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Gauss–Green formula
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1. Introduction

Starting from the pioneering papers [6,11,35], the research community has shown a 
growing interest in the pairing theory between divergence-measure fields (i.e. vector fields 
whose weak divergence is a Radon measure) and BV functions, fostered by its application 
in several contests. We mention, among others, hyperbolic conservation and balance laws 
with discontinuous fluxes [11–13], capillarity and prescribed mean curvature problems 
[27–29,32], the weak formulations of problems involving the 1-Laplacian operator [4,5,9,
26,31,33], and continuum mechanics [10,22,34,35]. For recent extensions to non-Euclidean 
and fractional frameworks we refer to [8,14,16].

The current general setting for the pairing theory is the following (see e.g. [6,11,15]). 
Given an open set Ω ⊂ RN , we say that a vector field A ∈ L∞(Ω; RN ) is a divergence-
measure field, and we write A ∈ DM∞(Ω), if divA is a finite Radon measure on Ω. 
For any function u ∈ BV (Ω) ∩ L∞(Ω), the pairing (A, Du) is defined in the sense of 
distributions as

〈(A, Du) , ϕ〉 := −
ˆ

Ω

u∗ ϕd(divA) −
ˆ

Ω

uA · ∇ϕdx , for all ϕ ∈ C∞
c (Ω) .

We recall that this definition is well posed, since the measure divA does not charge sets 
of (N − 1)-dimensional Hausdorff measure zero, while the precise representative u∗ of a 
BV function u is defined HN−1-a.e. in Ω. In fact, it is proved in [6,11] that the pairing 
(A, Du) is a Radon measure in Ω, and | (A, Du) | ≤ ‖A‖L∞(Ω;RN )|Du|, so that there 
exists a density θ(A, Du, ·) ∈ L1(Ω, |Du|) such that the equality

(A, Du) = θ(A, Du, x)|Du|

holds in the sense of measures. In addition, in [17,20,21] it is shown that the boundedness 
assumption on u can be replaced with the weaker requirement that u∗ ∈ L1(Ω; | divA|).

The aim of this paper is to find some representation formula for the pairing, obtained 
through a detailed description of the density θ(A, Du, x) of the pairing measure (A, Du)
with respect to |Du|.

In the classical case, when A ∈ DM∞(Ω) ∩ C(Ω; RN ) and u ∈ BV (Ω) ∩ C1(Ω), 
then (A, Du) = A · ∇u LN , where LN is the N -dimensional Lebesgue measure, so that 
θ(A, Du, x) = 0 if ∇u(x) = 0, whereas

θ(A, Du, x) = A(x) · ∇u(x) =: Tr(A, {u = u(x)}) , if ∇u(x) 
= 0,
|∇u(x)|
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where Tr(A, {u = u(x)}) denotes the normal trace of A on the regular level set {u =
u(x)}.

In the general case, the usual decomposition

Du = ∇uLN + Dju + Dcu

of the measure Du into its absolutely continuous, jump and Cantor parts, leads to a 
corresponding decomposition of the pairing measure

(A, Du) = (A, Du)a + (A, Du)j + (A, Du)c .

The absolutely continuous part satisfies (A, Du)a = A · ∇u LN , as it is first shown in 
[11], while in [17] the authors prove that (A, Du)j = Tr∗(A, Ju) |Dju|, where Tr∗(A, Ju)
is the average of the interior and exterior weak normal traces of the vector field A on the 
jump set Ju of u (see Section 2.3 below). This result is satisfactory for what concerns 
the representation of the absolutely continuous part and the jump part of the pairing 
measure, since it implies that

θ(A, Du, x) = A · ∇u(x)
|∇u(x)| χ{∇u �=0}(x) , for LN -a.e. x ∈ Ω,

and

θ(A, Du, x) = Tr∗(A, Ju)(x) , for |Dju|-a.e. x ∈ Ω.

On the other hand, for what concerns the representation of the Cantor part of the pairing 
measure, in [17] it is proved that (A, Du)c (Ω \ SA) = Ã · Dcu (Ω \ SA), where SA

is the approximate discontinuity set of A, and Ã denotes the approximate continuous 
representative of A in Ω \SA. Yet, this representation on Ω \SA is far from being optimal, 
since there exist vector fields A ∈ DM∞(RN ) such that the Hausdorff dimension of SA

is N (see Example 3.9).
Aiming to obtain a representation formula for θ(A, Du, ·) without any additional 

assumption, we propose a new approach based on the use of the coarea formula for the 
pairing measure proved in [17, Theorem 4.2]. The basic idea is to use the representation of 
the purely jump measure (A, Dχ{u>t}) on superlevel sets of u, and to recover information 
on (A, Du) through the coarea formula, obtaining in particular that

(A, Du)c = Tr∗(A, ∂∗{u > ũ(·)})(·)|Dcu|

where ũ is the approximate limit of u at some Lebesgue point and ∂∗E denotes the 
reduced boundary of some measurable set E (see Theorem 3.12).

Hence, more explicit representation formulas for θ(A, Du, ·) can be inherited by ex-
plicit representation formulas for the weak normal traces of A.
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A relevant contribution in this direction is contained in the unpublished paper [7], 
where the divergence of the vector field A ∈ L∞(Ω; RN ) is assumed to be a summable 
function, and the weak normal trace of A is obtained as the limit of a suitable cylindrical 
average. More precisely, [7, Theorem 3.6] states that, if divA ∈ L1(Ω) and u ∈ BV (Ω) ∩
L∞(Ω), then

θ(A, Du, x) = �A · νu� (x) for |Du|-a.e. x ∈ Ω, (1)

where Du = νu |Du| is the polar decomposition of Du, and, for some set G ⊂ Ω and 
some function ζ : G → SN−1,

�A · ζ� (x) := lim
ρ↓0

lim
r↓0

1
LN (Cr,ρ(x, ζ(x)))

ˆ

Cr,ρ(x,ζ(x))

A(y) · ζ(x) dy for x ∈ G,

whenever the limits exist, with

Cr,ρ(x, ζ(x)) :=
{
y ∈ RN : |(y − x) · ζ(x)| < r, |(y − x) − [(y − x) · ζ(x)]ζ(x)| < ρ

}
(the existence of the limit in (1) for |Du|-a.e. x ∈ Ω is part of the statement).

In Theorem 4.10 we obtain a generalization of above-mentioned result to divergence-
measure vector fields, by adapting the arguments of the original proof through the use, as 
a new ingredient, of the Gauss-Green formulas recently proved in [17] (see Theorem 4.2). 
More precisely, the representation formula (1) turns out to hold true provided that the 
set on which the jump part of the measure divA is concentrated, which we denote by 
ΘA, has an HN−1-negligible intersection with the jump set Ju of the function u (see also 
Remark 4.11). This result is optimal: if instead HN−1(ΘA ∩ Ju) > 0, then relation (1)
is no longer valid, as it is shown in Example 4.1.

As an application, we obtain the following Gauss-Green formula, valid for every A ∈
DM∞(RN ) satisfying HN−1(ΘA) = 0, u ∈ BV (RN ) ∩ L∞(RN ), and E ⊂ RN set of 
finite perimeter such that supp(χEu) is bounded:

ˆ

E1

u∗ d divA +
ˆ

E1

�A · νu� d|Du| = −
ˆ

∂∗E

ui �A · νE� dHN−1 ,

where E1 denotes the measure theoretic interior of E, and ui denotes the interior trace 
of u on ∂∗E (see Theorem 4.9).

In addition, in the paper [19] the cylindrical averages approach is further exploited in 
order to gain an explicit representation for the relaxation of a pairing-type functional.

Finally, combining our results with the representation formula for weak normal traces 
obtained in [35, Theorem 4.4], we get the following further integral representation
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θ(A, Du, x) = lim
r→0

N

2ωN−1rN

⎛⎜⎝ ˆ

Bi
r(x)

A(y) · y − x

|y − x| dy −
ˆ

Be
r(x)

A(y) · y − x

|y − x| dy

⎞⎟⎠ ,

for |Du|-a.e. x ∈ Ω, where Bi
r(x) := {y ∈ Br(x) : (y − x) · νu(x) > 0}, Be

r(x) := {y ∈
Br(x) : (y− x) · νu(x) < 0}, and ωN−1 is the (N − 1)-dimensional Lebesgue measure of 
the unit ball in RN−1.

As a further application of our general representation formula, in the final part of 
the paper we recover the local structure of the pairing measure by means of its tangent 
measures, coherently with the classical theory of sets of finite perimeter and functions 
of bounded variation. This result can be also achieved by means of direct calculations 
on the blow-up sequence of the pairing measure; however this is not necessary, since we 
can exploit Theorem 3.12 below and the Federer-Vol’pert theorem.

The plan of the paper is the following.
In Section 2 we set the notation, and we recall some results on divergence-measure 

vector fields, their weak normal traces and functions of bounded variation.
In Section 3 we first recall some results concerning the pairing between divergence-

measure vector fields and functions of bounded variation, mainly taken from [6,11,17,20]. 
Then we prove the result on the representation of the density θ(A, Du, ·) in terms of weak 
normal traces (Theorem 3.12).

