivalent to a coercive system in the discrete tangent space Kh[m�
h] with 

unique solution v�
h ∈ Kh[m�

h]; see (the proof of) Theorem 3.3. It remains to show well-posedness of the corrector (31): We 
rewrite the problem in terms of the unknown η�

h := m�+1/2
h , which, by construction, satisfies that m�+1

h = 2η�
h − m�

h and 
dtm�+1

h = 2(η�
h − m�

h)/k. The corrector system (31) then reads: Find η�
h ∈ S1(Th)3 such that

acor[m�
h, v�

h](η�
h, wh) = (1 + α2)〈m�

h, wh〉h,

where the bilinear form acor[m�
h, v�

h] : S1(Th)3 × S1(Th)3 →R is defined by

acor[m�
h, v�

h](η�
h, wh) := (1 + α2)〈η�

h, wh〉h + �2
exk

2
〈η�

h × �h(m
�
h + (k/2)v�

h), wh〉h

+ α�2
exk

2
〈η�

h × [(m�
h + (k/2)v�

h) × �h(m
�
h + (k/2)v�

h)], wh〉h.

As the bilinear form satisfies the ellipticity property

acor[m�
h, v�

h](wh, wh) = (1 + α2)‖wh‖2
h for all wh ∈ S1(Th)

3,

the problem is well-posed by the Lax–Milgram theorem. Hence, (31) provides a unique solution m�+1
h ∈ S1(Th)3. Lemma 4.2

guarantees m�+1
h ∈ Mh concluding the proof. �

Remark 4.4. (i) Algorithm 4.1 is a predictor-corrector scheme: Both systems, for the predictor (30) and for the corrector (31), 
respectively, are linear systems representing discrete mass-lumped variational versions of the LL form (5a) of LLG; see also 
Remark 3.4(i). First, treating the effective field implicitly in time, an approximate time derivative v�

h ∈ Kh[m�
h], the predictor, 

is computed. In the second step (the effective field of) the predicted midpoint m�
h + (k/2)v�

h ∈ S1(Th)3 is used to compute 
a corrected update dtm�+1

h ∈ S1(Th)3, guaranteeing conservation of discrete unit-length m�+1
h := m�

h + kdtm�+1
h ∈ Mh .

(ii) In the proof of Theorem 4.3, note that the assumption α > 0 is only exploited to apply Theorem 3.3. Hence, analogously 
to Theorem 3.3 (Remark 3.4(iv)), also Theorem 4.3 can be extended to the limit case α = 0; see Theorem 4.5 below.
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4.3. Unconditional well-posedness, inexact solver

Considering the effect of numerical approximations, we extend the theoretical well-posedness result from the previous 
section to the practical case.

Well-posedness of the predictor step (i) of Algorithm 4.1 is guaranteed by Theorem 3.3: There, under the crucial condition 
m�

h ∈ Mh , computing v�
h in the predictor step is shown to be equivalent to solving the system (17) in the discrete tangent 

space Kh[m�
h], which is always well-posed for α > 0. While m�

h ∈ Mh is explicitly enforced in step (ii) of Algorithm 3.1, in 
Algorithm 4.1 it follows only implicitly from the inherent length preservation guaranteed by the variational formulation (31)
solved in step (ii) together with m�−1

h ∈ Mh in the previous time-step; see the proof of Lemma 4.2. In practice however, 
linear systems are solved by inexact (iterative) numerical solvers, i.e., the coefficient vector of the unknown m�+1

h solves 
the linear system of equations corresponding to (31) only up to some accuracy ε > 0, commonly in the �2(R3N )-norm. 
Consequently, for any z ∈ Nh there only holds |m�+1

h (z)| ≈ |m�
h(z)| with a small error depending on the discretization 

parameters ε and h. Moreover, the deviation from nodewise unit-length accumulates over the time-steps � = 0, . . . , L − 1. 
Consequently — if recoverable at all — one expects to require CFL-type couplings of the discretization parameters k, h, ε to 
rigorously argue (approximate) equivalence of the linear system in step (i) of Algorithm 4.1 and the well-posed system (17)
in the proof of Theorem 3.3.

To avoid these analytical difficulties, we take a different analytical approach: The new analysis uses a space decomposi-
tion technique reformulating (30) as an equivalent saddle-point problem, which subsequently is proved to be unconditionally 
well-posed and hence always provides a unique solution. In particular, this does not require m�

h ∈ Mh , but allows for arbi-
trary m�

h ∈ S1(Th)3 � Mh . Additionally, the analysis applies to all α ≥ 0, extending well-posedness of Algorithm 4.1 to the 
Schrödinger map equation (α = 0).

Theorem 4.5. Let α ≥ 0. Then, Algorithm 4.1 is unconditionally well-posed for any input m0
h ∈ S1(Th)3 , i.e., for all � = 0, . . . , L − 1

and any m�
h ∈ S1(Th)3 , the predictor (30) admits a unique solution v�

h ∈ S1(Th)3 , and the corrector (31) admits a unique solution 
m�+1

h ∈ S1(Th)3 .

