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ABSTRACT: We developed a storm surge ensemble prediction system (EPS) for lagoons and transitional environments.
Lagoons are often threatened by storm surge events with consequent risks for human life and economic losses. The uncer-
tainties connected with a classic deterministic forecast are many, thus, an ensemble forecast system is required to properly
consider them and inform the end-user community accordingly. The technological resources now available allow us to in-
vestigate the possibility of operational ensemble forecasting systems that will become increasingly essential for coastal
management. We show the advantages and limitations of an EPS applied to a lagoon, using a very high-resolution unstruc-
tured grid finite element model and 45 EPS members. For five recent storm surge events, the EPS generally improves the
forecast skill on the third forecast day compared to just one deterministic forecast, while they are similar in the first two
days. A weighting system is implemented to compute an improved ensemble mean. The uncertainties regarding sea level
due to meteorological forcing, river runoff, initial boundaries, and lateral boundaries are evaluated for a special case in the
northern Adriatic Sea, and the different forecasts are used to compose the EPS members. We conclude that the largest un-
certainty is in the initial and lateral boundary fields at different time and space scales, including the tidal components.

SIGNIFICANCE STATEMENT: Storm surges are extreme sea level events that may threaten densely populated
coastal areas. The purpose of this work is to improve the extreme sea level forecast for transitional areas with the un-
derstanding of what are the most important forcing generating uncertainties and find a technique to reach a reliable sea
level forecast. This is achieved by implementing an ensemble prediction system running 45 members for each event
considered. Results show that initial and lateral boundary conditions provide most of the uncertainty, including the tidal
components. The weighting system applied to find the ensemble mean improves the forecast skill on the third forecast
day while it is comparable with the deterministic forecast in the first two days.

KEYWORDS: Ocean; Coastal flows; Sea level; Storm surges; Ensembles

1. Introduction

The operational sea level (SL) forecasting is a widely devel-
oped service used to inform about storm surge hazards that
represent a potential threat for human life and activities
(Chaumillon et al. 2017; Forzieri et al. 2016). The need for op-
erational storm surge forecasting systems is well known and ad-
dressed by many authors (Li and Nie 2017; Pinardi et al. 2017;
Umgiesser et al. 2021). However, the forecast lead time is still
limited because is affected by the uncertainties regarding the
initial conditions, as well as lateral boundary forcing specifica-
tions and the limited predictability of the atmospheric forcing.
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Addressing the problem of storm surge forecast reliability
involves recasting the single, deterministic forecast in pro-
babilistic terms (Gneiting and Katzfuss 2014). Atmospheric
seasonal and subseasonal forecasting systems feature several
ensemble prediction systems (EPSs), while EPSs are still in
their infancy for short term ocean forecasting and coastal
forecasting.

The notion of ensemble forecasting was first proposed by
Lorenz (1963), who demonstrated the sensitivity to initial con-
ditions for a simple nonlinear system. In the 1960s it was
already clear that there was a “limit to deterministic pre-
dictability” in weather forecasting (Palmer 2018). During the
1980s and 1990s ensemble weather forecasting systems were
developed leading to an operational system at the European
Centre for Medium-Range Weather Forecasts (ECMWEF;
Palmer et al. 1992; Molteni et al. 1996; Buizza 2019) and at
the National Meteorological Center (NMC; Toth and Kalnay
1993). A further development was the concept of multimodel
ensemble and superensemble (Krishnamurti et al. 2000). Consid-
ering outputs from different models to create an ensemble sys-
tem limits the systematic errors that can affect each individual
model. Another application of a multimodel uncertainty estima-
tion is used for IPCC climate projections (IPCC 2023).
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In oceanography, the multimodel superensemble concept
was applied for the Mediterranean Sea SST forecasting by
Pistoia et al. (2016) using a multiple linear regression technique
applied to a multiphysics and multimodel dataset. The Medi-
terranean Sea was the subject of early ensemble systems for
the determination of the ocean response to surface wind un-
certainty (Pinardi et al. 2008, 2011; Milliff et al. 2011).