In Section 4, building on the results of Section 3, we show that θ(A, Du, ·) can be 
represented in terms of the cylindrical averages introduced in [7]; then we achieve a 
similar result with the half balls averages introduced in [35].

Finally, in Section 5 we briefly describe the tangential properties of the pairing mea-
sure.

2. Notation and preliminary results

In the following we denote by Ω a nonempty open subset of RN , and for every set 
E ⊂ RN we denote by χE its characteristic function. We say that a set E is compactly 
contained in Ω, and we write E � Ω, if the closure E of E is a compact subset of Ω. Given 
two sets E, F ⊂ RN , their symmetric difference is the set E � F := (E \ F ) ∪ (F \ E). 
For x ∈ RN and r > 0, we denote by Br(x) the ball centered in x with radius r, and we 
set B1 := B1(0).

2.1. Measures

We denote by LN and HN−1 the Lebesgue measure and the (N − 1)-dimensional 
Hausdorff measure in RN , respectively. Unless otherwise stated, a measurable set is a 
LN -measurable set. We set ωN := LN (B1).

Following the notation of [3], we denote by Mloc(Ω) the space of Radon measures on 
Ω, and by M(Ω) the space of finite Radon measures on Ω.
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Given μ ∈ M(Ω) and a μ-measurable set E, the restriction μ E is the Radon measure 
defined by

μ E(B) := μ(E ∩B), ∀ B μ-measurable, B ⊂ Ω.

The total variation |μ| of μ ∈ M(Ω) is the nonnegative Radon measure defined by

|μ|(E) := sup
{ ∞∑

h=0

|μ(Eh)| : Eh μ-measurable sets, pairwise disjoint, E =
∞⋃
h=0

Eh

}
,

for every μ-measurable set E. Since μ ∈ Mloc(Ω) if and only if μ ∈ M(Ω′) for every open 
set Ω′ � Ω, the above definitions can be easily extended to the case of a not necessarily 
finite Radon measure μ by adding the assumptions B � Ω and Eh � Ω, respectively.

Let μ ∈ Mloc(Ω) and ν be a nonnegative measure on Ω. We say that μ is absolutely 
continuous with respect to ν (notation: μ � ν) if |μ|(B) = 0 for every set B ⊂ Ω such 
that ν(B) = 0. If, in addition, ν is σ-finite, then, by the Radon-Nikodým Theorem, there 
exists a unique function θ ∈ L1

loc(Ω, ν) (called density of μ w.r.t. ν) such that μ = θν

(clearly, θ ∈ L1(Ω, ν) if and only if |μ|(Ω) < ∞).
In the special case of ν = |μ|, the density θ satisfies |θ| = 1 μ-a.e. in Ω, and μ = θ|μ|

is called polar decomposition of μ.
Two positive measures ν1, ν2 ∈ Mloc(Ω) are mutually singular (notation: ν1 ⊥ ν2) if 

there exists a Borel set E ⊂ Ω such that |ν1|(E) = 0 and |ν2|(Ω \ E) = 0.
Given a nonnegative measure μ ∈ Mloc(Ω) and a function f ∈ L1

loc(Ω, μ), we say that 
f has an approximate limit z ∈ R at x ∈ Ω if

lim
r→0+

1
μ (Br(x))

ˆ

Br(x)

|f(y) − z| dμ(y) = 0. (2)

In this case, we say that x is a Lebesgue point of f with respect to μ. Thanks to Lebesgue’s 
differentiation theorem, we know that μ-almost every x ∈ Ω is a Lebesgue point of f with 
respect to μ. In addition, in every Lebesgue point of f with respect to μ the approximate 
limit is uniquely determined and is denoted by z := f̃(x). In what follows we choose f̃
as pointwise representative of f ∈ L1

loc(Ω, μ); that is, we assume f(x) := f̃(x) in every 
Lebesgue point and whenever this choice does not cause any ambiguity.

2.2. Divergence-measure fields

We denote by DM∞(Ω) the space of all vector fields A ∈ L∞(Ω; RN ) whose diver-
gence in the sense of distributions is a finite Radon measure in Ω, acting as

ˆ
ϕd divA = −

ˆ
A · ∇ϕdx ∀ϕ ∈ C∞

c (Ω).

Ω Ω
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Similarly, DM∞
loc(Ω) will denote the space of all vector fields A ∈ L∞

loc(Ω; RN ) whose 
divergence in the sense of distributions is a Radon measure in Ω.

The main property, proved in [11, Proposition 3.1] (see also [35, Theorem 3.2]), is that 
for every A ∈ DM∞

loc(Ω) the measure divA is absolutely continuous with respect to the 
Hausdorff measure HN−1, so that the following decomposition result holds, which is the 
localized version of [20, Proposition 2.3] (see also [2, Proposition 2.3]).

Proposition 2.1. Given a vector field A ∈ DM∞
loc(Ω), the set

ΘA :=
{
x ∈ Ω : lim sup

r→0+

|divA|(Br(x))
rN−1 > 0

}
(3)

is a Borel set, σ-finite with respect to HN−1, and the measure divA can be decomposed 
as the sum of mutually singular measures divA = diva A + divc A + divj A, where

(i) diva A � LN ;
(ii) divc A(B) = 0 for every Borel set B with HN−1(B) < +∞;
(iii) there exists f ∈ L1

loc(ΘA, HN−1 ΘA) such that divj A = f HN−1 ΘA, which 
implies divj A � HN−1 ΘA.

In what follows, we will call ΘA the jump set of the measure divA.

2.3. Weak normal traces on oriented countably HN−1-rectifiable sets

We recall that Σ ⊆ RN is a countably HN−1-rectifiable set if there exist (at most) 
countably many C1 embedded hypersurfaces (Σk)k∈N ⊆ RN such that HN−1(Σ \⋃

k Σk) = 0. A notion of orientation on rectifiable sets can be given as follows: if we 
choose oriented hypersurfaces (Σk), we define HN−1-a.e. on Σ an orientation νΣ by se-
lecting pairwise disjoint Borel sets Nk ⊆ Σk such that HN−1(Σ \

⋃
k Nk) = 0 and by 

setting νΣ = νΣk
on Nk. This orientation depends clearly on the choice of the decom-

position, but only up to the sign, due to the fact that for any pair of C1 hypersurfaces 
Γ, Γ′ it holds that νΓ′ ∈ {−νΓ, νΓ} HN−1-a.e. on Γ ∩ Γ′.

In what follows, we will deal with the traces of the normal component of a vector 
field A ∈ DM∞

loc(Ω) on an oriented countably HN−1-rectifiable set Σ ⊂ Ω. In order to 
fix the notation, we briefly recall the construction given in [1, Propositions 3.2, 3.4 and 
Definition 3.3].

Given a domain Ω′ � Ω of class C1, the trace of the normal component of A on ∂Ω′

is the distribution defined by

〈Tr(A, ∂Ω′), ϕ〉 := −
ˆ

A · ∇ϕdx−
ˆ

ϕd divA, ∀ϕ ∈ C∞
c (Ω). (4)
Ω′ Ω′
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It turns out that this distribution is induced by an L∞ function on ∂Ω′, still denoted by 
Tr(A, ∂Ω′), and

‖Tr(A, ∂Ω′)‖
L∞(∂Ω′,HN−1 ∂Ω′) ≤ ‖A‖L∞(Ω′;RN ). (5)

Given an oriented countably HN−1-rectifiable set Σ, and using the notation for the 
covering of Σ introduced at the beginning of this section, one can prove that for every 
k ∈ N, there exist two open bounded sets Ωk, Ω′

k with C1 boundary and interior normal 
vectors νΩk

and νΩ′
k
, respectively, such that Nk ⊆ ∂Ωk ∩ ∂Ω′

k, and

νΣk
(x) = νΩk

(x) = −νΩ′
k
(x) ∀x ∈ Nk.

By a deep localization property proved in [1, Proposition 3.2], we can fix an orientation 
on Σ, given by

νΣ(x) := νΣk
(x), HN−1-a.e. on Nk

and the interior and exterior normal traces of A on Σ are defined by

Tri(A,Σ) := Tr(A, ∂Ωk), Tre(A,Σ) := −Tr(A, ∂Ω′
k), HN−1-a.e. on Nk,

respectively.
As a consequence, if we consider two oriented countably HN−1-rectifiable sets Σ and 

Σ′ with the same orientation and such that HN−1(Σ ∩ Σ′) > 0, then

Tri(A,Σ) = Tri(A,Σ′) Tre(A,Σ) = Tre(A,Σ′) HN−1-a.e. on Σ ∩ Σ′, (6)

see for instance [15, Proposition 4.10].
Moreover, the normal traces belong to L∞(Σ, HN−1 Σ) and satisfy

max{‖Tri(A,Σ)‖
L∞(Σ,HN−1 Σ), ‖Tre(A,Σ)‖

L∞(Σ,HN−1 Σ)} ≤ ‖A‖L∞(Ω′;RN ) (7)

for every open set Ω′ such that Σ ⊂ Ω′ � Ω (see for instance [15, Theorem 4.2]), and

divA Σ =
[
Tri(A,Σ) − Tre(A,Σ)

]
HN−1 Σ (8)

(see [1, Proposition 3.4]). In particular, by (5), we get | divA|(Σ)≤2‖A‖L∞(Ω;RN )HN−1(Σ).
In what follows we use the notation

Tr∗(A,Σ) := Tri(A,Σ) + Tre(A,Σ)
2 .