Proof. For arbitrary m�
h ∈ S1(Th)3 well-posedness of the corrector (31) is guaranteed by the proof of Theorem 4.3, as it 

does not require m�
h ∈ Mh . Using a space decomposition technique, we show unconditional well-posedness of the predictor 

system (30) for any m�
h ∈ S1(Th)3 — in particular for m�

h ∈ S1(Th)3 not necessarily belonging to Mh — in five steps:

• Step 0: Some notation.

Throughout, for an operator A : X → Y between two Hilbert spaces, we write R(A) ⊆ Y for its range, and N (A) ⊆ X for its 
kernel. We consider the (negative) discrete Laplace operator (12) restricted to S1(Th)3 ⊂ H 1(�), which will be denoted by 
the same symbol −�h : S1(Th)3 → S1(Th)3. Further, we identify a 3-vector with the corresponding constant vector-valued 
grid function, i.e., R3 ⊂ (

S1(Th)3, 〈·, ·〉h
)
. For S ⊂ S1(Th)3 a subspace we denote by I S the identity on S .

• Step 1: Orthogonal decomposition S1(Th)3 =R(P∗) ⊕N (P∗).

Define the operator P∗ : S1(Th)3 → S1(Th)3 for all wh ∈ S1(Th)3 via

(P∗wh) j = (wh) j − meas(�)−1〈wh, e j〉h ∈ S1(Th) for all j = 1,2,3 .

Clearly, P∗ is the 〈·, ·〉h-orthogonal projector onto

R(P∗) = S1∗ (Th)
3 := {wh ∈ S1(Th)

3 : 〈wh, e j〉h = 0 for all j = 1,2,3} ,

the subset of S1(Th)3 consisting of the vector-valued grid functions which have zero mean in each component. Due to 
self-adjointness, P∗ provides the orthogonal decomposition

S1(Th)
3 = R(P∗) ⊕N (P∗) = S1∗ (Th)

3 ⊕R3 .

With respect to this decomposition, we rewrite the unknown v�
h ∈ S1(Th)3 as the orthogonal sum

v�
h = P∗v�

h ⊕ (IS1(Th)3 − P∗)v�
h =: v∗ ⊕ v , (32)

with unique v∗ ∈ R(P∗) = S1∗ (Th)3 and v ∈ N (P∗) =R3. Note, that v ∈R3 is the vector-valued mean of v�
h , i.e., 〈v, e j〉h =

〈v�
h, e j〉h for all components j = 1, 2, 3.

• Step 2: Reduced operator −�̃h : S1∗ (Th)3 → S1∗ (Th)3.
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The discrete Laplacian −�h : S1(Th)3 → S1(Th)3 is linear, self-adjoint and by definition (12) has the kernel N (−�h) =
R3 ⊂ S1(Th)3. Hence, there holds the orthogonal decomposition

S1(Th)
3 = R(−�h) ⊕N (−�h) = N (−�h)

⊥ ⊕N (−�h) = S1∗ (Th)
3 ⊕R3 . (33)

Consequently, the reduced operator −�h|S1∗ (Th)3 =: −�̃h : S1∗ (Th)3 → S1∗ (Th)3 is linear, self-adjoint, and bijective. Moreover, 
it provides a well-defined inverse denoted by (−�̃h)−1 : S1∗ (Th)3 → S1∗ (Th)3 with the same attributes. We point out the 
identities

(−�̃h)−1 ◦ (−�h) = P∗ and − �h ◦ (−�̃h)
−1 = P∗|S1∗ (Th)3 = IS1∗ (Th)3 , (34)

which follow from the orthogonal decomposition (33).

• Step 3: Equivalent saddle point formulation.

With the unknowns q := −�h v∗ ∈ S1∗ (Th)3 and λ := v ∈ R3 from (32), we induce the representation v�
h = (−�̃h)−1q ⊕ λ. 

Plugging this identity into (30), we rewrite the predictor as equivalent saddle point problem: Find (q, λ) ∈ S1(Th)3 × R3, 
such that for all (w, μ) ∈ S1(Th)3 ×R3 it holds that

asp[m�
h](q, w) + bsp(w,λ) = Fsp[m�

h](w) , (35a)

bsp(q,μ) = 0 , (35b)

with the (bi-)linear forms asp[m�
h] : S1(Th)3 × S1(Th)3 →R, b : S1(Th)3 ×R3 →R, and Fsp[m�

h] : S1(Th)3 →R given by

asp[m�
h](q, w) := (1 + α2)〈(−�̃h)−1 P∗q, w〉h

− �2
exθk〈m�

h × q, w〉h − α�2
exθk〈m�

h × (m�
h × q), w〉h ,

bsp(w,λ) := (1 + α2)〈λ, w〉h ,

Fsp[m�
h](w) := −�2

ex〈m�
h × �hm�

h, w〉h − α�2
ex〈m�

h × (m�
h × �hm�

h), w〉h .

