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Abstract We prove the K (π, 1) conjecture for affine Artin groups: the com-
plexified complement of an affine reflection arrangement is a classifying space.
This is a long-standing problem, due toArnol’d, Pham, and Thom.Our proof is
based on recent advancements in the theory of dual Coxeter and Artin groups,
as well as on several new results and constructions. In particular: we show that
all affine noncrossing partition posets are EL-shellable; we use these posets to
construct finite classifying spaces for dual affine Artin groups; we introduce
new CW models for the orbit configuration spaces associated with arbitrary
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Coxeter groups; we construct finite classifying spaces for the braided crystal-
lographic groups introduced by McCammond and Sulway.

Mathematics Subject Classification 20F36 · 20F55 · 55R35

1 Introduction

The long-standing K (π, 1) conjecture forArtin groups states that the orbit con-
figuration space YW associated with a Coxeter group W is always a K (GW , 1)
space. Here GW is the fundamental group of YW and is known as the Artin
group associatedwithW . The conjecturewas proved for sphericalArtin groups
(i.e. if W is finite) by Deligne [29], after being proved by Fox and Neuwirth
in the case An [40] and by Brieskorn in the cases Cn , Dn , G2, F4, and I2(p)

[16].
In this paper, we prove the conjecture for the next important family of Artin

groups, namely for all affine Artin groups. Together with Deligne’s result, this
covers all the cases where W is a Euclidean reflection group.

Main Theorem (Theorem 8.15) The K (π, 1) conjecture holds for all affine
Artin groups.

The K (π, 1) conjecture goes back to the pioneering work of Arnol’d,
Brieskorn, Pham, and Thom in the ’60s (see [16,41,58,65]). After the fun-
damental contribution of Deligne, the conjecture was proved for the affine
Artin groups of type Ãn , C̃n [51], B̃n [21], and G̃2 [23]. So our paper com-
pletes the list of affineArtin groupswith the case D̃n andwith all the remaining
exceptional cases. Unlike the proofs for previously known cases, our approach
is essentially “case-free,” although some partial results use the classification
of reflection groups. In particular, it also applies to all previously known affine
cases.

Besides Euclidean cases, the conjecture was proved for Artin groups of
dimension ≤ 2 and for those of FC type [23,43]. It was also extended to the
configuration spaces of finite complex reflection groups and proved in full
generality by Bessis [6].

Our results weremade possible by recent advances in the theory byMcCam-
mond and Sulway [48,49], which rely on dual Coxeter andArtin groups and on
Garside structures (see Sect. 2). In [49], finite-dimensional classifying spaces
for affine Artin groups were constructed, but with an infinite number of cells.
Our proof of the K (π, 1) conjecture leads to a significant improvement of their
construction: we obtain finite classifying spaces for GW which are homotopy
equivalent to the orbit configuration space YW . In doing that, we derive many
new geometric and combinatorial side results for affine Coxeter and Artin
groups, which we think are interesting by themselves.
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Proof of the K (π, 1) conjecture

The following are some consequences of the K (π, 1) conjecture: affine
Artin groups are torsion-free (this already follows from the construction of
McCammond and Sulway [49]); they have a classifying space with a finite
number of cells (see [60]); the well studied homology and cohomology of
YW coincides with the homology and cohomology of the corresponding affine
Artin group GW (see [19–21,55,57,61]); the natural map between the clas-
sifying space of an affine Artin monoid and the classifying space of the
corresponding Artin group is a homotopy equivalence (see [33,34,52,53]).

1.1 Outline of the proof and future research directions

For every Coxeter group W and Coxeter elementw, there is an associated dual
Artin group Ww. It is known to be naturally isomorphic to the standard Artin
group GW , if W is finite [5] or affine [49]. When the noncrossing partition
poset [1, w] is a lattice, the dual Artin group is a Garside group, and it admits a
standard construction of a classifying space KW � K (Ww, 1) [24]. The poset
[1, w] is indeed a lattice if W is finite [5,13–15], but this is not always the case
if W is affine [31,32,48].

In our proof of the K (π, 1) conjecture, one of the key points is to show that
KW is a classifying space for Ww, for every affine Coxeter group W , even
when [1, w] is not a lattice (Theorem 6.6). This can come as a surprise since
the standard argument to show that KW is a classifying space heavily relies on
the lattice property.

Then we show that KW is homotopy equivalent to the orbit configuration
space YW . For this, we introduce a new family of CW models X ′

W � YW ,
which are subcomplexes of KW (Definition 5.3). Differently from the usual
models (such as the Salvetti complex [60]), the structure of X ′

W depends on
the dual Artin relations in Ww rather than on the standard Artin relations in
GW . Using discreteMorse theory, we prove that KW deformation retracts onto
X ′

W . This completes the proof of the K (π, 1) conjecture, and at the same time,
it gives a new proof that the dual Artin group Ww is naturally isomorphic to
the Artin group GW (in the affine case).

The outlined program passes through several intermediate geometric, com-
binatorial, and topological results. For example, an important step in the proof
of the deformation retraction KW � X ′

W is to construct an EL-labeling of
the affine noncrossing partition poset [1, w]. This and other contributions are
summarized in Sect. 1.2 below.

Of course, one can hope to use an analog strategy to solve the K (π, 1)
conjecture in the general case. However, in order to carry out such program,
it seems that a general geometric theory of dual Coxeter groups is required,
as well as a combinatorial theory of noncrossing partition posets associated
with arbitrary Coxeter groups (for example: are these posets EL-shellable?

123



G. Paolini, M. Salvetti

how can they fail in being lattices?), and perhaps also new developments in
Garside theory (can the lattice condition be relaxed?). These are interesting
and potentially promising directions for future research.

1.2 Summary of additional contributions

As mentioned above, in this paper we prove several results in addition to the
K (π, 1) conjecture. Here we list the ones we consider to be the most important
and of independent interest.

In Sect. 3, we expand the geometric theory of Coxeter elements in affine
Coxeter groups, continuing the work started by McCammond and Sulway
[48,49]. The following is one of our many results. Its analog for finite Coxeter
groups was proved by Bessis [5].

Theorem A (Theorem 3.22) Every element u in an affine noncrossing parti-
tion poset [1, w] is a Coxeter element of the Coxeter subgroup generated by
the subposet [1, u].

The next result sheds some light on the combinatorial structure of affine
noncrossing partition posets and is the focus of Sect. 4. Its analog for finite
noncrossing partition lattices was proved by Athanasiadis, Brady, and Watt
[2].

Theorem B (Theorem 4.19) All affine noncrossing partition posets are EL-
shellable.

We should emphasize that the affine setting differs substantially from the
finite setting. For example: an affine noncrossing partition poset [1, w] is infi-
nite and not necessarily a lattice; not all elements of [1, w] are parabolic
Coxeter elements; not all reflections belong to [1, w]. For this reason, the the-
ory requires significant novelties in addition to the well-established results for
finite Coxeter groups.

In Sect. 5we introduce newCWmodels X ′
W for the orbit configuration space

YW , by gluing together classifying spaces KWT � K (GWT , 1) of spherical
parabolic subgroups. This is done in full generality, for an arbitrary Coxeter
group W .

Theorem C (Theorem 5.5) For every Coxeter group W , the subcomplexes
X ′

W ⊆ KW are naturally homotopy equivalent to the orbit configuration space
YW .

In Sect. 6 we show that KW is a classifying space, even when [1, w] is not
a lattice. Our proof makes use of the construction of braided crystallographic
groups by McCammond and Sulway [49], a “Garside completion” of dual
affine Artin groups.
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Theorem D (Theorem 6.6) For every affine Coxeter group W and Coxeter
element w ∈ W , the complex KW is a classifying space for the dual Artin
group Ww.

In Sect. 7 we show that KW deformation retracts onto a subcomplex with
a finite number of cells. Without additional effort, this argument also applies
to the classifying space of a braided crystallographic group. We obtain the
following consequence.

Theorem E (Theorem7.10)Every braided crystallographic group has a clas-
sifying space with a finite number of cells.

It is possible that the techniques of Sect. 8 can be adjusted to braided crystal-
lographic groups, to obtain a smaller classifying space with some interesting
geometric interpretation (and perhaps prove a crystallographic version of the
K (π, 1) conjecture). This might be part of some bigger picture, where every
(dual) Artin group has a crystallographic Garside completion, and their clas-
sifying spaces are geometrically related.

1.3 Structure of this paper

In Sect. 2 we recall the most important background definitions and results
that are needed in the rest of the paper. In Sect. 3 we prove several geometric
results about Coxeter elements in affine Coxeter groups, expanding the theory
of [48,49]. This section goes hand in hand with Appendix A, where we carry
out explicit computations for the four infinite families of irreducible affine
Coxeter groups. Sects. 4, 5, 6 and 7 are mostly independent from each other.
They cover separate intermediate steps of our proof of the K (π, 1) conjecture,
as described earlier. Finally, in Sect. 8, everything is put together to prove the
K (π, 1) conjecture.

2 Background

2.1 Coxeter groups and Artin groups

Let W be a Coxeter group, i.e. a group with a presentation of the following
form:

W = 〈S | (st)m(s,t) = 1 ∀ s, t ∈ S such that m(s, t) 	= ∞〉, (1)

where S is a finite set, m(s, s) = 1 for all s ∈ S, and m(s, t) = m(t, s) ∈
{2, 3, 4, . . . } ∪ {∞} for all s 	= t in S. This presentation can be encoded
into a Coxeter graph: the vertices are indexed by S, and there is an edge
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connecting s and t whenever m(s, t) ≥ 3; this edge is labeled by m(s, t)
whenever m(s, t) ≥ 4. A Coxeter group is irreducible if its Coxeter graph is
connected. Any conjugate of an element of S is called a reflection. Denote by
R ⊆ W the set of reflections. Any conjugate of the set S is called a set of
simple reflections of W , and can be used in place of S to give a presentation
of W of the same form as (1), with an isomorphic Coxeter graph.

If S ⊆ R is any set of simple reflections of W (not necessarily the one used
to define W ), the product of the elements of S in any order is called a Coxeter
element of W . Also, for any subset T ⊆ S, the subgroup WT generated by
T is a parabolic subgroup of W (it is a Coxeter group, and T is a set of
simple reflections of WT ). A Coxeter element of a parabolic subgroup of W is
called a parabolic Coxeter element of W . When a set of simple reflections S is
fixed, the parabolic subgroups WT with T ⊆ S are called standard parabolic
subgroups. The rank (or dimension) of W is the largest cardinality of a subset
T ⊆ S such that the parabolic subgroup WT is finite. We refer to [7,11,44] for
more background information on Coxeter groups.

We are mostly interested in the case where W is a finite or affine Coxeter
group, or equivalently, a (finite or affine) real reflection group. In this case, W
acts faithfully by Euclidean isometries on some affine space E = R

n , and the
elements of R act as orthogonal reflections with respect to some hyperplanes
of E . These hyperplanes form a locally finite hyperplane arrangement in E ,
which we denote by A. The connected components of the complement of A
in E are called chambers. Given a chamber C , its walls are the hyperplanes
H ∈ A such that H ∩ C̄ is a (n − 1)-dimensional polyhedron. The collection
of all the chambers forms the Coxeter complex of W . The smallest possible
dimension n which is needed to construct such a representation is equal to
the rank of W . If n is equal to the rank of W , the resulting representation is
essential. If W is an irreducible finite Coxeter group, then all its elements must
fix a point of E (so W may as well be realized as a group of linear isometries),
and all chambers in an essential representation are unbounded simplicial cones.
If W is an irreducible affine Coxeter group, then all chambers in an essential
representation are bounded simplices. We refer to [44] for the definition of
root systems, positive systems, simple systems, crystallographic systems, and
crystallographic Coxeter groups.

Irreducible affine Coxeter groups are classified into four infinite families
( Ãn , B̃n , C̃n , D̃n) and five exceptional cases (Ẽ6, Ẽ7, Ẽ8, F̃4, G̃2). Their
Coxeter graphs are shown in Fig. 1. These groups can all be constructed from
the corresponding irreducible crystallographic root systems, as follows (see
[44, Chapter 4]). For each α in a crystallographic root system� ⊆ R

n , and for
each integer k ∈ Z, consider the affine hyperplane Hα,k = {x ∈ R

n | 〈x, α〉 =
k}. Then take the group generated by the orthogonal reflections with respect
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Fig. 1 Irreducible affine Coxeter graphs

to the hyperplanes Hα,k . The corresponding reflection arrangement A is the
collection of all these hyperplanes Hα,k .

If W is a finite or affine Coxeter group, acting on E = R
n , define the

configuration space Y associated with W as

Y = C
n\

⋃

H∈A
H ⊗R C.

In other words, this is the complement of the complexification of the hyper-
plane arrangementA. ThenW naturally acts onY , and its quotientYW = Y/W
is the orbit configuration space associated with W . Up to homotopy equiv-
alence, Y and YW do not depend on the chosen representation of W as a
subgroup of the isometry group Isom(E). The construction of Y and YW can
be extended to arbitrary Coxeter groups by considering the Tits cone, see
[11,41,50,58,60,65,66].

If S is a set of simple reflections of W , the Artin group associated with the
Coxeter group W is

GW = 〈S | stst · · ·︸ ︷︷ ︸
m(s,t) terms

= tsts · · ·︸ ︷︷ ︸
m(s,t) terms

∀ s, t ∈ S such that m(s, t) 	= ∞〉,

see [16,17,29,63,64]. It is isomorphic to the fundamental group of the orbit
configuration space YW [60,65].
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Conjecture 2.1 (K (π, 1) conjecture) The orbit configuration space YW is a
classifying space for the Artin group GW .

Artin groups associated with finite (resp. affine) Coxeter groups are called
spherical (resp. affine). Prior to this work, the K (π, 1) conjecture was proved
for spherical Artin groups [16,29,40], for affine Artin groups of type Ãn , C̃n
[51], and B̃n [21], for Artin groups of dimension ≤ 2 (this includes the affine
Artin group of type G̃2) and of FC type [23,43].

As shown in [59,60], the orbit configuration space YW has the homotopy
type of a CW complex XW , with one |T |-cell cT for every T in

�W = {T ⊆ S | the standard parabolic subgroup WT is finite}.

In particular, the 1-cells of XW are indexed by S, and the 2-cells are indexed
by the unordered pairs {s, t} ⊆ S with m(s, t) 	= ∞. The 1-cells are oriented
in such a way that c{s} corresponds to the generator s of the fundamental group
GW , and a 2-cell c{s,t} corresponds to the relation stst · · · = tsts · · · . In the
literature, the CW complex XW is usually called the Salvetti complex of W .
For T ⊆ S, there is a natural inclusion of complexes XWT ⊆ XW , induced by
the inclusion �WT ⊆ �W .

2.2 Posets

We now recall some basic terminology about partially ordered sets (posets).
See [62] for a more detailed exposition.

Let (P,≤) be a poset. If p < q in P and there is no element r ∈ P with
p < r < q, then we say that q covers p, and write p � q. Given an element
q ∈ P , define P≤q = {p ∈ P | p ≤ q}. We say that P is bounded if it
contains a unique minimal element and a unique maximal element. A (finite)
chain in P is a totally ordered sequence p0 < p1 < · · · < pn of elements of
P . A chain of n + 1 elements is conventionally said to have length n.
If p ≤ q, the interval [p, q] in P is the set of all elements r ∈ P such that

p ≤ r ≤ q. We say that P is graded if, for every p ≤ q, all the maximal
chains in [p, q] have the same (finite) length. Then there exists a rank function
rk : P → Z such that rk(q) − rk(p) is the length of any maximal chain in
[p, q]. The rank of P is defined as the maximal length of a chain of P .

A poset P is said to be a lattice if every pair of elements p, q ∈ P has a
unique maximal common lower bound and a unique minimal common upper
bound.

The Hasse diagram of a poset P is the graph with vertex set P and having
an edge (p, q) for every covering relation p � q. We indicate by E(P) =
{(p, q) ∈ P × P | p � q} the set of edges of the Hasse diagram of P .
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2.3 Lexicographic shellability

In this section, we recall the definition of EL-shellability [8,9].
Let P be a bounded poset. An edge labeling of P is a map λ : E(P) → �,

where � is some poset. Given an edge labeling λ, each maximal chain c =
(x � z1 � · · · � zt � y) between any two elements x ≤ y has an associated
word

λ(c) = λ(x, z1) λ(z1, z2) . . . , λ(zt , y).

We say that the chain c is increasing if the associated word λ(c) is strictly
increasing. Maximal chains in a fixed interval [x, y] ⊆ P can be compared
lexicographically (i.e. by using the lexicographic ordering on the correspond-
ing words).

Definition 2.2 Let P be a bounded poset. An edge-lexicographic labeling
(or simply EL-labeling) of P is an edge labeling such that in each closed
interval [x, y] ⊆ P there is a unique increasing maximal chain, and this chain
lexicographically precedes all other maximal chains of [x, y].

A bounded poset that admits an EL-labeling is said to be EL-shellable. If
P is an EL-shellable poset, then the order complex of P\{min(P),max(P)}
is homotopy equivalent to a wedge of spheres.

Let P1 and P2 be bounded posets that admit EL-labelings λ1 : E(P1) → �1
and λ2 : E(P2) → �2, respectively. Assume that �1 and �2 are disjoint and
totally ordered. Let λ : E(P1× P2) → �1∪�2 be the edge labeling of P1× P2
defined as follows:

λ((x, y), (z, y)) = λ1(x, z)

λ((x, y), (x, t)) = λ2(y, t).

Theorem 2.3 [10, Proposition 10.15] Fix any shuffle of the total orderings on
�1 and �2, to get a total ordering on �1∪�2. Then the product edge labeling
λ defined above is an EL-labeling of P1 × P2.

2.4 Discrete Morse theory

In this section we recall Forman’s discrete Morse theory [38,39]. We follow
the point of view of Chari [22], using acyclic matchings instead of discrete
Morse functions, and we make use of the generality of [3, Section 3] for the
case of infinite CW complexes.

Let P be a graded poset, and denote by H the Hasse diagram of P . Given
a subset M of E(P), we can orient all edges of H in the following way: an
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edge (p, q) ∈ E(P) (i.e. with p � q) is oriented from p to q if it is in M,
otherwise in the opposite direction. Denote this oriented graph by HM.

A matching on P is a subset M ⊆ E(P) such that every element of P
appears in at most one edge ofM. A matchingM is acyclic if the graph HM
has no directed cycles. Given a matching M on P , an alternating path is a
directed path in HM such that two consecutive edges of the path do not belong
both to E(P)\M. In the graph HM, the edges in M increase the rank by 1,
and the edges in E(P)\M decrease the rank by 1. Therefore, a matching M
is acyclic if and only if it has no closed alternating paths (which are called
alternating cycles). The elements of P that do not appear in any edge of M
are called critical (with respect to the matchingM). An acyclic matchingM
is proper if, for every p ∈ P , the set of vertices of HM reachable from p (with
a directed path) is finite.

Let X be a CW complex. The face poset F(X) of X is the set of its (open)
cells together with the partial order defined by τ ≤ σ if τ̄ ⊆ σ̄ . For all
CW complexes X considered in this paper, the face poset F(X) is a graded
poset with rank function rk(σ ) = dim(σ ). Recall that each cell of X has a
characteristic map � : Dn → X , where Dn = {x ∈ R

n | ‖x‖ ≤ 1}.
Let σ and τ be cells of X . If τ � σ we say that τ is a face of σ . We say that

τ is a regular face of σ if, in addition, the following two conditions hold (set
n = dim(τ ) and let � be the characteristic map of σ ):

(i) �|�−1(τ ) : �−1(τ ) → τ is a homeomorphism;

(ii) �−1(τ ) is a closed n-ball in Dn+1.

The following is a particular case of the main theorem of discrete Morse
theory and follows from [3, Theorem 3.2.14 and Remark 3.2.17].

Theorem 2.4 [3,22,38] Let X be a CW complex, and let Y ⊆ X be a sub-
complex. Suppose that there exists a proper acyclic matching M on the face
poset F(X) such that: F(Y ) is the set of critical cells; for every (τ, σ ) ∈ M,
we have that τ is a regular face of σ . Then X deformation retracts onto Y . In
particular, the inclusion Y ↪→ X is a homotopy equivalence.

We conclude by recalling a standard tool to construct acyclic matchings.

Theorem 2.5 (Patchwork theorem [46, Theorem 11.10]) Let η : P → Q be a
poset map. For all q ∈ Q, assume to have an acyclic matching Mq ⊆ E(P)

that involves only elements of the fiber η−1(q) ⊆ P. Then the union of these
matchings is itself an acyclic matching on P.

2.5 Interval groups and Garside structures

We now recall the construction of interval groups, and how they give rise
to Garside structures. Our exposition mostly follows [49, Section 2] and [47,
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Section 1]. See [5,24–26,28,31,32,48,49] for a complete reference onGarside
structures.

Let G be a group, with a (possibly infinite) generating set R ⊆ G such
that R = R−1. Suppose that the elements of R are assigned positive weights
bounded away from 0 that form a discrete subset of the positive real numbers.
Assume that r and r−1 have the same weight, for every r ∈ R. For every
x ∈ G, denote by l(x) the minimum sum of the weights of some generators
r1, r2, . . . , rk ∈ R such that r1r2 · · · rk = x . In other words, l(x) is the distance
between 1 and x in the weighted right Cayley graph of G (with respect to the
weighted generating set R).

The group G becomes a poset if we set x ≤ y whenever l(x) + l(x−1y) =
l(y), i.e. if there is aminimal length factorization of y that starts with aminimal
length factorization of x . Given an element g ∈ G, denote by [1, g]G ⊆ G
the interval between 1 and g (with respect to the partial order ≤ in G). The
Hasse diagram of [1, g]G embeds into the Cayley graph of G. Every edge of
the Hasse diagram is of the form (x, xr) for some r ∈ R, and we label it by r .

Definition 2.6 (Interval group [49, Definition 2.6]) The interval group Gg is
the group presented as follows. Let R0 be the subset of R consisting of the
labels of edges in [1, g]G . The group Gg has R0 as its generating set, and
relations given by all the closed loops inside the Hasse diagram of [1, g]G .

The interval [1, g]G is balanced if the following condition is satisfied: for
every x ∈ G, we have l(x)+ l(x−1g) = l(g) if and only if l(gx−1)+ l(x) =
l(g). This condition is automatically satisfied if the generating set R is closed
under conjugation and the weight of a generator is equal to the weight of all
its conjugates.

Theorem 2.7 [5, Theorem 0.5.2], [49, Proposition 2.11] If the interval [1, g]G
is a balanced lattice, then the group Gg is a Garside group.

See [28,31,32] for the definition of Garside groups. As in [49], we use the
term “Garside group” in the sense of Digne [31,32] (so that the generating set
R need not be finite).
The classifying space of a Garside group can be constructed explicitly, as

shown in [24,27]. Here we generalize this construction to the case of arbitrary
interval groups arising from balanced intervals, without the lattice assumption.
In the case of Garside groups, it is equivalent to the definitions given in [24,
Section 3] (see in particular [24, Definition 3.5 and Theorem 3.6]) and in [47,
Definition 1.6].

Definition 2.8 (Interval complex) Realize the standard d-simplex �d as the
set of points (a1, a2, . . . , ad) ∈ R

d such that 1 ≥ a1 ≥ a2 ≥ · · · ≥ ad ≥
0. The interval complex associated with a balanced interval [1, g]G is a �-
complex (in the sense of [42]) having a d-simplex [x1|x2| · · · |xd ] for every
x1, x2, . . . , xd ∈ [1, g]G such that:
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Fig. 2 Realization in R
2 of

a 2-simplex [x1|x2]

(i) xi 	= 1 for all i ;
(ii) x1x2 · · · xd ∈ [1, g]G ;
(iii) l(x1x2 · · · xd) = l(x1) + l(x2) + · · · + l(xd).

The faces of a simplex [x1| · · · |xd ] are as follows.
• The face {1 = a1 ≥ a2 ≥ · · · ≥ ad ≥ 0} of [x1| · · · |xd ] is glued to the

(d − 1)-simplex [x2| · · · |xd ] by sending (1, a2, . . . , ad) to (a2, . . . , ad) ∈
�d−1.

• For 1 ≤ i ≤ d − 1, the face {1 ≥ a1 ≥ · · · ≥ ai = ai+1 ≥ · · · ≥ ad ≥
0} of [x1| · · · |xd ] is glued to the (d − 1)-simplex [x1| · · · |xi xi+1| · · · |xd ]
by sending (a1, . . . , ai , ai , ai+2, . . . , ad) to (a1, . . . , ai , ai+2, . . . , ad) ∈
�d−1.

• Finally, the face {1 ≥ a1 ≥ · · · ≥ ad = 0} of [x1| · · · |xd ] is glued
to the (d − 1)-simplex [x1| · · · |xd−1] by sending (a1, . . . , ad−1, 0) to
(a1, . . . , ad−1) ∈ �d−1.

Notice that there is a unique vertex, which is indicated by [ ]. The 1-simplices
are oriented going from 0 to 1 in �1 = [0, 1]. See Fig. 2 for an example. The
fact that [1, g]G is balanced ensures that the faces of a simplex also belong to
the interval complex.

The fundamental group of the interval complex associated with [1, g]G is
Gg. This can be easily checked by looking at the 2-skeleton.

Theorem 2.9 [24, Theorem 3.1] If [1, g]G is a balanced lattice, then Gg is a
Garside group and the interval complex associated with [1, g]G is a classifying
space for Gg.

2.6 Intervals in the group of Euclidean isometries

In this section,we recall themain result of [12]. LetV ∼= R
n be an-dimensional

Euclidean vector space, and let E be the associated affine space (where the
origin has been forgotten). Given an affine subspace B ⊆ E , denote by
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Dir(B) ⊆ V the space of directions of B. Given a subset U ⊆ V , denote
by Span(U ) the linear subspace generated by U .

Let L = Isom(E) be the group of Euclidean isometries of E . For every
isometry u ∈ L , define its move-set Mov(u) = {u(a) − a | a ∈ E} ⊆ V .
This is an affine subspace of V , and it has a unique vector μ of minimal norm.
Define the min-set of u as Min(u) = {a ∈ E | u(a) = a + μ} ⊆ E . This is
an affine subspace of E .

An isometry u ∈ L is called elliptic if it fixes at least one point, and hyper-
bolic otherwise. If u is elliptic, then Mov(u) is a linear subspace, μ = 0,
and Min(u) coincides with the set of fixed points of u, which we denote
by Fix(u). For every isometry u ∈ L , there is an orthogonal decomposition
V = Dir(Mov(u)) ⊕ Dir(Min(u)) [12, Lemma 3.6].

The group L is generated by the set R of all orthogonal reflections (where
every reflection is assigned a weight of 1). The length l(u) computed using
the generating set R is called the reflection length of u. If u is elliptic, then
l(u) = codim Fix(u); if u is hyperbolic, then l(u) = dimMov(u) + 2 [12,
Theorem 5.7].

Definition 2.10 (Global poset [12, Definition 7.1]) Define the global poset
(P,≤) as the set containing an element eB for every affine subspace B ⊆ E ,
and an element hM for every non-linear affine subspace M ⊆ V . The order
relations in P are as follows: hM ≤ hM ′

if M ⊆ M ′; eB ≤ eB′
if B ⊇ B ′;

eB < hM if Span(M)⊥ ⊆ Dir(B). Define also an invariant map inv : L → P
that sends u to eFix(u) if u is elliptic, and to hMov(u) if u is hyperbolic.

Theorem 2.11 [12, Theorem 8.7] For every isometry u ∈ L, the restriction
of the invariant map is a poset isomorphism between the interval [1, u]L and
the model poset P(u) = P≤ inv(u).