Remark 2.2. We stress the fact that in (4) we are using the opposite sign with respect 
to the definition of normal trace given in [1,6], and so the opposite orientation of the 
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rectifiable hypersurfaces. Anyway, if Σ is oriented by a normal vector field ν and Σ′ is 
the same set oriented by ν′ := −ν, then

Tre(A,Σ′) = −Tri(A,Σ), Tri(A,Σ′) := −Tre(A,Σ),

so that the difference Tri(A, Σ) − Tre(A, Σ) in (8) is independent of the choice of the 
orientation on Σ.

2.4. Functions of bounded variation

Even if we mostly follow the terminology of [3], nevertheless we recall the main con-
ventions and results for reader’s convenience.

A function u ∈ L1(Ω) has bounded variation in Ω, and we write u ∈ BV (Ω), if the 
distributional derivative Du of u is a vector valued finite Radon measure in Ω. We denote 
by BVloc(Ω) the set of functions u ∈ L1

loc(Ω) that belongs to BV (Ω′) for every open set 
Ω′ � Ω. In addition, we let BV (Ω; Rm) be the space of Rm-vector valued functions of 
bounded variations in Ω, and we define analogously the local space BVloc(Ω; Rm).

In spite of the fact that a BV function u is an L1 function, it admits a representative 
well defined outside an HN−1-negligible set. In order to define it, we recall some more 
results on approximate limits of summable functions.

If in the definition of approximate limit (2) we have μ = LN and f = u ∈ L1
loc(Ω; Rm), 

then we say that x is a Lebesgue point of u, omitting the reference to the Lebesgue 
measure. In order to emphasize the distinction with the approximate jump points of u
defined below, we use here and in similar situations the notation ũ(x) for the pointwise 
representative of u in its Lebesgue points. The set Cu ⊂ Ω of points where this property 
holds is called the approximate continuity set of u, whereas the set Su := Ω \Cu is called 
the approximate discontinuity set of u.

We say that x ∈ Ω is an approximate jump point of u if there exist a, b ∈ Rm, a 
= b, 
and a unit vector ν ∈ RN such that and

lim
r→0+

1
LN (Bi

r(x))

ˆ

Bi
r(x)

|u(y) − a| dy = 0,

lim
r→0+

1
LN (Be

r(x))

ˆ

Be
r(x)

|u(y) − b| dy = 0,
(9)

where Bi
r(x) := {y ∈ Br(x) : (y−x) ·ν > 0}, and Be

r(x) := {y ∈ Br(x) : (y−x) ·ν < 0}. 
The triplet (a, b, ν), uniquely determined by (9) up to a permutation of (a, b) and a change 
of sign of ν, is denoted by (ui(x), ue(x), νu(x)). The set of approximate jump points of 
u is denoted by Ju, and it is clear that Ju ⊂ Su.

If u ∈ BVloc(Ω; Rm), then both Ju and Su are countably HN−1-rectifiable sets, we have 
HN−1(Su\Ju) = 0, and for HN−1-a.e. x ∈ Ju the unit vector νu(x) can be identified with 
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the normal vector νJu
(x) defined in Section 2.3 for general countably HN−1-rectifiable 

sets (up to a change in orientation).

Definition 2.3. The precise representative u∗ of u ∈ BVloc(Ω, Rm) is defined in Ω \(Su\Ju)
(hence HN−1-a.e. in Ω) as

u∗(x) :=

⎧⎪⎨⎪⎩
ũ(x) for x ∈ Ω \ Su,

ui(x) + ue(x)
2 for x ∈ Ju.

In addition, in [20] the authors consider a family of representatives of a BV func-
tion depending on a Borel map λ : Ω → [0, 1], namely the λ–representative of 
u ∈ BVloc(Ω; Rm), given by

uλ(x) :=
{
ũ(x) for x ∈ Ω \ Su,

(1 − λ(x))u−(x) + λ(x)u+(x) for x ∈ Ju.
(10)

Clearly, for λ(x) = 1/2 for every x ∈ Ω, we get uλ = u∗.
In the remaining part of this section, we focus on the scalar case m = 1. The gradient 

measure Du of a function u ∈ BV (Ω) can be decomposed as the sum of mutually singular 
measures

Du = Dau + Dju + Dcu,

where Dau is the absolutely continuous part with respect to the Lebesgue measure, that 
is, Dau = ∇u LN (∇u ∈ L1(Ω; RN ) is the approximate differential of u), while Dju is 
the jump part, characterized by Dju = (ui − ue) νu HN−1 Ju, and Dcu is the Cantor 
part. We denote by

Ddu := Dau + Dcu

the diffuse part of Du, which is concentrated on Cu, since Su is countably HN−1-
rectifiable.

Based on the notion of density of a measurable set E at a point x ∈ RN :

D(E;x) := lim
ρ→0+

LN (E ∩Bρ(x))
LN (Bρ(x)) ,

(whenever the limit exists), we define the measure theoretic interior and exterior of E:

E1 := {x ∈ RN : D(E;x) = 1} and E0 := {x ∈ RN : D(E;x) = 0},

as well as the measure theoretic boundary
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∂ME := RN \ (E1 ∪ E0). (11)

In the case of a general measurable function u : Ω → R, we set

{u ≶ t} := {x ∈ Ω : u(x) ≶ t} for all t ∈ R,

and

u−(x) := sup {t ∈ R : D({u < t};x) = 0} , u+(x) := inf {t ∈ R : D({u > t};x) = 0} ,

for which, in the case u ∈ BVloc(Ω), we have that

u−(x) = min{ui(x), ue(x)}, u+(x) = max{ui(x), ue(x)}, for HN−1-a.e. x ∈ Ju,

so that we can always choose an orientation on Ju such that ui = u+ on Ju (see [25, §4.1.4, 
Theorem 2]). In what follows we shall always fix this orientation. Under this assumption, 
νu(x) coincides, for HN−1-a.e. x ∈ Ju, with the density in the polar decomposition of 
the measure Dju (see [25, §4.1.4, Cor. 2]), so that we may write Dju = νu |Dju|. Due 
to this identity, with a little abuse of notation, we also denote by νu the density of Du

with respect to |Du|, so that

Du = νu|Du|

and |νu(x)| = 1 for |Du|-a.e. x ∈ Ω (thanks to Radon-Nikodým Theorem).
A measurable set E is of (locally) finite perimeter in Ω if its characteristic function 

χE belongs to BV (Ω) (respectively, BVloc(Ω)). If E has locally finite perimeter in Ω, we 
call reduced boundary ∂∗E of E the set of all points x ∈ Ω in the support of |DχE| such 
that the limit

ν̃E(x) := lim
ρ→0+

DχE(Bρ(x))
|DχE |(Bρ(x))

exists in RN and satisfies |ν̃E(x)| = 1. The function ν̃E : ∂∗E → SN−1 is called the 
measure theoretic unit interior normal to E, and it is clear that ν̃E = νχE

.
A fundamental result of De Giorgi (see [3, Theorem 3.59]) states that ∂∗E is a count-

ably (N − 1)-rectifiable set, |DχE | = HN−1 ∂∗E, and ν̃E(x) = ν∂∗E(x) for HN−1-a.e. 
x ∈ ∂∗E, where ν∂∗E is the normal vector to ∂∗E, in the sense of Section 2.3. Due 
to these facts, with a little abuse of notation, we shall simply write νE to denote the 
measure theoretic unit interior normal, coherently with most of the literature.

If u ∈ BVloc(Ω), then the level sets Et := {u > t} are of locally finite perimeter 
for L1-a.e. t ∈ R, and we have νEt

(x) = νΣt
(x) = νu(x) for HN−1-a.e. x ∈ Σt, where 

Σt := ∂∗{u > t}. In addition, the measure Du can be disintegrated on the level sets of 
u thanks to the coarea formula (see [24, Theorem 4.5.9]).



12 G.E. Comi et al. / Journal of Functional Analysis 286 (2024) 110192
Theorem 2.4 (Coarea formula). If u ∈ BVloc(Ω), then for L1-a.e. t ∈ R the set {u > t}
has finite perimeter in Ω and

ˆ

Ω

g d|Du| =
+∞ˆ

−∞

ˆ

∂∗{u>t}∩Ω

g dHN−1dt =
+∞ˆ

−∞

ˆ

{u−≤t≤u+}

g dHN−1 dt,

for every Borel function g : Ω → [0, +∞].

Thanks to Theorem 2.4 and the inclusion

∂∗{u > t} ⊂ {u− ≤ t ≤ u+} for every t ∈ R,

we deduce that

HN−1
(
{u− ≤ t ≤ u+} \

(
∂∗{u > t}

))
= 0 for L1-a.e. t ∈ R.