The equivalence of (35a)–(35b) to (30) follows from λ ∈ N (−�h) and (34). We use the operator (−�̃h)−1 ◦ P∗ rather 
than (−�̃h)−1, so that the bilinear form asp[m�

h] is well-defined on S1(Th)3 � S1∗ (Th)3. The second equation (35b) ensures 
q ∈ S1∗ (Th)3, which is not enforced explicitly.

• Step 4: The bilinear form asp[m�
h] is coercive on the kernel of bsp.

We aim to apply the Brezzi theory for saddle point problems; see, e.g., [12, Section 4.2]. Hence, we require coercivity of the 
bilinear form asp[m�

h] : S1(Th)3 × S1(Th)3 →R on⋂
λ∈R3

N
(
bsp(·,λ)

) =
⋂

λ∈R3

{w ∈ S1(Th)
3 : 〈λ, w〉h = 0}

=
⋂

j=1,2,3

{w ∈ S1(Th)
3 : 〈e j, w〉h = 0} = S1∗ (Th)

3 .

For any q ∈ S1∗ (Th)3, we compute

asp[m�
h](q,q)

(4b)= (1 + α2)〈(−�̃h)
−1 P∗q,q〉h − α�2

exθk〈m�
h × (m�

h × q),q〉h ,

(34),(4d)= (1 + α2)〈(−�̃h)−1q,−�h(−�̃h)
−1q〉h + α�2

exθk
∥∥∥m�

h × q
∥∥∥2

h

(12)= (1 + α2)
∥∥∇(−�̃h)

−1q
∥∥2

L2(�)
+ α�2

exθk
∥∥∥m�

h × q
∥∥∥2

h

� h2 ‖q‖2
h + α�2

exθk
∥∥∥m�

h × q
∥∥∥2

h
≥ h2 ‖q‖2

h ,

where the second to last estimate is an inverse estimate on S1∗ (Th)3 derived from the classical inverse estimate on S1(Th)3

via

‖q‖2
h = 〈q,q〉h

(34)= 〈q,−�h(−�̃h)
−1q〉h

(12)= 〈∇q,∇(−�̃h)
−1q〉L2(�)

≤ ‖∇q‖L2(�)

∥∥∇(−�̃h)
−1q

∥∥
L2(�)

� h−1 ‖q‖h

∥∥∇(−�̃h)
−1q

∥∥
L2(�)

.

Hence, asp[m�] is coercive on 
⋂

λ∈R3 N (bsp(·, λ)) = S1∗ (Th)3 with ellipticity constant proportional to h2 > 0.
h
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• Step 5: Unique solvability and reconstruction of v�
h .

Clearly, bsp : S1(Th)3 × R3 → R satisfies the inf-sup condition with constant (1 + α2) > 0. Now unique solvability of 
the saddle point formulation (35a)–(35b) follows from the Brezzi theorem [12, Theorem 4.2.1]. Ultimately, with (q, λ) ∈
S1∗ (Th)3 × R3 denoting the unique solution of (35a)–(35b), the original unknown solution to (30) is reconstructed via 
v�

h = (−�̃h)−1q ⊕ λ ∈ S1∗ (Th)3 ⊕R3 = S1(Th)3 and is therefore also unique. �
Remark 4.6. (i) In the third step of the proof of Theorem 4.5, we introduced the unknown q := −�h v∗ ∈ S1∗ (Th)3. This idea 
is inspired by [45, Section 2.3], where the authors subsequently use the Browder–Minty lemma for monotone operators to 
prove well-posedness of their proposed finite difference LLG integrator based on the second-order backward differentiation 
formula.
(ii) In Step 4 of the proof of Theorem 4.5, as the new unknown q = −�h v�

h comprises second-order derivatives of the 
original unknown, it is not surprising that the ellipticity constant for the bilinear form asp[m�

h] scales proportionally to 
h2 > 0.
(iii) Since Mh ⊂ S1(Th)3 and the predictors of Algorithm 3.1 and Algorithm 4.1 coincide, the proof of Theorem 4.5 is not 
only an alternative proof to Theorem 4.3, but also to Theorem 3.3, which additionally extends both theorems to the critical 
value α = 0.
(iv) Consequently, Algorithm 3.1 is not only a mass-lumped version of the tangent plane scheme [3], but additionally it is 
well-posed for the Schrödinger map equation (α = 0).
(v) Even though the predictor of Algorithm 3.1 written in the form (17) coincides with the predictor of the tangent plane 
scheme up to the used integration rule, well-posedness of the tangent plane scheme for the limit case α = 0 remains open. 
Indeed, the proof of Theorem 4.5 relies heavily on mass-lumped integration, and we did not succeed to transfer the proof 
to exact integration used in the original tangent plane scheme.