The first storm surge EPS for coastal systems was made op-
erational by Flowerdew et al. (2009) with further verification
of the results in Flowerdew et al. (2010) where the sensitivity
of the surge forecast to meteorological forcing and initial
conditions was investigated. A recent study by Biolchi et al.
(2022) applies EPS techniques for a coastal early warning
system (EWS) employing a morphodynamic model. A multi-
model storm surge EPS is operational in the North Sea, com-
bining a series of storm surge forecasting systems using a
Bayesian model average (BMA) to weight each individual
forecast (Beckers et al. 2008). The same methodology was ap-
plied in the western Mediterranean (Pérez et al. 2012). A mul-
timodel EPS approach was also developed for the Adriatic
Sea by Ferrarin et al. (2020), where several operational fore-
casting systems were used to generate a SL ensemble mean
(EM) and to assess its uncertainty. Outside Europe, a multi-
model EPS has been applied in the New York coastal area
(Di Liberto et al. 2011). However, most of the previous stud-
ies focus mainly on systems forced only by meteorological en-
sembles without considering the lateral boundary condition
uncertainty which we demonstrate instead to be crucial for
limited area model, together with initial conditions. There-
fore, we believe that a dedicated ensemble methodology
should be developed for lagoons and transitional environ-
ments, as the relative importance of each forcing and forcing
uncertainty could be different in small and large ocean do-
mains. In this study we focus on the development of an EPS
methodology for a lagoon in an operational fashion, using a
numerical model at very high resolution, ranging from 2 km
in the offshore open boundary to a maximum resolution of
10 m inside the Goro Lagoon, that fully resolves the coastline
and bathymetry. The novelty is that we explore a methodol-
ogy to create a set of ensemble members to tackle the specific
lagoon/transitional waters modeling uncertainties. In such
areas the initial and lateral boundary conditions (Chu 1999),
the tidal signal from the lateral boundaries as well as the at-
mospheric forcing and the river runoff may all represent a
source of uncertainty. The physical parameterizations and the
specific numerical schemes used in the ocean model add fur-
ther uncertainty to the system but they will not be explored in
this initial work. The results obtained could in principle be easily
generalized for other lagoons and transitional environments that
share similar characteristics and are subjected to the same forc-
ings (Niedda and Greppi 2007; Umgiesser et al. 2014), and hence
have comparable uncertainties (Kjerfve and Magill 1989).

We tested the EPS methodology considering five recent
extreme events in a lagoon, using forcing from different mete-
orological and ocean operational models for initial and lateral
boundary conditions, together with river/inlet discharge per-
turbations. We assessed the sources of uncertainties along
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with the performance of the ensemble considering specific en-
semble mean algorithms.

In section 2 the storm surge, high SL events, and the circu-
lation model are described. Section 3 defines the ensemble
methodology. The results are shown in section 4. Section 5
contains summary and conclusions.

2. Data and methods
a. Storm surge events

The area of study is represented in Fig. 1. It contains the
whole Goro Lagoon together with the Po River branches of
Goro and Volano. The bathymetry of the lagoon is shallow,
about 1.50 m on average and it gently slopes to the continen-
tal shelf of the northern Adriatic Sea. The lagoon has a wide
opening of about 4 km and is thus exposed to sea level anom-
alies entering from the open Adriatic Sea.

All the extreme events used in this work were collected
from Perini et al. (2020, 2019), which details the extreme
events and their impacts on the Emilia-Romagna (ER) coast.
We chose all the events that had an impact on the coast, except
for event 2 that was chosen because it showed an interesting
overestimation of the predicted sea level by a few members of
the ensemble. Sea level observations collected at Faro and Porto
Garibaldi (Fig. 1) are available every 10 min, thus giving a very
good determination of extremes that are listed in Table 1.

Figure 2 shows the sea level observations at Faro (from late
2019 to early 2021), together with the surge residual (SR,
orange line) and the fundamental and second seiche mode
contribution to SL (green line).

SR is calculated from SL using a detiding procedure de-
scribed in appendix A. The residual signals only contain the
surge contribution due to local wind, atmospheric pressure,
and large-scale nontidal remote forcing. Likewise, the tidal
filter is used to compute the contribution of the seiches. The
filter is inverted and the frequencies of the seiches are the
only ones retained in the computation.

In Fig. 2 event peak sea level timing is indicated by the
vertical dashed lines. The horizontal dashed lines indicate the
99th percentile of the sea level, in black for the SL data
(0.64 m) and in red for the SR time series (0.49 m) considering
all the data available starting from April 2016. It is quite com-
mon to consider percentiles between 95 and 99 in extreme
value analyses of the sea level (Wahl et al. 2017; Kirezci et al.
2020). In this work the 99th percentile is just taken as a refer-
ence threshold for the considered events. The same percentile
computation was also done for the Porto Garibaldi station,
where data are available starting from July 2009. The values
found were 0.7 and 0.53 m for the SL and SR, respectively. It
is worth noting that all the peak events considered for this
work exceed both the observed SL and SR 99th percentile.

b. The circulation model

The circulation model used is the implementation of the
System of Hydrodynamic Finite Element Modules (SHYFEM)
model (Umgiesser et al. 2004; Bellafiore and Umgiesser 2010;
Micaletto et al. 2022) in the Goro Lagoon, the so-called
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FIG. 1. (a) Bathymetry and coastlines of the Goro Lagoon. The red triangles indicate the position of the Faro and
Porto Garibaldi tide gauges. The green circles indicate the position of rivers, starting from the southwest, the Po di
Volano, the Po di Goro, the Po della Donzella, the Po di Pila, and the Po di Maistra. The orange squares represent
the three pumping plants discharging in the Goro lagoon: Giralda (G), Romanina (R), and Bonello (B). (b) The do-
main position in the Adriatic Sea (source map: OpenStreetMap).