Specializing the coarea formula to the approximate continuity set Cu, and using the 
inclusion

∂∗{u > t} ∩ Cu ⊆ {x ∈ Cu : ũ(x) = t} , (12)

we also get

HN−1
(
{x ∈ Cu : ũ(x) = t}\

(
Cu∩∂∗{u > t}

))
= 0 for L1-a.e. t ∈ R. (13)

3. The pairing measure and its representation

In order to give the notion of pairing between divergence-measure fields and BV

functions, we need a particular subset of the BV space, previously introduced in [20].

Definition 3.1. Given A ∈ DM∞
loc(Ω), we define:

BV (Ω) ∩ L1(Ω, |divA|) :=
{
u ∈ BV (Ω) : u∗ ∈ L1(Ω, |divA|)

}
,

BVloc(Ω) ∩ L1
loc(Ω, |divA|) :=

{
u ∈ BVloc(Ω) : u∗ ∈ L1

loc(Ω, |divA|)
}
.

We remark that | divA| � HN−1 and u∗ is defined HN−1-a.e. in Ω, hence these 
definitions are well-posed.

We introduce now the general notion of pairing between a divergence-measure field 
and a suitable BV function (see [17, Section 2.5 and Theorem 4.12]).

Definition 3.2 (Pairing). The pairing between a vector field A ∈ DM∞
loc(Ω) and a func-

tion u ∈ BVloc(Ω) ∩ L1
loc(Ω, | divA|) is the distribution (A, Du) : C∞

c (Ω) → R acting 
as
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〈(A, Du) , ϕ〉 := −
ˆ

Ω

u∗ ϕd(divA) −
ˆ

Ω

uA · ∇ϕdx , for ϕ ∈ C∞
c (Ω) .

Remark 3.3. Thanks to [20, Lemma 3.2], we know that, for all Borel function λ1, λ2 :
Ω → [0, 1], we have uλ1 ∈ L1

loc(Ω, | divA|) if and only if uλ2 ∈ L1
loc(Ω, | divA|). Therefore 

one could replace u∗ with uλ in the definitions of BV (Ω) ∩L1(Ω, | divA|) and BVloc(Ω) ∩
L1

loc(Ω, | divA|), and obtain the same spaces. This observation allows the authors of [20]
to give a more general definition of pairing involving, instead of u∗, the λ-representative 
uλ given by (10): more precisely, they define the λ-pairing (A, Du)λ, acting as

〈(A, Du)λ, ϕ〉 := −
ˆ

Ω

uλ ϕd(divA) −
ˆ

Ω

uA · ∇ϕdx , for ϕ ∈ C∞
c (Ω) . (14)

Since (A, Du) and (A, Du)λ differ only on ΘA∩Ju, by [20, Proposition 4.4], we are going 
to state our results for the standard pairing (A, Du), underlining possible differences only 
whenever they appear.1

The relevant properties of the pairings are recalled in the following proposition, which 
is the combination of [17, Theorem 4.12] and [21, Proposition 2.2 and Corollary 2.3].

Proposition 3.4. Let A ∈ DM∞
loc(Ω) and u ∈ BVloc(Ω) ∩L1

loc(Ω, | divA|). Then (A, Du)
is a Radon measure in Ω, and the equation

div(uA) = u∗ divA + (A, Du)

holds in the sense of Radon measures in Ω. Moreover, (A, Du) is absolutely continuous 
with respect to |Du|, with

| (A, Du) | Ω′ ≤ ‖A‖L∞(Ω′;RN )|Du| Ω′ (15)

for every open set Ω′ � Ω.

In what follows we will write

(A, Du) = θ(A, Du, x)|Du|,

where θ(A, Du, ·) denotes the Radon–Nikodým derivative of (A, Du) with respect to 
|Du|, and our aim is to represent θ(A, Du, ·) in terms of the weak normal traces of the 
field A on the level sets of u.

We recall a remarkable decomposition result for the pairing measure, [17, Theorem 
4.12].

1 We point out that in [20] the authors denote by (A, Du)∗ the standard pairing (for λ ≡ 1/2), whereas 
we use the classical notation.
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Theorem 3.5. Let A ∈ DM∞
loc(Ω) and u ∈ BVloc(Ω) ∩L1

loc(Ω, | divA|). Then the decom-
position of the pairing measure into its absolutely continuous, Cantor and jump parts,

(A, Du) = (A, Du)a + (A, Du)c + (A, Du)j ,

satisfies the following properties:

(i) absolutely continuous part: (A, Du)a = A · ∇u LN ;
(ii) jump part: (A, Du)j = Tr∗(A, Ju)|Dju| = Tr∗(A, Ju) (u+ − u−) HN−1 Ju;
(iii) Cantor part: (A, Du)c (Ω \ SA) = Ã ·Dcu (Ω \ SA).

In addition, we denote by (A, Du)d the diffuse part of the pairing measure; that is,

(A, Du)d = (A, Du)a + (A, Du)c.

Remark 3.6. Proposition 3.4 can be seen as the particular case λ ≡ 1/2 of [20, Proposition 
4.4], which applies to the general λ-pairing given by (14) and provides an estimate 
analogous to (15): given any Borel function λ : Ω → [0, 1], we have

|(A, Du)λ| Ω′ ≤ ‖A‖L∞(Ω′;RN )|Du| Ω′

for every open set Ω′ � Ω. We take the chance to provide a new proof of this bound, 
given that there is a minor gap in the proof of [20, Proposition 4.4, eq. (4.4)]. We notice 
that, by [20, Proposition 4.4, eq. (4.3)] and by (8), we obtain

(A, Du)λ = (A, Du) +
(

1
2 − λ

)
(u+ − u−) divA Ju

= (A, Du) +
(

1
2 − λ

)
(u+ − u−)

(
Tri(A, Ju) − Tre(A, Ju)

)
HN−1 Ju

= (A, Du) +
(

1
2 − λ

)(
Tri(A, Ju) − Tre(A, Ju)

)
|Dju|.

This implies that the diffuse part of the λ-pairing satisfies

(A, Du)dλ = (A, Du)d,

while the singular part is given by

(A, Du)jλ = (A, Du)j +
(

1
2 − λ

)(
Tri(A, Ju) − Tre(A, Ju)

)
|Dju|.

Hence, we can argue as in the proof of [20, Proposition 4.7]: we exploit [17, Theorem 3.3]
to get
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(A, Du)λ = (A, Du)d +
(
(1 − λ) Tri(A, Ju) + λTre(A, Ju)

)
|Dju|

= (A, Du) (Ω \ Ju) +
(
(1 − λ) Tri(A, Ju) + λTre(A, Ju)

)
|Du| Ju,

so that, by applying (7) and (15) (restricted to Ω \ Ju), we obtain

|(A, Du)λ| Ω′ ≤ ‖A‖L∞(Ω′;RN )|Du| (Ω′ \ Ju) + ‖A‖L∞(Ω′;RN )|Du| (Ω′ ∩ Ju)

= ‖A‖L∞(Ω′;RN )|Du| Ω′

for every open set Ω′ � Ω.

We point out that Theorem 3.5 gives a complete answer concerning the density of the 
pairing between A and characteristic functions of sets of finite perimeter.

Corollary 3.7. If A ∈ DM∞
loc(Ω) and E is a set of locally finite perimeter in Ω, then

θ(A, DχE , x) = Tr∗(A, ∂∗E)(x) for HN−1-a.e. x ∈ ∂∗E.

A complete representation can also be given when A is a BV vector field: we state 
below a localization of [17, Remarks 3.4 and 3.6].

Corollary 3.8. If A ∈ BVloc(Ω; RN ) ∩ L∞
loc(Ω; RN ) and u ∈ BVloc(Ω) ∩ L∞

loc(Ω), then 
(A, Du) = A∗ ·Du in the sense of Radon measures in Ω.

In particular, Tr∗(A, Ju)(x) = A∗(x) · νu(x) for HN−1-a.e. x ∈ Ju.

Theorem 3.5 gives a complete representation of the Cantor part of the pairing measure 
only if |Dcu|(SA) = 0. This requirement could be an effective restriction to the applica-
bility of Theorem 3.5. Indeed, although LN (SA) = 0 thanks to Lebesgue differentiation 
theorem, the Hausdorff dimension of SA can be equal to N (hence |Dcu|(SA) can be 
arbitrarily large), as it is shown in the following example.

Example 3.9. For every N ≥ 2 we construct a vector field A ∈ DM∞(RN ) such that 
divA = 0 and dimH(SA) = N , where dimH is the Hausdorff dimension.

As a first step we exhibit a set E ⊂ RN−1 such that dimH(∂ME) = N − 1, where 
∂ME is the measure theoretic boundary of E defined in (11).

We start by considering suitable fat Cantor sets on R. Following the construction of 
Falconer [23, Example 4.5], for any λ ∈ (0, 1) we can construct a middle third Cantor set 
on [0, 1], removing at each step a proportion λ from the intervals. In this way, for any 
j ≥ 0 we remove from [0, 1] a family of middle open intervals {Ikj }2j

k=1 with length

|Ikj | = λ
(1 − λ)j

2j .

Let us consider the union of the intervals corresponding to even generations j:
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Eλ :=
∞⋃
j=0

⎛⎝ 22j⋃
k=1

Ik2j

⎞⎠ .