2.7 Dual Artin groups

In this sectionwe recall the definition and some properties of dual Artin groups
associated with a Coxeter group W , focusing on the cases where W is finite
or affine. See [5,14,15] for the finite case, and [48,49] for the affine case.

Let W be a Coxeter group, R its set of reflections, and S ⊆ R a set of simple
reflections. Assign a weight of 1 to every reflection r ∈ R. Let w be a Coxeter
element, obtained as a product of the elements of S. The dual Artin group with
respect to w is the interval group Ww constructed using R as the generating
set of W .

The properties of a dual Artin group are strictly related to the combinatorics
of its defining interval [1, w]W , which in turn depends on the geometry of the
Coxeter element w. The interval [1, w]W is a graded poset of rank |S|. As
explained in Sect. 2.5, the edges of the Hasse diagram of [1, w]W are naturally
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labeled by a subset R0 ⊆ R.Maximal chains in [1, w]W correspond tominimal
length factorizations of w as a product of reflections.

Since the set R of reflections is closed under conjugation, it is possible to
rewrite factorizations as follows (this is a consequence of the so calledHurwitz
action).

Lemma 2.12 [48, Lemma 3.7] Let u = r1r2 · · · rm be a reflection factoriza-
tion in a Coxeter group W . For any selection 1 ≤ i1 < i2 < · · · < i j ≤ m of
positions, there is a length m reflection factorization of u whose first j reflec-
tions are ri1ri2 · · · ri j , and another length m reflection factorization of u where
these are the last j reflections.

If theCoxeter graph ofW is a tree, then all its Coxeter elements are geometri-
cally equivalent, and give rise to isomorphic intervals [1, w]W [48, Proposition
7.5]. This is the case for all irreducible finite and affine Coxeter groups except
Ãn . In the case Ãn , there are �n+1

2 � equivalence classes of Coxeter elements:
a choice of representatives is given by (p, q)-bigon Coxeter elements, where
(p, q) is a pair or positive integers such that p ≥ q and p + q = n + 1 [48,
Definition 7.7].

The generating set R0 ⊆ R of a dual Artin group contains S (for a general
Coxeter group, this follows from Lemma 5.1). Then there is a natural group
homomorphism from the usual Artin group GW to the dual Artin group Ww.

Theorem 2.13 [5,14,49] If W is a finite or affine Coxeter group, the natural
homomorphism GW → Ww is an isomorphism.

It is not known in general whether a dual Artin group is isomorphic to the
corresponding Artin group, or whether the isomorphism type of a dual Artin
group depends on the chosen Coxeter element w.

One important motivation to introduce dual Artin groups is that sometimes
they are Garside groups. For example, this happens if W is finite.

Theorem 2.14 [5,15] If W is a finite Coxeter group, the interval [1, w]W is a
lattice for every Coxeter element w. Therefore the dual Artin group Ww is a
Garside group.

The intervals [1, w]W that arise from finite Coxeter groups W are well-
studied, and are called (generalized) noncrossing partition lattices (see [1]).
They are known to be EL-shellable [2]. By analogy with the finite case, for
any Coxeter group W and Coxeter element w, we call the interval [1, w]W a
noncrossing partition poset associated with W .

Suppose now that W is an irreducible affine Coxeter group, acting as a
reflection group on E = R

n , where n is the rank of W . The Coxeter element
w is a hyperbolic isometry of reflection length n + 1, and its min-set is a line
� called the Coxeter axis [48, Proposition 7.2]. We gain some insight on the
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structure of the interval [1, w]W by comparing it with the interval [1, w]L in
the group of all Euclidean isometries of E (see Sect. 2.6).

Lemma 2.15 (cf. [48]) Let W be an irreducible affine Coxeter group, and
w one of its Coxeter elements. Then the inclusion [1, w]W ↪→ [1, w]L is
order-preserving and rank-preserving. In particular, u ≤ v in [1, w]W implies
inv(u) ≤ inv(v) in the model poset P(w).

Proof The length functions of W and L agree on the Coxeter element w,
so they agree on the entire interval [1, w]W . As a consequence, [1, w]W ⊆
[1, w]L . In addition, if we have u ≤ v in [1, w]W , then u−1v ∈ [1, w]W and
l(u−1v) = l(v) − l(u). Since the length functions agree, we have u ≤ v also
in [1, w]L . The last part of the statement follows from Theorem 2.11.

Notice that [1, w]W is not a subposet of [1, w]L in general: it is possible
to have u, v ∈ [1, w]W with u � v in [1, w]W , but u ≤ v in [1, w]L (see
Example 3.31). However, if W ′ is a finite Coxeter group (acting as a reflection
group on the vector space V = R

n) andw′ is one of its Coxeter elements, then
[1, w′]W ′

is known to be a subposet of [1, w′]Isom(V ) [15, Sections 2 and 3].
Then, in the affine case,we can show that the condition inv(u) ≤ inv(v) implies
u ≤ v in [1, w]W whenever u and v are elliptic. In this case, the condition
inv(u) ≤ inv(v) means Fix(u) ⊇ Fix(v).

Lemma 2.16 Let W be an irreducible affine Coxeter group, and w one of
its Coxeter elements. If u, v ∈ [1, w]W are elliptic elements with Fix(u) ⊇
Fix(v), then u ≤ v in [1, w]W .

Proof We proceed by induction on l(u), the case l(u) = 0 being trivial. Sup-
pose from now on that l(u) ≥ 1. Let W ′ be the subgroup of W generated by
the reflections in [1, u]W ∪ [1, v]W . By [44, Theorem 8.2] this is a Coxeter
group, and its set of reflections contains R∩ ([1, u]W ∪[1, v]W ). Every reflec-
tion in a minimal length factorization of u (resp. v) in W belongs to [1, u]W
(resp. [1, v]W ), and so it belongs to W ′. This means that the minimal length
factorizations of u and v are the same in W and W ′.

For every reflection r in [1, u]W ∪ [1, v]W , we have Fix(r) ⊇ Fix(v) by
Lemma 2.15. Therefore every element of W ′ fixes Fix(v), and so W ′ is finite.
By [5, Lemma 1.2.1] (see also [2,14,15]), every reflection r ∈ W ′ is part of a
minimal length factorization of v in W ′, and so also in W , thus r ∈ [1, v]W .
This proves that R ∩ [1, u]W ⊆ R ∩ [1, v]W .

Let r be any reflection in [1, u]W (there is at least one reflection because
l(u) ≥ 1). We have Fix(r) ⊇ Fix(u) ⊇ Fix(v) by Lemma 2.15, and therefore
r ≤ u ≤ v in [1, w]L by Theorem 2.11. If we write u = ru′ and v = rv′, we
have u′ ≤ v′ in [1, w]L , and so Fix(u′) ⊇ Fix(v′). Since r ∈ [1, u]W , we have
u′ ∈ [1, u]W ⊆ [1, w]W and l(u′) = l(u) − 1. In addition, since r ∈ [1, v]W ,
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we have v′ ∈ [1, v]W ⊆ [1, w]W . By induction, u′ ≤ v′ in [1, w]W . This
implies that u ≤ v in [1, w]W .

The direction of the Coxeter axis � is declared to be vertical, and the orthog-
onal directions are horizontal. An elliptic isometry is horizontal if it moves
every point in a horizontal direction, and it is vertical otherwise [49, Def-
inition 5.3]. Given u ∈ [1, w]W , the right complement of u is the unique
v ∈ [1, w]W such that uv = w. Define the left complement similarly.

Lemma 2.15 and some geometric considerations in [12] allow to coarsely
describe the combinatorial structure of the interval [1, w]W .

Proposition 2.17 (cf. [49, Definitions 5.4 and 5.5]) The elements u ∈ [1, w]W
are split into 3 rows according to the following cases (where v is the right
complement of u):

• (bottom row) u is horizontal elliptic and v is hyperbolic;
• (middle row) both u and v are vertical elliptic;
• (top row) u is hyperbolic and v is horizontal elliptic.

The bottom and the top rows contain a finite number of elements, whereas the
middle row contains infinitely many elements.

This coarse structure has the following implications, given elements u ≤ v

in [1, w]W : if v is elliptic, then u is elliptic; if v is horizontal elliptic, then u is
horizontal elliptic; if u is vertical, then v is vertical; if u is hyperbolic, then v

is hyperbolic.
The roots corresponding to horizontal reflections form a root system�hor ⊆

�, called the horizontal root system associated with the Coxeter element w ∈
W . It decomposes as a disjoint union of orthogonal irreducible root systems
of type A, as described in Table 1. The number k of irreducible components
varies from 1 to 3. See [48, Section 11] and Appendix A.

Theorem 2.18 [31,32,48] Let W be an irreducible affine Coxeter group, and
w one of its Coxeter elements. The interval [1, w]W is a lattice (and thus Ww

is a Garside group) if and only if the horizontal root system associated with w

is irreducible. This happens in the cases C̃n, G̃2, and Ãn if w is a (n, 1)-bigon
Coxeter element.

Since the interval [1, w]W is not a lattice in general, in [49] a new group of
isometries C ⊇ W is constructed, with the property that [1, w]C is a balanced
lattice and [1, w]W ⊆ [1, w]C . The corresponding interval group Cw (called
braided crystallographic group) is aGarside group, and there is a natural inclu-
sion Ww ⊆ Cw. By Theorem 2.9, the interval complex KC associated with
[1, w]C is a (finite-dimensional) classifying space for Cw. The cover of KC
corresponding to the subgroup Ww is a classifying space for the (dual) affine
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Table 1 Horizontal root
systems [49, Table 1]

Type Horizontal root system

Ãn �Ap−1 � �Aq−1

C̃n �An−1

B̃n �A1 � �An−2

D̃n �A1 � �A1 � �An−3

G̃2 �A1

F̃4 �A1 � �A2

Ẽ6 �A1 � �A2 � �A2

Ẽ7 �A1 � �A2 � �A3

Ẽ8 �A1 � �A2 � �A4

In the case Ãn , we show the
horizontal root system
associated with a
(p, q)-bigon Coxeter
element

Artin group Ww. Therefore affine Artin groups admit a finite-dimensional
classifying space. We come back to braided crystallographic groups in Sect. 6,
wherewe show that the interval complex KW associatedwith [1, w]W is a clas-
sifying space for Ww (this complex is much simpler than the aforementioned
cover of KC ).

In the subsequent sections, we sometimes suppress the superscript W when
writing intervals [1, u]W in a Coxeter group W , and simply write [1, u].

3 Affine Coxeter elements

This section is devoted to proving some results on the geometry of Coxeter
elements of affineCoxeter groups, expanding the theory of [48,49].We start by
recalling, in Sect. 3.1, the results of [48, Sections 8 and 9] on bipartite Coxeter
elements. In Sect. 3.2 we develop a parallel theory for the case Ãn . In Sect. 3.3
we prove a few structural results for the elements of the interval [1, w]. Finally,
in Sect. 3.4 wemake a digression on the geometry of the irreducible horizontal
components.

This section goes hand in hand with the Appendix, where we carry out
explicit computations for the four infinite families of irreducible affine Coxeter
groups. A few results of Sect. 3.2 and one technical lemma of Sect. 3.3 are
checked by hand in the Appendix. The Appendix can be also used as a source
of additional examples.

Let W be an irreducible affine Coxeter group, acting faithfully by Euclidean
isometries on E = R

n where n is the rank of W , as described in Sect. 2.1.
Let R ⊆ W be the set of reflections, w a Coxeter element of W , and � =
Min(w) ⊆ E the Coxeter axis of w. Denote by A the reflection arrangement
associated with the action of W on E .
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The shortest vector μ in Mov(w) gives an orientation to the Coxeter axis
�: we say that a point a ∈ � is above a point b ∈ � (or, equivalently, b is below
a) if a − b is a positive multiple of μ. We also say that μ points towards the
positive direction of �, whereas −μ points towards the negative direction.

3.1 Bipartite Coxeter elements

Definition 3.1 A bipartite Coxeter element is a Coxeter element w ∈ W for
which there exist a set of simple reflections S ⊆ R and a bipartition S = S0�S1
of the Coxeter graph (i.e. the reflections in S0 pairwise commute, and so do
the reflections in S1) such that w = w1w0, where wi is the product of the
elements of Si in some order.

If the Coxeter graph of W is a tree, then every Coxeter element w ∈ W is
a bipartite Coxeter element [48, Corollary 7.6]. In particular, this happens for
all irreducible affine Coxeter groups except Ãn .

Let w be a bipartite Coxeter element, as in Definition 3.1. Let C0 be the
(open) chamber of the Coxeter complex corresponding to the set S of simple
reflections so that the elements of S = S0 � S1 are the reflections with respect
to the walls of C0. Let Fi be the face of C0 determined by the intersection of
the hyperplanes of the reflections in Si , and let Bi be the affine span of Fi .
There is a unique pair of points pi ∈ Bi that realize the minimum distance
between B0 and B1. Each pi lies in the relative interior of the corresponding
face Fi [48, Lemma 8.5]. The line determined by p0 and p1 is exactly the
Coxeter axis � [48, Proposition 8.8], and it intersects C0 [48, Lemma 8.5].

Each wi is an involution, and it restricts to a reflection on the Coxeter axis
� that fixes only pi [48, Lemma 8.7]. Then w0 and w1 generate an infinite
dihedral group that acts on �. Using this action, we can extend the definitions
of Fi , Bi , and pi to arbitrary subscripts i ∈ Z: let F−i (resp. B−i , or p−i )
be the image of Fi (resp. Bi , or pi ) under w0, and let F2−i (resp. B2−i , or
p2−i ) be the image of Fi (resp. Bi , or pi ) under w1. We obtain a sequence of
equally spaced points pi along the line �, with pi+1 − pi = 1

2μ (where μ is
the shortest vector inMov(w)). The axial chambers are given by all possible
images of the chamber C0 under this dihedral group action. Their vertices are
called axial vertices.

Remark 3.2 If b is an axial vertex in the face Fi (for some i ∈ Z), then w j (b)

is an axial vertex in Fi+2 j . Therefore every axial chamber has exactly one
vertex in the orbit {w j (b) | j ∈ Z}.
Theorem 3.3 [48, Theorem 8.10] Let W be an irreducible affine Coxeter
group not of type Ãn, and w one of its Coxeter elements. For every axial
chamber C there is a bipartite factorization w = w+w−, where w+ (resp. w−)
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Fig. 3 Coxeter complex of type G̃2 [49, Figure 11]

is the product of the reflections with respect to the walls of C that intersect �

above (resp. below) C.

If a hyperplane H of a reflection of W crosses the Coxeter axis �, then there
is an index i such that H contains all of Fi , all but one vertex of Fi−1 and all
but one vertex of Fi+1 [48, Corollary 8.11].

Lemma 3.4 [48, Lemma 9.3] Let W be an irreducible affine Coxeter group
not of type Ãn, and w one of its Coxeter elements. Let H be the hyperplane of
a vertical reflection r in W that intersects the Coxeter axis � at the point pi .
If b and b′ are the unique vertices of Fi−1 and Fi+1 not contained in H, then
w sends b to b′, r swaps b and b′, rw fixes b, and wr fixes b′. Moreover, the
elliptic isometry rw (resp. wr) is a Coxeter element for the finite parabolic
subgroup of W that fixes b (resp. b′).

Theorem 3.5 [48, Propositions 9.4 and 9.5, Theorem 9.6] Let W be an irre-
ducible affine Coxeter group not of type Ãn, and w one of its Coxeter elements.
Every vertical reflection r ∈ W is in [1, w], and fixes many axial vertices. A
horizontal reflection r ∈ W is in [1, w] if and only if it fixes at least one axial
vertex.

Example 3.6 (Case G̃2) Figure 3 shows the Coxeter complex of a Coxeter
group of type G̃2. Every Coxeter element w is a glide reflection, whose glide
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axis is the Coxeter axis � = Min(w) (the dashed line). The axial chambers
are shaded, and the axial vertices are colored, with one color for each w-orbit
(see Remark 3.2). We use the notation of [49, Definition 5.10] to indicate the
reflections in R0 = R ∩ [1, w]: let C0 be the darkly shaded chamber in Fig. 3;
let p0 ∈ � be below C0, and p1 ∈ � above C0; denote by ai (for i ≡ 1 mod 4)
the reflection with respect to the line of slope −√3 passing through the point
pi ∈ �; similarly, denote by b j , ck, di , e j the vertical reflections with slopes
− 1√

3
, 0, 1√

3
,
√
3, respectively (they are defined for i ≡ 1 mod 4, j ≡ 3 mod

4, and k ≡ 0 mod 2); finally, let f and f ′ be the two horizontal reflections of
[1, w]. Thewalls ofC0 are the fixed lines of a1, d1, c0. A bipartite factorization
of w is w = a1d1c0.

3.2 Coxeter elements of type Ãn

If W is a Coxeter group of type Ãn , most of its Coxeter elements are not
bipartite, and thus the theory of Sect. 3.1 does not apply. In this section, we
derive a parallel theory and highlight the most important differences with the
bipartite case.

As shown in [48, Section 7], every Coxeter element is geometrically equiv-
alent to a (p, q)-bigon Coxeter element, for a unique pair (p, q) of positive
integers such that p ≥ q and p+q = n+1. Therefore there are exactly �n+1

2 �
distinct equivalence classes of Coxeter elements. For the explicit construction
of (p, q)-bigon Coxeter elements, see Sect. A.1 in the Appendix. The first four
results in this section (Lemma 3.7, Theorem 3.8, Propositions 3.9 and 3.10)
are verified in the Appendix by explicit computation.

Lemma 3.7 Let W be a Coxeter group of type Ãn, and w one of its (p, q)-
bigon Coxeter elements. The Coxeter axis � is not contained in any reflection
hyperplane of W , and it intersects the vertical hyperplanes in an infinite
sequence of equally spaced points {pi }i∈Z. More precisely we have pi+1−pi =
gcd(p,q)

p+q μ, where μ is the shortest vector ofMov(w). In particular, w(pi ) = p j

with j = i + p+q
gcd(p,q)

.

As in the bipartite case, the chambers that intersect the Coxeter axis � are
called axial chambers, and the vertices of the axial chambers are called axial
vertices. The following theorem is the analog of Theorem 3.3, and describes
how axial chambers yield a factorization of w.

Theorem 3.8 Let W be a Coxeter group of type Ãn, and w one of its (p, q)-
bigon Coxeter elements with p ≥ q. Fix an axial chamber C, and let SC ⊆ R
be the set of the n + 1 reflections with respect to the walls of C. Write SC =
S+�S−�Shor, where S+ (resp. S−) consists of the reflections that intersect the
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Coxeter axis � above (resp. below) C ∩ �, and Shor consists of the horizontal
reflections. Then:

(i) |S+| = |S−| = q, and |Shor| = p − q;
(ii) the reflections in S+ (resp. S−) pairwise commute;
(iii) w can be written as a product of the reflections in SC , where the reflections

in S+ come first, and the reflections in S− come last.

The next result describes how the vertical hyperplanes of the arrangement
A intersect the Coxeter axis �. Unlike the bipartite case, the vertical walls of
an axial chamber C can intersect � outside of its closure C̄ .

Proposition 3.9 Let W be a Coxeter group of type Ãn, and w one of its (p, q)-
bigon Coxeter elements with p ≥ q.

(i) Let a ∈ � be a point which is fixed by at least one vertical reflection of W .
There are exactly gcd(p, q) vertical reflections of W that fix a, and they
pairwise commute.

(ii) Let {pi }i∈Z be the sequence of points of Lemma 3.7, and let C be an axial
chamber that intersects � between pi and pi+1. A vertical hyperplane of
A is a wall of C if and only if it intersects � in one of the 2m consecutive
points pi−m+1, pi−m+2, . . . , pi+m, where m = q

gcd(p,q)
.

The following result gives some insight into the geometry of axial vertices.
The first part is the Ãn analog of Remark 3.2.

Proposition 3.10 Let W be a Coxeter group of type Ãn, and w one of its
(p, q)-bigon Coxeter elements. Let b be an axial vertex.

(i) Every axial chamber has exactly one vertex in the set {w j (b) | j ∈ Z}.
(ii) There are exactly p+q

gcd(p,q)
axial chambers having b as one of their vertices,

and they are consecutive (i.e. the union of their closures intersects the
Coxeter axis � in a connected set).

Remark 3.11 (Bipartite case) If n is odd and p = q = n+1
2 , thenw is a bipartite

Coxeter element, and we recover the results of Sect. 3.1. In particular, part (iii)
of Theorem 3.8 reduces to the bipartite factorization w = w+w− of Theorem
3.3.

Example 3.12 (Case Ã2) Figure 4 shows the Coxeter complex of a Coxeter
group of type Ã2. Every (2, 1)-bigon Coxeter element w is a glide reflection,
whose glide axis is the Coxeter axis � = Min(w) (the dashed line). As in
Fig. 3, the axial chambers are shaded, and the axial vertices are colored, with
one color for each w-orbit (see part (i) of Proposition 3.10). We use a notation
similar to Example 3.6: let C0 be the darkly shaded chamber; let p0 ∈ � be
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Fig. 4 Coxeter complex of type Ã2

the point immediately below C0, and p1 ∈ � the point immediately above C0;
denote by ai the vertical reflection that fixes pi for i ≡ 1 mod 2; denote by
c j the vertical reflection that fixes p j for j ≡ 0 mod 2; finally, let b and b′
be the two horizontal reflections adjacent to the Coxeter axis � (by Theorem
3.17 below, these are precisely the horizontal reflections of [1, w]). The walls
of C0 are the fixed lines of a1, b, c0, and w = a1bc0.

If H is the fixed hyperplane of some vertical reflection of W , there is a
well-defined axial chamber which is immediately above H , and one which is
immediately below H . These are the only two chambers that intersect a small
neighborhood of H ∩� in �. Denote them by C+

H and C−
H , respectively. By part

(i) of Proposition 3.9, all the vertical reflections fixing H∩� pairwise commute.
Therefore they are all walls of C+

H and C−
H . This proves the following analog

of [48, Corollary 8.11].

Corollary 3.13 Let W be a Coxeter group of type Ãn, and w a Coxeter element
of W . If the fixed hyperplane H of a reflection in W crosses the axis �, then H
is the affine span of a facet of an axial chamber.

The following is the Ãn analog of Lemma 3.4.

Lemma 3.14 Let W be a Coxeter group of type Ãn, and w one of its Coxeter
elements. Let r be a vertical reflection in W , H = Fix(r), and b− (resp. b+)
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the unique vertex of C−
H (resp. C+

H ) which is not in H. Then the elliptic isometry
rw (resp. wr) is a Coxeter element for the finite parabolic subgroup of W that
fixes b− (resp. b+).

Proof Apply Theorem 3.8 to the axial chamber C = C−
H . Since r ∈ S+, the

Coxeter elementw can bewritten as a product rr2 · · · rn+1, where r2, . . . , rn+1
are the reflections with respect to the other walls H2, . . . , Hn+1 of C−

H . The
walls H2, . . . , Hn+1 bound a chamber of the finite parabolic subgroup of W
that fixes b−, so rw = r2 · · · rn+1 is a Coxeter element for this subgroup.
Similarly, wr is a Coxeter element for the finite parabolic subgroup that fixes
b+.

Remark 3.15 In the proof of Lemma 3.14, the chamber C−
H (resp. C+

H ) can
be replaced with any axial chamber C that intersects � below (resp. above)
H ∩ � and such that H is a wall of C . However, the statement of Lemma 3.14
makes it clear that at least one such chamberC exists, so rw andwr are indeed
parabolic Coxeter elements.

Lemma 3.16 Let W be a Coxeter group of type Ãn, and w one of its Coxeter
elements. For every axial vertex b, there exists an axial chamber C such that
b is a vertex of C and the wall of C opposite to b is vertical.

Proof Let C be the lowest axial chamber such that b is a vertex of C . Suppose
by contradiction that the wall of C opposite to b is horizontal. Then b is fixed
by all the reflections with respect to the vertical walls of C . Let a be the lowest
point of C̄ ∩ �, and let Sa be the set of the (vertical) reflections of W that fix
a. By part (i) of Proposition 3.9, the reflections in Sa pairwise commute. Then
their product fixes b and sends C to an axial chamber C ′ which is below C .
This is a contradiction.

We are now ready to prove the Ãn analog of Theorem 3.5.

Theorem 3.17 Let W be a Coxeter group of type Ãn, and w one of its Coxeter
elements. Every vertical reflection r ∈ W is in [1, w], and fixes many axial
vertices. A horizontal reflection r ∈ W is in [1, w] if and only if it fixes at least
one axial vertex.

Proof For the first part, it is enough to apply Theorem 3.8 to C+
H or C−

H , where
H = Fix(r).
For the second part, suppose that r is a horizontal reflection in [1, w], so

there is a factorization w = r1r2 · · · rnr that ends with r . Since w is vertical,
at least one of the ri is vertical. By Lemma 2.12 we can move this reflection
to the beginning, and thus assume that r1 is vertical. Then r ≤ w′ = r1w, and
w′ is an elliptic isometry that fixes an axial vertex b− by Lemma 3.14. Since
Fix(w′) ⊆ Fix(r) (Lemma 2.15), we have that r fixes b−.
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On the other hand, suppose that r ∈ W is a (horizontal) reflection that fixes
some axial vertex b. By Lemma 3.16, we have that b is a vertex of some axial
chamber C such that the wall H ′ of C opposite to b is vertical. Let r ′ be
the reflection with respect to H ′. By Lemma 3.14 and Remark 3.15, one of
r ′w and wr ′ is a Coxeter element for the finite parabolic subgroup of W that
fixes b. Recall that every reflection in a finite Coxeter group occurs in some
minimal length factorization of any of its Coxeter elements [5, Lemma 1.3.3].
Therefore r ≤ r ′w or r ≤ wr ′, and so r ≤ w.

3.3 Isometries below an affine Coxeter element

Now that the case Ãn is well understood, we turn to the general case of an irre-
ducible affine Coxeter group and prove a few more results about the elements
of the interval [1, w].
Lemma 3.18 Let W be an irreducible affine Coxeter group, and w one of
its Coxeter elements. For every axial vertex b, there exists a unique element
wb ∈ [1, w] which is a Coxeter element for the finite parabolic subgroup of
W that fixes b.

Proof Let C be an axial chamber such that b is a vertex of C . Denote by
r, r1, . . . , rn the reflections with respect to the walls of C , where r is the
reflection that does not fix b. By Theorem 3.8 (for the case Ãn) and Theorem
3.3 (for the other cases), the Coxeter element w can be written as a product of
the reflections r, r1, . . . , rn in some order. Remove r from this factorization,
and let wb be the product of the remaining reflections in the same relative
order. Then wb ∈ [1, w] by Lemma 2.12. By construction, wb is a Coxeter
element for the finite parabolic subgroup of W that fixes b. Every such element
w′

b ∈ [1, w] has a fix-set equal to {b}, so uniqueness follows fromLemma 2.15.

Lemma 3.19 Let W be an irreducible affine Coxeter group, and w one of its
Coxeter elements. For every elliptic element u ∈ [1, w], there exists an axial
vertex b such that u ≤ wb, where wb is the unique element of [1, w] which is
a Coxeter element for the finite parabolic subgroup that fixes b (see Lemma
3.18). In particular, u fixes at least one axial vertex b.