GOLFEM. SHYFEM is an open-source (https:/github.com/
SHYFEM-model/shyfem) unstructured grid baroclinic ocean
model that solves the oceanic primitive equations under
Boussinesq and hydrostatic approximations. It has been al-
ready applied in operational (Federico et al. 2017) and relo-
catable (Trotta et al. 2021) forecasting systems, and for storm
surge events (Park et al. 2022). The river runoff is imposed as
a lateral open boundary condition, and GOLFEM has been
extensively calibrated, validated by Maicu et al. (2021). The
model resolution goes up to 10 m along the coastlines and
along the channels of the lagoon where high to very high-
resolution bathymetry was used. EMODnet data at 250 m
were used for the offshore part of the domain and merged

with data from a coastal multibeam survey (about 1-m resolution
for each transect and up to 10-m depth) operated by Arpae in
2012, while sparse points of single beam measurements with a
variable resolution from a few meters to tens of meters were
used inside the Goro Lagoon. This allows us to define an ensem-
ble prediction system that deals with irreducible uncertainties
due to initial conditions and forcings.

¢. Nesting in large-scale circulation models

GOLFEM is nested within five ocean larger scale circu-
lation models. Starting with the largest, the Copernicus
Marine Service global model (Le Traon et al. 2019), offers
daily global forecasts (hereafter referred to as GLOBAL;

TABLE 1. The five events analyzed in this study, with date, hour, max observed sea level (SL), and max observed surge residual (SR) at
Porto Garibaldi and Faro (Fig. 1). Impacts and prevailing winds for each event are also indicated [northwesterly (NW), southeasterly (SE),
north-northeasterly (N-NE), east-southeasterly (E-SE), and southeasterly (SE)]. SL and SR values are highlighted with bolded values.

Time, SL (m), SR (m)

Event No. Date Porto Garibaldi Faro Impacts Prevailing winds
1 23 Dec 2019 0740 UTC, 1.17, 0.56 0750 UTC, 1.21, 0.60 Uniform large impacts NW

2 3 Oct 2020 1050 UTC, 0.86, 0.51 1030 UTC, 0.82, 0.51 No impacts SE

3 2 Dec 2020 0820 UTC, 1.02, 0.61 0830 UTC, 0.93, 0.54 Uniform large impacts N-NE

4 8 Dec 2020 1530 UTC, 1.06, 0.96 1510 UTC, 1.10, 0.85 Ferrara province E-SE

5 28 Dec 2020 0830 UTC, 0.90, 0.72 0900 UTC, 0.90, 0.78 Minor impacts Volano SE
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black dashed lines indicate the five extreme events considered in this paper. The horizontal dashed black and red lines in-

dicate the 99th percentile of the SL and SR, respectively.

Lellouche et al. 2018) with a horizontal grid resolution of
1/12° (~8 km) and 50 vertical levels. It uses the SAM-2 data
assimilation scheme, based on a reduced-order Kalman filter.
It is forced at the surface with ECMWF meteorological fields.
On a daily basis, the GLOBAL operational system provides a
10-day forecast (daily output), and every week it computes
the best analysis for the previous 14 days.

The Copernicus Marine Service Mediterranean Sea model
(MED-MFC; Clementi et al. 2017, 2021) is a coupled current-
wave model of the Mediterranean Sea and the adjacent
Atlantic area. It is composed of the general circulation model
Nucleus for European Modeling of the Ocean (NEMO; Madec
2016) and coupled two-way with the third-generation spectral
wave model WaveWatchIII (Tolman 2009). The horizontal
grid is at 1/24° resolution (~4 km), with 141 unevenly vertical
z levels. The analyses and forecasts are forced by ECMWF
atmospheric fields and use climatological discharges from
36 rivers, including the Po. The model uses a 3D variational
data assimilation scheme to optimally estimate the forecast
initial condition. The eight major tidal constituents were re-
cently added providing a different forecasting and analysis
current model, hereafter called MED-MFC-T.

ADRIAC is an Adriatic Sea scale forecasting model opera-
tional at the Hydro-Meteo-Climate Service of the Regional
Agency for Prevention, Environment and Energy of Emilia-
Romagna, Arpae-SIMC (Bressan et al. 2017). It is based on
the COAWST model (Warner et al. 2010), which is a coupled
ocean—atmosphere-wave—sediment transport model. The ocean
part is simulated with the ROMS model (Shchepetkin and
McWilliams 2005) at a resolution of about 1 km and 30 o
layers. Hourly discharge data from the Po are used, while a
climatology is used for the other 48 Adriatic rivers. Initial and
lateral boundary conditions are provided by the MED-MFC
model for currents, salinity, temperature, and sea level. Tides

(eight components: K1, O1, P1, S1, K2, S2, M2, and N2) are
given at the Otranto strait computed by the TPXO model
(Egbert and Erofeeva 2002). Meteorological forcing is provided
by COSMO-2I and COSMO-5M models (Gastaldo et al. 2021;
Steppeler et al. 2003; COSMO 2004). ADRIAC provides 3-day
forecasts per day, with a 1-day spinup, using the analyses of the
meteorological forcing and boundary conditions.

ADRIAROMS is another operational model based on
ROMS model and implemented by Arpae-SIMC (Russo et al.
2013). It covers the entire Adriatic basin with a horizontal res-
olution of about 2 km and 20 o layers. Initial and boundary
conditions are provided by CMEMS MED-currents. Tides
(four components: K1, O1, S2, M2) are computed and pro-
vided by TPXO to the Otranto strait. Meteorological forcing
is provided by the COSMO-5M model. Rivers are the same as
in ADRIAC. ADRIAROMS provides a 3-day hourly forecast
with a 1-day spinup as for ADRIAC.