Then the fat Cantor set

Cλ := [0, 1] \
∞⋃
j=0

⎛⎝ 2j⋃
k=1

Ikj

⎞⎠ ,

coincides with ∂MEλ. Specifically, reasoning as in [17, Example 3.5], we can prove that

0 < lim inf
r↓0

|Eλ ∩Br(x)|
2r ≤ lim sup

r↓0

|Eλ ∩Br(x)|
2r < 1 ∀x ∈ Cλ .

Moreover, it is known that dimH(Cλ) = log 2
log

(
2

1−λ

) (see for instance [23, Example 4.5]), 

so that, choosing λ = 1 − 21−1/s, we have dimH(∂MEλ) = dimH(Cλ) = s.
We can now set

F :=
+∞⋃
m=1

(2m + E2−m) and E = F ×RN−2,

and conclude that

dimH(∂ME) = N − 1, (16)

as claimed. Indeed, it is clear that dimH(∂MF ) ≤ 1, and we have

∂MF =
+∞⋃
m=1

(2m + ∂ME2−m),

which implies Hα(∂MF ) ≥ Hα(∂ME2−m), for any m ≥ 1 and α ∈ (0, 1). Since

dimH(∂ME2−m) = log 2
log

(
2

1−2−m

) ,
there exists m large enough such that dimH(∂ME2−m) > α, for any fixed α ∈ (0, 1). 
This shows that dimH(∂MF ) = 1, and so we obtain (16), by [23, Corollary 7.4].

Finally, let us define A(x) ≡ A(x′, xN ) := (0, . . . , 0, χE(x′)), where x = (x′, xN ) ∈
RN . It is clear that divA = 0, so that A ∈ DM∞(RN ) and SA = ∂ME ×R. Hence, it 
follows that dimH(SA) = N , see again [23, Corollary 7.4].

Aiming to give a general representation of the Cantor part of the pairing measure also 
on SA, we are going to use the following coarea formula for the pairing, for which we 
refer to [17, Theorem 4.2] and [20, Theorem 5.1].
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Theorem 3.10. Let A ∈ DM∞
loc(Ω) and let u ∈ BVloc(Ω) ∩ L1

loc(Ω, | divA|). Then

〈(A, Du) , ϕ〉 =
ˆ

R

〈(
A, Dχ{u>t}

)
, ϕ

〉
dt, ∀ϕ ∈ Cc(Ω) ,

and, for every Borel set B � Ω,

(A, Du) (B) =
ˆ

R

(
A, Dχ{u>t}

)
(B) dt.

Thanks to this result, we obtain the following straightforward localization of [20, 
Proposition 5.2] in the case λ ≡ 1/2.

Proposition 3.11. Let A ∈ DM∞
loc(Ω) and u ∈ BVloc(Ω) ∩ L∞

loc(Ω). Then for L1-a.e. 
t ∈ R we have

θ(A, Du, x) = θ(A, Dχ{u>t}, x) for |Dχ{u>t}|-a.e. x ∈ Ω .

In the following theorem, the pairing is characterized in terms of normal traces of the 
field A on the level sets of u, without any assumption on SA.

Theorem 3.12. Let A ∈ DM∞
loc(Ω) and u ∈ BVloc(Ω) ∩ L∞

loc(Ω). Then,

θ(A, Du, x) = Tr∗(A, ∂∗{u > ũ(x)})(x), for |Ddu|-a.e. x ∈ Ω, (17)

and

θ(A, Du, x) = Tr∗(A, Ju)(x) , for |Dju|-a.e. x ∈ Ω. (18)

Proof. Let us prove (17), since (18) follows from Theorem 3.5(ii). In addition, thanks to 
the local nature of the statement, without loss of generality we can assume A ∈ DM∞(Ω)
and u ∈ BV (Ω) ∩ L∞(Ω).

Let Z ⊂ R be the set such that for every t ∈ R \ Z the following hold:

(a) Et := {u > t} is of finite perimeter in Ω;
(b) HN−1

(
{x ∈ Cu : ũ(x) = t} \

(
Cu ∩ ∂∗{u > t}

))
= 0;

(c) θ(A, Du, x) = θ(A, DχEt
, x) = Tr∗(A, ∂∗Et)(x) for HN−1-a.e. x ∈ ∂∗Et.

By the coarea formula in BV (Theorem 2.4), formula (13), Proposition 3.11, and Corol-
lary 3.7, we have that L1(Z) = 0.

Since L1(Z) = 0, by [3, Proposition 3.92(a)(c)], we have that

∇u = 0 LN -a.e. in u−1(Z) and |Dcu|(ũ−1(Z)) = 0.
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As a consequence, for |Ddu|-a.e. x we have that ũ(x) ∈ R \ Z, i.e. |Ddu|(ũ−1(Z)) = 0.
For every t ∈ R \ Z, let Nt ⊂ ∂∗Et be a set such that the following hold:

(d) ũ(x) = t for every x ∈ Cu ∩ (∂∗Et \Nt);
(e) equality in (c) holds for every x ∈ ∂∗Et \Nt.

By (b) and (c), the set Nt can be chosen of zero HN−1 measure.
We claim that

|Ddu|(Ω \B) = 0, where B :=
⋃

t∈R\Z
(∂∗Et \Nt) . (19)

Specifically, since the sets ∂∗Et ∩ Cu, t ∈ R \ Z, are pairwise disjoint (see [25, p. 356]), 
we have that ∂∗Et∩ (Cu \B) = Cu ∩Nt, hence, by the coarea formula for BV functions,

|Ddu|(Ω \B) = |Du|(Cu \B) =
ˆ

R\Z

HN−1(∂∗Et ∩ (Cu \B)) dt

≤
ˆ

R\Z

HN−1(Nt) dt = 0.

Finally, for every x ∈ B ∩ Cu (hence, by (19), for |Ddu|-a.e. x ∈ RN ), we have that 
x ∈ ∂∗Eũ(x) and (17) holds. �
Remark 3.13. As a consequence of Theorem 3.12, the following new representation for-
mula holds for the Cantor part of the pairing measure:

(A, Du)c = Tr∗(A, ∂∗{u > ũ(·)})(·)|Dcu|.

In Section 4 we will provide more explicit representations of Tr∗(A, ∂∗{u > ũ(·)})(·)
(Remark 4.11 and Corollary 4.13).

Remark 3.14. If we define θλ(A, Du, x) to be the density of the λ-pairing (A, Du)λ
(defined by (14)) with respect to |Du|, then, in light of [20, Proposition 4.7], identity 
(17) in Theorem 3.12 remains true for θλ(A, Du, x), while (18) becomes

θλ(A, Du, x) = (1 − λ(x)) Tri(A, Ju)(x) + λ(x) Tre(A, Ju)(x) for |Dju|-a.e. x ∈ Ω.

4. Other representation formulas

For vector fields with L1 divergence, an explicit representation of the density 
θ(A, Du, x) in terms of cylindrical averages has been proposed in the unpublished paper 
[7].
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More precisely, in [7, Theorem 3.6] it is established that, if divA ∈ L1(Ω) and u ∈
BV (Ω) ∩ L∞(Ω), then

θ(A, Du, x) = �A · νu� (x) for |Du|-a.e. x ∈ Ω, (20)

where, for some set G ⊂ Ω and some function ζ : G → SN−1,

�A · ζ� (x) := lim
ρ↓0

lim
r↓0

1
LN (Cr,ρ(x, ζ(x)))

ˆ

Cr,ρ(x,ζ(x))

A(y) · ζ(x) dy for x ∈ G

whenever the limits exist, with

Cr,ρ(x, ζ(x)) :=
{
y ∈ RN : |(y − x) · ζ(x)| < r, |(y − x) − [(y − x) · ζ(x)]ζ(x)| < ρ

}
(the existence of the limit in the definition of �A · νu� for |Du|-a.e. x ∈ Ω is part of the 
statement).

We will extend this result by adapting the arguments of the proof contained in [7] to 
the general case by means of properties of the pairing recently obtained in [17]. We will 
obtain (see Theorem 4.10 below) that the same formula holds for a general divergence-
measure field A by assuming the weaker condition HN−1(ΘA ∩ Ju) = 0, where ΘA is 
the jump set of divA defined in (3).

If divA has a non-vanishing jump part concentrated on the jump set Ju of u, the 
relation (20) is no longer valid, as it is shown in the following example.

Example 4.1. Let A ∈ DM∞(R2) be the BV vector field A(x) = aχB1(x), where a ∈ R2

is a fixed vector, and let u := χB1 ∈ BV (R2). By Corollary 3.8 we have that

(A, Du) = 1
2 a · ν(x)H1 ∂B1, ν(x) = − x

|x| ,

hence θ(A, Du, x) = 1
2 a ·ν(x), x ∈ ∂B1. On the other hand, for every x ∈ ∂B1 and every 

0 < r � ρ, an explicit computation gives
ˆ

Cr,ρ(x,ν)

A(y) · ν(x) dy =
[
arccos(1 − r) − (1 − r)

√
2r − r2

]
a · ν(x)

= 4
√

2
3 r3/2 a · ν(x) + o(r3/2) ,

hence

�A · ν� (x) = lim
ρ→0

lim
r→0

√
2r1/2

3ρ a · ν(x) = 0 .

