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A TABLE OF n-COMPONENT HANDLEBODY LINKS OF

GENUS n+ 1 UP TO SIX CROSSINGS

GIOVANNI BELLETTINI, GIOVANNI PAOLINI, MAURIZIO PAOLINI,

AND YI-SHENG WANG

Abstract. A handlebody link is a union of handlebodies of positive genus

embedded in 3-space, which generalizes the notion of links in classical knot

theory. In this paper, we consider handlebody links with a genus two handle-
body and n− 1 solid tori, n > 1. Our main result is the classification of such

handlebody links with six crossings or less, up to ambient isotopy.

1. Introduction

Early works on knot tabulation, motivated by Kelvin’s vortex theory, can be
traced back as early as the 19th. To date, all prime knots up to 16 crossings are
classified [5], [10]. Knot tabulation has been further generalized to other contexts
in recent years. [24] and [26] tabulate prime theta curves and handcuff graphs up
to seven crossings, and based on this, [14] subsequently enumerates all irreducible
handlebody knots of genus two up to six crossings. The primary goal of knot
tabulation is to classify embedded objects by their complexity. At the same time
it provides abundant examples, allowing us to better understand knot properties,
such as topology and symmetry of knot complements.

The aim of this paper is to extend the classification of handlebody knots of genus
two in [14] (see also [20], [15]) to handlebody links with n > 1 components having
total genus n + 1 (Table 1); we call such a handlebody link an (n, 1)-handlebody
link; it consists of exactly one genus two handlebody and n − 1 solid tori. Our
classification theorem is based on classifications of minimal diagrams and of not
necessarily connected spatial graphs with small crossing number (compare with
[24], [25]).

While the chirality of some handlebody knots in [14] is hard to detect [27],
[20], [12], [15], and remains unknown for some of them [13], the chirality of all
handlebody links in Table 1 can be determined. The investigation also reveals that
complements of handlebody links can behave quite differently; there are irreducible
(n, 1)-handlebody links, n > 2, with ∂-reducible complements, a phenomenon not
occurring with handlebody knots of genus two (see [34] and Remark 3.3). The
following theorems summarize the main results of the paper.

Theorem 1.1. Table 1 enumerates all non-split1, irreducible2 (n, 1)-handlebody
links, up to ambient isotopy and mirror image, by their minimal diagrams, up to
six crossings.

Date: June 8, 2022.

2010 Mathematics Subject Classification. 57M25, 57M15, 57M27, 05C30.
Key words and phrases. classification of handlebody links, crossing number, spatial graphs.
1A handlebody link HL is split if there is a 2-sphere S ⊂ S3 with S ∩ HL = ∅ separating HL

into two parts.
2A handlebody link HL is reducible if there is a 2-sphere S ⊂ S3 with S∩HL an incompressible

disk in HL.
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41 and 51 in Table 1 are the only non-split, irreducible (n, 1)-handlebody links
with four and five crossings, respectively. Among the 15 handlebody links with six
crossings, some of them have n > 2 components. We remark that 65 in Table 1
represents the famous figure eight puzzle devised by Stewart Coffin [3]. Thus, its
unsplittability implies the impossibility of solving the puzzle (Remark 3.2). Also,
(62, 64) and (611, 614) are pairs of inequivalent handlebody links with homeomorphic
complements.

Our task with respect to Table 1 is two-fold: We need to show firstly that there
is no extraneous entry, that is, all entries in the table

U.1 represent non-split handlebody links,
U.2 represent irreducible handlebody links,
U.3 are mutually inequivalent, up to mirror image,
U.4 attain minimal crossing numbers.

and secondly that the table is complete, namely no missing handlebody links with
crossing number c ≤ 6.

In Section 3 we prove U.1-U.3, making use of invariants such as the linking num-
ber [23], irreducibility criteria [2], and the Kitano-Suzuki invariant [17] (Theorems
3.2, 3.7, and 3.1, respectively). We prove the completeness of Table 1 by exhaust-
ing all—except for those obviously non-minimal—diagrams of non-split, irreducible
(n, 1)-handlebody links up to six crossings (Section 4).

Observe that the underlying plane graph of a diagram of a non-split, irreducible
(n, 1)-handlebody link necessarily has edge connectivity 2 or 3. For the sake of
simplicity, we say a diagram has connectivity e if its underlying plane graph has
edge connectivity e. Diagrams with connectivity 3 up to six crossings are generated
by a computer code (Appendix A), whereas handlebody links represented by dia-
grams with connectivity 2 are recovered by employing the knot sum—the order-2
vertex connected sum—of spatial graphs [24]. In more detail, a minimal diagram D
with connectivity 2 can be decomposed by decomposing circles3 into simpler tangle
diagrams, each of which induces a spatial graph that admits a minimal diagram
with connectivity 3 or 4, as illustrated in Fig. 1.1. This decomposition allows us to
recover the handlebody link represented by D by performing the knot sum between
prime links and a spatial graph that admits a minimal diagram with connectivity
3.

decomposing circle

knot sum of spatial graphsinduced spatial graphs

Figure 1.1. Decomposing a minimal diagram with connectivity
2.