Proof Let v be the right complement of u, so that uv = w. Let v = r1 · · · rm
be a minimal length factorization of v as a product of reflections. Since u is
elliptic, v is vertical and therefore at least one ri is a vertical reflection. By
Lemma 2.12 we can move this reflection to the end, and thus assume that rm is
vertical. By Lemma 3.14 (for the case Ãn) and Lemma 3.4 (for the other cases),
wrm = ur1 · · · rm−1 is a Coxeter element for the finite parabolic subgroup of
W that fixes an axial vertex b. By construction, u ≤ wrm .
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Given an element u ∈ [1, w], denote by Wu the subgroup of W generated
by the reflections in [1, u] (or, equivalently, by all the elements of [1, u]).
Then Wu is a Coxeter group having R ∩ Wu as its set of reflections, by [44,
Theorem 8.2] (see also [30,35]). Denote byAu = {Fix(r) | r ∈ R∩Wu} ⊆ A
the reflection arrangement associated with the Coxeter group Wu .

Lemma 3.20 (Hyperbolic-horizontal decomposition)Let W be an irreducible
affine Coxeter group, w one of its Coxeter elements, and u ∈ [1, w] a hyper-
bolic element. There exists a unique decomposition u = u′h such that:

(1) u′, h ∈ [1, u], u′ is hyperbolic, h is horizontal elliptic, and l(u) = l(u′)+
l(h);

(2) Wu is the direct product of the Coxeter subgroups Wu′ and Wh;
(3) Wu′ is an irreducible affine Coxeter subgroup;
(4) Wh is a finite horizontal Coxeter subgroup;
(5) [1, u] = [1, u′] × [1, h].
Proof Decompose the Coxeter group Wu as a direct product of irreducible
subgroups: Wu = W1 × · · · × Wt . Then u ∈ Wu can be written uniquely as
u = u1 · · · ut with ui ∈ Wi .

Since u is hyperbolic, its right complement v is horizontal elliptic. Let u =
r1 · · · rm be aminimal length factorization of u as a product of reflections. Since
u is vertical, at least one ri is a vertical reflection. By Lemma 2.12we canmove
this reflection to the beginning, and thus assume that r1 is vertical. Therefore
its right complement r2 · · · rmv is vertical elliptic, and in particular r2 · · · rm is
elliptic. Each reflection ri belongs to one of the irreducible components W j .
Without loss of generality, assume that r1, . . . , rk ∈ W1 and rk+1, . . . , rm ∈
W2×· · ·×Wt , for some k ∈ {1, . . . , m}. By uniqueness of the decomposition
u = u1 · · · ut , we have that u1 = r1 · · · rk and u2 · · · ut = rk+1 · · · rm . In
particular, both u1 and u2 · · · ut belong to the interval [1, u], and l(u) = l(u1)+
l(u2 · · · ut ) = l(u1) + l(u2) + · · · + l(ut ).

Denote by α1, . . . , αm the roots corresponding to r1, . . . , rm . Since
u2 · · · ut = rk+1 · · · rm is elliptic, the roots αk+1, . . . , αm are linearly indepen-
dent by [12, Lemma 6.4]. Suppose by contradiction that u1 = r1 · · · rk is also
elliptic. Then for the same reason the roots α1, . . . , αk are linearly indepen-
dent. Therefore the roots α1, . . . , αm are linearly independent, so u is elliptic
by [12, Lemma 6.4], and this is a contradiction. We deduce that u1 is hyper-
bolic. This implies that its right complement rk+1 · · · rmv is horizontal elliptic,
so the reflections rk+1, . . . , rm are horizontal. Then u2 · · · ut = rk+1 · · · rm is
horizontal elliptic.

Recall that Wu is generated by the reflections in [1, u]. Each reflection
r ∈ [1, u] belongs to exactly one irreducible factor Wi , and so is part of a
minimal length factorization of ui , which implies that r ∈ [1, ui ]. Therefore
Wi is equal to the subgroup Wui ⊆ W generated by the reflections in [1, ui ].
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For all i ≥ 2 we have that ui is horizontal elliptic, so all the elements of Wui

are horizontal. Then the irreducible factor W1 = Wu1 is uniquely determined
as the only factor which contains at least one vertical reflection.

Define u′ = u1 and h = u2 · · · ut . Notice that Wh is the group generated
by the reflections in [1, h], i.e. the reflections in [1, u2] ∪ · · · ∪ [1, ut ], so
Wh = Wu2 × · · · × Wut = W2 × · · · × Wt . Therefore Wu = Wu′ × Wh . This,
together with the fact that Wh is horizontal and Wu′ is irreducible, is enough
to ensure that the decomposition u = u′h is unique. Since Wu = Wu′ × Wh ,
we have [1, u] = [1, u′] × [1, h].

Recall that u′ = r1 · · · rk is hyperbolic, so Fix(r1) ∩ · · · ∩ Fix(rk) = ∅.
Therefore the Coxeter subgroup Wu′ is infinite. By construction, Wu′ is also
irreducible, so it must be an irreducible affine Coxeter group.

We will refer to the decomposition u = u′h of Lemma 3.20 as the
hyperbolic-horizontal decomposition of u.

The following technical lemma is proved in theAppendix for the four infinite
families and was checked by computer for the exceptional cases (see [54]).

Lemma 3.21 Let W be an irreducible affine Coxeter group, w one of its Cox-
eter elements, and u ∈ [1, w] a hyperbolic element such that Wu is irreducible.
Let a be a point of � that does not lie on any hyperplane of Au, and let C be
the chamber of Au containing a. Then C has exactly l(u) walls, and u can be
written as the product of the reflections with respect to the walls of C in the
following order:

• first there are the vertical reflections that fix a point of � above a, and r
comes before r ′ if Fix(r) ∩ � is below Fix(r ′) ∩ �;

• then there are the horizontal reflections, in some order;
• finally there are the vertical reflections that fix a point of � below a, and

again r comes before r ′ if Fix(r) ∩ � is below Fix(r ′) ∩ �.

The conclusion of Lemma 3.21 seems to hold for all hyperbolic elements
u ∈ [1, w], without the irreducibility hypothesis. In addition, for the case G̃2
and for the four infinite families ( Ãn , B̃n , C̃n , and D̃n), the vertical walls of
C that fix a point of � above a (resp. below a) pairwise commute. However, a
computer check shows that this is not true for the exceptional cases F̃4, Ẽ6, Ẽ7,
and Ẽ8 (see [54]). Notice also that in general Min(w) � Min(u), so a point
a ∈ � = Min(w) is usually not on the Coxeter axis of u (otherwise Lemma
3.21 would follow easily from Theorems 3.3 and 3.8 applied to Wu).

We can now prove the affine analog of [5, Lemma 1.4.3].

Theorem 3.22 Let W be an irreducible affine Coxeter group, and w one of
its Coxeter elements. Every element u ∈ [1, w] is a Coxeter element of Wu. In
addition:
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(i) if u is elliptic, then u is a parabolic Coxeter element;
(ii) if u is hyperbolic and u = u′h is its hyperbolic-horizontal decomposition,

then u′ is a Coxeter element of Wu′ and h is a Coxeter element of the
parabolic subgroup Wh of Wu.

Proof Suppose that u is elliptic. By Lemma 3.19 there is an axial vertex b
such that u ≤ wb, where wb is the parabolic Coxeter element of Lemma 3.18.
By [5, Lemma 1.4.3] applied to the finite parabolic subgroup that fixes b, we
have that u is a Coxeter element of Wu , and Wu is a parabolic subgroup of W .

Suppose now that u is hyperbolic, and let u = u′h be its hyperbolic-
horizontal decomposition. Since Wu′ is irreducible, by Lemma 3.21 we
immediately have that u′ is a Coxeter element of Wu′ . Also, since h is hori-
zontal, we have already proved that h is a Coxeter element of the parabolic
subgroup Wh (notice that Wh is a parabolic subgroup of both W and Wu). Then
u′h is a Coxeter element of Wu = Wu′ × Wh .

In the case C̃n , the first part of Theorem 3.22 was already noted by Digne
[32, Remark 7.2].

Remark 3.23 If W is an irreducible affine Coxeter group, then all its proper
parabolic subgroups are finite. Therefore, if u 	= w is a hyperbolic element,
then Wu is not a parabolic subgroup (and u is not a parabolic Coxeter element).

Example 3.24 (Hyperbolic elements in the case C̃3) If W is a Coxeter group
of type C̃3, the interval [1, w] has 3 hyperbolic elements of length 2 (the trans-
lations), 6 of length 3, and 1 of length 4 (w itself). They are the complements
of the horizontal elements, which are explicitly described in Example 3.31
below. Among the 6 hyperbolic elements u ∈ [1, w] of length 3, in 3 cases
Wu

∼= WÃ1
×WA1 (so the hyperbolic-horizontal decomposition of u has a non-

trivial horizontal factor), whereas in the remaining three cases Wu
∼= WC̃2

. See
Sect. A.2 for an explicit computation of the hyperbolic elements in the case
C̃n .

3.4 Horizontal components

We now describe the geometry of the irreducible horizontal components of an
affine Coxeter group. The ideas for this section are mostly already present in
[49], but we find it convenient to write them down more explicitly.

As in Sect. 3.3, let W be an irreducible affine Coxeter group acting on
E = R

n where n is the rank of W , and fix a Coxeter element w. Let � be the
root system of W , and let �hor ⊆ � be the horizontal root system.

As shown in [49, Definition 6.1], there exists at least one horizontal factor-
ization w = th where t ∈ [1, w] is a translation, h ∈ [1, w] is a horizontal
isometry of reflection length n − 1, and every horizontal reflection of W is
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parallel to some reflection of the parabolic Coxeter subgroup Wh . In other
words, the root system of Wh coincides with the horizontal root system �hor
of W .

The horizontal root system�hor decomposes as a disjoint union of orthogo-
nal irreducible root systems of type A [49, Section 6]: �hor = �1 ��2 � · · ·�
�k , where �i is a root system of type Ani , and n1 + n2 + · · · + nk = n − 1
(see Table 1). Accordingly, the horizontal isometry h decomposes as a product
h = h1h2 · · · hk where hi belongs to the i th irreducible horizontal component
and has reflection length ni . Then �i is the root system of the irreducible
parabolic Coxeter subgroup Whi , and hi is a Coxeter element of Whi by The-
orem 3.22.

We now focus on a single irreducible horizontal component�i and describe
the geometry of the associated horizontal reflections. Letm = ni be the rank of
�i . Since�i is a root system of type Am , the reflections of W in the directions
of �i generate a Coxeter subgroup Wi ⊆ W of type Ãm . Denote by Ai the
hyperplane arrangement associated with Wi (this is a subarrangement of the
hyperplane arrangement A associated with W ).

The Coxeter axis � does not intersect any horizontal hyperplane, and so it
is contained in one chamber Ci of the arrangement Ai . We call Ci the i th
horizontal prism. Like every chamber of Ai , it has m + 1 faces of minimal
dimension n − m. We call them the minimal faces of Ci .

Since the Coxeter axis � is contained in Ci , every axial chamber of A is
also contained in Ci . As a consequence, all axial vertices are contained in C̄i .
The horizontal isometry hi has reflection length m, so dim Fix(hi ) = n − m,
and Fix(hi ) is the intersection of m hyperplanes of Ai . Since hi ∈ [1, w], by
Lemma 3.19 we have that Fix(hi ) contains at least one axial vertex. Therefore
Fix(hi ) is one of the minimal faces of Ci .

Lemma 3.25 Let W be an irreducible affine Coxeter group, and w one of
its Coxeter elements. Every horizontal prism Ci is fixed by w (as a set). In
addition, w acts transitively on the set of walls of Ci and on the set of minimal
faces of Ci .

Proof From the factorization w = th1h2 · · · hk we see that w sends hyper-
planes of Ai to hyperplanes of Ai . Also, it fixes the Coxeter axis � (as a set).
Therefore it fixes Ci (as a set), it permutes the walls of Ci , and it permutes
the minimal faces of Ci . The action of w on the walls of Ci is the same as the
action of thi , because h j fixes every hyperplane of Ai for all j 	= i .

Let H1, . . . , Hm+1 be the walls of Ci , and for every j ∈ {1, . . . , m + 1} let
α j be the root of Hj that points from Hj towards the half-space containing
Ci . The linear part of thi (which coincides with the linear part of hi ) permutes
α1, . . . , αm+1. Recall that hi is a Coxeter element of Whi , which is a Coxeter
group of type Am with root system �i . In a finite Coxeter group, the orbits
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of roots under the action of a Coxeter element are known to have cardinality
equal to the Coxeter number, which is m + 1 for a Coxeter group of type Am .
Therefore hi transitively permutes the roots α1, . . . , αm+1. Thenw transitively
permutes the walls of Ci . Every minimal face of Ci is opposite to exactly one
wall of Ci , so the same conclusion holds for the minimal faces.

Let ϕ : [1, w] → [1, w] be the conjugation by the Coxeter element w:
ϕ(u) = w−1uw.

Proposition 3.26 Let W be an irreducible affine Coxeter group, and w one of
its Coxeter elements. Every minimal face of the i th horizontal prism Ci is the
fixed set of ϕ p(hi ) for some p ∈ {0, . . . , m}, and it contains at least one axial
vertex. In addition, the elements ϕ p(hi ) for p ∈ {0, . . . , m} are the maximal
elements of the subposet [1, w] ∩ Wi ⊆ [1, w], and they all have the same
linear part.

Proof We have that Fix(hi ) is a minimal face of Ci . Then the first part follows
from Lemma 3.25. Since ϕ p(hi ) ∈ [1, w], its fixed set contains at least one
axial vertex by Lemma 3.19.

Every element of [1, w] ∩ Wi of reflection length m must have a fixed set
equal to a minimal face of Ci . By Lemma 2.15, there can be at most one
such element for every minimal face of Ci . Therefore, the elements ϕ p(hi ) for
p ∈ {0, . . . , m} are the only elements of reflection length m in [1, w] ∩ Wi .
Every other element u ∈ [1, w] ∩ Wi has a reflection length strictly smaller
than m.

We want to show that, for every u ∈ [1, w] ∩ Wi , we have u ≤ ϕ p(hi )

for some p. Let v be the left complement of u, so that vu = w. Then v is
hyperbolic. Let v = v′h′ be the hyperbolic-horizontal decomposition of v

(see Lemma 3.20). Recall that the Coxeter subgroup Wv′ generated by [1, v′]
is an irreducible affine Coxeter group, and v′ is one of its Coxeter elements
by Theorem 3.22. Then the interval [1, v′] contains at least one translation
t ′ (this follows for example from the existence of a horizontal factorization
of v′ in Wv′). Therefore we can write v′ = t ′v′′, with l(v′) = l(t ′) + l(v′′).
Putting everything together, we get the factorizationw = t ′v′′h′u, with l(t ′)+
l(v′′) + l(h′) + l(u) = l(w) = n + 1. Since t ′ is a translation, and so has
length l(t ′) = 2, its right complement h̄ = v′′h′u is a horizontal element of
length l(h̄) = n − 1. In addition, u ≤ h̄ because u is part of a minimal length
factorization of h̄. Write h̄ = h̄1h̄2 · · · h̄k , with h̄ j ∈ [1, w] ∩ W j . We have
l(h̄ j ) ≤ n j for all j , and n1 + · · · + nk = n − 1, so l(h̄ j ) = n j . In particular
l(h̄i ) = ni = m, so h̄i = ϕ p(hi ) for some p ∈ {0, . . . , m}. Since u ≤ h̄ and
u ∈ [1, w] ∩ Wi , we have u ≤ h̄i = ϕ p(hi ).

Finally, we want to show that the linear part of ϕ p(hi ) is equal to the linear
part of hi . This follows from the factorizationw = th1h2 · · · hk , together with
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the fact that h j commutes with hi for all j 	= i , and that the linear part of the
translation t is the identity.

Corollary 3.27 Let W be an irreducible affine Coxeter group, and w one of
its Coxeter elements. For every horizontal root α ∈ �hor, the interval [1, w]
contains exactly two reflections in the direction of α, namely those determined
by adjacent hyperplanes which contain the Coxeter axis � between them.

Proof Let�i be the irreducible component of�hor containingα. A hyperplane
ofAi yields a reflection in [1, w] if and only if it contains an axial vertex, which
happens if and only if it contains a minimal face of Ci (by Proposition 3.26).
In the arrangementAi , which is of type Ãm , there are exactly two hyperplanes
in the direction of α that contain at least one minimal face of Ci . These two
hyperplanes are adjacent, and they contain Ci (and therefore also the Coxeter
axis �) between them.

Lemma 3.28 Let W be an irreducible affine Coxeter group, and w one of its
Coxeter elements. There exists an integer p > 0 such that w p is a translation
in the positive direction of the Coxeter axis �.

Proof Let n1, . . . , nk be the ranks of the irreducible components of the hor-
izontal root system �hor. If p is a multiple of ni + 1 for every i , then w p

acts trivially on all horizontal directions, and so it must be a translation in the
direction of the Coxeter axis �. If μ is the shortest vector in Mov(w), then
pμ ∈ Mov(w p). Therefore w p is a translation of pμ, which is in the positive
direction of �.

Lemma 3.29 Let W be an irreducible affine Coxeter group, and w one of its
Coxeter elements. For every irreducible component �i of the horizontal root
system �hor, there exists a hyperbolic element u ∈ [1, w] such that Wu is an
irreducible affine Coxeter group with horizontal root system �i (with respect
to the Coxeter element u). In particular, [1, u] ∩ Wi = [1, w] ∩ Wi .

Proof Let �hor = �1 � · · · � �k . If k = 1, then we can simply take u = w.
Suppose from now on that k ≥ 2, and assume without loss of generality that
i = 1. Let w = th1 · · · hk be a horizontal factorization, with h j ∈ W j . Notice
that t does not commute with any h j , because t−1h j t = ϕ(h j ) 	= h j (by
Proposition 3.26). Let u = th1 ≤ w.

Since h2 · · · hk is horizontal, its left complement u is hyperbolic. Let u =
u′h′ be the hyperbolic-horizontal decomposition of u (see Lemma 3.20). The
irreducible root system �1 is entirely contained in the root system of Wu′
or of Wh′ , because Wu = Wu′ × Wh′ . Since t is a (vertical) translation and
[1, u] = [1, u′] × [1, h′], we have t ≤ u′. Thus �1 is contained in the root
system of Wu′ , because otherwise h1 would commute with t .
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By Lemma 2.15 and [12, Lemma 3.6] we have Dir(Min(w)) ⊆ Dir
(Min(u′)), so every root which is horizontal with respect to w is horizon-
tal also with respect to u′ ≤ w. Therefore the horizontal root system �′

hor of
Wu′ (associated with the Coxeter element u′) contains �1. On the other hand,
l(u′) ≤ l(u) = l(t) + l(h1) = n1 + 2, so the rank of �′

hor is at most n1. We
conclude that �′

hor = �1 and u′ = u.
Finallywehave [1, u]∩W1 ⊆ [1, w]∩W1, and every reflection in [1, w]∩W1

is also contained in [1, u] by Corollary 3.27, so actually [1, u]∩W1 = [1, w]∩
W1.

Remark 3.30 By Lemma 3.29, in order to study the geometry of horizon-
tal components it is enough to look at affine Coxeter groups with a unique
horizontal component ( Ãn with a (n, 1)-bigon Coxeter element, C̃n , and
G̃2). The group G̃2 has a horizontal component of rank 1. The groups Ãn
and C̃n (see Sects. A.1, A.2 in the Appendix) have a horizontal component
of rank m = n − 1. In all cases, choosing suitable coordinates we have
that: the arrangement Ai consists of the hyperplanes {x j − x j ′ = q} for
1 ≤ j < j ′ ≤ m and q ∈ Z; the horizontal prism Ci is described by the
inequalities x1 < x2 < · · · < xm < x1 + 1; the linear part of the Coxeter
elementw sends (x1, . . . , xm) to (xm, x1, . . . , xm−1). In particular, the isomor-
phism type of [1, w]∩Wi (as a labeled poset) depends only on the rank m, and
not on the ambient group W . Using ideas from the proofs of [49, Propositions
4.7 and 7.6], one can show that [1, w]∩Wi is isomorphic to the subposet of the
noncrossing partition lattice of type Bm+1 consisting of the partitions without
a zero block (this terminology is defined for example in [1, Section 4.5]).

Example 3.31 (Horizontal component of rank 2) Figure 5 shows the arrange-
ment Ai of a horizontal component of rank 2. The horizontal prism Ci is
shaded, and its minimal faces are the three white vertices. The reflections in
[1, w]∩Wi are denoted by a, a′, b, b′, c, c′, and they correspond to the 6 thick
lines. The Coxeter axis � is contained inCi and is equidistant from theminimal
faces. The Coxeter elementw acts onAi as a 2π/3 rotation around �, say coun-
terclockwise. Then the 3 maximal elements of [1, w] ∩Wi are ab = bc = ca,
a′b = bc′ = c′a′, and ab′ = b′c′ = c′a. They are 2π/3 rotations around the
minimal faces of Ci , in counterclockwise direction. Since a′b ∈ [1, w] and
a′b′ /∈ [1, w], the right complement u of a′ is such that b ≤ u and b′ � u in
[1, w]. This is an example where the converse of Lemma 2.15 does not hold:
we have both b ≤ u and b′ ≤ u in [1, w]L , but b′ � u in [1, w] = [1, w]W .

4 Shellability of affine noncrossing partition posets

In this section, we construct an EL-labeling for the noncrossing partition
poset [1, w], where w is any Coxeter element of an affine Coxeter group
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Fig. 5 A horizontal component of rank 2. For example, this is a section of the Coxeter complex
of type C̃3 with a plane orthogonal to the Coxeter axis �

W . Therefore the poset [1, w] is EL-shellable. This extends the analog result
of Athanasiadis, Brady, and Watt for noncrossing partition lattices associated
with finite Coxeter groups [2].

The EL-labelings of finite noncrossing partition lattices play a fundamental
role in our construction and are recalled in Sect. 4.1. However, the need for a
global labeling and the presence of hyperbolic intervals make the affine case
substantially different from the finite case.

The EL-labeling of [1, w] is going to be used in Sect. 8, to complete the
proof of the K (π, 1) conjecture.

4.1 Reflection orderings and shellability of finite noncrossing partition
lattices

We start by describing the EL-labelings of [2] for the noncrossing partition
lattices associated with finite crystallographic Coxeter groups.

Let W be a finite Coxeter group acting on V = R
n by linear isometries,

and let R be its set of reflections. Denote by � ⊆ V the root system of W ,
and let �+ ⊆ � be a positive root system. For α ∈ �+, denote by rα ∈ R the
orthogonal reflection with respect to α.

Definition 4.1 [7,11,36] A total ordering≺ of R is called a reflection ordering
for W if, wheneverα, α1, α2 ∈ �+ are distinct positive roots andα is a positive
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linear combination of α1 and α2, we have either

rα1 ≺ rα ≺ rα2 or rα2 ≺ rα ≺ rα1 .

Definition 4.2 [2, Definition 3.1] Let w be a Coxeter element of W . A reflec-
tion ordering ≺ of R is compatible with w if for every irreducible rank 2
induced subsystem �′ ⊆ � the following holds: if α and β are the simple
roots of �′ with respect to the positive system �′ ∩ �+ and rαrβ ∈ [1, w],
then rα ≺ rβ .

Let w be a Coxeter element of W . Recall that the edges of the Hasse dia-
gram of [1, w] are naturally labeled by reflections: λ(u, ur) = r . We call
λ : E([1, w]) → R the natural edge labeling of [1, w].
Theorem 4.3 [2, Theorem 3.5] Let W be a finite crystallographic Coxeter
group, R its set of reflections, and w one of its Coxeter elements. If R is totally
ordered by a reflection ordering which is compatible with w, then the natural
edge labeling of [1, w] is an EL-labeling.

Notice that every finite Coxeter subgroup of an irreducible affine Coxeter
group is crystallographic. We are going to use Theorem 4.3 through the fol-
lowing geometric construction of reflection orderings, which is similar to a
construction already considered in [36, Section 2].

Let A be the reflection arrangement associated with W , and let C0 be the
chamber of the Coxeter complex of W corresponding to the choice of the
positive system�+. Fix a point a ∈ C0 and a non-zero vectorμ ∈ V . Consider
the affine line �′ = {a + θμ | θ ∈ R} ⊆ V , with basepoint a. Assume
that �′ is generic with respect to A: it intersects every hyperplane of A in
exactly one point (equivalently, it is not parallel to any hyperplane of A), and
H ∩ �′ 	= H ′ ∩ �′ for all hyperplanes H 	= H ′ in A. The vector μ gives an
orientation to �′. In accordance with the notation of Sect. 3, we say that a point
b ∈ �′ is above a point b′ ∈ �′ (or, equivalently, b′ is below b) if b − b′ is a
positive multiple of μ. Define a total ordering ≺�′ on R as follows:

• first, there are the reflections that fix a point of �′ above a, and r comes
before r ′ if Fix(r) ∩ �′ is below Fix(r ′) ∩ �′;

• then there are the reflections that fix a point of �′ below a, and again r
comes before r ′ if Fix(r) ∩ �′ is below Fix(r ′) ∩ �′.

Notice the similarity with Lemma 3.21.

Proposition 4.4 Let W be a finite Coxeter group. For every generic line �′ as
above, the total ordering ≺�′ of R is a reflection ordering for W .
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Proof Denote by 〈·, ·〉 the scalar product of V = R
n . By definition of the

chamber C0, we have that 〈a, α〉 > 0 for every positive root α ∈ �+. Until
the end of this proof, renormalize all positive roots α ∈ �+ so that 〈a, α〉 = 1.

Let α ∈ �+. The intersection point a+θαμ of Fix(rα)with �′ is determined
by the relation 〈a + θαμ, α〉 = 0. Since 〈a, α〉 = 1, we get θα = −〈μ, α〉−1.
By definition of ≺�′ , we have that rα ≺�′ rβ if and only if θ−1

α > θ−1
β , which

happens if and only if 〈μ, α〉 < 〈μ, β〉.
Now suppose that α ∈ �+ is a positive linear combination of α1, α2 ∈ �+.

Since 〈a, α〉 = 〈a, α1〉 = 〈a, α2〉 = 1, we have α = cα1 + (1 − c)α2 with
0 < c < 1. Then 〈μ, α〉 = c〈μ, α1〉 + (1 − c)〈μ, α2〉, which is between
〈μ, α1〉 and 〈μ, α2〉. Therefore rα is between rα1 and rα2 in the total ordering
≺�′ .

4.2 Orderings of horizontal reflections

LetW be an irreducible affineCoxeter group, acting on an affine space E = R
n

by Euclidean isometries, where n is the rank of W . As usual, denote by R its
set of reflections, and let w be one of its Coxeter elements. Let � be the root
system associated with W , and �hor ⊆ � the horizontal root system.

Recall from Sect. 3 that the reflections occurring as labels of the interval
[1, w] are those that fix at least one axial vertex. This set R0 ⊆ R includes the
set Rver of all vertical reflections, and a finite set Rhor of horizontal reflections,
with two consecutive horizontal reflections for each pair of opposite roots. We
are going to construct a total order ≺ of R0 which makes the natural edge
labeling λ : E([1, w]) → R0 an EL-labeling of [1, w]. To do this, we start
by defining a total ordering ≺hor on the subset Rhor ⊆ R0 of the horizontal
reflections.

We use the notation of Sect. 3.4. Let �hor = �1 � · · · � �k , where �i
is an irreducible root system of type Ani . Fix a horizontal factorization w =
th1 · · · hk , so that Whi ⊆ W is a finite parabolic subgroup with root system�i ,
and hi is a Coxeter element of Whi . For now, we focus on a single horizontal
component i . Let m = ni be the rank of �i , and let Wi ⊆ W be the Coxeter
subgroup of type Ãm generated by the reflections with respect to roots in �i .
Denote by Ai the corresponding hyperplane arrangement, and let Ci be the
i th horizontal prism.