All the ocean model products characteristics are summa-
rized in Table S1 in the online supplemental material.

d. Meteorological forcing fields

Three operational meteorological products are used as input
fields by the circulation model to compute momentum, heat
and water fluxes at the air-sea interface via bulk formulas
(Maicu et al. 2021). The ECMWF weather forecast fields are
based on the deterministic high-resolution global model at
12.5 km of nominal resolution (ECMWEF-IFS; Owens and
Hewson 2018). It provides 10-day forecast fields every three
hours for the first 3 days and 6 h for the subsequent days.

COSMO-5M is a regional operational meteorological
model (Garbero and Milelli 2020). It is based on the COSMO
model (Steppeler et al. 2003) and covers the Mediterranean
region. It has a horizontal resolution of about 5 km and 45
vertical layers. It is initialized by the deterministic analysis of



SEPTEMBER 2023

ALESSANDRI ET AL.

1795

TABLE 2. EPS members with the relative meteorological and ocean forcing and river perturbations.

Ocean models

Meteorological models River runoff ADRIAC ADRIAROMS MED-MFC GLOBAL MED-MFC-T
COSMO 21 Data Exp-1 Exp 10 Exp 19 Exp 28 Exp 37
—-30% Exp 2 Exp 11 Exp 20 Exp 29 Exp 38
+30% Exp 3 Exp 12 Exp 21 Exp 30 Exp 39
COSMO 5M Data Exp 4 Exp 13 Exp 22 Exp 31 Exp 40
—30% Exp 5 Exp 14 Exp 23 Exp 32 Exp 41
+30% Exp 6 Exp 15 Exp 24 Exp 33 Exp 42
ECMWF Data Exp 7 Exp 16 Exp 25 Exp 34 Exp 43
—30% Exp 8 Exp 17 Exp 26 Exp 35 Exp 44
+30% Exp 9 Exp 18 Exp 27 Exp 36 Exp 45

COMet-LETKF (the model used by the Italian Air Force)
and takes the ECMWF-IFS fields as boundary conditions. It
runs twice per day, at 0000 and 1200 UTC providing a 72-h
forecast (hourly output). The COSMO-5M input fields are
given at hourly frequency for 3 forecast days.

COSMO-2I is the highest resolution operational weather
forecast model (Gastaldo et al. 2021) covering the Italian do-
main. It is nested in COSMO-5M. The initial state is com-
puted from the KENDA-LETFK system (Schraff et al. 2016;
Gastaldo et al. 2021), and has a resolution of ~2.2 km and 65
vertical layers. It provides a 48-h forecast (hourly output) and
two forecasts per day at 0000 and 1200 UTC. All the atmospheric
model products characteristics are summarized in Table S1.

e. River runoff conditions

The hourly discharge from the Po River is measured by
Arpae at Pontelagoscuro. At the eastern side of the Goro
Lagoon (Fig. 1), the Po of Goro runoff is computed as a per-
centage of the Pontelagoscuro discharge values, based on a
rule that fits data from ARPAYV (2012). At the western side
of the lagoon, the Po of Volano runoff is completely regulated
by several pumping plants that discharge along the sides of
the river. In addition to the two Po branches, three pumping
stations were considered for the freshwater discharge in the
lagoon. Three simulations were performed: one with the nom-
inal discharge of the Po of Volano, Po of Goro, and the three

00 UTC
Analysis 1

Forecast

pumping plants, and two others were defined by adding and
subtracting 30% of the discharges. The 30% value was ex-
tracted from the analysis of the climatological daily Po runoff
time series between 2010 and 2021. The mean of the runoff is
1490 m> s~ ! while its standard deviation is 450 m> s~ ', which
approximately correspond to 30% of the mean. We consid-
ered this value to be a good estimate of the river’s variability.
Moreover, considering higher perturbation values would lead
to unrealistic discharges.

3. The ensemble prediction system
a. The ensemble methodology

GOLFEM-EPS has 45 members. The GOLFEM-EPS
members are composed of a suitable combination of atmo-
spheric and ocean models and perturbations to the river
flow (Table 2).

The EPS methodology is shown in Fig. 3: one day before
the start of the forecast, GOLFEM-EPS is initialized and
forced with surface analysis fields and lateral analysis bound-
ary conditions from the circulation model outputs. Starting
from the initial time of the forecast, always set at 0000 UTC,
forecast lateral boundary conditions and surface meteorologi-
cal fields are used for a 3-day forecast, up to +72 h. ADRIAC
and ADRIAROMS models do not have an operational data
assimilation scheme. For ADRIAC and ADRIAROMS the

=24 hr

+24 hr

Member 1 — |

+24 hr

+24 hr

1
1
1
1
| +24 hr

-24 hr

Member N——

1

+48 hr

+48 hr

+48 hr

+48 hr

+72 hr

+72 hr

|+ Ensemble mean
* Ensemble spread

+72 hr

+72 hr {

m 24 hr model simulation forced by anaysis
. 24 hr model forecast

F1G. 3. The GOLFEM-EPS modeling scheme. The postprocessing creates ensemble mean, ensemble spread, and
the weighted ensemble mean.
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analyses are thus simulations forced by meteorological and
open ocean lateral boundary analyses. Since COSMO-2I pro-
vides only a 48-h forecast, from +48 to +72 h, the meteoro-
logical fields from COSMO-5M are used.