Once a list containing all possible minimal diagrams of non-split, irreducible han-
dlebody links is produced, we examine each entry on the list manually (Appendix
A), and show that it either is non-minimal or represents a handlebody link ambient
isotopic to one in Table 1 with the same crossing number, up to mirror image. This
proves the completeness, and also implies U.4 by induction on crossing number.

3a circle that intersects D at two different arcs.
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Theorem 1.2. 51, 63, 66, 67, 68, 610 are the only chiral handlebody links in Table
1.

The proof of Theorem 1.2 occupies Section 5.2, and the main tool is Theorem
5.2, where we prove a uniqueness result for decomposition of non-split, irreducible
handlebody links with no genus g > 2 component, in terms of order-2 connected
sum (Definition 5.1). A unique decomposition theorem in a more general form for
handlebody knots of arbitrary genus is given in [18, Appendix B] (see also [15]).

Theorem 1.3. Table 5 enumerates all non-split, reducible (n, 1)-handlebody links
up to six crossings, up to ambient isotopy and mirror image.

Theorem 1.3 follows from the irreducibility of handlebody links in Table 1 and
a uniqueness factorization theorem (Theorem 6.1) for non-split, reducible (n, 1)-
handlebody links in terms of order-1 connected sum (Definition 6.1).

The structure of the paper is the following. Basic properties of handlebody links
are reviewed in Section 2. Uniqueness, unsplittability, and irreducibility of handle-
body links in Table 1 are examined in Section 3. The completeness of Table 1 is
discussed in Section 4. Section 5 introduces the notion of decomposable handle-
body links, and uses it to examine the chirality of handlebody links in Table 1. A
classification of non-split, reducible handlebody links up to six crossings is given
in Section 6. Section 7 concludes the paper with a discussion of questions arising
from the work. In the appendix we include an analysis on the output of the code
available at http://dmf.unicatt.it/paolini/handlebodylinks/.

Throughout the paper we work in the PL category; for the illustrative purposes,
the drawings often appear smooth. In the case of 3-dimensional submanifolds in
S3, the PL category is equivalent to the smooth category due to [4, Theorem 5], [9,
Theorems 7.1, 7.4], [28, Theorem 8.8, 9.6, 10.9].

2. Preliminaries

2.1. Handlebody links and spatial graphs.

Definition 2.1 (Embeddings in S3). A handlebody link HL (resp. a spatial
graph G) is an embedding of finitely many handlebodies of positive genus (resp. a
finite graph4) in the oriented 3-sphere S3.

The genus of a handlebody link is the sum of the genera of its components; a
spatial graph is trivalent if the underlying graph is trivalent (each vertex has degree
3). By a slight abuse of notation, we also use HL (resp. G) to denote the image of
the embedding in S3. The mirror image of HL (resp. G) is denoted by rHL (resp.
rG).

Definition 2.2 (Equivalence). Two handlebody links HL, HL′ (resp. spatial gra-
phs G,G′) are equivalent if they are ambient isotopic; they are equivalent up to
mirror image if HL (resp. G) is equivalent to HL′ or rHL′ (resp. G′ or rG′).

A regular neighborhood of a spatial graph defines a handlebody link, up to
equivalence [31, 3.24], and a spine of a handlebody link HL is a spatial graph
G ⊂ HL such that HL is a regular neighborhood of G [11]. Here we are mainly
concerned with trivalent spines.

Lemma 2.1. Every handlebody link admits a (trivalent) spine.

4A finite graph is a graph with finitely many vertices and edges; to exclude trivial objects,
we require that no component has positive Euler characteristic. A circle is regarded as a graph
without vertices as in [11].

http://dmf.unicatt.it/paolini/handlebodylinks/
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Table 1. Non-split, irreducible handlebody links up to six cross-
ings.

41 51

61 62 63 64

65 66 67 68

69 610 611 612

613 614 615

Proof. It suffices to prove the connected case. Suppose HK is a handlebody knot of
genus g, and D = {D1, · · · , D3g−3} is a set of disjoint incompressible disks in HK
such that the complement of the tubular neighborhoods N(Di) of Di in HK consists

of 3-balls Bi, i = 1, · · · , 2(g − 1), each of which intersects with
∐3g−3

i=1 ∂N(Di) at
three disks. Note that such a disk system always exists.

Let disks Di1, Di2, Di3 be components of Bi∩
(⋃3g−3

k=1 N(Dk)
)
, and choose points

vi1, vi2, vi3 in the interior of Di1, Di2, Di3 and a point vi in the interior of Bi.
Then, joining vi to vij by a path for each j gives us a trivalent vertex. Repeat the
construction for every i, and then glue the vij together so that the vertices vij and

vi′j′ are identified if they are in the same N(Dk), for some k. This way, we obtain
a connected trivalent spine of HK with 2(g − 1) trivalent vertices. �

In general, a trivalent spine of a n-component handlebody link of genus g has
2(g − n) = 2t trivalent vertices, and we call such a handlebody link a (n, t)-
handlebody link. This paper is primarily concerned with the case t = 1.