Lemma 4.5 Let u = ϕ p(hi ) be any maximal element of [1, w] ∩ Wi , as in
Proposition 3.26. Fix any point a of the Coxeter axis �. There exists a line �′,
with basepoint a and direction in Span(�i ), such that the reflection ordering
≺�′ for Wu (defined in Sect. 4.1) is compatible with u.

Proof Choosing coordinates as in Remark 3.30, we can assume that: the
arrangementAi consists of the hyperplanes {x j−x j ′ = q} for 1 ≤ j < j ′ ≤ m
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and q ∈ Z; the horizontal prism Ci is described by the inequalities x1 < x2 <

· · · < xm < x1 + 1; the element u sends (x1, . . . , xm) to (xm, x1, . . . , xm−1),
and the minimal face fixed by u is given by {x1 = x2 = · · · = xm}. For a small
enough ε > 0, the line �′ = {a + θ(1, ε, ε2, . . . , εm−1) | θ ∈ R} intersects
the hyperplanes {x j − x j ′ = 0} (with j < j ′) in the lexicographic order of the
pairs ( j, j ′), and always for θ > 0. This is the reflection ordering described in
[2, Example 3.3], and it is compatible with the Coxeter element u. In order to
get a line with direction in Span(�i ), project �′ to the affine subspace parallel
to Span(�i ) and containing a.

By the previous lemma, there exists a reflection ordering ≺′
i for Whi which

is compatible with the Coxeter element hi . Extend ≺′
i to a total ordering ≺i

of the set Rhor ∩ Wi , in the following way: whenever r1 ≺′
i r2 in Rhor ∩ Whi ,

then every parallel translate of r1 comes before every parallel translate of r2.
Since there are no minimal factorizations of w that use two parallel horizontal
reflections, the relative order of parallel horizontal reflections is not important
and can be chosen arbitrarily.

Remark 4.6 The total ordering ≺i does not restrict to an ordering of Lemma
4.5 for u 	= hi . Rather, it is obtained by “translating” a chosen ordering for
Whi (given by Lemma 4.5) to the other subgroups Wu . There exists no total
ordering of Rhor ∩ Wi which restricts to an ordering of Lemma 4.5 for every
maximal element u since the reflections with respect to the walls of Ci would
necessarily form a loop.

Lemma 4.7 For every horizontal element u ∈ [1, w] ∩ Wi , the total ordering
≺i makes the natural edge-labeling λ : E([1, u]) → Rhor∩Wi an EL-labeling
of [1, u].
Proof It is enough to prove this for the maximal elements of [1, w] ∩ Wi . By
Proposition 3.26, these are of the form u = ϕ p(hi ) for p ∈ {0, . . . , m}.

Both Fix(hi ) and Fix(u) are minimal faces of the i th horizontal prism Ci .
Let t ′ be a translation that sends Fix(hi ) to Fix(u) (it does not need to be
an element of W ). The linear part of hi is equal to the linear part of u by
Proposition 3.26, so t ′hi t ′−1 = u. Also, t ′ sends any hyperplane containing
Fix(hi ) to a parallel hyperplane containing Fix(u). Therefore the conjugation
by t ′ is an isomorphism Whi → Wu that sends the Coxeter element hi to the
Coxeter element u, and it sends any reflection in Whi to its unique parallel
translate in Wu . In particular, this isomorphism preserves the total ordering
≺i .

By construction, ≺i restricts to a reflection ordering for Whi compatible
with hi , so the natural edge-labeling λ : E([1, hi ]) → Rhor ∩ Wi is an EL-
labeling of [1, hi ] by Theorem 4.3. Using the above isomorphism Whi → Wu ,
we obtain the same conclusion for u.
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Example 4.8 (Ordering of horizontal reflections in a component of rank 2)
Consider a horizontal component of rank 2, with the notation of Example
3.31. If we choose hi = ab as the preferred maximal element of [1, w] ∩ Wi ,
one of the possible total orderings ≺i of Rhor ∩ Wi is the following: a ≺i
a′ ≺i c ≺i c′ ≺i b ≺i b′. The factorizations of the 3 maximal elements as a
≺i -increasing product of reflections are: ab, a′b, and ab′.

Let ≺hor be any total ordering of Rhor obtained as a shuffle of the total
orderings ≺i for i ∈ {1, . . . , k}.
Lemma 4.9 (EL-shellability of horizontal intervals) Let W be an irreducible
Coxeter group, and w one of its Coxeter elements. For every horizontal ele-
ment u ∈ [1, w], the total ordering ≺hor makes the natural edge labeling
λ : E([1, u]) → Rhor an EL-labeling of [1, u].
Proof Write u = u1u2 · · · uk , with ui ∈ [1, w] ∩ Wi . Then [1, u] = [1, u1] ×
[1, u2]×· · ·×[1, uk].We have an EL-labeling on each factor [1, ui ] byLemma
4.7, and we conclude using Theorem 2.3.

4.3 Axial orderings and shellability of affine noncrossing partition
posets

We are now ready to construct an EL-labeling of the interval [1, w] in an affine
Coxeter group W , for any fixed Coxeter elementw. As in Sect. 4.2, we assume
that W is irreducible. Once the irreducible case is settled, one can easily get
an EL-labeling for reducible affine Coxeter groups by applying Theorem 2.3.

Let � be the Coxeter axis, and fix an axial chamber C0 of the Coxeter
complex.

Definition 4.10 (Axial ordering) An axial ordering of the set of reflections
R0 = R ∩ [1, w] is a total ordering of the following form:

• first, there are the vertical reflections that fix a point of � above C0, and r
comes before r ′ if Fix(r)∩� is below Fix(r ′)∩� (we call these the positive
vertical reflections);

• then, there are the horizontal reflections in Rhor, following any total order-
ing ≺hor constructed in Sect. 4.2;

• finally, there are the vertical reflections that fix a point of � below C0, and
again r comes before r ′ if Fix(r) ∩ � is below Fix(r ′) ∩ � (we call these
the negative vertical reflections).

The relative order of vertical reflections that fix the same point of � can be
chosen arbitrarily.

Remark 4.11 If two vertical reflections fix the same point of �, they commute.
This is proved in Proposition 3.9 for the case Ãn , and follows from Sect. 3.1
for the other cases.
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Example 4.12 (Axial orderings for Ã2 and G̃2) In the case Ã2,with the notation
of Example 3.12, one of the two axial orderings of R0 is the following:

a1 ≺ c2 ≺ a3 ≺ · · · ≺ b ≺ b′ ≺ · · · ≺ c−2 ≺ a−1 ≺ c0.

The other axial ordering is obtained by exchanging the two horizontal reflec-
tions b and b′. Notice that there are infinitely many reflections before b, and
infinitely many reflections after b′. Indeed, b has no immediate predecessor,
and b′ has no immediate successor. The following is a portion of one of the
infinitely many axial orderings in the case G̃2, using the notation of Example
3.6:

a1 ≺ d1 ≺ c2 ≺ e3 ≺ b3 ≺ c4 ≺ · · · ≺ f ≺ f ′

≺ · · · ≺ c−2 ≺ e−1 ≺ b−1 ≺ c0.

Our aim for the rest of this section is to prove that an axial ordering makes
the natural edge labeling λ : E([1, w]) → R0 an EL-labeling of [1, w].
Remark 4.13 (cf. [2, Lemma 3.7]) Let [u, v] be an interval in [1, w]. The
map f : [1, u−1v] → [u, v] defined by f (x) = ux is a label-preserving poset
isomorphism.

Notice that an axial ordering of R0 is not a well-ordering. For example, the
set of negative vertical reflections does not have a smallest element. However,
the well-ordering property holds for the subsets of the form R0 ∩ [1, u], as we
show in the second of the next three preparatory lemmas.

Lemma 4.14 For every hyperbolic element u ∈ [1, w], the interval [1, u]
contains at least one positive vertical reflection and at least one negative
vertical reflection.

Proof Since u is vertical, the interval [1, u] contains at least one vertical reflec-
tion r . Letw p be a power ofw that acts as a translation in the positive direction
of the Coxeter axis �, where p is a positive integer (see Lemma 3.28). We have
that w p commutes with the right complement v of u, because v is horizontal.
Then w p commutes also with u = wv−1. In particular, the conjugation by w p

fixes u and is an automorphism of [1, u]. If we conjugate the vertical reflection
r ∈ [1, u] by wmp, for a sufficiently large m ∈ Z, we get a vertical reflection
r ′ = w−mprwmp ∈ [1, u] that fixes a point of � below C0, i.e. r ′ is negative.
Similarly, if we conjugate r by wmp for a sufficiently small m ∈ Z, we get a
positive vertical reflection r ′′ ∈ [1, u].
Lemma 4.15 Let ≺ be an axial ordering of R0. For every element u ∈ [1, w]
with u 	= 1, the set R0 ∩ [1, u] has a ≺-smallest and a ≺-largest reflection.
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Proof Suppose by contradiction that there is no smallest reflection in R0 ∩
[1, u]. Since R0 ∩ [1, u] is non-empty, we must have an infinite decreasing
sequence of reflections r1 � r2 � · · · with ri ∈ [1, u]. In particular, the
interval [1, u] is infinite, so u is hyperbolic. By Lemma 4.14, there is at least
one positive vertical reflection r ∈ [1, u]. There is only a finite number of
reflections r ′ � r in R0, so there exists a ≺-smallest reflection in R0 ∩ [1, u].
Similarly, there is also a ≺-largest reflection.

In the definition of an EL-labeling, maximal chains are compared lexico-
graphically. In our case it is also useful to compare them colexicographically
(or antilexicographically): a tuple (r1, r2, . . . , rm) is colexicographically
smaller than (r ′1, r ′2, . . . , r ′m) if the reflected tuple (rm, rm−1, . . . , r1) is lex-
icographically smaller than the reflected tuple (r ′m, r ′m−1, . . . , r ′1).

Lemma 4.16 Fix an axial ordering≺ of R0. Every interval [u, v] in [1, w] has
a unique lexicographically smallest maximal chain, and this chain is increas-
ing. Similarly, every interval [u, v] in [1, w] has a unique colexicographically
largest maximal chain, and this chain is increasing.

Proof We proceed by induction on the length of the interval [u, v], the case
u = v being trivial. Suppose from now on that u < v. The labels of the
covering relations u � u′ with u′ ∈ [u, v] are all distinct, and they are given
by the reflections in R0 ∩ [1, u−1v]. By Lemma 4.15, there is a ≺-smallest
reflection r in R0∩[1, u−1v]. Let u′ = ur . In view of the induction hypothesis
applied to [u′, v], it is enough to prove that all covering relations in [u′, v] have
labels greater than r . If r ′ is a label of some covering relation in [u′, v], by
Lemma 2.12 there is aminimal length factorization of u−1v that starts with rr ′.
Then r ′ 	= r . In addition we have r ′ ∈ [1, u−1v], so r ′ � r by ≺-minimality
of r .

The proof for the colexicographic order is similar.

After these preparatory lemmas, we are ready to prove the key results that
lead to shellability.

Lemma 4.17 (Increasing chains in elliptic intervals) Fix an axial ordering ≺
of R0, and let u ∈ [1, w] be an elliptic element. The interval [1, u] has at most
one increasing maximal chain.

Proof Consider an irreducible horizontal componentWi ⊆ W , with associated
hyperplane arrangement Ai and horizontal prism Ci (with the notation of
Sect. 3.4). Let L be the intersection of all the hyperplanes of Ai containing
Fix(u). Since Fix(u) contains at least one axial vertex by Lemma 3.19, only
hyperplanes containing an axial vertex can occur, and so L is a flat in the
subarrangement of Ai consisting of the hyperplanes that contain a minimal
face of Ci . Then L itself contains at least one minimal face F of Ci . By
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construction, the fixed set of any element of [1, u] ∩ Wi contains F (because
it contains Fix(u) and is a flat of Ai ). By Proposition 3.26, this minimal face
F is the fixed set of a maximal element ui of [1, w] ∩ Wi . By Lemma 2.16,
[1, u] ∩ Wi ⊆ [1, ui ].

The construction of the previous paragraph yields elements u1, . . . , uk , one
for each irreducible horizontal component. Fix a point a ∈ C0 ∩ �. For i ∈
{1, . . . , k}, apply Lemma 4.5 to the maximal element ui and to the point a ∈ �,
and get an oriented line �′i with unit directionμi ∈ Span(�i ). As usual, denote
by μ the shortest vector inMov(w), which indicates the positive direction of
the Coxeter axis �. For ε > 0, consider the oriented line �′ = {a+θμ′ | θ ∈ R}
with basepoint a and directionμ′ = μ+εμ1+· · ·+εμk . By construction, its
projection on the affine subspace through a parallel to Span(�i ) is precisely
the line �′i . Therefore �′ and �′i intersect the hyperplanes of the reflections in
Wui in the same order.

Perturb the line �′ slightly, so that it becomes generic with respect to the
hyperplanes of the reflections in Wu , and the basepoint a remains in C0. If
ε > 0 is small enough and the perturbation is small enough, the total ordering
≺�′ of the finite set of reflections R0 ∩ Wu has the following form:

• first, there are the positive vertical reflections of Wu (i.e. those that fix a
point of � aboveC0), and r comes before r ′ ifFix(r)∩� is belowFix(r ′)∩�;

• then there are the horizontal reflections of Wu , and in each irreducible
component Wi they are ordered as in ≺�′i ;• finally there are the negative vertical reflections of Wu , and again r comes
before r ′ if Fix(r) ∩ � is below Fix(r ′) ∩ �.

Notice that the relative order of the vertical reflections that fix the same point
of � can be different in ≺�′ and in the axial ordering ≺.

Let�u ⊆ � be the root system of Wu . By Proposition 4.4, the total ordering
≺�′ is a reflectionordering forWu ,with respect to the positive system�+

u ⊆ �u
consisting of the roots that point towards the halfspaces containing the chamber
C0. We want to show that ≺�′ is compatible with the Coxeter element u. For
this, let �′ ⊆ �u be an irreducible rank 2 induced subsystem. Let α and β be
the simple roots of �′ with respect to�′ ∩�+

u , with corresponding reflections
rα, rβ ∈ Wu , and assume that rαrβ ∈ [1, u]. We need to prove that rα ≺�′ rβ .

• Case 1: rα is vertical. By Lemma 3.14 (for the case Ãn) and Lemma 3.4
(for the other cases), the right complement v of rα is a Coxeter element
for the finite parabolic subgroup Wv of W that fixes b, where b is the
unique vertex not fixed by rα among the vertices of the axial chamber C
immediately below Fix(rα)∩�. Since rαrβ ∈ [1, u] ⊆ [1, w], we have that
rβ ≤ v, so rβ fixes b by Lemma 2.15.
Let A′ be the reflection arrangement associated with the dihedral group
〈rα, rβ〉 ⊆ Wu generated by rα and rβ (so its root system is �′). Denote
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by C ′ the chamber of A′ containing C0, i.e. the chamber corresponding to
the positive system �′ ∩�+

u . Denote by C ′′ the chamber of A′ containing
C . Both C ′ and C ′′ have Hα = Fix(rα) and Hβ = Fix(rβ) as their walls:
this is true for C ′ by definition of α and β; Hα is a wall of C ′′ because it is
a wall of C ; Hβ is a wall of C ′′ because it contains b, which is a vertex of
C not contained in Hα . So either C ′ and C ′′ are the same chamber, or they
are opposite chambers in A′ (because Hα and Hβ are not orthogonal, so
the arrangement A′ contains at least another hyperplane). Since C0 and C
are axial chambers, the Coxeter axis � intersects both C ′ and C ′′. The first
hyperplane ofA′ that intersects � above C is Hα , so the first hyperplane of
A′ that intersects �′ above C ′′ is Hα .
If C ′ = C ′′, then the first hyperplane of A′ that intersects �′ above a is
Hα , and therefore rα ≺�′ rβ . Suppose now that C ′ and C ′′ are opposite
chambers in A′. Since � intersects both C ′ and C ′′, and Hβ separates C ′
and C ′′, we have that rβ is also vertical. In addition, C ′ and C ′′ are the two
chambers ofA′ that intersect � (resp. �′) in an unbounded subset of � (resp.
�′). Therefore, moving the basepoint a of �′ from �′ ∩ C ′ to �′ ∩ C ′′ does
not alter the total ordering ≺�′ of the reflections in 〈rα, rβ〉. As in the case
C ′ = C ′′, we conclude that rα ≺�′ rβ .

• Case 2: rβ is vertical. The argument is the same as for case 1, with the roles
of rα and rβ exchanged. In this case v is the left complement of rβ , and C
is the axial chamber immediately above Fix(rβ) ∩ �.

• Case 3: both rα and rβ are horizontal. Since α and β are not orthogonal,
they must belong to the same irreducible horizontal component �i . Then
rαrβ ∈ [1, u]∩Wi ⊆ [1, ui ]. ByLemma4.5, the reflection ordering forWui

induced by �′i is compatible with ui , so we have rα ≺�′i rβ , and therefore
rα ≺�′ rβ .

We proved that≺�′ is a reflection ordering for Wu which is compatible with
u. By Theorem 4.3, it makes the natural labeling λ of [1, u] an EL-labeling.

Suppose to have a ≺-increasing maximal chain, which corresponds to a
minimal length factorization u = r1r2 · · · rm with r1 ≺ r2 ≺ · · · ≺ rm . Our
aim is to show that the reflections r1, r2, . . . , rm are uniquely determined.

By definition of ≺, the sequence r1 ≺ r2 ≺ · · · ≺ rm consists of an initial
segment r1 ≺ · · · ≺ r j of positive vertical reflections, a middle segment
r j+1 ≺ · · · ≺ r j ′ of horizontal reflections, and a final segment r j ′+1 ≺ · · · ≺
rm of negative vertical reflections.

Reorder the reflections of the initial segment so that they are≺�′-increasing:
rσ(1) ≺�′ rσ(2) ≺�′ · · · ≺�′ rσ( j), for some permutation σ of {1, . . . , j}. The
relative order of vertical reflections that fix different points of � is the same
in ≺ and ≺�′ (by construction of �′). By Remark 4.11, this means that the
relative order of non-commuting vertical reflections is the same in ≺ and ≺�′ .
Therefore rσ(1)rσ(2) · · · rσ( j) = r1r2 · · · r j . Similarly, if τ is the permutation
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of { j ′ + 1, . . . , m} such that rτ( j ′+1) ≺�′ rτ( j ′+2) ≺�′ · · · ≺�′ rτ(m), we have
rτ( j ′+1)rτ( j ′+2) · · · rτ(m) = r j ′+1r j ′+2 · · · rm .

Let h = r j+1r j+2 · · · r j ′ ∈ [1, u] be the product of the reflections in the
middle segment. Since the total ordering≺�′ makes λ an EL-labeling of [1, u],
the interval [1, h] has a unique ≺�′-increasing maximal chain. It corresponds
to a minimal length factorization h = r ′j+1r

′
j+2 · · · r ′j ′ with r ′j+1 ≺�′ r ′j+2 ≺�′

· · · ≺�′ r ′j ′ . Since h is horizontal, the reflections r ′j+1, . . . , r ′j ′ are horizontal.
Therefore they come after the positive vertical reflections and before the nega-
tive vertical reflections, in the total ordering≺�′ of R0∩Wu . Putting everything
together, we get

rσ(1) ≺�′ rσ(2) ≺�′ · · · ≺�′ rσ( j)

≺�′ r ′j+1 ≺�′ r ′j+2 ≺�′ · · · ≺�′ r ′j ′
≺�′ rτ( j ′+1) ≺�′ rτ( j ′+2) ≺�′ · · · ≺�′ rτ(m).

The product of these reflections is equal to u. Since≺�′ makes λ an EL-labeling
of u, this factorization of u is uniquely determined. In particular, the sets
{rσ(1), . . . , rσ( j)} = {r1, . . . , r j } and {rτ( j ′+1), . . . , rτ(m)} = {r j ′+1, . . . , rm}
are uniquely determined, and also the horizontal element h = r ′j+1 · · · r ′j ′
is uniquely determined. Since r1 ≺ r2 ≺ · · · ≺ r j , and r j ′+1 ≺ r j ′+2 ≺
· · · ≺ rm , the reflections r1, . . . , r j and r j ′+1, . . . , rm are uniquely deter-
mined. Finally, the total order ≺ coincides with ≺hor on the horizontal
reflections, and ≺hor makes λ an EL-labeling of [1, h] by Lemma 4.9. Then
the reflections r j+1, . . . , r j ′ are uniquely determined, because they satisfy
r j+1 ≺hor r j+2 ≺hor · · · ≺hor r j ′ .

Lemma 4.18 (Increasing chains in hyperbolic intervals) Fix an axial ordering
≺ of R0, and let u ∈ [1, w] be an hyperbolic element such that the Coxeter
subgroup Wu ⊆ W is irreducible. The interval [1, u]has at most one increasing
maximal chain.

Proof Suppose to have an increasing maximal chain, which corresponds to a
minimal length factorization u = r1r2 · · · rm with r1 ≺ r2 ≺ · · · ≺ rm . In
this factorization, the horizontal reflections appear in a contiguous (possibly
empty) middle segment. Since u is vertical, at least one of r1 and rm is a
vertical reflection. Denote byAu the hyperplane arrangement associated with
the irreducible affine Coxeter subgroup Wu ⊆ W .

• Case 1: r1 is the first reflection of R0∩[1, u]with respect to the total order
≺. By Lemma 4.14, r1 is a positive vertical reflection. Then v = r2 · · · rm
is an elliptic element, and by Lemma 4.17 the reflections r2, . . . , rm are
uniquely determined. More precisely, by Lemma 4.16, the factorization
v = r2 · · · rm has to be the unique colexicographically largest minimal
length factorization of v.
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• Case 2: r1 is some other vertical reflection. Let C ′ be the axial chamber
immediately below Fix(r1)∩�, and let C be the chamber ofAu containing
C ′. By Lemma 3.21 there is a minimal length factorization of u that starts
with r1 and uses all the reflections with respect to the walls of C . Since r1
is not the first reflection of R0 ∩ [1, u], there is a reflection r with respect
to a wall of C such that r ≺ r1. Then r ≤ r2 · · · rm . By Lemma 4.17,
the reflections r2, . . . , rm are uniquely determined, and by Lemma 4.16
the factorization r2 · · · rm has to be the unique lexicographically smallest
factorization of r1u. Therefore r2 � r ≺ r1, which is impossible because
r1 ≺ r2.

• Case 3: rm is the last reflection of R0∩[1, u]with respect to the total order
≺. As in case 1, the reflections r1, . . . , rm−1 are uniquely determined.

• Case 4: rm is some other vertical reflection. As in case 2, this is impossible.

We have shown that there are at most two minimal length factorizations
u = r1r2 · · · rm with r1 ≺ r2 ≺ · · · ≺ rm : one where r1 is the first reflection of
R0∩[1, u], and r2, . . . , rm are uniquely determined (case 1), and one where rm
is the last reflection of R0 ∩ [1, u], and r1, . . . , rm−1 are uniquely determined
(case 3). By Lemma 3.21, applied to the chamber of Au containing C0, there
is a minimal length factorization of u that starts with the first reflection of
R0 ∩ [1, u] and ends with the last reflection of R0 ∩ [1, u]. This means that,
in case 1 (where r1 is the first reflection of R0 ∩ [1, u], and v = r2 · · · rm), the
interval [1, v] contains the last reflection of R0 ∩ [1, u]. Since r2 · · · rm is the
unique colexicographically largest factorization of v, the last factor rm is the
last reflection of R0 ∩ [1, u]. Then the factorization of case 1 coincides with
the factorization of case 3.

Finally, we prove that axial orderings make the natural edge labeling of
[1, w] an EL-labeling.
Theorem 4.19 (EL-shellability)Let W be an irreducible affine Coxeter group,
and w one of its Coxeter elements. Let λ : E([1, w]) → R0 be the natural
edge labeling of [1, w], where R0 is totally ordered by an axial ordering.
Every interval [u, v] in [1, w] has a unique increasing maximal chain, and
this chain is both the lexicographically smallest and the colexicographically
largest maximal chain of [u, v]. In particular, λ is an EL-labeling of [1, w].
Proof By Remark 4.13, it is enough to consider intervals of the form [1, u],
with u ∈ [1, w]. In view of Lemma 4.16, it only remains to show that [1, u] has
at most one increasing maximal chain. If u is elliptic, this is done in Lemma
4.17. If u is hyperbolic and the Coxeter subgroup Wu ⊆ W is irreducible, this
is done in Lemma 4.18. Suppose now that u is any hyperbolic element, and let
u = u′h be its hyperbolic-horizontal decomposition (see Lemma 3.20). Then
u′ is hyperbolic, the Coxeter subgroup Wu′ ⊆ W is irreducible, h is horizontal

123



Proof of the K (π, 1) conjecture

elliptic, and [1, u] = [1, u′] × [1, h]. We have already proved that λ is an
EL-labeling of [1, u′] and [1, h], so it is an EL-labeling of [1, u] by Theorem
2.3. In particular, [1, u] has at most one increasing maximal chain.

5 Dual CW models for the orbit configuration spaces

In this section, we introduce new finite CWmodels for the orbit configuration
space YW of a Coxeter group W . Each of them is naturally included in the
interval complex of one of the noncrossing partition posets associated with W .
We define them for any Coxeter group, not necessarily finite or affine.

Lemma 5.1 Let W be a Coxeter group. The reflection length of every Coxeter
element is equal to the size of a set of simple reflections of W .

Proof Let w = s1s2 · · · sn be a Coxeter element, where S = {s1, s2, . . . , sn}
is a set of simple reflections. By the deletion condition [44, Corollary 5.8] and
the fact that S is a minimal generating set for W [44, Theorem 5.5], we obtain
that s1s2 · · · sn is a reduced expression forw (meaning thatw cannot be written
as a product of less than n element of S). By [37, Theorem 1.1], the reflection
length of w is the smallest natural number p such that si1si2 · · · sin−p = 1 for
some choice of the indices 1 ≤ i1 < i2 < · · · < in−p ≤ n. If p < n, then the
relation si1si2 · · · sin−p = 1 allows to write a simple reflection as a product of
other simple reflections, which is impossible because S is aminimal generating
set. Therefore p = n.

Lemma 5.1 was proved in [5, Lemma 1.3.3] for finite Coxeter groups, and
in [48, Proposition 7.2] for affine Coxeter groups.

Let W be a Coxeter group, and R its set of reflections. Fix a set of simple
reflections S = {s1, s2, . . . , sn} ⊆ R, and a Coxeter element w = s1s2 · · · sn .
Denote by KW the interval complex associated with the noncrossing partition
poset [1, w]W . Let XW be the Salvetti complex of W , and recall from Sect. 2.1
that its cells are indexed by the simplicial complex

�W = {T ⊆ S | the standard parabolic subgroup WT is finite}.

For every T ∈ �W , denote by wT the product of the elements of T in the
same relative order as in the list s1, s2, . . . , sn . Then wT is a Coxeter element
of the parabolic subgroup WT , and it belongs to [1, w]W by Lemma 5.1 and
Lemma 2.12.

Lemma 5.2 For every T ⊆ S we have [1, wT ]WT = [1, wT ]W , and the length
functions of WT and W agree on these intervals.
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Proof By [37, Corollary 1.4], the length function of the parabolic subgroup
WT agrees with the length function of W . By Lemma 5.1, l(wT ) = |T |.