As a consequence, if a 
= 0 we have that θ(A, Du, x) 
= �A · ν� (x) for all but two points 
x ∈ ∂B1.
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However, we notice that it is still possible to achieve a representation for the pairing 
density θ(A, Du, x) even in the case in which HN−1(ΘA ∩ Ju) > 0: to this purpose we 
will exploit the averages on half-balls introduced in [35], see Theorem 4.13 below.

For the reader’s benefit, we state below the general Gauss-Green formulas for essen-
tially bounded divergence-measure, sets of finite perimeters and functions of bounded 
variation, which is the localized version of [20, Theorem 6.3] in the case λ ≡ 1/2, and 
whose proof we leave to the interested reader.

Theorem 4.2 (Gauss-Green formula). Let A ∈ DM∞
loc(Ω) and u ∈ BVloc(Ω) ∩

L1
loc(Ω, | divA|). Let E be a set with locally finite perimeter in Ω such that supp(χEu) �

Ω. Assume that the traces ui, ue of u on ∂∗E belong to L1
loc(∂∗E, HN−1 ∂∗E). Then 

the following Gauss–Green formulas hold:

ˆ

E1

u∗ d divA +
ˆ

E1

d (A, Du) = −
ˆ

∂∗E

ui Tri(A, ∂∗E) dHN−1 , (21)

ˆ

E1∪∂∗E

u∗ d divA +
ˆ

E1∪∂∗E

d (A, Du) = −
ˆ

∂∗E

ue Tre(A, ∂∗E) dHN−1 , (22)

where E1 is the measure theoretic interior of E.

In the particular case of u ≡ 1, Theorem 4.2 reduces to

divA(E1) = −
ˆ

∂∗E

Tri(A, ∂∗E) dHN−1 , (23)

divA(E1 ∪ ∂∗E) = −
ˆ

∂∗E

Tre(A, ∂∗E) dHN−1 , (24)

and these formulas are fundamental tools needed in order to generalize (20) (see the 
proof of Lemma 4.3 below). The proof of (23) and (24) can be found for instance in [15, 
Theorems 4.1 and 4.2].

The following technical lemma, generalizing [7, Theorem 3.3] in the case of a singular 
measure divA, gives an estimate of the gap between the local behavior of the mean 
values of the normal traces of A on a smooth surface Σ and their analogous computed 
on tangent hyperplanes TxΣ to Σ. By means of the Gauss–Green formulas, we show that 
the gap is possibly due to the concentration of the measure | divA| on Σ.

Lemma 4.3. Let A ∈ DM∞
loc(Ω), and let Σ ⊂ RN be an oriented C1 hypersurface with 

classical normal vector field νΣ. Then, for every x ∈ Σ ∩ Ω,
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lim sup
ρ→0+

∣∣∣∣∣ 1
ωN−1ρN−1

ˆ

TxΣ∩Bρ(x)

Tri,e(A, TxΣ)(y) dHN−1(y)

− 1
HN−1(Σ ∩Bρ(x))

ˆ

Σ∩Bρ(x)

Tri,e(A,Σ)(y) dHN−1(y)

∣∣∣∣∣
≤ lim sup

ρ→0+

|divA|(Bρ(x))
ωN−1 ρN−1 ,

(25)

where Tri,e(A, ·) denotes either Tri(A, ·) or Tre(A, ·), and TxΣ is the tangent hyperplane 
to Σ in x.

Proof. Let us prove (25) for Tri, being the computation for Tre entirely similar.
Up to a change of coordinates, we may assume that x = 0 ∈ Ω, νΣ(0) = −eN , so that 

Σ is locally the graph of a C1 function ϕ : RN−1 → R with ϕ(0) = 0, ∇ϕ(0) = 0. For 
every ρ > 0 such that B2ρ � Ω, we denote

B−
ρ := Bρ ∩ {xN < 0}, S−

ρ := ∂Bρ ∩ {xN < 0}, Tρ := Bρ ∩ {xN = 0},

Σ− := {x = (x′, xN ) ∈ RN : xN < ϕ(x′)} ,

Σρ := Σ ∩Bρ, Eρ := Σ− ∩Bρ, Σ−
ρ := Σ− ∩ ∂Bρ.

Now we apply the Gauss-Green formula (23) to A and to the open piecewise Lipschitz 
set Eρ, and we obtain

divA(Eρ) = −
ˆ

∂Eρ

Tri(A, ∂Eρ) dHN−1

= −
ˆ

Σρ

Tri(A,Σ) dHN−1 −
ˆ

Σ−
ρ

Tri(A, ∂Bρ) dHN−1,

(26)

since HN−1(E1
ρ \ Eρ) = 0, HN−1(∂Eρ \ ∂∗Eρ) = 0, HN−1(∂Eρ \ (Σρ ∪ Σ−

ρ )) = 0 and 
thanks to the locality of the normal traces (6). Similarly, we apply the Gauss-Green 
formula (23) to A and to B−

ρ , so that we get

divA(B−
ρ ) = −

ˆ

Tρ

Tri(A, Tρ) dHN−1 −
ˆ

S−
ρ

Tri(A, ∂Bρ) dHN−1, (27)

since HN−1((B−
ρ )1 \ B−

ρ ) = 0, HN−1(∂B−
ρ \ ∂∗B−

ρ ) = 0, HN−1(∂B−
ρ \ (Tρ ∪ S−

ρ )) = 0, 
and again thanks to (6). From (26) and (27) we obtain that
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∣∣∣∣∣
ˆ

Σρ

Tri(A,Σ) dHN−1 −
ˆ

Tρ

Tri(A, Tρ) dHN−1

∣∣∣∣∣
≤

∣∣divA(B−
ρ ) − divA(Eρ)

∣∣
+

∣∣∣∣∣∣∣
ˆ

S−
ρ

Tri(A, ∂Bρ) dHN−1 −
ˆ

Σ−
ρ

Tri(A, ∂Bρ) dHN−1

∣∣∣∣∣∣∣
≤ |divA|(B−

ρ � Eρ) + ‖A‖L∞(B2ρ;RN ) HN−1(S−
ρ � Σ−

ρ ) ,

(28)

where in the last inequality we have used the facts that |μ(B) − μ(C)| ≤ |μ|(B � C) for 
every signed measure μ and ‖ Tri(A, ∂Bρ)‖L∞(∂Bρ,HN−1 ∂Bρ) ≤ ‖A‖L∞(B2ρ;RN ), thanks 
to (7).

Since Σ is a C1 hypersurface, then

lim
ρ→0+

HN−1(Σρ)
ωN−1 ρN−1 = 1,

and, since ∇ϕ(0) = 0, we have that

HN−1(S−
ρ � Σ−

ρ ) = o(ρN−1),

so that, substituting in (28),∣∣∣∣∣ 1
HN−1(Σρ)

ˆ

Σρ

Tri(A,Σ) dHN−1 − 1
ωN−1 ρN−1

ˆ

Tρ

Tri(A, Tρ) dHN−1

∣∣∣∣∣
≤ 1

ωN−1 ρN−1

∣∣∣∣∣∣∣
ˆ

Σρ

Tri(A,Σ) dHN−1 −
ˆ

Tρ

Tri(A, Tρ) dHN−1

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
(

1
HN−1(Σρ)

− 1
ωN−1 ρN−1

) ˆ

Σρ

Tri(A,Σ) dHN−1

∣∣∣∣∣∣∣
≤ |divA|(Bρ)

ωN−1 ρN−1 + ‖A‖L∞(B2ρ;RN )
o(ρN−1)

ωN−1 ρN−1 + ‖A‖L∞(B2ρ;RN )

∣∣∣∣1 − HN−1(Σρ)
ωN−1 ρN−1

∣∣∣∣ ,
and hence (25) follows. �

We briefly recall the behavior of the cylindrical averages on hyperplanes.

Lemma 4.4. Let A ∈ DM∞
loc(Ω) and let T ⊂ RN be a hyperplane oriented with normal 

vector ν. Then, for every x ∈ T ∩ Ω and every ρ > 0 such that Bρ(x) � Ω,
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ˆ

T∩Bρ(x)

Tri(A, T ) dHN−1 = lim
r↓0

1
r

ˆ

Cr,ρ(x,ν)

A(y) · ν dy.

Proof. To simplify the notation, assume that T = {xN = 0}, ν = eN , x = 0 ∈ Ω, and let 
Tt := {xN = t} for t ∈ J := {t ∈ R : Tt ∩ Ω 
= ∅}. By [1, Proposition 3.6] we have that

A · eN = Tri(A, Tt) = Tre(A, Tt), HN−1-a.e. on Tt ∩ Ω, for L1-a.e. t ∈ J,

so that, for every r > 0 such that Cr,ρ(0, eN ) � Ω,

1
r

ˆ

Cr,ρ(0,eN )

A(y) · eN dy = 1
r

rˆ

0

ˆ

Tt∩Bρ

A(y) · eN dHN−1(y) dt

= 1
r

rˆ

0

ˆ

Tt∩Bρ

Tre(A, Tt)(y) dHN−1(y) dt

= 1
r

rˆ

0

ˆ

Dρ

Tre(A, Tt)(y′, t) dLN−1(y′) dt

=
1ˆ

0

ˆ

Dρ

Tre(A, Trt)(y′, rt) dLN−1(y′) dt,

where Dρ is the (N−1)-dimensional disk of radius ρ centered in the origin, which satisfies 
T ∩Bρ = {(y′, 0) : y′ ∈ Dρ}. Moreover, by [1, Theorem 3.7], we have that

lim
s→0+

Tre(A, Ts) = Tri(A, T ) , w∗ − L∞(Dρ,LN−1 Dρ).