Figure 4 shows the GOLFEM-EPS basin average kinetic
energy (KE) for one member simulation (exp-1 in Table 2)
initialized three days and one day before the nominal start of
the forecast. The KE is initially zero for both simulations (all
simulations are initialized with a zero-velocity field). After
about 14 h the simulations reach a similar KE. This explains
the choice of only one day as a spinup time for the forecast,
which is a reasonable time for the lagoon/transitional water
domains. It is also well known that the spinup time decreases
with the scale of the implemented computational domain, and
one day of spinup has also been used by authors dealing
with much more limited coastal model domains (Gaeta et al.
2016).

The GLOBAL and MED-MFC products are provided
without tides. In the case of nontidal models, the tidal sea
level is extracted from the TPXO model and added to the
GOLFEM open boundaries.

b. The ensemble mean

The ensemble forecast is usually considered to be a
better estimate of the forecast since the members sample
the probability distribution function of the forecasts. How-
ever, interpreting multiple forecasts can be complex, so
very often the ensemble mean (EM) is used for the sake of
simplicity.

Using the notation of Salighehdar et al. (2017), a forecast
matrix is defined as X = {xlj}(i,j)e{l..“.T}X{l AAAA mp» Where T and
m are the forecast lead time and the total number of fore-
casts available, respectively. The point x,f thus represents
the sea level or surge at time i predicted by member j. The

EM produced by an EPS is denoted by a vector F = F{;}; of
all times i. The EM is a simple average of the member fore-
casts defined as

e

~

1

S|~
3
i

In this case each member has the same weight. However, dur-
ing extreme events, when usually the forecast uncertainty is
greatest, this may not be the best solution. Another method is
to evaluate the weights of each member based on the perfor-
mance achieved during a training period. Here the correlation
method is tested to compute a weighted EM (WEM). In addi-
tion, only a subset k of the m members can be considered to
compute a better average. The first k forecasts are chosen
based on the performance during the training period. How-
ever, selecting the value of & is subjective and should be cho-
sen according to the performance of the ensemble model at
each specific location (Salighehdar et al. 2017). In our case the
best performance was obtained with k = 21 which was used
consistently in all our cases. Since the performance of each
member can be different from case to case, due to different
forcing conditions, new weights are computed for each event,
considering the simulation range from —24 h to 0 as the
weights training period (Fig. 3). The uncertainty of the ensem-
ble system (spread) is computed as the standard deviation of
the ensemble member distribution. The specific WEM meth-
odology is detailed in appendix B.

4. Results

a. EPS skill

The SL and SR at Faro (Fig. 1) are shown for events 2 and 3
in Fig. 5 and events 4 and 5 in Fig. 6. We will discuss event 1
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minimum sea level values during the storm surge peak. The shaded areas are the ensemble spreads.

in the last part of this section because of the special contri-
bution of seiches. The thick green line (Figs. 5, 6, and 9)
is the member forced by the highest resolution models
(ADRIAC and COSMO-2I; exp-1 in Table 2). This is the
deterministic reference model. The thick black and orange
lines are the EM and WEM, respectively. Qualitatively the
deterministic forecast overestimates the SR in two out of
the five events.

The ensemble spread peaks at the time of the extreme event
thus denoting a growth of the uncertainty. This is another

(a) SR event 4

202012-07:12  2020-12-08:12

Time

2020-12-06::12

i (c) SR event 5

2020-12-27::12  2020-12-28::12

Time

2020-12-26::12

2020-12-08:12

SL{m)

2020-12-20::1;

benefit of the EPS, the spread of which alerts the forecaster
of the possibility that an extreme event may occur. For SR, the
maximum spread is at the peak of the event with values of 4.5,
7,7, and 12 cm for event 2, 3, 4, and 5, respectively. Interest-
ingly, in event 2 one of the members forced by ADRIAROMS
overestimates the SL at the peak time (see the upper light
green line in Fig. 5b), as do other members with the same nest-
ing model (not shown). Since no overestimation is observed in
the SR (Fig. 5a) the error may be attributed to a wrong tidal
signal provided by ADRIAROMS.

(d) SL event 5

2020-12-28::12 2020-12-29::12

2020-12-27:12
Time

FIG. 6. As in Fig. 5, but for (a),(b) event 4 and (c),(d) event 5.
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FI1G. 7. Taylor diagrams for SR and total SL for (a),(b) event 2 and (c),(d) event 3.

The performance of individual members during the fore-
cast time are summarized for each event with Taylor dia-
grams (Figs. 7 and 8). An evident feature is the grouping of
members with the same ocean initial and lateral boundary
conditions. This is even clearer when the SL is considered
(Figs. 7b,d and 8b,d). If SR is considered (Figs. 7a,c and 8a,c
there is a small dispersion due to the different meteorologi-
cal forcing and the different river forcing. The initial/lateral
boundary conditions (including the tidal forcing) therefore
seem to be the greatest source of uncertainty (both for SR
and SL), followed by the meteorological forcing and river
forcing.