By [4, Theorem 1.3] (see also [45, Theorem 1.4]), the Hurwitz action is
transitive on the minimal length factorizations of wT as a product of reflec-
tions of W . There is at least one minimal length factorization of wT that uses
only reflections of WT , and therefore this is true for all minimal length fac-
torizations. This means that the interval [1, wT ] is the same in WT (using the
reflections of WT as the generating set) and in W .

Thanks to the previous lemma, for every T ⊆ S we can safely write [1, wT ]
in place of [1, wT ]WT = [1, wT ]W , without the need to specify the ambient
group.

Definition 5.3 Let X ′
W be the finite subcomplex of KW consisting of the

simplices [x1|x2| · · · |xd ] ∈ KW such that x1x2 · · · xd ∈ [1, wT ] for some
T ∈ �W .

Remark 5.4 If W is finite, then S ∈ �W and therefore X ′
W = KW . In this

case, the interval complex KW is a classifying space for the dual Artin group
Ww (by Theorems 2.9 and 2.14), which is naturally isomorphic to the Artin
group GW (by Theorem 2.13).

For every T ∈ �W , the complex X ′
W has a subcomplex consisting of the

simplices [x1|x2| · · · |xd ] such that x1x2 · · · xd ∈ [1, wT ] = [1, wT ]WT . This
is exactly the interval complex associated with [1, wT ]WT , which coincides
with X ′

WT
and is a classifying space for the Artin group GWT by Remark 5.4.

By definition, X ′
W is the union of all subcomplexes X ′

WT
for T ∈ �W .

Similarly, the Salvetti complex XW is the union of the Salvetti complexes
XWT for T ∈ �W . Each XWT is a classifying space for GWT , because the
K (π, 1) conjecture holds for spherical Artin groups [29].

Theorem 5.5 For every Coxeter group W , the complex X ′
W is homotopy equiv-

alent to the Salvetti complex XW and to the orbit configuration space YW .

Proof Since XW is homotopy equivalent to YW , it is enough to show that X ′
W

is homotopy equivalent to XW . To keep our notation uncluttered, throughout
this proof we indicate XW , X ′

W , XWT , X ′
WT

by X, X ′, XT , X ′
T , respectively.

For every T ∈ �W , both complexes XT and X ′
T are classifying spaces

for the Artin group GWT . We are going to inductively construct homotopy
equivalences ϕT : XT → X ′

T satisfying the following naturality property: for
all Q ⊆ T ∈ �W , there is a commutative diagram

X Q X ′
Q

XT X ′
T .

ϕQ

ϕT
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The construction of ϕT is the following, assuming to have already constructed
ϕQ for all Q � T .

• If T = ∅, then XT and X ′
T are single points, and there is only one map ϕT

between them.
• If |T | = 1, then both XT and X ′

T consist of one oriented 1-cell attached
to one 0-cell. Define ϕT as any orientation-preserving cellular homeomor-
phism.

• Let |T | = 2, say T = {s, s′}.We can extendϕ{s}∪ϕ{s′} : X{s}∪X{s′} → X ′
T

to the 2-cell of XT , and obtain a map ϕT : XT → X ′
T such that the induced

map (ϕT )∗ : π1(XT , X∅) → π1(X ′
T , X ′

∅) is an isomorphism (see the proof
of [42, Proposition 1B.9]). Since XT and X ′

T are classifying spaces, we
have that ϕT is a homotopy equivalence.

• Let |T | ≥ 3. By construction, the map
⋃

Q�T ϕQ : ⋃
Q�T X Q → X ′

T
induces an isomorphism on the fundamental groups (which are both iso-
morphic to the Artin group GWT ). Extend this map to the |T |-cell of XT ,
to get a map ϕT : XT → X ′

T which also induces an isomorphism on the
fundamental groups (as in the proof of [42, Proposition 1B.9]). As before,
ϕT is a homotopy equivalence.

Gluing together all these maps, we obtain a map ϕ : XW → X ′
W . This is a

homotopy equivalence by a repeated application of the gluing theorem for
adjunction spaces [18, Theorem 7.5.7].

Corollary 5.6 For every Coxeter group W , the fundamental group of X ′
W is

isomorphic to the Artin group GW .

Remark 5.7 The complex X ′
W depends on the Coxeter element w and on the

set of simple reflections S. However, since all Coxeter elements of a finite
parabolic subgroup WT are geometrically equivalent, the f -vector of X ′

W
depends only on W (it can be computed via inclusion-exclusion in terms of
the subcomplexes KWT ).

In view of Theorem 5.5, the K (π, 1) conjecture holds for an Artin group
GW if and only if X ′

W is a classifying space. The following is an alternative
characterization of the cells of the complex X ′

W in the affine case.

Lemma 5.8 Let W be an irreducible affine Coxeter group, with a set S of sim-
ple reflections and a Coxeter element w obtained as a product of the elements
of S. Denote by C0 the chamber of the Coxeter complex associated with S. A
simplex [x1|x2| · · · |xd ] ∈ KW belongs to X ′

W if and only if x1x2 · · · xd is an
elliptic element that fixes at least one vertex of C0.

Proof For every subset T ⊆ S with |T | = |S|−1, the fixed set of the parabolic
Coxeter element wT is given by one of the vertices of C0 by Lemma 2.15.
Conversely, every vertex of C0 is the fixed set of exactly one such parabolic
Coxeter element. We conclude using Lemmas 2.15 and 2.16.
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Example 5.9 (Dual complexes for Ã2 and G̃2) The f -vector of X ′
W is (1, 9, 9)

if W is of type Ã2, and (1, 11, 11) if W is of type G̃2. For Ã2, the complex
X ′

W is explicitly described in Example 7.12 and Fig. 8. Notice that the Salvetti
complex XW is much smaller, as in both cases its f -vector is (1, 3, 3).

6 Classifying spaces for dual affine Artin groups

Let W be an irreducible affine Coxeter group, and w one of its Coxeter ele-
ments. In this section, we prove that the interval complex KW associated with
[1, w]W is a classifying space for the dual Artin group Ww. This is somewhat
surprising since the interval [1, w]W is not a lattice in general.

As usual, let W act by Euclidean isometries on R
n , where n is the rank

of W . Let R ⊆ W be the set of reflections, and denote by Rhor and Rver
the horizontal and vertical reflections of [1, w]W , respectively. To proceed, we
briefly recall the construction ofMcCammond andSulway that leads to braided
crystallographic groups [49]. For this, new groups of Euclidean isometries are
introduced.

• The diagonal group D, generated by Rhor and T . Here T is the (finite) set
of all translations of [1, w]W . Translations are assigned a weight of 2.

• The factorable group F , generated by Rhor and by a set TF of factored
translations. There are k factored translations t1, . . . , tk for each translation
t ∈ T , and they satisfy t1 · · · tk = t , where k is the number of irreducible
components of the horizontal root system �hor. Factored translations are
assigned a weight of 2

k .• The crystallographic group C , generated by Rhor, Rver, and TF .

The diagonal group D is included in bothW and F , and all of them are included
in the crystallographic group C . By [49, Lemma 7.2], the associated intervals
are related as follows:

[1, w]C = [1, w]W ∪ [1, w]F

[1, w]D = [1, w]W ∩ [1, w]F .

The intervals [1, w]D and [1, w]F are finite, whereas [1, w]W and [1, w]C
are infinite. The factored translations are introduced so that the intervals
[1, w]F and [1, w]C are balanced lattices [49, Propositions 7.4 and7.6, andThe-
orem 8.10]. On the other hand, the intervals [1, w]D and [1, w]W are lattices
if and only if the horizontal root system �hor is irreducible (i.e. k = 1), in
which case D = F and W = C .

From these new intervals, one can construct the interval groups Dw, Fw,
andCw. The groupCw is called the braided crystallographic group. The inclu-
sions between the four intervals induce inclusions between the corresponding
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interval groups: Dw ↪→ Ww, Dw ↪→ Fw, Ww ↪→ Cw, and Fw ↪→ Cw [49,
Theorem 9.6]. Since the intervals [1, w]F and [1, w]C are lattices, the interval
groups Fw and Cw are Garside groups (Theorem 2.7) and the corresponding
interval complexes K F and KC are classifying spaces (Theorem 2.9). A conse-
quence of the relations between the four intervals is that KC = KW ∪ K F and
K D = KW ∩ K F , where K D is the interval complex associated with [1, w]D .
As noted in [49, Proposition 11.1], the cover of KC corresponding to the sub-
group Ww ⊆ Cw is a finite-dimensional classifying space for the (dual) Artin
group Ww. However this cover is not very explicit, and it is difficult to work
with it in practice.

Let H be the subgroup of D generated by Rhor.With the notation of Sect. 3.4
we have H = W1 × · · · × Wk , where Wi is the subgroup generated by the
reflections associated with the i th irreducible component �i of the horizontal
root system �hor. Recall that Wi is a Coxeter group of type Ãni , where ni is
the rank of �i . By [49, Proposition 7.6], the horizontal part [1, w]W ∩ H of
the interval [1, w]W decomposes as

[1, w]W ∩ H =
(
[1, w]W ∩ W1

)
× · · · ×

(
[1, w]W ∩ Wk

)
, (2)

and the single factors are described in Sect. 3.4 (a more direct proof of this
decomposition can be derived in a similar way to the proof of Lemma 3.29).
Let Hw be the group with generating set Rhor and subject only to the relations
visible in [1, w]W ∩ H . It is a subgroup of Dw [49, Lemma 9.3], and it decom-
poses as a direct product of k Artin groups of types Ãn1, . . . , Ãnk , one for each
irreducible component.

Let K H be the subcomplex of K D consisting of the simplices [x1|x2| · · · |xd ]
such that x1x2 · · · xd ∈ H . The fundamental group of K H is naturally isomor-
phic to Hw. Denote by Ki the subcomplex of K H consisting of the simplices
[x1|x2| · · · |xd ] such that x1x2 · · · xd ∈ [1, w]W ∩ Wi . The fundamental group
of Ki is an Artin group of type Ãni .

Lemma 6.1 K H is homeomorphic to K1 × · · · × Kk.

Proof We claim that K H is a triangulation of the natural cellular structure
of K1 × · · · × Kk . To show this, we explicitly construct a homeomorphism
ψ : K1 × · · · × Kk → K H . Consider a cell of K1 × · · · × Kk , which is a
product of simplices

[x11|x12| · · · |x1d1] × · · · × [xk1|xk2| · · · |xkdk ].
This is realized as �d1 × · · · × �dk ⊆ R

d1+···+dk . Consider a point p ∈
�d1 × · · · × �dk , with coordinates given by

(a11, . . . , a1d1, . . . , ak1, . . . , akdk ) ∈ R
d1+···+dk .
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Assume for now that the coordinates of p are pairwise distinct. Then there is a
unique enumeration γ : {1, . . . , d1 + · · · + dk} → {11, . . . , 1d1, . . . , k1, . . . ,
kdk}of the indices such thataγ (1) ≥ aγ (2) ≥ · · · ≥ aγ (d1+···+dk). Notice that, in
this enumeration, the relative order of indices in the samehorizontal component
is preserved. Define ψ(p) as the point of [xγ (1)|xγ (2)| · · · |xγ (d1+···+dk)] with
coordinates

(aγ (1), aγ (2), . . . , aγ (d1+···+dk)) ∈ �d1+···+dk .

If the coordinates of p are not pairwise distinct, there are multiple choices
for the enumeration γ , and any choice gives the same definition of ψ(p). See
Fig. 6 for some examples. Using the decomposition (2), we obtain that ψ is a
homeomorphism.

Denote by ϕ : [1, w]W → [1, w]W the conjugation by w: ϕ(u) = w−1uw.

Lemma 6.2 K D is homeomorphic to K H × [0, 1] /∼, where the relation ∼
identifies [x1|x2| · · · |xd ] × {1} and [ϕ(x1)|ϕ(x2)| · · · |ϕ(xd)] × {0} for every
simplex [x1|x2| · · · |xd ] of K H .

Proof Let Z = K H × [0, 1] /∼. Similarly to Lemma 6.1, we show that K D
is a triangulation of the natural cell structure of Z , by explicitly constructing
a homeomorphism ψ : Z → K D . Notice that K H × {0} ⊆ Z is naturally
included in K D: we define ψ |K H×{0} as the natural homeomorphism with
K H ⊆ K D . Consider now a cell of K H × [0, 1] of the form

[x1|x2| · · · |xd ] × [0, 1].
This cell is realized as �d × [0, 1] ⊆ R

d+1. Then a point p in this cell has
coordinates (a1, a2, . . . , ad , t), with 1 ≥ a1 ≥ · · · ≥ ad ≥ 0 and t ∈ [0, 1].

Fig. 6 On the left, triangulation of a cell [x] × [y] of K1 × K2. It is homeomorphic to [x |y] ∪
[y|x] ⊆ K H . On the right, triangulation of a cell [x1|x2] × [y], which is homeomorphic to
[x1|x2|y] ∪ [x1|y|x2] ∪ [y|x1|x2] ⊆ K H

123



Proof of the K (π, 1) conjecture

Let y be the right complement of x1x2 · · · xd , so that x1x2 · · · xd y = w. Notice
that y is hyperbolic, so in particular y 	= 1. Assume for now that none of
the coordinates a1, . . . , ad is equal to 1 − t . Then there is a unique index
i ∈ {0, . . . , d} such that a1 ≥ · · · ≥ ai ≥ 1 − t ≥ ai+1 ≥ · · · ≥ ad . Let
σ = [xi+1| · · · |xd |y|ϕ(x1)| · · · |ϕ(xi )]. Define ψ(p) as the point of σ with
coordinates (t + ai+1, . . . , t + ad , t, t + a1 − 1, . . . , t + ai − 1) ∈ �d+1. If
some of the coordinates a1, . . . , ad are equal to 1 − t , choose any index i as
above. Different choices of i give the same point of K D . See Fig. 7 for some
examples.

The definition of ψ on different cells is coherent. We only explicitly check
that the definition on [x1|x2| · · · |xd ] × [0, 1] agrees with the definition on
[x1|x2| · · · |xd ]×{1}, since this is where the non-trivial gluing occurs. Consider
a point p ∈ [x1|x2| · · · |xd ] × {1}, with coordinates (a1, . . . , ad , 1) ∈ �d ×
[0, 1].
• Since [x1| · · · |xd ]×{1} is identified with [ϕ(x1)| · · · |ϕ(xd)]×{0}, we have
that ψ(p) is the point of [ϕ(x1)| · · · |ϕ(xd)] with coordinates (a1, . . . , ad).

• As an element of [x1| · · · |xd ]× [0, 1], the same point p is sent to the point
of [y|ϕ(x1)| · · · |ϕ(xd)] with coordinates (1, a1, . . . , ad). By definition of
the faces in an interval complex (Definition 2.8), this point is the same as
the point of [ϕ(x1)| · · · |ϕ(xd)] with coordinates (a1, . . . , ad).

Therefore the two definitions of ψ agree in this case.
Every maximal cell of K D is of the form [x1| · · · |xi |y|x ′i+1| · · · |x ′d ] where

y is hyperbolic and each x j and x ′j is horizontal elliptic. Thus ψ is a homeo-
morphism.

An immediate consequence of Lemma 6.2 is that Dw = Z � Hw, where Z

is the cyclic subgroup of Dw generated by w.

Fig. 7 On the left, triangulation of a cell [x]× [0, 1] of K H ×[0, 1] /∼. It is homeomorphic to
[x |y]∪[y|ϕ(x)] ⊆ K D , where y is the right complement of x . On the right, triangulation of a cell
[x1|x2]×[0, 1], which is homeomorphic to [x1|x2|y]∪[x2|y|ϕ(x1)]∪[y|ϕ(x1)|ϕ(x2)] ⊆ K D ,
where y is the right complement of x1x2
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Lemma 6.3 Ki is a classifying space for the affine Artin group of type Ãni .

Proof By Lemma 3.29, we can assume until the end of this proof that H = Wi
is the unique irreducible horizontal component of W . Therefore [1, w]D =
[1, w]F is a lattice, Dw is a Garside group, and K D is a classifying space for
Dw. By Lemma 6.2, there is a covering map

ρ : K H × R → K D

which corresponds to the subgroup Hw of Dw. Then K H × R is a classifying
space. Since K H × R � K H = Ki , also Ki is a classifying space.

Remark 6.4 The complex Ki is closely related to the complexes X ′
Wi

intro-
duced in Sect. 5. Indeed, Ki is obtained by gluing the interval complexes
associated with the noncrossing partition lattices of type Ani corresponding to
the maximal proper standard parabolic subgroups of Wi . However, the Cox-
eter elements of these parabolic subgroups are not below a common Coxeter
element of Ãni (see also Remark 4.6).

Theorem 6.5 K D is a classifying space for Dw.

Proof By Lemma 6.1, we have that K H
∼= K1 × · · · × Kk . Each factor is a

classifying space by Lemma 6.3, therefore K H is a classifying space for Hw.
As discussed in the proof of Lemma 6.3, there is a coveringmap ρ : K H ×R →
K D by Lemma 6.2. Therefore K D is a classifying space.

We can finally prove that KW is a classifying space.

Theorem 6.6 Let W be an irreducible affine Coxeter group, and w one of its
Coxeter elements. The interval complex KW is a classifying space for the dual
Artin group Ww.

Proof Consider the universal cover ρ : K̃C → KC of the interval complex KC .
Recall that K D = KW ∩ K F and KC = KW ∪ K F , and therefore ρ−1(K D) =
ρ−1(KW ) ∩ ρ−1(K F ) and K̃C = ρ−1(KC) = ρ−1(KW ) ∪ ρ−1(K F ). Then
there is a Mayer-Vietoris long exact sequence

· · · → Hi (ρ
−1(K D)) → Hi (ρ

−1(KW )) ⊕ Hi (ρ
−1(K F )) → Hi (K̃C ) → · · ·

where all homology groups are with integer coefficients. Since Dw = π1(K D)

is a subgroup of Cw = π1(KC ), we have that ρ−1(K D) is a union of (infinitely
many) disjoint copies of the universal cover K̃ D of K D . Similarly, ρ−1(KW )

is a union of disjoint copies of the universal cover K̃W of KW , and ρ−1(K F )

is a union of disjoint copies of the universal cover K̃ F of K F . Since K F
and KC are classifying spaces, both K̃ F and K̃C are contractible. By The-
orem 6.5, K̃ D is also contractible. Then, for i ≥ 1, the homology groups
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Hi (ρ
−1(K D)), Hi (ρ

−1(K F )), and Hi (K̃C )vanish.By theMayer-Vietoris long
exact sequence, Hi (ρ

−1(KW )) also vanishes for i ≥ 1. This means that K̃W
has a trivial reduced homology, so it is contractible by a standard application
of the Whitehead and Hurewicz theorems (see [42, Corollary 4.33]).

7 Finite classifying spaces

Let W be an irreducible affine Coxeter group, with a fixed Coxeter elementw.
In this section we show that the interval complexes KW and KC deformation
retract onto finite subcomplexes K ′

W ⊆ KW and K ′
C ⊆ KC . In the case of

KW , this is an intermediate step to prove the K (π, 1) conjecture, whereas for
KC this proves that the braided crystallographic group Cw has a classifying
space K ′

C with a finite number of cells. The notation is the same as in Sect. 6.
As noted in the proof of [49, Lemma 7.2], there is no minimal length fac-

torization of w in C that includes both a factored translation and a vertical
reflection. Recall that every element of [1, w]C\[1, w]W is hyperbolic.

Lemma 7.1 Let σ = [x1|x2| · · · |xd ] be a d-simplex of KC , with d ≥ 1. Then
exactly one of the following occurs:

(i) every xi is elliptic, and at least one is vertical;
(ii) every xi is horizontal elliptic or hyperbolic.

Proof We shall divide the proof into four cases.

• If at least one xi is not in [1, w]W , then no minimal length factorization of
any xi includes vertical reflections. In particular, no xi is vertical elliptic, so
(ii) holds and (i) does not. In the remaining cases, assume that xi ∈ [1, w]W
for all i .

• If every xi is horizontal elliptic, then (ii) holds and (i) does not.
• Suppose that x j is hyperbolic for some index j . Then x1 · · · x j is also hyper-
bolic, and therefore its right complement y is horizontal elliptic. Every xi
for i > j is below y in [1, w]W , and so is horizontal elliptic. By a similar
argument, every xi for i < j is horizontal elliptic. Then (ii) holds and (i)
does not.

• If there is at least one vertical elliptic element and there are no hyperbolic
elements, (i) holds and (ii) does not.

Recall that F(KC ) denotes the face poset of KC . Consider the poset map
η : F(KC ) → N defined by

η([x1|x2| · · · |xd ]) =
{

d if x1x2 · · · xd = w

d + 1 otherwise.
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We want to describe the connected components of a fiber η−1(d) in the Hasse
diagramofF(KC ). Letσ, τ be two simplices in the samefiberη−1(d).Wehave
that τ is a face of σ if and only if σ = [x1|x2| · · · |xd ]with x1x2 · · · xd = w and
either τ = [x2|x3| · · · |xd ] or τ = [x1|x2| · · · |xd−1]. Therefore, a connected
component of η−1(d) has the following form:

[x1| · · · |xd ]

[x2| · · · |xd ]

[x2| · · · |xd+1]

[x3| · · · |xd+1][x1| · · · |xd−1]

[x0| · · · |xd−1]

[x0| · · · |xd−2]
where xi xi+1 · · · xi+d−1 = w for all i . Define a d-fiber component (or simply
fiber component) as a connected component of the fiber η−1(d). As described
above, a d-fiber component has an associated sequence (xi )i∈Z of elements
of [1, w]C such that the product of any d consecutive elements is w. This
sequence is well-defined up to a translation of the indices.

Let ϕ : [1, w]C → [1, w]C be the conjugation by the Coxeter element w:
ϕ(u) = w−1uw. Notice that, if (xi )i∈Z is the sequence associated with a d-
fiber component, we have ϕ(xi ) = xi+d for all i ∈ Z. Since ϕ restricts to amap
[1, w]W → [1, w]W , every fiber component is either disjoint from F(KW ) or
contained inF(KW ), whereF(KW ) is the face poset of KW . The same is true
for the subcomplexes K D and K F .

Lemma 7.2 Let u ∈ [1, w]C . The set {ϕ j (u) | j ∈ Z} is infinite if and only if
u is vertical elliptic.

Proof Suppose that {ϕ j (u) | j ∈ Z} is infinite. Since [1, w]C has only a finite
number of horizontal elliptic and hyperbolic elements, at least one element of
{ϕ j (u) | j ∈ Z} is vertical elliptic. Then u is vertical elliptic.

Conversely, let u be a vertical elliptic element, and suppose by contradiction
that ϕ j (u) = u for some j ∈ Z\{0}. Let w p be a power of w that acts as a
translation in the positive direction of the Coxeter axis �, where p is a positive
integer (see Lemma 3.28). We have that ϕ pj (u) = u, so u commutes with the
(non-trivial) translation w pj . By [49, Lemma 11.3], Fix(u) is invariant under
w pj . Then Dir(�) ⊆ Dir(Fix(u)). We have that Mov(u) = Dir(Mov(u))

because u is elliptic, and that Dir(Mov(u)) is orthogonal to Dir(Fix(u)) by
[12, Lemma 3.6]. Therefore u is horizontal, and this is a contradiction.

Lemma 7.3 Let σ ∈ F(KC ). The fiber component containing σ is infinite if
and only if σ is of type (i) in Lemma 7.1. In particular:

• every infinite fiber component is contained in F(KW );
• F(K F ) is the union of all finite fiber components;
• F(K D) is the union of all finite fiber components of F(KW ).
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Proof Let σ = [x1|x2| · · · |xd ]. If σ is of type (i), at least one xi is vertical
elliptic. Then the set {xi+ jd = ϕ j (xi ) | j ∈ Z} is infinite by Lemma 7.2, so
the fiber component of σ is infinite. The simplices of type (i) are in F(KW ),
so the component is contained in F(KW ).

If σ is of type (ii), then every xi is horizontal elliptic or hyperbolic, so σ ∈
F(K F ). Since F(K F ) is finite, the fiber component of σ is finite. Conversely,
every simplex of F(K F ) is of type (ii), and so its fiber component is finite.

The very last point follows from the fact that K D = KW ∩ K F .

Lemma 7.4 Let C ⊆ F(KW ) be a finite d-fiber component. Then there exists
a simplex [x1|x2| · · · |xd−1] ∈ C such that x1x2 · · · xd−1 is horizontal elliptic.

Proof Consider any d-simplex σ = [x1|x2| · · · |xd ] ∈ C, with x1x2 · · · xd =
w. Since C is finite, at least one xi is hyperbolic by Lemma 7.3. Suppose
without loss of generality that xd is hyperbolic. Then its left complement
x1x2 · · · xd−1 is horizontal elliptic (herewe are using the fact thatσ ∈ F(KW )).
This completes the proof, because [x1|x2| · · · |xd−1] ∈ C.
Lemma 7.5 Let C ⊆ F(KW ) be an infinite d-fiber component. Then there
exists a simplex [x1|x2| · · · |xd−1] ∈ C such that x1x2 · · · xd−1 is vertical ellip-
tic.

Proof Consider any d-simplex [x1|x2| · · · |xd ] ∈ C, with x1x2 · · · xd = w.
Since C is infinite, at least one xi is vertical elliptic by Lemma 7.3. Suppose
without loss of generality that xd is vertical elliptic. Then its left complement
x1x2 · · · xd−1 is also vertical elliptic, and [x1|x2| · · · |xd−1] ∈ C.

From now on, fix an axial chamberC0 of the Coxeter complex. If S is the set
of simple reflections associated with C0, the Coxeter elementw can be written
as the product of the elements of S by Theorem 3.8 (for the case Ãn) and
Theorem 3.3 (for the other cases). Let X ′

W ⊆ KW be the complex introduced
in Definition 5.3. By Lemma 5.8, it consists of the simplices [x1|x2| · · · |xd ]
of KW such that x1x2 · · · xd fixes a vertex of C0.

Lemma 7.6 Let C ⊆ F(KW ) be a d-fiber component. Then there exists a
simplex [x1|x2| · · · |xd−1] ∈ C such that x1x2 · · · xd−1 is elliptic and fixes a
vertex of C0. In other words, C ∩ F(X ′

W ) 	= ∅.

Proof By Lemmas 7.5 and 7.4, there exists a simplex σ = [x1|x2| · · · |xd−1] ∈
C such that x1x2 · · · xd−1 is elliptic. By Lemma 3.19, x1x2 · · · xd−1 fixes an
axial vertex.ByProposition 3.10 (for the case Ãn) andRemark3.2 (for the other
cases), every axial vertex can be written uniquely as w j (b) for some vertex b
of C0. Then, up to a conjugation by a power of w (i.e. up to a translation of
the indices in the sequence (xi )i∈Z), we can assume that x1x2 · · · xd−1 fixes a
vertex of C0.
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Corollary 7.7 The face poset F(KC ) of the interval complex KC contains
only a finite number of fiber components.

Proof Every fiber component contained in F(KW ) intersects F(X ′
W ) by

Lemma 7.6. Since F(X ′
W ) is finite, F(KW ) contains only a finite number

of fiber components. If C is a fiber component not contained in F(KW ), by
Lemma 7.3 we have that C is finite and C ⊆ F(K F ). Since F(K F ) is finite, it
contains only a finite number of fiber components.

We are finally able to show that KC and KW deformation retract onto finite
subcomplexes K ′

C ⊆ KC and K ′
W ⊆ KW , respectively.

Definition 7.8 Let K be either KC or KW . A nice subcomplex of K is a
subcomplex K ′ ⊆ K such that

(1) every finite fiber component C ⊆ F(K ) is also contained in F(K ′);
(2) for every infinite fiber component C ⊆ F(K ), the intersection C ∩F(K ′)

is non-empty and its Hasse diagram is connected.