4.4. Including the lower-order contributions

We consider the case when the effective field comprises linear lower-order energy contributions π (m) such as, in par-
ticular, the nonlocal stray field hs, i.e., heff(m) = �2

ex �m + π(m) + f . Then the predictor step of the original second-order 
integrator proposed in [31, Algorithm 2] is identical to (21), i.e., lower-order terms are treated implicitly in time. Due to the 
nonlocality of the stray field this is unattractive in practice as described in Section 3.3. Hence, analogously to Section 3.3, we 
aim to treat the lower-order terms π(m) explicitly in time. However, to avoid spoiling the scheme’s potential second-order 
accuracy in time, which was observed experimentally in [31], the modification is slightly more involved:

In Section 3.3 an error of order O(k) is introduced to the system (21) by approximating πh(m�
h + θkv�

h) ≈ πh(m�
h). Since 

Algorithm 3.1 is a first-order scheme, this modification did not deteriorate the order of convergence of the algorithm.
To preserve the potential second-order of Algorithm 4.1, we use a higher-order approximation to π (m�

h + θkv�
h): Recall, 

that π is a linear operator and that v�
h is an approximation of ∂tm(t�). Motivated by the Taylor expansion m(t�) = m(t�−1) +

k∂tm(t�) +O(k2), and hence m(t�) + θk∂tm(t�) = (1 + θ)m(t�) − θm(t�−1) +O(k2), we introduce a second-order error O(k2)

to the system (21) via the approximation

πh(m
�
h + θkv�

h) ≈ (1 + θ)πh(m
�
h) − θπh(m

�−1
h ) . (36)

Only the leading-order exchange contribution is treated implicitly in time, while the lower-order contributions are treated 
explicitly. Due to the higher-order approximation of πh(v�

h), this does not spoil the observed second-order of the scheme 
and it is computationally much more attractive. To sum up, we consider the following algorithm.

Algorithm 4.7 (PC2+IMEX). Input: m0
h ∈ Mh.

Preprocessing: Compute m1
h ∈Mh, e.g., by Algorithm 4.1.

Loop: For all time-steps � = 1, . . . , L − 1, iterate:

(i) Compute Ph((1 + θ)πh(m�
h) − θπh(m�−1

h ) + f �+θ ) ∈ S1(Th)3 .
(ii) Compute v�

h ∈ S1(Th)3 such that, for all wh ∈ S1(Th)3 , it holds that

(1 + α2)〈v�
h, wh〉h (37)

= −〈m�
h × [�2

ex�h(m
�
h + θkv�

h) + Ph((1 + θ)πh(m
�
h) − θπh(m

�−1
h ) + f �+θ )], wh〉h

−α〈m�
h ×(m�

h ×[�2
ex�h(m

�
h +θkv�

h) + Ph((1+θ)πh(m
�
h)−θπh(m

�−1
h )+ f �+θ )]), wh〉h.

(iii) Compute m�+1
h ∈Mh such that, for all wh ∈ S1(Th)3 , it holds that

(1 + α2)〈dtm�+1, wh〉h (38)
h
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= −〈m�+1/2
h × [�2

ex�h(m
�
h + (k/2)v�

h) + Ph(πh(m
�
h + (k/2)v�

h) + f �+1/2)], wh〉h

− α〈m�+1/2
h × (

(m�
h + (k/2)v�

h)

× [�2
ex�h(m

�
h + (k/2)v�

h) + Ph(πh(m
�
h + (k/2)v�

h) + f �+1/2)]), wh〉h.

Output: Sequence of discrete functions 
{
(v�

h,m�+1
h )

}L−1

�=0
.

Remark 4.8. (i) In the preprocessing step of Algorithm 4.7 also other integrators may be used to compute m1
h ∈ Mh . As 

long as the approximation m1
h is second-order accurate, the potential second-order accuracy of Algorithm 4.1 is preserved 

by Algorithm 4.7. (Note that first-order accurate integrators usually only introduce a quadratic error per time-step.)
(ii) Algorithm 4.7 is also well-posed in practice, when effects of inexact (iterative) solvers are accounted for, i.e., (37) is 
unconditionally well-posed for arbitrary m�

h ∈ S1(Th)3 � Mh . As lower-order terms are treated explicitly in time, proving 
well-posedness follows the lines of the proof of Theorem 4.5 with adjusted linear form Fsp[m�

h] � F imex[m�
h, m�−1

h ].
(iii) In addition to the evaluation of πh(m�

h) in the predictor (37) of Algorithm 4.7, another evaluation πh(v�
h) is required 

in the corrector (38). This second evaluation of πh per time-step can be avoided by applying (36) with θ = 1/2 to the 
corrector (38), which leads to the second-order approximation πh(m�

h + (k/2)v�
h) ≈ (3/2)πh(m�

h) − (1/2)πh(m�−1
h ). Hence, 

with this modification one arrives at a cheaper version of PC2+IMEX requiring only one evaluation of πh per time-step.