In both events 2 and 3, the maximum surge occurred with
the maximum tidal amplitude. Conversely, event 4 reached
the peak during a tidal minimum. A spectral analysis of the
observed sea level revealed that there was a high contribution
from the fundamental Adriatic seiche (~0.25 m), as shown in
Fig. 2. We argue that a correlation between the arrival time of
remote signals (seiches) and local forcings might be in some

cases an important predictor of sea level extremes as demon-
strated also for transitional waters along the U.S. East Coast
(Park et al. 2022).

The Taylor diagrams provide an indication of the members
that most contribute to building the final WEM for each event.
In most cases members initialized/forced with MED-MFC-T
(from exp-37 to exp-45) show the best scores (p between 0.95
and 0.99; ~0.7 for event 1 SR) followed by members initial-
ized/forced with ADRIAC (from exp-1 to exp-9; p between
0.85 and 0.95; ~0.5 for event 1 SR) and MED-MFC (from
exp-19 to exp-27; p between 0.85 and 0.99; ~0.7 for event 1 SR).
Members initialized/forced by ADRIAROMS (from exp-10 to
exp-18) usually show the worst performance (p between 0.3
and 0.95; ~0.1-0.2 for event 1 SR) together with the members
initialized/forced by the GLOBAL product (from exp-28 to
exp-36; p between 0.4 and 0.9; ~—0.4 for event 1 SR).

If SL Taylor diagrams are considered, we note again that
members forced by MED-MFC-T have the best performance.
This suggests that a large-scale ocean model (MED-MFC-T)
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FI1G. 8. Taylor diagrams for SR and total SL for (a),(b) event 4 and (c),(d) event 5.

may be more effective in representing the nonlinear interactions
that occur between tides, bathymetry and basin modes com-
pared to regional scale models (ADRIAC or ADRIAROMS)
that imposes TPXO tides at their open boundary.

Event 1 is a special case because the contribution of the
Adriatic Sea seiches reached values close to 40 cm (Fig. 2).
Figure 9a shows that the SL peak coincides with a decreasing
SR (Figs. 9a,b). The storm surge is thus generated mainly by
the seiches and the tides.

Of the events analyzed, this case shows the worst perfor-
mance for most of the ensemble members, with a negative
correlation for the one forced by GLOBAL (Figs. 9c,d). How-
ever, EM and WEM benefit from error compensation and
show satisfactory results in terms of SR, although none of the
members reproduced the SL peak amplitude occurring at
0750 UTC 23 December 2019. This highlights the fundamen-
tal importance of tide-seiche resonant phenomena without
the contribution from local meteorological forcing and under-
line some limitation of regional and large-scale ocean models
in simulating such interaction.

The members initialized/forced by the GLOBAL model
have usually the worst results. This is not surprising since the
GLOBAL product has the lower resolution and its daily out-
put is not able to catch appropriately the surge components
due to wind during extreme events. Indeed, members forced
by GLOBAL are most of the times excluded by the weighting
procedure.

b. Ensemble member analysis

Any analysis of an EPS should consider its degree of the
over- or underdispersiveness of the members. To do this, we
analyzed the root-mean-square error (RMSE) as a function of
the ensemble spread (Figs. 10a,b), aggregating all the events
in Porto Garibaldi and Faro, considering 6-h intervals. The
RMSE spread plot provides information on the dispersion
of the ensemble members: if the growth of error is slower
than the growth in spread, the ensemble is called overdisper-
sive; the contrary is underdispersive.

In an ideal case the RMSE should be linearly proportional
to the ensemble spread. Figure 10a shows that there is a slight
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(d) SL are also shown.

overdispersion of the members for spreads greater than 0.05 cm.
This implies that during peak events, there is more dispersion
of the ensemble members than expected. We argue that this
overdispersion of the ensemble is due to the very different
initial and lateral boundary conditions used. If the SL is con-
sidered, overdispersion appears for spread values greater than
0.13 cm, while a slight underdispersion appears for smaller
spread values, probably connected to the tidal components.

The SR RMSE error increases with time up to a maximum
at 48 h for EM and WEM. The exp-1 seems to perform
slightly better between 36 and 48 h, while after 48 h, both EM
and WEM performances are slightly better. The SL RMSE
shows an almost linear increase with time for all forecasts
with slightly better performances for the WEM at the end of
the forecast period. The RMSEs considered for all the fore-
casts and all events are 5.7, 5.5, and 5 cm for EM, exp-1, and
WEM, respectively, for SR, while for SL, the RMSEs are 12,
11.5,and 11 cm.

We conclude this section by analyzing the spatial distribu-
tion of the ensemble spread at the time of the peak events,
considering only the SR. Considering first the river and mete-
orological forcing induced ensemble spread, the river runoff
has a small influence on the SR ensemble spread (Fig. 11a),
which remains confined at the river mouths along the coast,
reaching low values of 0.3 and 0.4 cm. The meteorological
forcing leads to a bigger ensemble spread but with a maxi-
mum value of 1-3 cm (Fig. 11b). Although the winds are one
of the main drivers of storm surges in the area and may rep-
resent a big source of uncertainty, we argue that the low
spread values found here are a consequence of the limited

04 0.5
Observations

. The light green lines represent the members with maximum
area is the ensemble spread. Taylor diagrams for (c) SR and

area size of the domain, and the fact that the storm surge
component due to remote wind effects is important, as dis-
cussed earlier.