Theorem 7.9 Let K be either KC or KW .

(a) K deformation retracts onto every nice subcomplex K ′.
(b) Finite nice subcomplexes of K exist.

Proof For part (a), on every infinite fiber componentC consider the only acyclic
matching MC with critical simplices given by C ∩ F(K ′). Existence and
uniqueness of MC follow from the fact that C ∩ F(K ′) is non-empty and its
Hasse diagram is connected. By Theorem 2.5, the union of the matchingsMC
is an acyclic matching with the desired set of critical simplices. This matching
is also proper. We conclude using the main theorem of discrete Morse theory
(Theorem 2.4).

For part (b), recall that F(K ) has only a finite number of (finite or infinite)
fiber components by Corollary 7.7. Then it is enough to inductively choose a
finite non-empty interval in the Hasse diagram of every infinite d-fiber compo-
nent C, starting from d = dim(K ) (the highest possible value of d) and going
down to d = 1, so that every simplex in the boundary of a chosen simplex is
also chosen.

Since KC is a classifying space forCw,we immediately obtain the following.

Theorem 7.10 Let W be an irreducible affine Coxeter group, and w one of its
Coxeter elements. The braided crystallographic group Cw admits a classifying
space with a finite number of cells.

We end this section by noticing that there is a canonical choice of a nice
subcomplex K ′ of K (where K is either KW or KC ): for every infinite fiber
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component, K ′ contains all the simplices between the first and the last simplex
belonging to X ′

W ; in addition, K ′ contains all the finite fiber components of
K .

Lemma 7.11 Let K be either KC or KW . Then K ′ is a nice subcomplex of K .

Proof First, we check that K ′ is a subcomplex. The finite fiber components
of K form a subcomplex (K D or K F ) by Lemma 7.3. Let σ be a simplex of
K ′ which belongs to an infinite fiber component C. Then, in C, the simplex σ

is between two simplices σ1, σ2 ∈ X ′
W (if σ ∈ X ′

W , we have σ1 = σ2 = σ ).
Then a face τ of σ is either in the same fiber component C, or is between two
faces of σ1 and σ2, in the fiber component of τ . Therefore τ ∈ F(K ′).

By Lemmas 7.3 and 7.6, every infinite fiber component contains at least one
simplex of X ′

W . Then K ′ satisfies the conditions of Definition 7.8.
We call this subcomplex K ′ the canonical nice subcomplex of K . By con-

struction, it contains X ′
W as a subcomplex. In general, K ′ is not the smallest

nice subcomplex of K .

Example 7.12 (Fiber components of Ã2) For W of type Ã2, the fiber com-
ponents of KW = KC are shown in Fig. 8, using the notation of Example

Fig. 8 Fiber components of KW = KC in the case Ã2. The first two fiber components form
the subcomplex K D = K F . The black nodes correspond to the simplices of X ′

W
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3.12. The first 2 fiber components are finite, and they form the subcomplex
K D = K F . The other 7 fiber components are infinite. Black nodes corre-
spond to simplices in F(X ′

W ), and white nodes correspond to simplices in
F(K ′

W )\F(X ′
W ), where K ′

W is the canonical subcomplex of KW . The shown
simplices are exactly those in F(K ′

W ).

8 The K (π, 1) conjecture

In this section, we prove the K (π, 1) conjecture for affine Artin groups. It is
enough to consider the irreducible case.

Let W be an irreducible affine Coxeter group, and R its set of reflections.
Fix a Coxeter elementw and an axial chamber C0 of the Coxeter complex. Let
S ⊆ R be the set of simple reflections associated withC0. By Theorem 3.8 (for
the case Ãn) and Theorem 3.3 (for the other cases), the Coxeter elementw can
be written as the product of the elements of S, say w = s1s2 · · · sn+1 (where n
is the rank of W ). Let {pi }i∈Z be the sequence of points of the Coxeter axis �

that are fixed by at least one vertical reflection of W (see Sect. 3.1 and Lemma
3.7). Enumerate these points so that p0 is below C0 and p1 is above C0.

Let KW be the interval complex associated with the noncrossing partition
poset [1, w] = [1, w]W , K ′

W ⊆ KW its canonical nice subcomplex (introduced
at the end of Sect. 7), and X ′

W ⊆ K ′
W the complex introduced in Definition

5.3. By Lemma 5.8, X ′
W consists of the simplices [x1|x2| · · · |xd ] of KW such

that x1x2 · · · xd fixes a vertex of C0.
Recall that KW is a classifying space for the dual Artin group Ww (Theorem

6.6), KW deformation retracts onto K ′
W (Theorem 7.9), and X ′

W is homotopy
equivalent to the orbit configuration space YW (Theorem 5.5). Then, in order to
prove the K (π, 1) conjecture for the Artin group GW = π1(YW ), it is enough
to show that K ′

W deformation retracts onto X ′
W . This also implies that the dual

Artin group Ww is isomorphic to the Artin group GW , thus giving a new proof
of [49, Theorem C].

To show that K ′
W deformation retracts onto X ′

W , we are going to use discrete
Morse theory. Specifically, we need to construct an acyclic matching on the
face poset F(K ′

W ) such that the set of critical simplices is exactly F(X ′
W ).

Denote by ϕ : [1, w] → [1, w] the conjugation by w: ϕ(u) = w−1uw. Let
≺ be an axial ordering of the set of reflections R0 = R∩[1, w] (see Definition
4.10) that satisfies the following compatibility property: if r, r ′ ∈ R0 fix the
same point of �, and r ≺ r ′, thenϕ(r) ≺ ϕ(r ′). Although not strictly necessary,
this compatibility property will make the proof of Lemma 8.8 simpler.

By Theorem 4.19, every element u ∈ [1, w] has a unique minimal length
factorization u = r1r2 · · · rm as a product of reflections such that r1 ≺ r2 ≺
· · · ≺ rm . We call it the increasing factorization of u. Theorem 4.19 also
implies that r1 is the ≺-smallest reflection of R0 ∩ [1, u], and rm is the ≺-
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largest. As in Sect. 4, we say that a vertical reflection is positive if it fixes a
point of � above C0, and negative otherwise.

Since w acts on the Coxeter axis � as a translation in the positive direction,
we have that Fix(ϕ(r)) ∩ � is below Fix(r) ∩ � for every vertical reflection
r ∈ R0. In addition, if Fix(r) ∩ � is above Fix(r ′) ∩ � (for some vertical
reflections r, r ′), then Fix(ϕ j (r)) ∩ � is above Fix(ϕ j (r ′)) ∩ � for all j ∈ Z.

Lemma 8.1 For every vertical reflection r ∈ R0, there exists a unique j ∈ Z

such that ϕ j (r) is one of the n + 1 ≺-smallest reflections in R0. In addition,
j ≥ 0 if and only if r is positive.

Proof If w is a bipartite Coxeter element (see Sect. 3.1), the n + 1≺-smallest
reflections are the ones that fix p1 or p2. Let pi be the point of �which is fixed
by r . By Remark 3.2, there is a unique j such that w− j (pi ) is p1 or p2, and
specifically j = ⌊ i−1

2

⌋
. We have j ≥ 0 if and only if r is positive. Then ϕ j (r)

fixes p1 or p2, so it is among the n + 1 ≺-smallest reflections of R0.
Suppose now thatw is a (p, q)-bigon Coxeter element (with p+q = n+1)

in a Coxeter group W of type Ãn . By part (i) of Proposition 3.9, the n + 1 ≺-
smallest reflections are those that fix one of p1, p2, . . . , pm withm = p+q

gcd(p,q)
.

By Lemma 3.7, for every i ∈ Z there is a unique j ∈ Z such that w− j (pi ) ∈
{p1, p2, . . . , pm}. We conclude as in the bipartite case.

Lemma 8.2 Let r ∈ R0 be a vertical reflection. The right complement of r
fixes a vertex of C0 if and only if r is among the n + 1 ≺-smallest reflections
of R0.

Proof By Lemma 3.18, for each vertex b of C0 there is a unique vertical
elliptic isometry u ∈ [1, w] such that l(u) = n and u fixes b. By taking the
left complement of these vertical elliptic isometries, we obtain that there are
exactly n + 1 vertical reflections r such that the right complement of r fixes
a vertex of C0. We only need to show that they are the n + 1 ≺-smallest
reflections of R0.

If w is a bipartite Coxeter element, then the n+1≺-smallest reflections are
those that fix p1 or p2. By Lemma 3.4, these are precisely the ones that have
a right complement that fixes a vertex of C0.

Suppose now that w is a (p, q)-bigon Coxeter element in a Coxeter group
W of type Ãn . By part (i) of Proposition 3.9, the n+1≺-smallest reflections of
R0 are those that fix one of p1, p2, . . . , pm with m = p+q

gcd(p,q)
. Let r ∈ R0 be

a vertical reflection such that its right complement fixes a vertex b of C0. Let
C be the axial chamber immediately below Fix(r) ∩ �. By Lemma 3.14, r is
positive (otherwise its right complement would not fix a vertex ofC0) and b is a
vertex of C . Suppose by contradiction that r is not among the n+1≺-smallest
reflections of R0. Then Fix(r) intersects � in a point pi with i ≥ m + 1, and
there are at least m + 1 axial chambers between C0 and C (including C0 and
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C themselves). By part (ii) of Proposition 3.10, the axial point b is a vertex of
exactly m consecutive axial chambers. This is a contradiction because b is a
vertex of both C0 and C .

It is convenient to introduce some additional notation. Given a simplex
σ = [x1|x2| · · · |xd ] ∈ KW , let π(σ) = x1x2 · · · xd ∈ [1, w]. Also, if C is
the d-fiber component containing σ , let λ(σ) (resp. ρ(σ)) be the simplex that
appears immediately to the left (resp. immediately to the right) of σ in C. More
explicitly:

λ(σ) =
{ [x1| · · · |xd−1] if π(σ) = w

[y|x1| · · · |xd ] otherwise (here y is the left complement of x1 · · · xd )

ρ(σ) =
{ [x2| · · · |xd ] if π(σ) = w

[x1| · · · |xd |y] otherwise (here y is the right complement of x1 · · · xd ).

Then λ is the inverse of ρ. More generally, we say that a simplex τ ∈ KW is
to the left of σ (resp. to the right of σ ) if τ = λk(σ ) (resp. τ = ρk(σ )) for
some k > 0. Notice that, if σ and τ belong to a finite component C, then τ is
both to the left of σ and to the right of σ .

With this notation, the definitions of X ′
W and K ′

W can be written as follows:

• σ ∈ F(X ′
W ) if and only if π(σ) fixes a vertex of C0;

• σ ∈ F(K ′
W ) if and only if λk(σ ) ∈ F(X ′

W ) for some k ≥ 0 and ρk(σ ) ∈
F(X ′

W ) for some k ≥ 0.

The following definition will be used in the construction of the matching
on F(K ′

W ).

Definition 8.3 (Depth) Let σ = [x1|x2| · · · |xd ] ∈ F(KW ), with π(σ) = w.
Define the depth δ(σ ) of σ as the minimum i ∈ {1, 2, . . . , d} such that one of
the following occurs:

(i) l(xi ) ≥ 2;
(ii) l(xi ) = 1, i ≤ d − 1, and xi ≺ r for every reflection r ≤ xi+1 in [1, w].
If no such i exists, let δ(σ ) = ∞.

Lemma 8.4 Let σ ∈ F(K ′
W ). If π(σ) = w, and π(ρ(σ )) fixes a vertex of C0,

then δ(σ ) 	= ∞.

Proof Let σ = [x1|x2| · · · |xd ], and suppose by contradiction that δ(σ ) = ∞.
Then each xi is a reflection, d = l(w) = n + 1, and x1 � x2 � · · · � xn+1.
Since π(ρ(σ )) = x2 · · · xn+1 fixes a vertex of C0, by Lemma 8.2 we have that
x1 is among the n + 1≺-smallest reflections of R0. Then x1, x2, . . . , xn+1 are
the n + 1 ≺-smallest reflections of R0.

Let [y1|y2| · · · |yn+1] be a (n+1)-simplex to the left of σ . Then y1 = ϕ j (xi )

for some i ∈ {1, . . . , n + 1} and j < 0. The right complement y2 · · · yn+1 of
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Fig. 9 Matching on F(K ′
W )\F(X ′

W ) in the case Ã2

y1 is equal to ϕ j (u), where u is the right complement of xi . Since xi is among
the n + 1 ≺-smallest reflections, its right complement u fixes a vertex b of C0
by Lemma 8.2. Then y2 · · · yn+1 = ϕ j (u) fixes the axial vertex w− j (b). By
Proposition 3.10 (for the case Ãn) andRemark 3.2 (for the other cases),w− j (b)

is not a vertex of C0. Therefore [y2| · · · |yn+1] /∈ F(X ′
W ). This conclusion

applies to every n-simplex [y2| · · · |yn+1] to the left of σ . Then σ /∈ F(K ′
W ),

which is a contradiction.

We are now ready to define a function μ which will ultimately give us the
matching we need.

Definition 8.5 (Matching function) Given a simplex σ ∈ F(K ′
W )\F(X ′

W ),
define a simplex μ(σ) ∈ F(KW ) as follows.

(1) If π(σ) 	= w, let μ(σ) = λ(σ).
(2) If π(σ) = w, and π(ρ(σ )) does not fix a vertex of C0, let μ(σ) = ρ(σ).

Suppose now that π(σ) = w, and π(ρ(σ )) fixes a vertex of C0. Let σ =
[x1|x2| · · · |xd ] and δ = δ(σ ). Notice that δ 	= ∞ by Lemma 8.4.

(3) If l(xδ) ≥ 2, define μ(σ) = [x1| · · · |xδ−1|y|z|xδ+1| · · · |xd ], where y is
the ≺-smallest reflection of R0 ∩ [1, xδ], and yz = xδ .

(4) If l(xδ) = 1, define μ(σ) = [x1| · · · |xδ−1|xδxδ+1|xδ+2| · · · |xd ].
Notice that μ(σ) � σ if σ occurs in case (1) or (3), whereas μ(σ) � σ if σ

occurs in case (2) or (4). In addition, μ(σ) /∈ F(X ′
W ) by Lemma 5.8.

Example 8.6 (Matching for Ã2) Figure 9 shows the matching defined by μ on
F(K ′

W )\F(X ′
W ) in the case Ã2, using the axial ordering of Example 2. See

also Fig. 8, where the involved simplices are indicated by white nodes. The
first 4 pairs on the left column occur in cases (1) and (2) of Definition 8.5. The
other 6 pairs occur in cases (3) and (4).

Lemma 8.7 Let σ ∈ F(K ′
W )\F(X ′

W ) be a simplex such that π(σ) = w, and
ρ(σ) ∈ F(X ′

W ). Then also ρ(μ(σ)) ∈ F(X ′
W ).

Proof Let σ = [x1|x2| · · · |xd ]. It is not possible for σ to occur in case (1) or
(2) of Definition 8.5, because π(σ) = w and ρ(σ) ∈ F(X ′

W ).
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Ifσ occurs in case (4), thenwehaveμ(σ) = [x1| · · · |xδ−1|xδxδ+1|xδ+2| · · · |
xd ]. Therefore π(ρ(μ(σ))) ≤ π(ρ(σ )) in [1, w]. Since π(ρ(σ )) fixes a
vertex of C0, also π(ρ(μ(σ))) fixes a vertex of C0 by Lemma 2.15. Then
ρ(μ(σ)) ∈ F(X ′

W ).
If σ occurs in case (3), then μ(σ) = [x1| · · · |xδ−1|y|z|xδ+1| · · · |xd ]. If

δ > 1, we have π(ρ(μ(σ))) = π(ρ(σ )), and so π(ρ(μ(σ))) fixes a vertex
of C0. Assume from now on that δ = 1, so μ(σ) = [y|z|x2| · · · |xd ]. Let b
be a vertex of C0 fixed by π(ρ(σ )) = x2 · · · xd . Let u ∈ [1, w] be the unique
vertical elliptic element that fixes b with l(u) = n (see Lemma 3.18). By
Lemma 2.16, we have x2 · · · xd ≤ u in [1, w]. Let r be the left complement
of u (it is a vertical reflection). By Lemma 8.2, r is one of the n + 1 ≺-
smallest reflections of R0. Passing to the left complements in the inequality
x2 · · · xd ≤ u, we get x1 ≥ r in [1, w]. By definition of μ, we have that y is
the ≺-smallest reflection of R0 ∩ [1, x1], and therefore y � r . In particular,
y is one of the n + 1 ≺-smallest reflections of R0. By Lemma 8.2, its right
complement zx2 · · · xd = π(ρ(μ(σ))) fixes a vertex of C0.

Lemma 8.8 For every σ ∈ F(K ′
W )\F(X ′

W ), we have that μ(σ) ∈
F(K ′

W )\F(X ′
W ).

Proof We have already noted in Definition 8.5 that μ(σ) /∈ F(X ′
W ). We

have μ(σ) = λ(σ) in case (1), and μ(σ) = ρ(σ) in case (2). Since σ ∈
F(K ′

W )\F(X ′
W ), in these two cases μ(σ) ∈ F(K ′

W ). Suppose from now on
that σ occurs in case (3) or case (4). In particular, π(σ) = w and ρ(σ) ∈
F(X ′

W ).
Let σ = [x1|x2| · · · |xd ]. By Lemma 8.7, we have ρ(μ(σ)) ∈ F(X ′

W ).
Therefore we only need to prove that there is a simplex in F(X ′

W ) to the left
of μ(σ). Since σ ∈ F(K ′

W ), there is a (d − 1)-simplex τ ∈ F(X ′
W ) to the left

of σ . It has the following form:

τ = [ϕh(xi+1)| · · · |ϕh(xd)|ϕh+1(x1)| · · · |ϕh+1(xi−1)],
for some h < 0 and i ∈ {1, . . . , d}.

If σ occurs in case (4), then μ(σ) = [x1| · · · |xδ−1|xδxδ+1|xδ+2| · · · |xd ]
where δ = δ(σ ). To the left of μ(σ) there is a simplex τ ′ such that π(τ ′) ≤
π(τ), given by:

⎧
⎨

⎩

[ϕh(xδ+2)| · · · |ϕh(xd )|ϕh+1(x1)| · · · |ϕh+1(xδ−1)] if i = δ or i = δ + 1.
[ϕh(xi+1)| · · · |ϕh(xδxδ+1)| · · · |ϕh(xd )|ϕh+1(x1)| · · · |ϕh+1(xi−1)] if i < δ.

[ϕh(xi+1)| · · · |ϕh(xd )|ϕh+1(x1)| · · · |ϕh+1(xδxδ+1)| · · · |ϕh+1(xi−1)] if i > δ + 1.

Since τ ∈ F(X ′
W ), we have that π(τ) fixes a vertex of C0, so π(τ ′) also fixes

a vertex of C0 (by Lemma 2.15), which means that τ ′ ∈ F(X ′
W ). Therefore

μ(σ) ∈ F(K ′
W ).
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Proof of the K (π, 1) conjecture

If σ occurs in case (3), then μ(σ) = [x1| · · · |xδ−1|y|z|xδ+1| · · · |xd ]. If
i 	= δ, we can find a simplex τ ′ to the left of μ(σ) such that π(τ ′) = π(τ),
namely:

{ [ϕh(xi+1)| · · · |ϕh(y)|ϕh(z)| · · · |ϕh(xd )|ϕh+1(x1)| · · · |ϕh+1(xi−1)] if i < δ

[ϕh(xi+1)| · · · |ϕh(xd )|ϕh+1(x1)| · · · |ϕh+1(y)|ϕh+1(z)| · · · |ϕh+1(xi−1)] if i > δ.

As before, this implies that μ(σ) ∈ F(K ′
W ). Suppose from now on that i = δ.

The right complement of ϕh(xδ) is equal to π(τ), which is elliptic because
it fixes a vertex of C0. Therefore ϕh(xδ) is vertical, and thus also xδ = yz is
vertical. Let z = r1r2 · · · rm be the increasing factorization of z, with m ≥ 1.
By definition of y, we have that y ≺ r1 ≺ · · · ≺ rm . Since yz is vertical, at
least one of y, r1, . . . , rm is a vertical reflection.

• Case 1: rm is a negative vertical reflection. By Lemma 8.1, there exists a
j < 0 such that ϕ j (rm) is among the n + 1 ≺-smallest reflections of R0.
By Lemma 8.2, its right complement u fixes a vertex of C0. Consider the
following simplex to the left of μ(σ):

τ ′ = [ϕ j (xδ+1)| · · · |ϕ j (xd)|ϕ j+1(x1)| · · · |ϕ j+1(xδ−1)|ϕ j+1(y)].
The left complement of π(τ ′) is ϕ j (z), and we have ϕ j (rm) ≤ ϕ j (z) in
[1, w]. Passing to the right complements in this inequality, we obtain that
u ≥ π(τ ′). Since u fixes a vertex of C0, by Lemma 2.15 also π(τ ′) fixes a
vertex of C0. Therefore τ ′ ∈ F(X ′

W ).
• Case 2: rm is a horizontal reflection or a positive vertical reflection. The
same is true for all the reflections y, r1, . . . , rm , because y ≺ r1 ≺
· · · ≺ rm . Recall that at least one of them is vertical. Then, for some
k ∈ {0, . . . , m}, we have that y, r1, . . . , rk are positive vertical reflections,
and rk+1, . . . , rm are horizontal reflections. Since h < 0, we have that
ϕh(y), ϕh(r1), . . . , ϕh(rk) are also positive vertical reflections. The com-
patibility property of ≺ then implies ϕh(y) ≺ ϕh(r1) ≺ · · · ≺ ϕh(rk).
Let r ′k+1 · · · r ′m be the increasing factorization of ϕh(rk+1 · · · rm). Since
rk+1 · · · rm is horizontal, ϕh(rk+1 · · · rm) is also horizontal, so the reflec-
tions r ′k+1, . . . , r ′m are horizontal. Therefore we have ϕh(y) ≺ ϕh(r1) ≺
· · · ≺ ϕh(rk) ≺ r ′k+1 ≺ · · · ≺ r ′m . By construction, the product of these
m + 1 reflections yields the increasing factorization of ϕh(yz) = ϕh(xδ).
In particular, ϕh(y) is the ≺-smallest reflection of [1, ϕh(xδ)] by Theorem
4.19.
Recall that τ ∈ F(X ′

W ), so π(τ) fixes a vertex b of C0. Let u ∈ [1, w] be
a vertical elliptic element that fixes b and such that l(u) = n (see Lemma
3.18). By Lemma 2.16, we have π(τ) ≤ u in [1, w]. If we pass to the
left complements in this inequality, we get ϕh(xδ) ≥ r where r is the left
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complement of u (it is a vertical reflection). By Lemma 8.2, r is among the
n + 1 ≺-smallest reflections of R0. Since ϕh(y) is the ≺-smallest reflec-
tion of [1, ϕh(xδ)], we have ϕh(y) � r , and thus ϕh(y) is also among the
n + 1 ≺-smallest reflections of R0. By Lemma 8.2, the right complement
of ϕh(y) fixes a vertex of C0. Consider the following simplex to the left of
μ(σ):

τ ′ = [ϕh(z)|ϕh(xδ+1)| · · · |ϕh(xd)|ϕh+1(x1)| · · · |ϕh+1(xδ−1)].
We have that π(τ ′) is the right complement of ϕh(y), so it fixes a vertex of
C0, and therefore τ ′ ∈ F(X ′

W ).

Proposition 8.9 The function μ : F(K ′
W )\F(X ′

W ) → F(K ′
W )\F(X ′

W ) is an
involution, i.e. it satisfies μ(μ(σ)) = σ . In addition, if σ occurs in case (3) or
(4) of Definition 8.5, then δ(μ(σ)) = δ(σ ).

Proof Lemma 8.8 shows that the image of μ is contained inF(K ′
W )\F(X ′

W ),
so we can compose μ with itself. Let σ = [x1|x2| · · · |xd ] ∈ F(K ′

W )\F(X ′
W ).

If σ occurs in case (1) of Definition 8.5, then μ(σ) = λ(σ) occurs in case
(2), so μ(μ(σ)) = ρ(λ(σ )) = σ . Similarly, if σ occurs in case (2), then
μ(σ) = ρ(σ) occurs in case (1), and μ(μ(σ)) = λ(ρ(σ )) = σ .

If σ occurs in case (3) or (4), by definition of δ = δ(σ ) we have that
x1, . . . , xδ−1 are reflections such that x1 � x2 � · · · � xδ−1. In addition,
xδ−1 � y if y is the ≺-smallest reflection of [1, xδ]. If σ occurs in case (3),
then x1 � · · · � xδ−1 � y, and y ≺ r for every reflection r ≤ z. Therefore
δ(μ(σ)) = δ, and μ(σ) occurs in case (4), so μ(μ(σ)) = σ . If σ occurs in
case (4), then δ(μ(σ)) = δ because xδ−1 � xδ . In particular, μ(σ) occurs
in case (3). By definition of δ, we also have that xδ ≺ r ′ for every reflection
r ′ ≤ xδ+1. Then, if we concatenate xδ with the increasing factorization of xδ+1,
we get the increasing factorization of xδxδ+1. Therefore xδ is the ≺-smallest
reflection of [1, xδxδ+1], and μ(μ(σ)) = σ .

Thanks to Proposition 8.9, we can finally define a matchingM onF(K ′
W ):

M = {(μ(σ), σ ) | σ ∈ F(K ′
W )\F(X ′

W ) and μ(σ) � σ }.
A simplex σ ∈ F(K ′

W ) is critical if and only if σ ∈ F(X ′
W ). It only remains

to prove thatM is acyclic and proper. For this, our strategy is to define a poset
(P, �) and a map ξ : F(K ′

W )\F(X ′
W ) → P that decreases along alternating

paths.
Let P ⊆ Rn+1

0 be the set of all minimal length factorizations of w as
a product of reflections. We endow P with the total ordering � defined as
follows. Let α, α′ ∈ P , and denote by r (resp. r ′) the ≺-largest reflection
appearing in α (resp. α′).
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Proof of the K (π, 1) conjecture

• If r 	= r ′, then set α � α′ if and only if r � r ′.
• If r = r ′, let k (resp. k′) be the position where r (= r ′) appears in α (resp.

α′). If k 	= k′, then set α � α′ if and only if k > k′.
• If r = r ′ and k = k′, then set α � α′ if and only if α is lexicographically
smaller than α′ (as usual, reflections are compared using the total ordering
≺ of R0).

The transitive property of � is immediate to check.
Define a closure operator κ : F(K ′

W )\F(X ′
W ) → F(K ′

W )\F(X ′
W ) in the

following way:

κ(σ ) =
{

σ if π(σ) = w

λ(σ) = μ(σ) otherwise.

Given a simplex σ ∈ F(K ′
W )\F(X ′

W ), define ξ(σ ) ∈ P as the concatenation
of the increasing factorizations of x1, x2, . . . , xd , where [x1|x2| · · · |xd ] =
κ(σ ). Since π(κ(σ )) = w, we have that ξ(σ ) is indeed a minimal length
factorization of w.

Lemma 8.10 For every σ ∈ F(K ′
W )\F(X ′

W ), we have ξ(μ(σ)) = ξ(σ ).

Proof Suppose without loss of generality that μ(σ) � σ , so that σ occurs in
case (2) or (4) of Definition 8.5. If σ occurs in case (2), then κ(μ(σ)) = κ(σ ),
and therefore ξ(μ(σ)) = ξ(σ ).