This implies that

lim
r→0+

1ˆ

0

ˆ

Dρ

Tre(A, Trt)(y′, rt) dLN−1(y′) dt =
ˆ

Dρ

Tri(A, T )(y′, 0) dLN−1(y′)

=
ˆ

T∩Bρ(x)

Tri(A, T )(y) dHN−1(y),

which ends the proof. �
Finally, we are able to specify where the cylindrical averages of the field A on oriented 

rectifiable sets coincide with its weak normal traces.
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Theorem 4.5. Let A ∈ DM∞
loc(Ω). Let Σ ⊂ RN be an oriented countably HN−1-rectifiable 

set. Then, for HN−1-a.e. x ∈ Ω ∩ Σ \ ΘA,

Tri(A,Σ)(x) = Tre(A,Σ)(x) = �A · νΣ� (x).

Proof. As a first step, let us prove the theorem in the case Σ is an oriented C1 hyper-
surface, with (classical) normal vector field νΣ.

Let x ∈ Ω ∩Σ \ΘA be a Lebesgue point for both Tri(A, Σ) and Tre(A, Σ) with respect 
to HN−1 Σ. From Lemma 4.3, and recalling the definition (3) of ΘA, we deduce that 
there exist the limits

lim
ρ↓0

1
ωN−1ρN−1

ˆ

TxΣ∩Bρ(x)

Tri,e(A, TxΣ)(y) dHN−1(y) = Tri,e(A,Σ)(x) . (29)

On the other hand, it holds that

Tri(A,Σ) = Tre(A,Σ) HN−1-a.e. in Ω ∩ Σ \ ΘA.

Specifically, by (8), we have that

(Tri(A,Σ) − Tre(A,Σ))HN−1 (Ω ∩ Σ \ ΘA) = divA (Ω ∩ Σ \ ΘA) = 0.

From (29) and Lemma 4.4 we deduce that, for HN−1-a.e. x ∈ Ω ∩ Σ \ ΘA,

Tri(A,Σ)(x) = Tre(A,Σ)(x) = lim
ρ↓0

lim
r↓0

1
ωN−1ρN−1r

ˆ

Cr,ρ(x,νΣ(x))

A(y) · νΣ(x) dy

= �A · νΣ� (x),

hence the claim is proved.
The general case with Σ ⊂ RN oriented countably HN−1-rectifiable set follows directly 

from the previous step and the definition of weak normal trace on Σ (Section 2.3). �
Corollary 4.6. Let A ∈ DM∞

loc(Ω) and let E be a set of locally finite perimeter in Ω. 
Then for |DχE |-a.e. x ∈ Ω \ ΘA the limit

�A · νE� (x) := lim
ρ→0+

lim
r→0+

1
|Cr,ρ(x, νE(x))|

ˆ

Cr,ρ(x,νE(x))

A(y) · νE(x) dy

exists, and

θ(A, DχE , x) = �A · νE� (x) for |DχE |-a.e. x ∈ Ω \ ΘA.
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Remark 4.7. This result has been proved in [7, Theorem 3.5] under the stronger assump-
tion divA ∈ L1(Ω).

Proof. It is a consequence of Theorem 4.5, with Σ = ∂∗E, and of Theorem 3.12. �
Corollary 4.8. Let A ∈ DM∞

loc(Ω) and let u ∈ BVloc(Ω) ∩ L∞
loc(Ω). Let us denote Et :=

{u > t}. For L1-a.e. t ∈ R and for |DχEt
|-a.e. x ∈ Ω \ ΘA the limit

�A · νEt
� (x) := lim

ρ→0+
lim

r→0+

1
|Cr,ρ(x, νEt

(x))|

ˆ

Cr,ρ(x,νEt (x))

A(y) · νEt
(x) dy

exists, and it holds that

θ(A, DχEt
, x) = �A · νEt

� (x) for |DχEt
|-a.e. x ∈ Ω \ ΘA.

Using Corollary 4.6, we get a refinement of Theorem 4.2 under a compatibility con-
dition.

Theorem 4.9. Let A ∈ DM∞
loc(Ω) and u ∈ BVloc(Ω) ∩ L1

loc(Ω, | divA|). Let E be a set 
with locally finite perimeter in Ω such that supp(χEu) � Ω. Assume that the traces ui, ue

of u on ∂∗E belong to L1
loc(∂∗E, HN−1 ∂∗E). Assume also that

HN−1(ΘA ∩ {x ∈ ∂∗E : ui,e(x) 
= 0}) = 0.

Then the following Gauss–Green formulas hold:
ˆ

E1

u∗ d divA +
ˆ

E1

d(A, Du) = −
ˆ

∂∗E

ui �A · νE� dHN−1,

ˆ

E1∪∂∗E

u∗ d divA +
ˆ

E1∪∂∗E

d(A, Du) = −
ˆ

∂∗E

ue �A · νE� dHN−1.

Finally, we obtain the following generalization of [7, Theorem 3.6].

Theorem 4.10. Let A ∈ DM∞
loc(Ω) and let u ∈ BVloc(Ω) ∩ L∞

loc(Ω). Then

(A, Du) (Ω \ ΘA) = �A · νu� |Du| (Ω \ ΘA) . (30)

If in addition we assume that

HN−1(ΘA ∩ Ju) = 0, (31)

then
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θ(A, Du, x) = �A · νu� (x), for HN−1-a.e. x ∈ Ju. (32)

Finally, if Ω is an open bounded set such that HN−1(∂Ω) < ∞ and HN−1(∂Ω \∂∗Ω) = 0, 
A ∈ DM∞(Ω), u ∈ BV (Ω) ∩ L∞(Ω) and (31) holds, then

ˆ

Ω

u∗ d divA +
ˆ

Ω

�A · νu� d|Du| = −
ˆ

∂Ω

ui Tri(Â, ∂Ω) dHN−1, (33)

where Â is the zero extension of A to RN \ Ω.

Proof. By Corollary 4.8, for L1-a.e. t ∈ R and for |DχEt
|-a.e. x ∈ Ω \ ΘA the limit in 

the definition of �A · νEt
� (x) exists, and it holds that

(A, DχEt
) (Ω \ ΘA) = �A · νEt

� |DχEt
| (Ω \ ΘA) . (34)

Since

DχEt

|DχEt
| = Du

|Du| = νu , |DχEt
|-a.e. in Ω, for L1-a.e. t ∈ R,

(see [25, §4.1.4, Theorem 2(i)]), for L1-a.e. t ∈ R and for |DχEt
|-a.e. x ∈ Ω \ΘA (i.e. for 

|Du|-a.e. x ∈ Ω \ ΘA) there exists the limit �A · νu� (x) and

�A · νu� = �A · νEt
� |DχEt

|-a.e. in Ω \ ΘA. (35)

For every Borel set B ⊂ Ω, by the coarea formula (see Theorem 3.10), by (34), (35) and 
the coarea formula in BV (see Theorem 2.4), we have that

(A, Du) (Ω \ ΘA)(B) = (A, Du)(B \ ΘA)

=
ˆ

R

(A, DχEt
)(B \ ΘA) dt =

ˆ

R

ˆ

B\ΘA

�A · νu� d|DχEt
| dt

=
ˆ

B\ΘA

�A · νu� d|Du| ,

so that (30) holds.
In order to prove (32), we notice that the assumption (31) implies that |Dju|(ΘA) = 0, 

so that (A, Dju)(ΘA) = 0. Therefore, (30) implies that

(A, Dju) = �A · νu� |Dju|.

Finally, we deduce (33) by extending A and u to zero on RN \ Ω, and then exploiting 
[18, Theorems 5.1 and 6.2] (see also [15, Corollary 5.5]), the Gauss–Green formula (21)
and (32). �
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Remark 4.11. Recalling that ΘA has σ-finite HN−1-measure, we have that |Ddu|(ΘA) =
0, and hence (A, Du)d(ΘA) = 0. Thus, from (30) we deduce that

(A, Du)d = �A · νu� |Ddu|. (36)

We emphasize that (36) gives a pointwise representation for the density of the Cantor 
part (A, Du)c of the pairing measure, i.e.

(A, Du)c = �A · νu� |Dcu| =
�
A · Dcu

|Dcu|

�
|Dcu|,

without any assumption on ΘA.

The main drawback of the previous representation formula, as showed also in Exam-
ple 4.1, is that it fails on the intersection of the jump sets of the divergence-measure and 
the BV function. In order to circumvent this issue, we conclude this section with one 
more representation of the pairing, obtained combining Theorem 3.12 and the following 
result [35, Theorem 4.4] (see also [15, Remark 6.4] and [36, Theorem 3]), representing 
the normal traces of the field A as limits of averages in half balls.