The ensemble spread due to initial and lateral boundary
conditions is clearly a dominant contribution (Fig. 11c), ex-
ceeding by one order of magnitude the spread due to local
meteorological forcing. The SR spread (Fig. 11c) is almost
uniform throughout the entire domain with values between 12
and 13 cm. The tidal signal extracted inverting the filtering
procedure reveals that the contribution of tides to the sea
level spread is of the same order of magnitude (Fig. 11d), with
slightly smaller values between 9 and 10 cm. This suggests
that both for computational efficiency and system perfor-
mance, the storm surge EPS implemented in limited area do-
mains should focus on the initial and lateral boundary
condition uncertainties, further substantiating previous results
(Chu 1999).

5. Summary and conclusions

The expected increasing number of extreme storm surge
events necessitates reliable operational storm surge forecast-
ing systems. The assessment of the forecast uncertainties con-
tinues to be a challenge that requires an ensemble approach
to be dealt with.

We designed and developed a coastal EPS for lagoons/
transitional waters using a baroclinic very high-resolution un-
structured grid model. The model high resolution eliminates
the uncertainties due to resolution of the coastal geometry and
bathymetry leaving only irreducible uncertainties contained



SEPTEMBER 2023

ALESSANDRI ET AL.

1801

Surge residual

-+ expl
& M
WEM

RMSE (m)

o RMS spreﬂ':-;lii (m)

RMSE (m)

0 i i 5

] wo &
Forecast time

Total sea level

=¥ exp-1
- EM
#— WEM

RMSE {m)

oG

RMS_E (m]_

0%

® ® @
Forecast time
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in initial conditions and forcings. Therefore, the EPS is formu-
lated by considering model forecasts carried out with different
meteorological forcing, initial, and lateral boundary condi-
tions from coarser resolution ocean models and perturbations
to the river/inlet discharges. The forecast lead time is 3 days
with a 1-day spinup in analysis/simulation mode.

A postprocessing ensemble mean (EM) procedure was car-
ried out and a weighted ensemble mean (WEM) methodology
was tested based on the performance of the members during
the spinup, which was considered to be equivalent to a train-
ing period. Of the 45 members used for the ensemble, most
of the variability was reached including only members that
differed in initial and lateral boundary conditions. An esti-
mate of the uncertainty due to different initial/lateral bound-
ary conditions, river runoff and atmospheric forcings was
provided. A perturbation of +30% in the river runoff, corre-
sponding to one standard deviation of the climatological
daily Po River discharge, was found to contribute with 3-4 mm
to the ensemble sea level spread, limited to the river mouths.
Meteorological forcing had a greater impact of between
1 and 3 cm, while initial/boundary conditions (including tides)
provided most of the sea level uncertainty between 9 and
13 cm.

It is found that EM and WEM forecasts have better skill
from 48- to 72-h forecast lead time while in the first two days
they are equivalent to a single deterministic forecast skill. The
third day SL RMSE computed at the two reference stations
is 11 and 12 cm, respectively, for WEM and EM, while it is
11.5 cm for the deterministic reference forecast. One case,
event 1, showed large errors, due to the specific importance of

seiches and tidal elevation nonlinear interactions. The correct
simulation of the tidal phase is crucial and a way to account
for the shifts in the tidal peak is to consider the skew surge
(Williams et al. 2016). Such an approach will be further inves-
tigated in the future.

In general, we might say that for lagoons/transitional waters
with limited connections to the open ocean, the EPS method-
ology presented here could be taken as a prototype system.
For general ensemble coastal forecasting, the domain size
might be an added uncertainty and different model domains
should be tried with the same WEM and EM methodologies.
The limitations to use different model domains derive from
the inadequate number of observations in the open ocean,
shelf areas which makes it difficult to produce a robust veri-
fication of the EPS. In the future it is possible that coastal
scale altimetry will offer a convenient dataset for validation/
calibration of a storm surge EPS. An improvement of the weight
computation could be achieved by using the past »n forecasts to
build a more robust set of weights for the current forecast. In this
work we chose events that are not closely related in time, and so
we could not apply this approach; we limited the computation of
the weights to the day prior to the forecast start, and even in this
case we obtained an improvement of the forecast.

The lesson learnt from this exercise, most probably a gener-
alizable conclusion, is that limited-area storm surge forecast-
ing uncertainty in lagoons is dominated by initial and lateral
boundary conditions and by phase/amplitude errors in tidal
components. The former are also influenced by remotely
forced propagating signals, such as seiches for the specific
case of the Adriatic, but more generally remotely forced
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circulation signals. Given the necessity of having resolutions
of ~10-100 m at the coasts, we conclude that an EPS might
be necessary to account for irreducible errors in initial and lat-
eral boundary conditions from coarser resolution models.
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APPENDIX A

The Tidal Filter Methodology

The surge component (i.e., SR), the seiches and the tides
extracted from model results were found using a frequency
domain filter procedure based on the Fourier transform.
The basic principles of the digital filter used here are de-
scribed in Thomson and Emery (2014). If we consider a
variable x(f) in the time domain ¢ and its transformed X(f)
in the frequency domain f found applying the discrete Fourier
transform (DFT), the application of the digital filter can be
summarized in the following three steps:
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1) Take the DFT, X(f) of the original dataset x(¢).