Suppose now that σ occurs in case (4). Then κ(σ ) = σ and κ(μ(σ)) =
μ(σ). Letσ = [x1|x2| · · · |xd ] andμ(σ) = [x1| · · · |xδ−1|xδxδ+1|xδ+2| · · · |xd ],
where δ = δ(σ ). As already noticed in the proof of Proposition 8.9, the
increasing factorization of xδxδ+1 is given by the reflection xδ followed by the
increasing factorization of xδ+1. Therefore ξ(μ(σ)) = ξ(σ ).

Lemma 8.11 Let σ = [x1|x2| · · · |xd ] ∈ F(K ′
W )\F(X ′

W ) be a simplex such
that π(σ) = w. There exist a negative vertical reflection r ∈ R0 and an
index i ∈ {1, 2, . . . , d} such that r ≤ xi in [1, w]. In particular, the ≺-largest
reflection appearing in ξ(σ ) is a negative vertical reflection.

Proof Since σ ∈ F(K ′
W ), there is a (d − 1)-simplex τ ∈ F(X ′

W ) to the left
of σ . It has the following form:

τ = [ϕh(xi+1)| · · · |ϕh(xd)|ϕh+1(x1)| · · · |ϕh+1(xi−1)],

for some h < 0 and i ∈ {1, . . . , d}. We have that π(τ) fixes a vertex b of C0,
and ϕh(xi ) is the left complement of π(τ). By Lemma 8.2, there is a reflection
r ′ ≤ ϕh(xi ) among the n + 1 ≺-smallest reflections of R0 (see the last part of
the proof of Lemma 8.8). By Lemma 8.1, r = ϕ−h(r ′) is a negative vertical
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reflection, because h < 0. This proves the first part of the statement because
r ≤ xi .

The ≺-increasing factorization of xi ends with the ≺-largest reflection r ′′
of [1, xi ] by Theorem 4.19. If r̄ is the ≺-largest reflection appearing in ξ(σ ),
we have r̄ ! r ′′ ! r , so r̄ is a negative vertical reflection.

Lemma 8.12 Let σ, τ ∈ F(K ′
W )\F(X ′

W ) be two simplices such that π(σ) =
w and τ is a face of σ . Then ξ(τ ) � ξ(σ ). If, in addition, τ = λ(σ), then we
have the strict inequality ξ(τ ) � ξ(σ ).

Proof Let σ = [x1|x2| · · · |xd ]. Notice that κ(σ ) = σ , because π(σ) = w.
Let r (resp. r ′) be the ≺-largest reflection of ξ(τ ) (resp. ξ(σ )), appearing in
position k (resp. k′).

• Case 1: τ = [x2| · · · |xd ]. Then τ = μ(σ) and therefore ξ(τ ) = ξ(σ ) by
Lemma 8.10.

• Case 2: τ = [x1| · · · |xi−1|xi xi+1|xi+2| · · · |xd ] for some i ∈ {1, . . . , d −
1}. In particular, we have π(τ) = w and therefore κ(τ) = τ . Since [1, xi ]
and [1, xi+1] are both included in [1, xi xi+1], the ≺-largest reflection of
[1, xi xi+1] is at least as ≺-large as the ≺-largest reflections of [1, xi ] and
[1, xi+1]. Therefore r ! r ′. If r � r ′, then ξ(τ ) � ξ(σ ), as desired.
Suppose that r = r ′. The ≺-largest reflection of [1, xi xi+1] appears as the
last reflection of the increasing factorization of xi xi+1. Therefore k ≥ k′.
If k > k′, then ξ(τ ) � ξ(σ ), as desired.
By Theorem 4.19, the increasing factorization of xi xi+1 is lexicograph-
ically smaller than (or equal to) the concatenation of the increasing
factorizations of xi and xi+1. Then ξ(τ ) is lexicographically smaller than
(or equal to) ξ(σ ). Therefore ξ(τ ) � ξ(σ ).

• Case 3: τ = [x1| · · · |xd−1] = λ(σ). Thenκ(τ) = [ϕ−1(xd)|x1| · · · |xd−1] ∈
F(K ′

W )\F(X ′
W ).

Suppose by contradiction that r ≺ r ′. Since x1, . . . , xd−1 are common to
both τ and σ , we have that r ′ ≤ xd . Then ϕ−1(r ′) ≤ ϕ−1(xd), and there-
fore ϕ−1(r ′) � r ≺ r ′. By Lemma 8.11, r ′ is a negative vertical reflection.
Then Fix(ϕ−1(r ′)) ∩ � is above Fix(r ′) ∩ �. Since ϕ−1(r ′) ≺ r ′, we have
that ϕ−1(r ′) is a positive vertical reflection. By Lemma 8.1, ϕ−1(r ′) is
among the n + 1 ≺-smallest reflections of R0. By Lemma 8.2, its right
complement u fixes a vertex of C0. Since ϕ−1(r ′) ≤ ϕ−1(xd), passing
to the right complements we get u ≥ x1 · · · xd−1 = π(τ). By Lemma
2.15, Fix(u) ⊆ Fix(π(τ)), and so π(τ) also fixes a vertex of C0. This is
a contradiction, because τ /∈ F(X ′

W ). Therefore r ! r ′. If r � r ′, then
ξ(τ ) � ξ(σ ), as desired.
Suppose now that r = r ′. If r = r ′ ≤ xd , the previous argument yields
again a contradiction. Therefore r ≤ xi for some i ∈ {1, . . . , d − 1}. Then
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Proof of the K (π, 1) conjecture

the position k (where r appears in ξ(τ )), is strictly greater than the position
k′ (where r appears in ξ(σ )). Thus ξ(τ ) � ξ(σ ).

Lemma 8.13 The matching M on F(K ′
W ) is acyclic.

Proof Suppose by contradiction that there is an alternating cycle σ1 � τ1 �

σ2 � τ2 � · · · � τm � σm+1 = σ1 in F(K ′
W ), with m ≥ 1. We have that

(τ j , σ j ) /∈ M and (τ j , σ j+1) ∈ M for all j ∈ {1, . . . , m}. In particular, all
the simplices involved are matched, so they are in F(K ′

W )\F(X ′
W ). Also, by

Definition 8.5 we have that π(σ j ) = w for all j .
By Lemmas 8.10 and 8.12, we have

ξ(σ1) � ξ(τ1) = ξ(σ2) � ξ(τ2) = · · · � ξ(τm) = ξ(σm+1) = ξ(σ1).

Then, all these inequalities are actually equalities:

ξ(σ1) = ξ(τ1) = ξ(σ2) = ξ(τ2) = · · · = ξ(τm) = ξ(σm+1) = ξ(σ1).

By the second part of Lemma 8.12, we have τ j 	= λ(σ j ) for all j . Also,
τ j 	= ρ(σ j ) for all j , because otherwise we would have τ j = μ(σ j ) i.e.
(τ j , σ j ) ∈ M. Since τ j is a face of σ j different from λ(σ j ) and ρ(σ j ), we
have π(τ j ) = π(σ j ) = w for all j . As a consequence, each τ j occurs in case
(3) of Definition 8.5, and each σ j occurs in case (4).

By the second part of Proposition 8.9, δ(τ j ) = δ(σ j+1) for all j . In addition,
since ξ(σ j ) = ξ(τ j ), we have δ(σ j ) ≥ δ(τ j ) for all j . As before, since
σm+1 = σ1, all inequalities are actually equalities:

δ(σ1) = δ(τ1) = δ(σ2) = δ(τ2) = · · · = δ(τm) = δ(σm+1) = δ(σ1).

Let σ1 = [x1|x2| · · · |xd ], τ1 = [x1| · · · |xi−1|xi xi+1|xi+2| · · · |xd ] for some
i ∈ {1, . . . , d − 1}, and δ = δ(σ1). Since σ1 occurs in case (4), we have
l(xδ) = 1. Also, l(xi xi+1) ≥ 2 implies δ(τ1) ≤ i . Since δ(τ1) = δ(σ1) = δ,
we deduce that i ≥ δ. If i = δ, then τ1 = μ(σ1), which is impossible because
(τ1, σ1) /∈ M. Therefore i > δ, so τ1 also occurs in case (4), because l(xδ) = 1.
However τ1 occurs in case (3), and this is a contradiction.

Theorem 8.14 Let W be an irreducible affine Coxeter group, with a set
of simple reflections S = {s1, s2, . . . , sn+1} and a Coxeter element w =
s1s2 · · · sn+1. The interval complex KW deformation retracts onto its subcom-
plex X ′

W .

Proof By Theorem 7.9 and Lemma 7.11, KW deformation retracts onto its
canonical nice subcomplex K ′

W . We have constructed a matching M on the
face posetF(K ′

W ). This matching hasF(X ′
W ) as the set of critical cells and is
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acyclic by Lemma 8.13. It is also proper becauseF(K ′
W ) is finite. By the main

theorem of discrete Morse theory (Theorem 2.4), K ′
W deformation retracts

onto X ′
W .

We can finally prove the K (π, 1) conjecture for affine Artin groups.

Theorem 8.15 (K (π, 1) conjecture) Let W be an irreducible affine Coxeter
group. The K (π, 1) conjecture holds for the corresponding Artin group GW .

Proof Fix a set of simple reflections S = {s1, s2, . . . , sn+1} and a Coxeter
element w = s1s2 · · · sn+1. By Theorem 6.6, the interval complex KW is a
classifying space. By Theorems 8.14 and 5.5, we have homotopy equivalences
YW � X ′

W � KW , where YW is the orbit configuration space associated with
W . Therefore YW is a classifying space for its fundamental group GW .

We also obtain a new proof of the following theorem of McCammond and
Sulway.

Theorem 8.16 [49, TheoremC] Let W be an irreducible affine Coxeter group,
with a set of simple reflections S = {s1, s2, . . . , sn+1} and a Coxeter element
w = s1s2 · · · sn+1. The natural homomorphism from the Artin group GW to
the dual Artin group Ww is an isomorphism.

Proof Consider the homotopy equivalences XW � X ′
W � KW of Theorems

5.5 and 8.14. The compositionψ : XW → KW sends the 1-cell c{s}, associated
with a simple reflection s ∈ S, to the corresponding 1-cell [s] of KW , preserv-
ing the orientation. Then the induced map ψ∗ on the fundamental groups is
exactly the natural homomorphism GW → Ww, which is, therefore, an iso-
morphism.
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Appendix A: The four infinite families

The main purpose of this appendix is to prove Lemma 3.7, Theorem 3.8,
Propositions 3.9 and 3.10 (these are statements about Ãn), and Lemma 3.21
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(for the cases Ãn , B̃n , C̃n , and D̃n). We do this by explicitly examining the
four infinite families of irreducible affine Coxeter groups. This appendix can
be also used as a source of examples, and it complements the computations of
[48, Section 11]. We refer to [44, Section 2.10] for the standard construction
of root systems (see also [11]).

A.1 Case Ãn

Let W be a Coxeter group of type Ãn . It is realized as the reflection group in
E = R

n+1/〈1, . . . , 1〉 associated with the hyperplane arrangement

A = {{xi − x j = k} | 1 ≤ i < j ≤ n + 1, k ∈ Z}.
If a ∈ R

n+1, denote by [a] its class in E = R
n+1/〈1, . . . , 1〉.

Let (p, q) be a pair of positive integers such that p + q = n + 1. Label the
coordinates of R

n+1 = R
p × R

q as follows: x1, x2, . . . , x p, y1, y2, . . . , yq .
Given a pointb ∈ E , denote its coordinates by xb

1 , . . . , xb
p, yb

1 , . . . , yb
q (they are

well defined up to a multiple of (1, . . . , 1)). Construct a (p, q)-bigon Coxeter
element w as in [48, Example 11.6]:

w(b) = [xb
p + 1, xb

1 , . . . , xb
p−1 | yb

q − 1, yb
1 , . . . , yb

q−1]. (3)

Then the shortest vector in Mov(w) is μ =
[
1
p , . . . , 1

p

∣∣ − 1
q , . . . ,− 1

q

]
, and

the points of the Coxeter axis � (i.e. the points a such that w(a) = a +μ) are
of the form

[
p−1

p ,
p−2

p , . . . , 1
p , 0

∣∣ 0, 1
q , . . . ,

q−2
q ,

q−1
q

]
+ θμ (4)

for θ ∈ R. The hyperplanes of the form {xi − x j = k} or {yi − y j = k} are
horizontal, whereas those of the form {xi − y j = k} are vertical.
Proof of Lemma 3.7 From (4) it is immediate to see that the Coxeter axis � is
not contained in any hyperplane ofA. The value of θ that yields the intersection
point of a vertical hyperplane {xi − y j = k} with � satisfies

(
1
p + 1

q

)
θ = k − p−i

p + j−1
q = k − 1+ i

p + j−1
q .

If we let k, i , and j vary, then θ can assume any value which is an integer
multiple of gcd(p,q)

p+q .

Consider now a point a ∈ E which is not contained in any hyperplane of
A, and let Ca be the chamber containing a. In particular, for every j we have
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that ya
j − xa

p /∈ Z, because otherwise a would lie on some vertical hyperplane
{x p − y j = k}. Consider the line �a passing through a and with the same
direction as the Coxeter axis:

�a = {[xa
1 , xa

2 , . . . , xa
p | ya

1 , ya
2 , . . . , ya

q ] + θμ | θ ∈ R
}
.

Let Sa ⊆ R be the set of the reflections with respect to the walls of Ca .
Write Sa = S+a � S−a � Shor

a , where S+a (resp. S−a ) consists of the reflections
that intersect �a above (resp. below) a, and Shor

a consists of the horizontal
reflections.

Lemma A.1 Let W be a Coxeter group of type Ãn, and w a (p, q)-bigon
Coxeter element as in (3). Let a ∈ E be a point which is not contained in
any hyperplane of A, and such that xa

p < xa
p−1 < · · · < xa

1 < xa
p + 1 and

ya
1 < ya

2 < · · · < ya
q < ya

1 + 1. Then the reflections in S+a (resp. S−a ) pairwise
commute. In addition, w can be written as a product of the reflections in Sa,
where the reflections in S+a come first, and the reflections in S−a come last.

Proof Since the coordinates of a are defined up to a multiple of (1, . . . , 1), we
can assume that xa

p = 0. Therefore we have 0 = xa
p < xa

p−1 < · · · < xa
1 < 1.

Let s be the (unique) index such that the fractional part of ya
s is minimal, and

let h = �ya
s � be the largest integer which is less than ya

s . Then we have

h < ya
s < ya

s+1 < · · · < ya
q < ya

1 + 1 < · · · < ya
s−1 + 1 < h + 1.

Let X = {xa
1 , . . . , xa

p} and Y = {ya
s −h, . . . , ya

q −h, ya
1+1−h, . . . , ya

s−1+
1− h}. The set Z = X ∪ Y consists of n + 1 distinct real numbers between 0
(included) and 1 (excluded). Write Z = {0 = za

1 < za
2 < · · · < za

n+1}, where
each zl stands either for some xi or for some translate of some y j (notice that
z1 = x p). Then the inequalities z1 < z2 < · · · < zn+1 < z1 + 1 define the
chamber Ca , and the walls of Ca are:

{z1 = z2}, {z2 = z3}, . . . , {zn+1 = z1 + 1}. (5)

For every i ∈ {1, . . . , p}, the coordinate xi appears in exactly two walls.
If they are both vertical, say {xi − y j = k} and {xi − y j+1 = k′}, then the
first of these walls intersects �a below a, because xa

i − ya
j > k, whereas the

second one intersects �a above a, because xa
i − ya

j+1 < k′ (here the indices
of y are taken modulo q). A similar argument applies to the coordinates y j
for j ∈ {1, . . . , q}. This proves that the reflections in S+a (resp. S−a ) pairwise
commute.

The horizontal walls are among the following: {xi = xi+1} for 1 ≤ i ≤
p − 1; {x1 = x p + 1}; {y j = y j+1} for 1 ≤ j ≤ q − 1; {y1 = yq − 1}. Let
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t be the smallest index such that xa
t < ya

s − h. Order the possible horizontal
walls as follows:

{xt+1 = xt+2}, {xt+2 = xt+3}, . . . , {x p−1 = x p},
{x1 = x p + 1}, {x1 = x2}, . . . , {xt−1 = xt },
{ys = ys+1}, {ys+1 = ys+2}, . . . , {yq−1 = yq},
{y1 = yq − 1}, {y1 = y2}, . . . , {ys−2 = ys−1}.

(6)

Let w+ (resp. w−) be the product of the reflections in S+a (resp. S−a ), and let
whor be the product of the reflections in Shor

a , in the same relative order as in
(6). Let ŵ = w+whorw−. We want to prove that ŵ = w. For this, it is enough
to show that the linear part of ŵ coincides with the linear part of w, and that
ŵ(b) = w(b) for at least one point b ∈ E .

Denote by exi (resp. ey j ) the unit vector in the direction of xi (resp. y j ).
Given two elements ζ, ζ ′ ∈ Z , we write ζ � ζ ′ if ζ < ζ ′ and there exists no
ζ ′′ ∈ Z between ζ and ζ ′. For j ∈ {1, . . . , q} define

k j =
{−h if j ≥ s
1− h othewise,

so that Y consists of the real numbers ya
j + k j .

Consider the unit vector exi with i ≤ p − 1.

• If xa
i+1 � xa

i , then: the linear part of w− fixes exi ; the linear part of whor
sends exi to exi+1 ; the linear part of w+ fixes exi+1 .• If there is at least one element of Z between xa

i+1 and xa
i , say xa

i+1 � ya
j +

k j � ya
j+1 + k j+1 � · · ·� ya

j ′ + k j ′ � xa
i , then: the linear part of w− sends

exi to ey j ′ ; the linear part of whor sends ey j ′ to ey j ; the linear part of w+
sends ey j to exi+1 .

Consider now the unit vector ex p .

• If xa
1 is the maximal element of Z , then: the linear part of w− fixes ex p ; the

linear part of whor sends ex p to ex1 ; the linear part of w+ fixes ex1 .• Otherwise, if xa
1 � ya

j + k j � ya
j+1 + k j+1 � · · · � ya

s−1 + ks−1, then: the
linear part of w− sends ex p to eys−1 ; the linear part of whor sends eys−1 to
ey j ; the linear part of w+ sends ey j to ex1 .

A similar argument shows that the linear part of ŵ sends ey j to ey j+1 if j ≤
q − 1, and sends eyq to ey1 . Therefore the linear part of ŵ coincides with the
linear part of w (see (3)).

It remains to show that ŵ(b) = w(b) for some point b. Let b be the vertex
of Ca opposite to the wall H = {xt − ys = −h}. The point b is the intersection
of all the other walls of Ca , so its coordinates are explicitly determined by the
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following equations:

xb
p = xb

p−1 = · · · = xb
t

yb
s − h = yb

s+1 − h = · · · = yb
q − h = yb

1 + 1− h = · · · = yb
s−1 + 1− h

= xb
t−1 = xb

t−2 = · · · = xb
1 = xb

p + 1.

Therefore,

b = [ 1, . . . , 1︸ ︷︷ ︸
t−1

, 0, . . . , 0︸ ︷︷ ︸
p−t+1

| h, . . . , h︸ ︷︷ ︸
s−1

, h + 1, . . . , h + 1︸ ︷︷ ︸
q−s+1

].

Recall that the reflection r with respect to H belongs to S+a . Since b is fixed
by all the other reflections in Sa , we have that

ŵ(b)=r(b)=[ 1, . . . , 1︸ ︷︷ ︸
t

, 0, . . . , 0︸ ︷︷ ︸
p−t

| h, . . . , h︸ ︷︷ ︸
s

, h + 1, . . . , h + 1︸ ︷︷ ︸
q−s

]=w(b).

Proof of Theorem 3.8 Let a be a point in C ∩ �, as in (4). Lemma A.1 imme-
diately implies points (ii) and (iii).

Since p ≥ q, none of thewalls ofC is of the form {y j−y j ′ = k}. In addition,
for every j ∈ {1, . . . , q}, the coordinate y j appears in the defining equation of
exactly two walls of C . The corresponding reflections are one in S+ and one
in S−. Therefore |S+| = |S−| = q and |Shor| = n + 1− 2q = p − q, proving
point (i).

Proof of Proposition 3.9 Let d = gcd(p, q). For part (i), write a as in (4) for
some θ ∈ R. Let {xi − y j = k} be a vertical hyperplane containing a. In
particular, we have xa

i − ya
j ∈ Z. For another hyperplane {xi ′ − y j ′ = k′} to

contain a, we need xa
i ′ − ya

j ′ ∈ Z. By (4), we have that

(xa
i − ya

j ) − (xa
i ′ − ya

j ′) =
(

p−i+θ
p − j−1−θ

q

)
−

(
p−i ′+θ

p − j ′−1−θ
q

)

= i ′−i
p + j ′− j

q .

This is an integer if and only if i ′ = i+u · p
d and j ′ = j+v · q

d for some u, v ∈ Z

such thatd | u+v. There ared such pairs (i ′, j ′) ∈ {1, . . . , p}×{1, . . . , q}, and
each of themyields exactly one hyperplane containing a. All these hyperplanes
pairwise commute, because no two such pairs share the same i ′ or the same
j ′.
For part (ii), fix a point a ∈ C ∩ �. Let H = {xi − y j = k} be a vertical wall

of C , and denote by b the intersection point of H with �. By the description of
the walls of C given in the proof of LemmaA.1, we have either xa

i < ya
j +k <
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xa
i + 1

p or xa
i − 1

p < ya
j +k < xa

i . In any case, |xa
i − ya

j −k| < 1
p . Since b ∈ H ,

we also have xb
i −yb

j −k = 0, and therefore |(xa
i −ya

j )−(xb
i −yb

j )| < 1
p . Then,

ifwewritea and b as in (4) for some θa, θb ∈ R, we obtain that |θa−θb| <
q

p+q .

By Lemma 3.7, consecutive points of the sequence {pi }i∈Z differ by gcd(p,q)
p+q μ.

Therefore there are q
gcd(p,q)

= m possible positions for b above a, and m
possible positions below a. More precisely, if a is between pi and pi+1, then b
must be one of the following 2m points: pi−m+1, pi−m+2, . . . , pi+m . By part
(i), each of these points is contained in exactly gcd(p, q) vertical hyperplanes
ofA. By Theorem 3.8, the chamberC has exactly 2q = 2m ·gcd(p, q) vertical
walls. Therefore every hyperplane ofA that intersects � in one of the previous
2m points must be a wall of C .

Proof of Proposition 3.10 We begin with part (i). Every point a ∈ � satisfies
xa

i − 1 ≤ xa
i ′ ≤ xa

i for every i < i ′, and ya
j ≤ ya

j ′ ≤ ya
j + 1 for every j < j ′.

Then the same non-strict inequalities need to be satisfied by every axial vertex
b. The walls of an axial chamber C have the form (5), so every vertex of C
admits an expression where all the coordinates are integers. Therefore every
axial vertex has the following form:

b = [1, . . . , 1︸ ︷︷ ︸
p1

, 0, . . . , 0︸ ︷︷ ︸
p2

| h, . . . , h︸ ︷︷ ︸
q1

, h + 1, . . . , h + 1︸ ︷︷ ︸
q2

] (7)

for some h ∈ Z, with q2 ≥ 1 (otherwise we can change h with h + 1). Let
A ⊆ E be the set of points of the form (7). The representation (7) of a point
b ∈ A becomes unique, and we call it the standard form of b, if we also impose
p2 ≥ 1 (otherwise we can remove 1 from all coordinates).
By (3), the Coxeter element w acts on b ∈ A as follows:

w(b) = [1, . . . , 1︸ ︷︷ ︸
p1+1

, 0, . . . , 0︸ ︷︷ ︸
p2−1

| h, . . . , h︸ ︷︷ ︸
q1+1

, h + 1, . . . , h + 1︸ ︷︷ ︸
q2−1

].

In particular w(b) ∈ A, so there is an action of Z on A by powers of w. If
p2 = 1, then we can remove 1 from all coordinates in the previous equation
to obtain the standard form

w(b) = [0, . . . , 0 | h − 1, . . . , h − 1︸ ︷︷ ︸
q1+1

, h, . . . , h︸ ︷︷ ︸
q2−1

].

Denote by σ(b) the sum of the coordinates of the standard form of a point
b ∈ A. We have that σ(w(b)) ≡ σ(b) modulo p + q. By looking at the walls
of C given by (5), we see that the p + q vertices of an axial chamber C have
distinct values of σ , modulo p+q. Therefore there are at least p+q different
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orbits for the action of Z on A, and the vertices of an axial chamber belong to
different orbits.

It remains to show that there are exactly p+q orbits. For every point b ∈ A,
there is a point w j (b) which is in one of the following forms:

(a) [1, . . . , 1, 0 | 0, . . . , 0︸ ︷︷ ︸
q1

, 1, . . . , 1︸ ︷︷ ︸
q2

] with q2 ≥ 1;

(b) [1, . . . , 1︸ ︷︷ ︸
p1

, 0, . . . , 0︸ ︷︷ ︸
p2

| 0, . . . , 0] with p2 ≥ 1.

There are q points of the form (a), and p points of the form (b). Therefore
there are exactly p + q orbits. Notice that this also proves that every point of
A is an axial vertex because it is in the orbit of some axial vertex.
To prove part (ii), fix an axial vertex b ∈ A. Without loss of generality, we

may assume that b is of the form (a) or (b). We want to describe the set of
points a ∈ � that are contained in some axial chamber C having b as one of
its vertices. Let a be as in (4), for some θ ∈ R.

If b is of the form (a), then xb
p < yb

j for j ≥ q1 + 1, and yb
j < xb

i for
i ≤ p−1 and j ≤ q1. The same strict inequalities need to be satisfied by a, an
so we get θ

p <
j−1−θ

q for j ≥ q1 + 1, and j−1−θ
q <

p−i+θ
p for i ≤ p − 1 and

j ≤ q1. These conditions are equivalent to
q1−1

q − 1
p <

(
1
p + 1

q

)
θ <

q1
q , so θ

belongs to an interval of length 1. Conversely, every value of θ in this interval
yields a point a contained in a chamber C which has b as one of its vertices,
provided that we exclude the finite set of values corresponding to points that
belong to some vertical hyperplane ofA. By Lemma 3.7, this interval of values
of θ spans exactly p+q

gcd(p,q)
axial chambers.

If b is of the form (b), the procedure is similar.We have yb
j < xb

i for all j and

for i ≤ p1, and yb
j > xb

i − 1 for all j and for i ≥ p1 + 1. The corresponding

inequalities for the point a give the condition p1
p − 1

q ≤
(
1
p + 1

q

)
θ ≤ p1

p + 1
p ,

which again yields an interval of length 1.

In order to prove Lemma 3.21, we start by explicitly describing the hyper-
bolic elements u ∈ [1, w] with l(u) = n. These are obtained as u = wr
where r ∈ [1, w] is a horizontal reflection. By Theorem 3.17, the hyperplanes
corresponding to horizontal reflections in [1, w] have the following forms:

(i) {xi = xi ′ } for i < i ′;
(ii) {xi = xi ′ + 1} for i < i ′;
(iii) {y j = y j ′ } for j < j ′;
(iv) {y j = y j ′ − 1} for j < j ′.
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If r is the reflection with respect to {xi = xi ′ } with i < i ′ ≤ p − 1, then
u = wr sends a point b ∈ E to

[xb
p + 1, xb

1 , . . . , xb
i−1, xb

i ′, xb
i+1, . . . , xb

i ′−1, xb
i , xb

i ′+1, . . . , xb
p−1 |

yb
q − 1, yb

1 , . . . , yb
q−1].