5. Numerical experiments

This section provides some numerical experiments for Algorithm 3.1 and Algorithm 4.1 from [31], as well as their respec-
tive IMEX versions proposed in this work, namely Algorithm 3.5 and Algorithm 4.7, respectively. In Section 5.1 we verify the 
correctness of the proposed integrators (PC1+IMEX and PC2+IMEX) on the benchmark problem μMAG #4 from [36]. In 
Section 5.2 the experimental rates of Algorithm 3.1 (PC1) and Algorithm 4.1 (PC2) reported in [31] are confirmed. Moreover, 
the experiment shows that lower-order terms can appropriately be treated explicitly in time by Algorithm 3.5 (PC1+IMEX) 
and Algorithm 4.7 (PC2+IMEX), respectively, without spoiling the rate of convergence.

All computations have been performed with our micromagnetic software module Commics [37], based on the open-
source finite element library Netgen/NGSolve [40]. In Commics, the stray field hs is computed via the hybrid FEM-BEM 
approach from [25]; see also [38, Algorithm 12]. We note that meshes generated by Netgen in general do not satisfy the 
angle condition (24). All experiments were repeated on structured meshes satisfying the angle condition leading to the 
same results (not displayed).

5.1. μMAG standard problem #4

We verify the practical applicability of the proposed integrators PC1+IMEX and PC2+IMEX (we choose θ = 1/2) by 
computing a physically relevant example. To this end, we consider μMAG standard problem #4 [36], which simulates the 
switching of the magnetization in a thin permalloy layer.

The objective is the simulation of the magnetization dynamics in a thin permalloy film of dimensions 500 nm×125 nm×
3 nm under the influence of a constant applied external field. The involved physical constants and material parame-
ters are the gyromagnetic ratio γ0 = 2.211 · 105 m/C, the permeability of vacuum μ0 = 4π · 10−7 N/A2, the saturation 
magnetization Ms = 8.0 · 105 A/m, the exchange stiffness constant A = 1.3 · 10−11 J/m, and the Gilbert damping constant 
α = 0.02. Starting from a so-called equilibrium S-state [36], the experiment consists in applying the constant applied field 
μ0 H ext = (−24.6, 4.3, 0) mT for 3 ns.

For the rescaled form (5) of LLG, the above physical quantities lead to the parameters �ex = √
2A/(μ0M2

s ), T = 3 ·
10−9γ0Ms, and f = H ext/Ms, while π(m) includes only the stray field hs. For the space discretization, we consider a 
tetrahedral partition of the thin film generated by Netgen [40] into cells of prescribed mesh size 3 nm. This corresponds 
to 48 796 elements and 16 683 vertices. For the time discretization, we consider a constant physical time-step size of 
t =
0.1 ps, which is connected to the rescaled time-step size k via the relation k = γ0 Ms
t .

For comparison, the desired output of this benchmark problem is the evolution of the x-, y- and z-component of the spa-
tially averaged magnetization. Fig. 1 shows, that our results match those computed by the finite difference code OOMMF [42]
available on the μMAG homepage [36].

5.2. Empirical convergence rates for LLG

We aim to illustrate the accuracy and the computational effort of the following four algorithms:

• PC1: fully implicit first-order scheme proposed in [31] and recalled in Algorithm 3.1;
• PC1+IMEX: PC1 with explicit treatment of the lower-order terms as proposed in this work and formulated in Algo-

rithm 3.5;
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Fig. 1. μMAG standard problem #4 from Section 5.1: Time evolution of the spatially averaged magnetization components computed with Algorithm 3.5
(PC1+IMEX) and Algorithm 4.7 (PC2+IMEX) compared to the results of OOMMF.

• PC2: fully implicit second-order scheme proposed in [31] and recalled in Algorithm 4.1;
• PC2+IMEX: PC2 with explicit treatment of the lower-order terms as proposed in this work and formulated in Algo-

rithm 4.7;

For all integrators we choose θ = 1/2. To obtain experimental convergence rates in time, we use the model problem pro-
posed in [38]: We consider the initial boundary value problem (5) with � = (0, 1)3, m0 ≡ (1, 0, 0), α = 1, and T = 5. For the 
effective field (5d), we choose �ex = 1, a constant applied field f ≡ (−2, −0.5, 0), as well as an operator π which consists 
only of the stray field, i.e., π (m) = hs(m).

For the predictor step in PC1 and PC2, respectively, we solve (21). Since πh effectively depends on v�
h in (21), the 

linear system in the predictor step of Algorithm 3.1 and Algorithm 4.1 is solved with an inner fixed-point iteration which 
is stopped as soon as an accuracy of 10−10 (of 

∥∥v i
h

∥∥
L2(�)

) is reached. Other arising linear systems are solved with the 
generalized minimal residual method (or with the conjugate gradient method for the hybrid FEM-BEM approach) with 
tolerance 10−12. For the spatial discretization we consider a fixed triangulation Th of � generated by Netgen, which consists 
of 3939 elements and 917 nodes (prescribed mesh size h = 1/8).