2) Multiply X(f) by the appropriate frequency response
function W(f) or FRF, of a high-, low-, or bandpass filter.

3) Take the inverse Fourier transform (IFT) of the results to
obtain a filtered dataset in the time domain.

The power of this method is its simplicity. Unlike the
filters in the time domain that require a convolution (e.g.,
Doodson filter), in the frequency domain, our solution just
entails a simple multiplication:

X'(f) = WHX(). (A1)
The filtered time series is then simply found by applying
the IFT to X'(f). However, the form of W(f) is extremely
important in order to have a reliable filter. Ideally the
FRF should be near unity in the frequency band to be passed,
and zero in the bands to be stopped, with a narrow transition
band to prevent contamination by unwanted frequencies.

Unfortunately, a very narrow and steep transition band is
the main cause of large Gibbs phenomenon, affecting the
time series obtained by IFT of X’(f) which manifests itself
as large side lobs in the initial and final part of the time
series (ringing). The Gibbs phenomenon can be reduced by
“tapering” the filter [W(f)] with a smooth function to ensure
a smooth transition to nonzero Fourier coefficients (Forbes
1988). We tapered the transition bands using a Tukey window
(also called cosine taper), defined as

1 2w r
11+ Zx - =x==
2{1 cos|— (x r/Z)]}, 0=x 3
W) = 11, t=x=1-7,
1{1+cosz—ﬂ-(xflJrr/Z)]}, 1-L=x<1
2 r 2
(A2)

where x are the L points of the windows, and r is the ratio
of the cosine-tapered section length to the entire window
length with 0 < r < 1. A value r = 0.5 produces a Tukey
window where half of the entire window length consists
of segments of a phase shifted cosine with period 2r = 1.
If r = 0 a rectangular window is returned, while for r = 1 a
Von Hann window is generated (Bloomfield 2000).

The energy density spectrum (ESD) of the observed sea
level at Faro is shown in Fig. S1 together with the ESD of
the filtered signal using the Fourier transform filter. The
green line is the FRF which was calibrated to exclude tidal
and seiche signals from the time series in order to retain
only the surge component. The resulting time series after
the filter has been applied is the orange line in Fig. S1. The
FRF can be easily inverted and the windows can be moved
if there is a need to focus on particular frequencies (e.g.,
tides or seiches).

On the other hand, the initial and final parts of the time
series must be excluded because they are the ones most
affected by the Gibbs phenomenon. If in time domain filters,
the initial and final part of the time series are automatically
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excluded, while in frequency domain filters, there is no clear
threshold, and which part of the time series should be excluded
is subjective. However, Walters and Heston (1982) suggest that
in both time domain and frequency domain filters, the same
amount of data are lost. The version of he tidal filter used for
this work can be found at the Zenodo repository of the
Oceanography group of the University of Bologna at the
link: https://doi.org/10.5281/zenodo.6478113.

APPENDIX B

The Weighted Ensemble Mean Method
The steps for the WEM are as follows.

1) First the bias between the model output and observations
during the training period in a determined station is re-
moved for each member (this step is also done for the
simple average):

o1&
B =_X@x - o), (B1)
T3

where B is the bias for member j. The term x{ is the member
j variable value at time i; o; is the observation at time i and 7’

is the length of the training period.
2) The standard Pearson correlation coefficient, defined by

1<, —
7 Z(X,] = x)(o; —0)
pj _ i=1

’ xo’jao' '

(B2)

is computed for each member of the ensemble during the
training period, where ¥’ is the mean value of member j, 0 is
the mean observed value, x,; is the model member j stan-
dard deviation, and o, is the observed standard deviation.

3) The forecasts are ranked based on the correlation and the
first k members are retained and used to compute the
weights w;:

j
(e
w, =P (B3)
>0
=1

]

4) The WEM is computed as the weighted average of the se-
lected forecasts:

k
F,= Y w(x - B). (B4)
j=1

The accuracy of the member forecasts and of EM and
WEM are evaluated by computing the correlation for the
forecast period and RMSE defined by

1Y )
=1|= J_ o
RMSE N Zi ! = o)

for both SL and SR.

(BS)
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The RMSE is evaluated against the ensemble spread
computed as the root-mean-square of the ensemble vari-
ance. For sufficiently large ensemble sizes, the following
equation should be approximately verified (Fortin et al.

2014):
|1 < 5 S\12
RMSE ~ NZs,—(st) ,
t=1

where s® indicates the variance of the ensemble.

Taylor diagrams (Taylor 2001) are produced for chosen
events, evaluating the model performances in terms of cor-
relation, standard deviation (o) and CRMSE (centered root-
mean-square error) defined as

(B6)

N _
CRMSE = \/%Z [(x{ - x,j) — (o, — 07,-)]2~ (B7)
=1

In Egs. (BS)-(B7), N is the maximum number of observa-
tions in the forecast period.
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