On the coordinates xi+1, . . . , xi ′ , the hyperbolic isometry u acts as a horizontal
Coxeter element of type Ai ′−i−1. On the remaining coordinates, it acts as a
(p − i ′ + i, q)-bigon Coxeter element of type Ãn−i ′+i . This is exactly the
hyperbolic-horizontal decomposition of u (Lemma 3.20).

If r is the reflection with respect to {xi = x p} for some i ≤ p − 1, then
u = wr sends b ∈ E to

[xb
i + 1, xb

1 , . . . , xb
i−1, xb

p, xb
i+1, . . . , xb

p−1 |
yb

q − 1, yb
1 , . . . , yb

q−1].
As before, on the coordinates xi+1, . . . , x p we have that u acts as a horizontal
Coxeter element of type Ap−i−1, and on the remaining coordinates it acts as
a (i, q)-bigon Coxeter element of type Ãn−p+i .

If r is the reflection with respect to {xi = xi ′ + 1} with i < i ′ ≤ p− 1, then
u = wr sends b ∈ E to

[xb
p + 1, xb

1 , . . . , xb
i−1, xb

i ′ + 1, xb
i+1, . . . , xb

i ′−1, xb
i − 1, xb

i ′+1, . . . , xb
p−1 |

yb
q − 1, . . . , yb

q−1].

Then u acts as a (i ′ − i, q)-bigon Coxeter element of type Ãq+i ′−i−1 on the
coordinates xi+1, . . . , xi ′, y1, . . . , yq , and as a horizontal Coxeter element of
type Ap−i ′+i−1 on the remaining coordinates.

If r is the reflection with respect to {xi = x p + 1} for some i ≤ p − 1, then
u = wr sends b ∈ E to

[xb
i , xb

1 , . . . , xb
i−1, xb

p + 1, xb
i+1, . . . , xb

p−1 | yb
q − 1, yb

1 , . . . , yb
q−1].

As before, on the coordinates xi+1, . . . , x p, y1, . . . , yq we have that u acts
as a (p − i, q)-bigon Coxeter element of type Ãn−i , and on the remaining
coordinates it acts as a horizontal Coxeter element of type Ai−1.

A similar phenomenon happens if r is a reflection of type (iii) or (iv). We
are now ready to prove Lemma 3.21.

Proof of Lemma 3.21 for the case Ãn Let u ∈ [1, w] be a hyperbolic isom-
etry such that Wu is irreducible. By iterating the previous argument, we get
that u acts as a (p′, q ′)-bigon Coxeter element of type Ã p′+q ′−1 on a subset
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xi1, . . . , xi p′ , y j1, . . . , y jq′ of the coordinates (for some i1 < · · · < i p′ and
j1 < · · · < jq ′). It acts as the identity on the other coordinates, because oth-
erwise u would have a non-trivial hyperbolic-horizontal decomposition, and
Wu would be reducible. If we restrict to the relevant p′ + q ′ coordinates, we
get

u(b) = [xb
i p′ + 1, xb

i1, . . . , xb
i p′−1

| yb
jq′ − 1, yb

j1, . . . , yb
jq′−1

].

Then Wu is a Coxeter group of type Ã p′+q ′−1.
The point a of the statement can be written in the form (4), and its relevant

p′ + q ′ coordinates are given by
[

p−i1
p ,

p−i2
p , . . . ,

p−i p′
p

∣∣ j1−1
q ,

j2−1
q , . . . ,

jq′−1
q

]

+ θ
[
1
p , . . . , 1

p | − 1
q , . . . ,− 1

q

]
.

In particular, notice that xa
i p′ < xa

i p′−1
< · · · < xa

i1
< xa

i p′ + 1 and ya
j1

< ya
j2

<

· · · < ya
jq′ < ya

j1
+ 1. We conclude by applying Lemma A.1 to the Coxeter

group Wu (in place of W ), its Coxeter element u (in place of w), and the point
a.

A.2 Case C̃n

Let W be a Coxeter group of type C̃n . It is realized as the reflection group in
E = R

n associated with the hyperplane arrangement

A =
{
{xi ± x j = k}

∣∣∣ 1 ≤ i < j ≤ n, k ∈ Z

}

∪
{ {

xi = k
2

} ∣∣∣ 1 ≤ i ≤ n, k ∈ Z

}
.

Consider the chamber C0 = {
0 < x1 < x2 < · · · < xn < 1

2

}
, with walls

given by {x1 = 0}, {x1 = x2}, . . . , {xn−1 = xn},
{

xn = 1
2

}
. Let w be the

Coxeter element obtained by multiplying the reflections with respect to the
walls of C0 (in the order given before). Then w acts as follows on a point
b ∈ E :

w(b) = (xb
n − 1, xb

1 , . . . , xb
n−1). (8)

The shortest vector inMov(w) is μ = − ( 1
n , 1

n , . . . , 1
n

)
, and the points of the

Coxeter axis � are of the form

(
0, 1

n , 2
n , . . . , n−1

n

) + θμ
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for θ ∈ R. The hyperplanes of the form {xi − x j = k} are horizontal, and the
other hyperplanes of A are vertical.

Given a point a ∈ E which is not contained in any hyperplane of A, let Ca
be the chamber containing a, and consider the line passing through a and with
the same direction as the Coxeter axis:

�a = {
(xa

1 , xa
2 , . . . , xa

n ) + θμ | θ ∈ R
}
.

Define Sa, S+a , S−a , Shor
a as in the case Ãn (Sect. A.1).

Lemma A.2 Let W be a Coxeter group of type C̃n, and w a Coxeter element
as in (8). Let a ∈ E be a point which is not contained in any hyperplane of
A, and such that xa

1 < xa
2 < · · · < xa

n < xa
1 + 1. Then the reflections in S+a

(resp. S−a ) pairwise commute. In addition, w can be written as a product of
the reflections in Sa, where the reflections in S+a come first, and the reflections
in S−a come last.

Proof The statement holds for a if and only if it holds for wm(a), for any
m ∈ Z. Notice that w permutes cyclically the fractional parts of the real
numbers xa

1 , . . . , xa
n . Therefore, without loss of generality, we can assume

that xa
1 has the smallest fractional part among xa

1 , . . . , xa
n . Since wn is a pure

translation of nμ = −(1, 1, . . . , 1), we can also assume that 0 < xa
1 < 1.

Together with the hypothesis xa
1 < xa

2 < · · · < xa
n < xa

1 + 1, we obtain that

0 < xa
1 < xa

2 < · · · < xa
n < 1.

Let p ∈ {0, . . . , n} be the largest index such that xa
p < 1

2 . Let q = n − p,
and define y j = 1− x p+ j for j ∈ {1, . . . , q}. Notice that the isometry

(x1, . . . , xn) #→ (x1, . . . , x p, 1− x p+1, . . . , 1− xn)

is an element of W , so it sends chambers to chambers. Since a is not con-
tained in any hyperplane of A, the new coordinates xa

1 , . . . , xa
p, ya

1 , . . . , ya
q

are pairwise distinct numbers between 0 and 1
2 . They satisfy xa

1 < · · · < xa
p

and ya
1 > · · · > ya

q . Let Z = {xa
1 , . . . , xa

p, ya
1 , . . . , ya

q }, and write Z = {za
1 <

za
2 < · · · < za

n}, where each zl is either equal to some xi or to some y j . The
inequalities 0 < z1 < z2 < · · · < zn < 1

2 define the chamber Ca , and the
walls of Ca are

{z1 = 0}, {z1 = z2}, . . . , {zn−1 = zn},
{
zn = 1

2

}
. (9)

The vertical walls that intersect �a above a are those of the form {y j = xi }
with ya

j � xa
i , {x1 = 0}, and {

y1 = 1
2

}
. Notice that not all of these hyperplanes
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necessarily occur as walls of Ca . For example, {x1 = 0} is a wall of Ca if
and only if xa

1 < ya
q . Similarly, the vertical walls that intersect �a below a are

those of the form {xi = y j } with xa
i � ya

j , {yq = 0}, and {
x p = 1

2

}
. Every

coordinate xi or y j appears in exactly two walls. If these two walls are both
vertical, then one intersects �a above a and the other intersects �a below a.
Therefore, the reflections in S+a (resp. S−a ) pairwise commute.

The horizontal walls are among the following: {xi = xi+1} for 1 ≤ i ≤
p−1; {y j = y j+1} for 1 ≤ j ≤ q −1. Notice that we left out the hyperplanes
{x1 = x p − 1} and {y1 = yq + 1}: although the corresponding reflections are
in [1, w], they cannot occur as walls of Ca , by (9). Order these hyperplanes as
follows:

{x1 = x2}, {x2 = x3}, . . . , {x p−1 = x p},
{y1 = y2}, {y2 = y3}, . . . , {yq−1 = yq}. (10)

Let w+ (resp. w−) be the product of the reflections in S+a (resp. S−a ), and let
whor be the product of the reflections in Shor, in the same relative order as in
(10). Let ŵ = w+whorw−. We want to prove that ŵ = w.

If p = 0 or q = 0, the set of walls (9) can be written explicitly, and it is
immediate to check that ŵ = w (in the case q = 0, the chamberCa is precisely
the one used to define w in the first place). Suppose from now on that p > 0
and q > 0. We are going to show that the linear parts of ŵ and w coincide,
and that ŵ(b) = w(b) for some point b ∈ E .

Consider the unit vector exi in the direction of xi , with i ≤ p − 1.

• If xa
i � ya

j � ya
j−1 � · · · � ya

j ′ � xa
i+1 with j ′ ≤ j , then: the linear part of

w− sends exi to ey j ; the linear part of whor sends ey j to ey j ′ ; the linear part
of w+ sends ey j ′ to exi+1 .

• If xa
i � xa

i+1, then: the linear part of w− fixes exi ; the linear part of whor
sends exi to exi+1 ; the linear part of w+ fixes exi+1 .

Consider now the unit vector ex p .

• If xa
p � ya

j � ya
j−1 � · · · � ya

1 < 1
2 with j ≥ 1, then: the linear part of w−

sends ex p to ey j ; the linear part of whor sends ey j to ey1 ; the linear part of
w+ sends ey1 to −ey1 .

• If ya
1 � xa

i � xa
i+1 � · · · � xa

p < 1
2 with i ≤ p, then: the linear part of w−

sends ex p to −ex p ; the linear part of whor sends −ex p to −exi ; the linear
part of w+ sends −exi to −ey1 .

A similar argument shows that the linear part of ŵ sends ey j to ey j+1 if j ≤ q−
1, and sends eyq to−ex1 . Recall now that y j = 1−x p+ j , and so ey j = −ex p+ j .
Therefore the linear part of ŵ sends exi to exi+1 for all i ∈ {1, . . . , n} (with
indices taken modulo n), so it coincides with the linear part of w.

It remains to show that ŵ(b) = w(b) for some point b ∈ E .
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• If 0 < xa
1 < ya

q , let b be the vertex ofCa opposite to thewall H = {x1 = 0},
i.e. b = (1

2 ,
1
2 , . . . ,

1
2

)
. The reflection r with respect to H belongs to S+a .

Then ŵ(b) = r(b) = ( − 1
2 ,

1
2 , . . . ,

1
2 ) = w(b).

• If 0 < ya
q � ya

q−1 � · · · � ya
j � xa

1 with j ≤ q, let b be the vertex of Ca
opposite to the wall H = {y j = x1} = {1− x p+ j = x1}, i.e.

b = ( 1
2 , . . . ,

1
2︸ ︷︷ ︸

p+ j−1

, 1, . . . , 1︸ ︷︷ ︸
q− j+1

)
.

Again, the reflection r with respect to H belongs to S+a , and therefore

ŵ(b) = r(b) = (
0, 1

2 , . . . ,
1
2︸ ︷︷ ︸

p+ j−1

, 1, . . . , 1︸ ︷︷ ︸
q− j

) = w(b).

As in the case Ãn , in order to prove Lemma 3.21 we start by explicitly
describing the hyperbolic elements u ∈ [1, w] with l(u) = n. By Theorem
3.5, the horizontal reflections r ∈ [1, w] are the ones with the following fixed
hyperplanes:

(i) {xi = x j } for i < j ;
(ii) {xi = x j − 1} for i < j .

If r is the reflection with respect to {xi = x j } with i < j ≤ n − 1, then
u = wr sends a point b ∈ E to

(xb
n − 1, xb

1 , . . . , xb
i−1, xb

j , xb
i+1, . . . , xb

j−1, xb
i , xb

j+1, . . . , xb
n−1).

On the coordinates xi+1, . . . , x j , the hyperbolic isometry u acts as a horizontal
Coxeter element of type A j−i−1. On the remaining coordinates, it acts as a
Coxeter element of type C̃n− j+i .

If r is the reflection with respect to {xi = xn}, then u = wr sends b ∈ E to

(xb
i − 1, xb

1 , . . . , xb
i−1, xb

n , xb
i+1, . . . , xb

n−1).

Therefore u acts as a horizontal Coxeter element of type An−i−1 on the coor-
dinates xi+1, . . . , xn , and as a Coxeter element of type C̃i on the coordinates
x1, . . . , xi .

The situation is similar if r is a reflection with respect to {xi = x j − 1}
for some i < j . In this case, u acts as a Coxeter element of type C̃ j−i on
the coordinates xi+1, . . . , x j , and as a horizontal Coxeter element of type
An− j+i−1 on the remaining coordinates.
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Notice that, in some of the previous cases, a Coxeter element of type C̃1 can
occur (for instance, this happens if r is the reflectionwith respect to {x1 = xn}).
The limit case C̃1 still makes sense and coincides with Ã1.

Proof of Lemma 3.21 for the case C̃n Let u ∈ [1, w] be a hyperbolic isometry
such that Wu is irreducible. By the same argument as in the case Ãn , we have
that u acts as a Coxeter element of type C̃m on a subset xi1, . . . , xim of the
coordinates, and as the identity on the remaining coordinates. If we restrict to
the relevant coordinates xi1, . . . , xim , we have

u(b) = (xb
im
− 1, xb

i1, . . . , xb
im−1

).

The relevant coordinates of a are given by

a =
(

i1−1
n , i2−1

n , . . . , im−1
n

)
− θ

( 1
n , 1

n , . . . , 1
n

)

for some θ ∈ R. These coordinates satisfy xa
i1

< xa
i2

< · · · < xa
im

< xa
i1
+ 1.

We conclude by applying Lemma A.2 to the Coxeter group Wu , its Coxeter
element u, and the point a.

A.3 Case B̃n

Let W be a Coxeter group of type B̃n . It is realized as the reflection group in
E = R

n associated with the hyperplane arrangement

A =
{
{xi ± x j = k}

∣∣∣ 1 ≤ i < j ≤ n, k ∈ Z

}

∪
{
{xi = k}

∣∣∣ 1 ≤ i ≤ n, k ∈ Z

}
.

Consider the chamber C0 = {0 < x1 < x2 < · · · < xn, xn−1 + xn < 1},
with walls given by {x1 = 0}, {x1 = x2}, . . . , {xn−1 = xn}, {xn−1 + xn = 1}.
Let w be the Coxeter element obtained by multiplying the reflections with
respect to these walls. Then w acts as follows on a point b ∈ E :

w(b) = (xb
n−1 − 1, xb

1 , . . . , xb
n−2 | 1− xb

n ). (11)

The shortest vector in Mov(w) is μ = −
(

1
n−1 ,

1
n−1 , . . . ,

1
n−1

∣∣ 0
)
, and the

points of the Coxeter axis � are of the form

(
0, 1

n−1 ,
2

n−1 , . . . ,
n−2
n−1

∣∣ 1
2

)
+ θμ
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for θ ∈ R. The horizontal hyperplanes are: {xi−x j = k} for 1 ≤ i < j ≤ n−1
and k ∈ Z; {xn = k} for k ∈ Z.

Given a point a ∈ E which is not contained in any hyperplane ofA, define
Ca , Sa , S+a , S−a , and Shor

a as in the previous cases.

Lemma A.3 Let W be a Coxeter group of type B̃n, and w a Coxeter element
as in (11). Let a ∈ E be a point which is not contained in any hyperplane of
A, and such that xa

1 < xa
2 < · · · < xa

n−1 < xa
1 + 1 and xa

n = 1
2 . Then the

reflections in S+a (resp. S−a ) pairwise commute. In addition, w can be written
as a product of the reflections in Sa, where the reflections in S+a come first, and
the reflections in S−a come last.

Proof By replacing a with a wm(a) for a suitable m ∈ Z, we can assume that
0 < xa

1 < xa
2 < · · · < xa

n−1 < 1 and xa
n = 1

2 . Let p ∈ {0, . . . , n − 1} be the
largest index such that xa

p < 1
2 , and let q = n − 1 − p. As in the case C̃n ,

define y j = 1− x p+ j for j ∈ {1, . . . , q}. Define also

t =
{

xn if q is even
1− xn if q is odd.

Notice that, if we multiply the reflections with respect to {xi = xn} and {xi +
xn = 1} (for some i ≤ n − 1), we obtain the isometry (xi , xn) #→ (1− xi , 1−
xn). If we multiply these isometries for all i ∈ {p + 1, . . . , n − 1}, we obtain
the change of coordinates

(x1, . . . , xn−1 | xn) #→ (x1, . . . , x p, y1, . . . , yq | t),

which is therefore an element of W . As in the case C̃n , we now have 0 < xa
1 <

xa
2 < · · · < xa

p < 1
2 and 0 < ya

q < ya
q−1 < · · · < ya

1 < 1
2 . In addition, there

is the last coordinate ta = 1
2 .

Let Z = {xa
1 , . . . , xa

p, ya
1 , . . . , ya

q }, andwrite Z = {za
1 < za

2 < · · · < za
n−1}.

Using the coordinates z1, . . . , zn−1, t , the chamber Ca is given by {0 < z1 <

· · · < zn−1 < t, zn−1 + t < 1}. Therefore, its walls are
{z1 = 0}, {z1 = z2}, . . . , {zn−1 = t}, {zn−1 + t = 1}.

Denote by r and r ′ the reflections with respect to {zn−1 = t} and {zn−1+t =
1}, respectively. They commute, and they are both vertical. In addition, they
are either both in S+a (if zn−1 = y1) or both in S−a (if zn−1 = x p). The product
rr ′ is given by (zn−1, t) #→ (1 − zn−1, 1 − t), and it is the identity on the
other coordinates. Since t is either xn or 1 − xn , we have that rr ′ is given by
(zn−1, xn) #→ (1 − zn−1, 1 − xn). On the last coordinate xn , this is exactly
how w acts. On the coordinate zn−1, we have that rr ′ acts as a reflection with
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respect to zn−1 = 1
2 . The rest of the proof carries out exactly as in the case

C̃n−1 (see Lemma A.2).

Let us examine the hyperbolic elements u ∈ [1, w] with l(u) = n. The
horizontal reflections r ∈ [1, w] are:
(i) {xi = x j } for i < j ≤ n − 1;
(ii) {xi = x j − 1} for i < j ≤ n − 1;
(iii) {xn = 0};
(iv) {xn = 1}.

Similarly to the case C̃n , if r is a reflection of type (i), then u = wr acts as
a horizontal Coxeter element of type A j−i−1 on some of the coordinates, and
as a Coxeter element of type B̃n− j+i on the remaining coordinates. If r is a
reflection of type (ii), then u = wr acts as a Coxeter element of type B̃ j−i+1 on
some of the coordinates, and as a horizontal Coxeter element of type An− j+i−2

on the remaining coordinates. Notice that the limit case B̃2 = C̃2 can arise
(for instance, if r is the reflection with respect to {x1 = xn−1}).

If r is the reflection with respect to {xn = 0}, then u = wr sends a point
b ∈ E to

u(b) = (xb
n−1 − 1, xb

1 , . . . , xb
n−2 | xb

n + 1).

This is a (n − 1, 1)-bigon Coxeter element of type Ãn−1, and Wu is a Coxeter
group of type Ãn−1. If r is the reflection with respect to {xn = 1}we obtain the
same result up to a conjugation by w, so u = wr is again a (n − 1, 1)-bigon
Coxeter element of type Ãn−1.

Proof of Lemma 3.21 for the case B̃n Let u ∈ [1, w] be a hyperbolic element
such that Wu is irreducible. In particular, u = wv−1 for some horizontal
element v ∈ [1, w].

If r ≤ v, where r is a reflection with respect to {xn = 0} or {xn = 1}, then
u ≤ wr . Since wr is a Coxeter element of type Ãn−1, this case was already
covered in Sect. A.1.

Otherwise we proceed as for the case C̃n , and notice that u must act as a
Coxeter element of type B̃m on a subset of the coordinates xi1, . . . , xim−1, xn .
If we restrict to these relevant coordinates, we have

u(b) = (xb
im−1

− 1, xb
i1, . . . , xb

im−2
| 1− xb

n ).

We conclude by applying Lemma A.3 to the Coxeter group Wu , its Coxeter
element u, and the point a.
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A.4 Case D̃n

Let W be a Coxeter group of type D̃n . It is realized as the reflection group in
E = R

n associated with the hyperplane arrangement

A =
{
{xi ± x j = k}

∣∣∣ 1 ≤ i < j ≤ n, k ∈ Z

}
.

Consider the chamber C0 = {0 < x1 + x2, x1 < x2 < · · · < xn, xn−1+
xn < 1}, with walls given by {x1 + x2 = 0}, {x1 = x2}, . . . , {xn−1 =
xn}, {xn−1 + xn = 1}. Let w be the Coxeter element obtained by multiplying
the reflections with respect to these walls. Then w acts as follows on a point
b ∈ E :

w(b) = (−xb
1 | xb

n−1 − 1, xb
2 , xb

3 , . . . , xb
n−2 | 1− xb

n ). (12)

The shortest vector in Mov(w) is μ = −
(
0

∣∣ 1
n−2 ,

1
n−2 , . . . ,

1
n−2

∣∣ 0
)
, and

the points of the Coxeter axis � are of the form

(
0

∣∣ 0, 1
n−2 ,

2
n−2 , . . . ,

n−3
n−2

∣∣ 1
2

)
+ θμ

for θ ∈ R. The horizontal hyperplanes are: {xi−x j = k} for 2 ≤ i < j ≤ n−1
and k ∈ Z; {x1 ± xn = k} for k ∈ Z.

Given a point a ∈ E which is not contained in any hyperplane ofA, define
Ca , Sa , S+a , S−a , and Shor

a as in the previous cases.

Lemma A.4 Let W be a Coxeter group of type D̃n, and w a Coxeter element
as in (12). Let a ∈ E be a point which is not contained in any hyperplane of
A, and such that xa

1 = 0, xa
2 < xa

3 < · · · < xa
n−1 < xa

2 + 1, and xa
n = 1

2 .
Then the reflections in S+a (resp. S−a ) pairwise commute. In addition, w can be
written as a product of the reflections in Sa, where the reflections in S+a come
first, and the reflections in S−a come last.

Proof By replacing a with a wm(a) for a suitable m ∈ Z, we can assume that
xa
1 = 0, 0 < xa

2 < xa
3 < · · · < xa

n−1 < 1, and xa
n = 1

2 . Let p ∈ {1, . . . , n − 1}
be the largest index such that xa

p < 1
2 , and let q = n − 1 − p. Define y j =

1− x p+ j for j ∈ {1, . . . , q}, and

t =
{

xn if q is even
1− xn if q is odd.

As in the case B̃n , the change of coordinates

(x1 | x2, . . . , xn−1 | xn) #→ (x1 | x2, . . . , x p, y1, . . . , yq | t)
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is an element of W .
We now have 0 = xa

1 < xa
2 < · · · < xa

p < ta = 1
2 and 0 = xa

1 < ya
q <

ya
q−1 < · · · < ya

1 < ta = 1
2 . Let Z = {xa

2 , . . . , xa
p, ya

1 , . . . , ya
q }, and write

Z = {za
2 < za

3 < · · · < za
n−1}. Using the coordinates x1, z2, . . . , zn−1, t , the

chamberCa is given by {0 < x1+ z2, x1 < z2 < · · · < zn−1 < t, zn−1+ t <

1}. Therefore its walls are

{x1 + z2 = 0}, {x1 = z2}, {z2 = z3}, . . . , {zn−1 = t}, {zn−1 + t = 1}.

Exactly as in the case B̃n , the reflections with respect to {zn−1 = t} and
{zn−1 + t = 1} commute, and they are either both in S+a or both in S−a . Their
product acts as (zn−1, xn) #→ (1 − zn−1, 1 − xn). Similarly, the reflections
with respect to {x1 + z2 = 0} and {x1 = z2} commute, and they are either
both in S+a or both in S−a . Their product acts as (x1, z2) #→ (−x1,−z2). On
the coordinate x1, this is exactly how w acts. On the coordinate z2, this is the
same as a reflection with respect to z2 = 0. We conclude as in the case B̃n .

We now examine the hyperbolic elements u ∈ [1, w] with l(u) = n. The
horizontal reflections r ∈ [1, w] are:
(i) {xi = x j } for 2 ≤ i < j ≤ n − 1;
(ii) {xi = x j − 1} for 2 ≤ i < j ≤ n − 1;
(iii) {x1 ± xn = 0};
(iv) {xn ± x1 = 1}.

Similarly to the previous cases, if r is a reflection of type (i), then u = wr
acts as a horizontalCoxeter element of type A j−i−1 on someof the coordinates,
and as a Coxeter element of type D̃n− j+i on the remaining coordinates. If r is a
reflection of type (ii), then u = wr acts as a Coxeter element of type D̃ j−i+2 on
some of the coordinates, and as a horizontal Coxeter element of type An− j+i−3

on the remaining coordinates. Notice that the limit case D̃3 = Ã3 can arise
(for instance, if r is the reflection with respect to {x2 = xn−1}). When this
happens, a (2, 2)-bigon Coxeter element is obtained.

If r is the reflection with respect to {x1 + xn = 0}, then u = wr sends a
point b ∈ E to

u(b) = (xb
n | xb

n−1 − 1, xb
2 , xb

3 , . . . , xb
n−2 | xb

1 + 1).

This is a (n − 2, 2)-bigon Coxeter element of type Ãn−1, and Wu is a Coxeter
group of type Ãn−1. If r is the reflectionwith respect to {x1+xn = 1}we obtain
the same result up to a conjugation byw, so u = wr is again a (n−2, 2)-bigon
Coxeter element of type Ãn−1.
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If r is the reflection with respect to {xn − x1 = 0}, then u = wr sends a
point b ∈ E to

u(b) = (−xb
n | xb

n−1 − 1, xb
2 , xb

3 , . . . , xb
n−2 | 1− xb

1 ).

If we set x ′1 = −x1, using the coordinates (x ′1, x2, . . . , xn) we get

u(b) = (xb
n | xb

n−1 − 1, xb
2 , xb

3 , . . . , xb
n−2 | x ′ b1 + 1),

which is now clearly recognizable as a (n − 2, 2)-bigon Coxeter element of
type Ãn−1. If r is the reflection with respect to {xn − x1 = 1} we obtain the
same result up to a conjugation by w, so u = wr is again a (n − 2, 2)-bigon
Coxeter element of type Ãn−1.

Proof of Lemma 3.21 for the case D̃n Let u ∈ [1, w] be a hyperbolic element
such that Wu is irreducible. In particular, u = wv−1 for some horizontal
element v ∈ [1, w].

If r ≤ v,where r is a reflectionwith respect to {x1±xn = 0}or {xn±x1 = 1},
then u ≤ wr . Sincewr is aCoxeter element of type Ãn−1, this casewas already
covered in Sect. A.1.

Otherwise we proceed as for the cases C̃n and B̃n , by applying Lemma A.4
to the Coxeter group Wu , its Coxeter element u, and the point a.
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