Since the exact solution of the problem is unknown, to compute the empirical convergence rates, we consider a reference 
solution mh,kref computed with the IMEX version of the second-order midpoint scheme from [38] using the above mesh and 
the time-step size kref = 2 · 10−4.

Fig. 2(a) visualizes the experimental order of convergence of the four integrators. As expected, PC2 and PC2+IMEX
lead to second-order convergence in time. Essentially, both integrators even lead quantitatively to the same accuracy of the 
numerical solution. PC1 as well as PC1+IMEX yield first-order convergence. Differently from the classical θ -method for 
linear second-order parabolic PDEs, due to the tangent plane constraint and the presence of the nodal projection, the PC1
integrator with θ = 1/2 (Crank–Nicolson-type) does not lead to any improvement of the convergence order in time (from 
first-order to second-order); see [6] for a formal analysis in the case of the tangent plane scheme.

In Fig. 2(b), we plot the cumulative computational costs for the integration up to the final time T . The computational 
effort improves considerably if the lower-order terms (i.e., the stray field) are integrated explicitly in time, since then the 
costly inner fixed-point iteration to solve (21) is omitted. Due to the more sophisticated corrector step in Algorithm 4.1 and 
Algorithm 4.7, the second-order schemes PC2 and PC2+IMEX are (slightly) more costly than their first-order counterparts
PC1 and PC1+IMEX, respectively.

Further, we repeat the experiment for different values of θ ∈ [0, 1] for both, PC1+IMEX and PC2+IMEX. The results for
PC1+IMEX in Fig. 3(a) confirm that the strong CFL condition k = o(h2), which is imposed to obtain stability and convergence 
of PC1+IMEX (see Remark 3.7(ii)) with θ < 1/2, are also crucial in practice. As expected, the observed order of convergence 
of PC1+IMEX is unaffected by the choice of θ ∈ [0, 1].

The results for PC2+IMEX shown in Fig. 3(b) are quite surprising: While for θ �= 1/2, the simulation is not stable for 
larger time-step sizes k > 0, still second-order convergence is observed for all 0 ≤ θ ≤ 1 as the time-step size k decreases 
below a certain threshold. The preserved second-order accuracy for θ �= 1/2 might be a consequence of the degree of 
implicitness θ only appearing in the predictor, but not in the corrector of the scheme. In contrast to stability for PC1+IMEX, 
the results of this experiment indicate that for stability of PC2+IMEX more restrictive CFL conditions are necessary for 
θ �= 1/2 than for θ = 1/2. This observation is further investigated in Section 5.3.

Overall, the proposed PC2+IMEX integrator with θ = 1/2 appears to be the method of choice with respect to experi-
mental stability, computational time, and empirical accuracy.
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Fig. 2. Experiments of Section 5.2: Order of convergence (left) and cumulative computational time (right) of the integrators for θ = 1/2.
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Fig. 3. Experiments of Section 5.2: Order of convergence and stability for PC1+IMEX and PC2+IMEX for different values of θ ∈ [0, 1]. Stability is lost for
PC1+IMEX (left) with θ = 0 for k ≥ 8 · kref , and with θ = 1/4 for k ≥ 16 · kref; for PC2+IMEX (right) with θ ∈ {0, 3/4, 1} for k ≥ 16 · kref , and with θ = 1/4
for k ≥ 32 · kref .

5.3. Experimental stability of PC2

We demonstrated the potential of (the IMEX version of) the second-order predictor-corrector scheme PC2 (PC2+IMEX) 
in Section 5.1 and Section 5.2. Our analysis guarantees unconditional well-posedness of the proposed second-order integra-
tors in theory (Theorem 4.3) and in practice (Theorem 4.5). However, neither the present work nor [31] include a rigorous 
analysis on the stability of the second-order predictor-corrector scheme PC2 (Algorithm 4.1), or its variant PC2+IMEX (Al-
gorithm 4.7). More precisely, it remains unclear whether the prescription of a CFL condition k = o(hβ) for some β > 0 is 
sufficient to prove a discrete energy estimate of the form∥∥∥∇m J

h

∥∥∥2 ≤
∥∥∥∇m0

h

∥∥∥2
for all J = 0, . . . , L , (39)

where we omitted any lower-order contributions; see, e.g., (27) for the full discrete energy estimate for PC1+IMEX.
Hence, we close this section by a numerical study investigating the stability of PC2. Note that PC2+IMEX coincides 

with PC2 for the exchange only case heff(m) = �2
ex�m of LLG, which is considered in the following experiments. Motivated 

by the observations on stability of PC2+IMEX in Fig. 3(b), particular focus is put on the dependence on 0 ≤ θ ≤ 1, which 
controls the degree of implicitness in the predictor step (30).