Theorem 4.12. Let A ∈ DM∞
loc(Ω) and let Σ be an oriented countably HN−1-rectifiable 

set with normal νΣ. Then, for HN−1-a.e. x ∈ Σ ∩ Ω it holds that

Tri(A,Σ)(x) = lim
r→0

N

ωN−1rN

ˆ

Bi
r(x,νΣ(x))

A(y) · y − x

|y − x| dy, (37)

Tre(A,Σ)(x) = − lim
r→0

N

ωN−1rN

ˆ

Be
r(x,νΣ(x))

A(y) · y − x

|y − x| dy, (38)

where

Bi
r(x, νΣ(x)) := {y ∈ Br(x) : (y − x) · νΣ(x) > 0}

and

Be
r(x, νΣ(x)) := {y ∈ Br(x) : (y − x) · νΣ(x) < 0}.

Corollary 4.13. Let A ∈ DM∞
loc(Ω) and u ∈ BVloc(Ω) ∩ L∞

loc(Ω). Then, for |Du|-a.e. 
x ∈ Ω,

θ(A, Du, x)= lim
r→0

N

2ωN−1rN

⎛⎜⎝ ˆ
i

A(y) · y − x

|y − x| dy −
ˆ

e

A(y) · y − x

|y − x| dy

⎞⎟⎠ .
Br(x,νu(x)) Br(x,νu(x))
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In particular,

θ(A, Du, x) = Ã(x) · νu(x), for |Ddu|-a.e. x ∈ Ω \ SA. (39)

Proof. The first statement follows from Theorems 3.12 and 4.12. More precisely, if x ∈
Ju we use (18) and Theorem 4.12 with Σ = Ju, whereas if x ∈ Cu we use (17) and 
Theorem 4.12 with Σ = ∂∗{u > ũ(x)}.

Let us prove (39). Let x ∈ Ω \ (SA∪Su) be a point such that (17) holds and (37)-(38)
hold with Σ = ∂∗{u > ũ(x)}, oriented in such a way that ν points inside the set 
{u > ũ(x)} (observe that these properties hold for |Ddu|-a.e. point, see the proof of 
Theorem 3.12). Since, for every r > 0,

2N
ωN−1rN

ˆ

Bi
r(x,νu(x))

y − x

|y − x| dy = νu(x), 2N
ωN−1rN

ˆ

Be
r(x,νu(x))

y − x

|y − x| dy = −νu(x),

then

∣∣∣Tri(A,Σ)(x) − Ã(x) · νu(x)
∣∣∣ ≤ lim

r→0

∣∣∣∣∣∣∣ −
ˆ

Bi
r(x,νu(x))

[A(y) − Ã(x)] · 2N(y − x)
|y − x| dy

∣∣∣∣∣∣∣
≤ lim

r→0
2N −

ˆ

Bi
r(x,νu(x))

|A(y) − Ã(x)| dy = 0 .

An analogous computation shows that also Tre(A, Σ)(x) = Ã(x) · νu(x), so that (39)
follows. �
Remark 4.14. In light of Remark 3.14, we may exploit Theorem 4.12 as in the proof of 
Corollary 4.13 in order to get

θλ(A, Du, x) = (1 − λ(x)) lim
r→0

N

ωN−1rN

ˆ

Bi
r(x,νu(x))

A(y) · y − x

|y − x| dy+

− λ(x) lim
r→0

N

ωN−1rN

ˆ

Be
r(x,νu(x))

A(y) · y − x

|y − x| dy

for |Dju|-a.e. x ∈ Ω.

5. Tangential properties of the pairing measure

As a consequence of the representation formula in Theorem 3.12 we easily recover the 
local structure of the pairing measure by means of its tangent measures.
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For every x ∈ Ω, let Ix,r(y) := (y − x)/r denote the homothety with scaling factor r
mapping x in 0. For r > 0 small enough such that Br(x) � Ω, the pushforward Ix,r# μ of 
a Radon measure μ is the measure acting on a test function φ ∈ Cc(B1) as

ˆ

B1

φd(Ix,r# μ) =
ˆ

Ω

φ ◦ Ix,rdμ.

Definition 5.1 (Tangent measures). Let μ ∈ Mloc(Ω). We say that γ is a tangent measure 
of μ at x ∈ Ω if γ is a non-zero Radon measure and there exists some sequence (ri)
satisfying ri ↓ 0 and such that

1
|μ|(Bri(x))) I

x,ri
# μ

∗
⇀ γ in Mloc(B1).

We denote by Tan(μ, x) the set of all tangent measures of μ at x.
For every α ≥ 0, we denote by Tanα(μ, x) the family of non-zero Radon measures γ

such that there exists a sequence ri ↓ 0 for which

r−α
i Ix,ri# μ

∗
⇀ γ in Mloc(B1).

Following the notation established in Section 2, in the following results for any given 
function f ∈ L1

loc(Ω, |μ|) we use the notation f(x) := f̃(x) for every x ∈ Ω Lebesgue 
point of f with respect to |μ|. We start by proving the following property of the tangent 
measures (for related results see [3, Theorem 2.44] and [30, Lemma 14.6]).

Lemma 5.2. Let μ ∈ Mloc(Ω), and let f ∈ L1
loc(Ω, |μ|). If x ∈ Ω is a Lebesgue point of f

with respect to |μ| and f(x) 
= 0, then

Tan(fμ, x) = f(x) Tan(μ, x) and Tanα(fμ, x) = f(x) Tanα(μ, x) ∀α ≥ 0.

Proof. Let x ∈ Ω be as in the statement, and let ri ↓ 0 (so that Bri(x) � Ω) be such 
that at least one of the sequences ci Ix,ri# (fμ) and ci I

x,ri
# μ converges weakly∗ to a Radon 

measure, where ci = 1
|μ|(Bri

(x))) . To fix the ideas, assume that ci Ix,ri# μ ∗
⇀ γ. For every 

ϕ ∈ Cc(B1), we have that

ci

∣∣∣∣∣∣
ˆ

B1

ϕdIx,ri# (fμ) − f(x)
ˆ

B1

ϕdIx,ri# μ

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣ −
ˆ

Bri
(x)

ϕ

(
y − x

ri

)
[f(y) − f(x)]dμ(y)

∣∣∣∣∣∣∣ ,
and the right-hand side converges to 0 as i → +∞ since x is a Lebesgue point of f with 
respect to μ. It follows that the sequence ci I

x,ri
# (fμ) converges weakly∗ to f(x) γ, so 

that we can conclude that Tan(fμ, x) = f(x) Tan(μ, x).
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The equality for Tanα can be proved by dealing separately with the case in which 
both tangent sets are empty and the one in which they are not. In the latter we have 
|μ|(Br(x)) ≤ Crα for some C ≥ 0, so that one can argue as above. �

We can now state two results on the tangent measures of pairings. To this purpose, 
for any unit vector ν we set ν⊥ := {y ∈ RN : y · ν = 0}.

Theorem 5.3. Let A ∈ DM∞
loc(Ω) and let E be a set of locally finite perimeter in Ω. 

Let x ∈ ∂∗E be a Lebesgue point of Tr∗(A, ∂∗E) with respect to |DχE |, such that 
Tr∗(A, ∂∗E)(x) 
= 0. Then

TanN−1((A, DχE), x) = Tr∗(A, ∂∗E)(x)HN−1 ν⊥E (x).

Proof. It is a consequence of Lemma 5.2, Corollary 3.7 and De Giorgi’s theorem (see [3, 
Lemma 3.58 and Theorem 3.59]). �
Theorem 5.4. Let A ∈ DM∞

loc(Ω) and let u ∈ BVloc(Ω) ∩ L∞
loc(Ω). If x ∈ Ω \ Su is a 

Lebesgue point of Tr∗(A, ∂∗{u > ũ(x)}) with respect to |Ddu| such that Tr∗(A, ∂∗{u >
ũ(x)})(x) 
= 0, then

Tan((A, Du)d, x) = Tr∗(A, ∂∗{u > ũ(x)})(x) Tan(|Ddu|, x).

If instead x ∈ Ju is a Lebesgue point of Tr∗(A, Ju) with respect to |Dju| such that 
Tr∗(A, Ju)(x) 
= 0, then

TanN−1((A, Du)j , x) = Tr∗(A, Ju)(x) [u+(x) − u−(x)]HN−1 ν⊥u (x).

Proof. It is a consequence of Lemma 5.2, Theorem 3.12 and the Federer-Vol’pert theorem 
(see [3, Theorem 3.78]). �
Remark 5.5. Exploiting Lemma 5.2, Remark 3.14 and the Federer-Vol’pert theorem, we 
deduce the following representation for the tangent measure of the λ-pairing as well:

TanN−1((A, Du)jλ, x) = Trλ(A, Ju)(x) [u+(x) − u−(x)]HN−1 ν⊥u (x),

for every x ∈ Ju which is a Lebesgue point of Trλ(A, Ju) with respect to |Dju| and such 
that Trλ(A, Ju)(x) 
= 0, where

Trλ(A, Ju)(x) := (1 − λ(x)) Tri(A, Ju)(x) + λ(x) Tre(A, Ju)(x).

Data availability

No data was used for the research described in the article.
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