5.3.1. Setup
We consider the partition Th of the unit cube from Section 5.2. For a non-uniform initial condition m0

h ∈ Mh , we 
consider the exchange only case heff(m) = �2

ex�m of LLG and relax the dynamics until the (uniform) equilibrium state is 
50



N.J. Mauser, C.-M. Pfeiler, D. Praetorius et al. Applied Numerical Mathematics 180 (2022) 33–54
0 0.2 0.4 0.6 0.8 1

1

3

5

7

9

11

θ

ti
m

e-
st

ep
si

ze
k

[·1
0−

3
]

stable

unstable
θ = 1/2

Fig. 4. Experiment of Section 5.3.2. Right: Random state m0
h colored by the z-component; red pointing upwards, blue downwards. Left: For all θ =

0/80, 1/80, . . . , 80/80 and all k = 1 · 10−3, 2 · 10−3, . . . , 12 · 10−3, the stability of PC2 is investigated.
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Fig. 5. Experiment of Section 5.3.3: Right: Hedgehog state m0
h colored by the z-component; red pointing upwards, blue downwards. Left: For all θ =

0/80, 1/80, . . . , 80/80 and all k = 1 · 10−3, 2 · 10−3, . . . , 25 · 10−3, the stability of PC2 is investigated.

reached. Due to the absence of any lower-order contributions (π ≡ 0, f ≡ 0), the equilibrium state is a uniform magnetiza-

tion in space, and the simulation is successfully stopped as soon as 
∥∥∇mL

h

∥∥2 ≤ 10−8 for some L > 0. If 
∥∥∥∇m�+1

h

∥∥∥2 ≤ ∥∥∇m�
h

∥∥2

for all � = 0, . . . , L − 1, the simulation is considered to be stable for the triangulation Th with fixed time-step size k > 0 and 

initial condition m0
h ∈ Mh . If for some � ≥ 0 the energy increases, i.e., if there holds 

∥∥∥∇m�+1
h

∥∥∥2
>

∥∥∇m�
h

∥∥2
, then we abort 

the simulation and we consider the simulation to be unstable for this combination of Th , k > 0, and m0
h ∈Mh .

5.3.2. Random initial state
We choose the initial state m0

h ∈Mh such that {mz(z)}z∈Nh is distributed randomly on S2.
Fig. 4 shows, that for any fixed 0 ≤ θ ≤ 1 the simulation is stable if the time-step size k > 0 is chosen small enough. 

Clearly, stability of the simulation does not only depend on the chosen time-step size k > 0, but also on the parameter θ : 
Values of θ close to 1/2 (best at 0.4375 in this experiment) appear to be far less restrictive for the time-step size k > 0
than values farther from 1/2. We note that we repeated this experiment for various random initial states, all producing 
essentially the same result (not displayed).

5.3.3. Hedgehog state
We repeat the experiment from Section 5.3.2 for m0

h being the so-called hedgehog state, i.e., considering the cube to be 
centered around the origin, for each vertex z ∈Nh we set the initial value m0

h(z) := z/|z| ∈S2.
Fig. 5 shows, that again for any 0 ≤ θ ≤ 1 the simulation is stable if the time-step size k > 0 is chosen small enough. As 

in Section 5.3.2, values of θ close to 1/2 appear to be far less restrictive for the time-step size k > 0 than values farther 
from 1/2, with the optimal choice this time closer to 1/2, precisely at θ = 0.475. Interestingly, for the parameter θ ∈ [0, 1]
chosen far from 1/2, the results quantitatively match with those for the random initial state from Section 5.3.2. Closer to 
1/2, however, much larger time-step sizes k > 0 allow for stable simulations as for the random initial state.

5.3.4. Variation of the Gilbert damping parameter
We repeat the experiment from Section 5.3.2 for different values of α = 1/2, 1/4, 1/8, 1/16.
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Fig. 6. Experiment of Section 5.3.4: With m0
h the random state from Fig. 4(right) and different damping parameters α = 1/2, 1/4, 1/8, 1/16, for all θ =

0/80, 1/80, . . . , 80/80 and all k = 1 · 10−3, 2 · 10−3, . . . , 12 · 10−3, the stability of PC2(+IMEX) is investigated.

Fig. 6 shows that, if the damping parameter α decreases, smaller time-step sizes k > 0 are necessary to obtain stable 
simulations with PC2(+IMEX). This observation is in agreement with the role played by α in the model, i.e., incorporating 
dissipation. Again, as previously observed for α = 1, values of θ close to 1/2 allow for larger time-step sizes k > 0 than 
values farther from 1/2; with the least restrictive choices at θ = 0.4375 for α = 1, θ = 0.4625 to 0.475 for α = 1/2, 
θ = 0.4875 for α = 1/4, θ = 0.4875 for θ = 1/8, and θ = 0.5 for α = 1/16. We obtain analogous results when varying α for 
the initial hedgehog state (not displayed).

5.3.5. Concluding remarks on the stability of the second-order scheme
All experiments in this section show that, in contrast to PC1 (Theorem 3.6), larger values of θ do not improve stability 

of the second-order scheme PC2. On the contrary, it is even the case that large values of θ perform as bad as small values 
of θ . For a generic simulation with PC2(+IMEX), we suggest to pick the degree of implicitness θ = 1/2 in the predictor. 
Although, when considering one particular simulation setup, there might be better choices allowing for even larger time-
step sizes, the choice θ = 1/2 performed reliably throughout all experiments. In particular, the results from Section 5.3.4
indicate that the deterioration of the optimal θ (with respect to stability) from 1/2 might occur specifically for large values 
of α, and quickly vanish as the damping parameter α decreases. Moreover in future works, proving stability of PC2 under 
some CFL condition for the special case θ = 1/2 might be a possible first step in theoretically understanding stability of
PC2. This seems reasonable, as in this special case only the same highest-order term �h(m�

h + (k/2)v�
h) appears in the 

predictor and the corrector of PC2. Hence these terms partially cancel out, when subtracting the two equations (30)–(31)
from each other.

6. Conclusion

In this paper, we have improved the theoretical understanding of the predictor-corrector methods proposed in [31] by 
establishing unconditional well-posedness of both PC1 and PC2 (in Theorem 3.3 and Theorem 4.3, respectively), i.e., we 
have proved that for each time-step, the arising variational problems admit unique solutions, which was left open in the 
original paper. By closing this fundamental gap, we have shown that PC1 is not only closely related to the first-order tan-
gent plane scheme of [3,14], but actually can even be interpreted as a slight modification of it; see Remark 3.4(iii). Our 
well-posedness analysis is based on a reformulation of the predictor system, which crucially exploits nodewise unit-length 
m� ∈ Mh . This property is satisfied by the approximations generated by PC1 thanks to the use of the nodal projection 
h

52



N.J. Mauser, C.-M. Pfeiler, D. Praetorius et al. Applied Numerical Mathematics 180 (2022) 33–54
in the corrector step. In PC2, the unit-length constraint is imposed by the corrector implicitly via a constraint-preserving 
variational formulation. However, as linear systems are not solved exactly in practice, one cannot expect the unit-length 
constraint to hold at machine precision. Hence, strictly speaking, the well-posedness analysis of PC2 established in Theo-
rem 4.3 does not cover a practical implementation of the scheme. To cope with this problem, we establish a decomposition 
of the finite element space, which does not only allow us to prove unconditional well-posedness of the practical version of
PC2 (Theorem 4.5), but also to extend the result, for both PC1 and PC2 (theoretical and practical), to the limit case α = 0
(Schrödinger map equation); see Remark 3.4(iv), Remark 4.4(ii), and Remark 4.6(iii)–(iv).

Furthermore, following [14,38,21], we propose implicit-explicit versions of PC1 and PC2. When considering magne-
tization dynamics involving the full effective field — more precisely, dynamics including the nonlocal stray field — the 
proposed IMEX versions PC1+IMEX and PC2+IMEX are computationally much more attractive than their original counter-
parts. Experimentally, we demonstrate the applicability of the IMEX schemes to a physically relevant benchmark problem in 
Section 5.1, and their improved efficiency in Section 5.2. The experiments in Section 5.2 also validate their preservation of 
the experimental first- and second-order accuracies of PC1 and PC2, respectively.

While from a practical point of view the original integrators PC1 and PC2 from [31] are computationally unattractive 
due to their implicit integration of the nonlocal stray field contribution, effectiveness of the IMEX integrators PC1+IMEX
and PC2+IMEX proposed in this work is comparable to state-of-the-art schemes from the literature: PC1+IMEX is experi-
mentally first-order accurate in time and requires one stray field evaluation in addition to the solution of one sparse linear 
system per time-step, which makes it directly comparable to the first-order tangent plane scheme of [3,14]. PC2+IMEX is 
second-order accurate in time and requires one stray field evaluation (see Remark 4.8(iii)) in addition to the solution of two 
sparse linear systems per time-step. Hence, it is slightly more expensive than, but comparable to, the second-order implicit-
explicit tangent plane scheme from [21], which requires one stray field evaluation in addition to the solution of only one 
sparse linear system per time-step. At the same time, PC2+IMEX is considerably cheaper than the second-order implicit-
explicit midpoint scheme from [38], which requires one stray field evaluation in addition to the approximate solution of a 
nonlinear system per time-step.

Stability of PC1+IMEX is established in Theorem 3.6. As pointed out in Remark 3.7, this leads to convergence results 
matching those of the first-order tangent plane scheme of [3,14] as well as recovering those for the original integrator PC1
in [31], in particular guaranteeing unconditional convergence for the choices 1/2 < θ ≤ 1. From a theoretical point of view, 
stability and convergence of PC2(+IMEX), not addressed in [31], remain open also in our analysis and will be the subject 
of future research. Instead, we shed some light on the stability of PC2(+IMEX) by a numerical study. In particular, our 
experiments summarized in Section 5.3.5 suggest that investigation of the special case θ = 1/2 might be the most promising 
first step towards establishing a first rigorous stability result for PC2(+IMEX).
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