2.2. Diagrams. Let Sk = Rk ∪∞. Without loss of generality, it may be assumed
handlebody links or spatial graphs are away from ∞.

Definition 2.3 (Regular projection). A regular projection of a spatial graph
G is a projection π : S3 \ ∞ → S2 \ ∞ such that the set π−1(x) ∩ G is finite with
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its cardinality #(π−1(x) ∩ G) ≤ 2 for any x ∈ S2 \ ∞, and no 0-simplex of the
polygonal subset G of S3 is in the preimage of a double point, a double point being
a point x ∈ S2 \∞ with #(π−1(x) ∩G) = 2.

As with the case of knots, up to ambient isotopy, every spatial graph admits a
regular projection: the idea is to choose a vector v neither parallel to a 1-simplex
in the polygonal subset G ⊂ R3 = S3 \ ∞ nor in a plane containing a 0-simplex
and a 1-simplex or two 1-simplices; then isotopy G slightly to remove those points
x with #π−1

v (x) ∩G > 2, where πv is the projection onto the plane normal to v.

Definition 2.4 (Diagram of a spatial graph). A diagram of a spatial graph G
is the image of a regular projection of G with relative height information added to
each double point.

The convention is to make breaks in the line corresponding to the strand passing
underneath; thus each double point becomes a crossing of the diagram.

Definition 2.5 (Diagram of a handlebody link). A diagram of a handlebody
link HL is a diagram of a spine of HL.

A diagram of G (resp. HL) is trivalent if it is obtained from a regular projection
of a trivalent spatial graph (resp. spine).

Definition 2.6 (Crossing number). The crossing number c(D) of a diagram D
of a handlebody link HL (resp. of a spatial graph G) is the number of crossings in
D. The crossing number c(HL) of HL (resp. c(G) of G) is the minimum of the set

{c(D) | D a diagram of HL (resp. G)}.

Definition 2.7 (Minimal diagram). A minimal diagram D of a handlebody link
HL (resp. of a spatial graph G) is a diagram of HL (resp. G) with c(D) = c(HL)
(resp. c(D) = c(G)).

Every multi-valent vertex in a minimal diagram D can be replaced with some
trivalent vertices by the inverse of the contraction move [11, Fig. 1] without changing
the crossing number, so for a handlebody link (resp. a spatial graph) there always
exists a trivalent minimal diagram. From now on, we use the term “a diagram” to
refer to a trivalent diagram of either a spatial graph or a handlebody link.

Now, regarding each crossing in a diagram as a quadrivalent vertex, we obtain
a plane graph, a finite graph embedded in the 2-sphere. If we work backward, and
start with a plane graph having only trivalent and quadrivalent vertices, we can
produce diagrams by replacing quadrivalent vertices with under- or over-crossings.
If the plane graph has 2t trivalent vertices and c quadrivalent vertices, then from it
we can recover 2c−1 diagrams, up to mirror image. In particular, a c-crossing (n, t)-
handlebody link can be recovered from one of these plane graphs. Therefore, if one
can enumerate all plane graphs with 2t trivalent vertices and up to c quadrivalent
vertices, then one can recover all (n, t)-handlebody links up to c crossings.

2.3. Moves.

Definition 2.8 (Moves). Local changes in a diagram depicted in Fig. 2.1 and Fig.
2.2 are called generalized Reidemeister moves, and the local change in Fig. 2.3 is
called an IH-move.

Note that spines of equivalent handlebody links might be inequivalent as spatial
graphs; indeed, the following holds.

Theorem 2.2 ([16, Theorem 2.1], [36]). Two trivalent spatial graphs are equiva-
lent if and only if their diagrams are related by a finite sequence of generalized
Reidemeister moves.
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Theorem 2.3 ([11, Corollary 2]). Two handlebody links are equivalent if and only
if their trivalent diagrams are related by a finite sequence of generalized Reidemeister
moves and IH-moves.

I II III

Figure 2.1. Classical Reidemeister moves of type I, II, III.

IV V

Figure 2.2. Reidemeister moves IV and V involve a trivalent ver-
tex.

IH−move

Figure 2.3. The IH-move.

When analyzing the data from the code (Section 4 and Appendix A), we adopt
the convention: a diagram is called IH-minimal if the number of crossings cannot
be reduced by generalized Reidemeister moves and IH moves, that is, “minimal” as
a diagram of a handlebody link, and a diagram is called R-minimal if the number of
crossings cannot be reduced by generalized Reidemeister moves, that is, “minimal”
as a diagram of a spatial graph.

2.4. Non-split, irreducible handlebody links.

Definition 2.9 (Edge connectivity of a graph). The edge-connectivity of a
graph is the minimum number of edges whose deletion disconnects the graph.

Definition 2.10 (Connectivity of a diagram). A diagram has connectivity e if
its underlying plane graph has edge-connectivity e.

Definition 2.11 (Split handlebody link). A handlebody link HL is split if
there exists a 2-sphere S ⊂ S3 such that S ∩ HL = ∅ and both components of the
complement S3 \S have non-trivial intersection with HL.

Definition 2.12 (Reducible handlebody link). A handlebody link HL is redu-
cible if its complement admits a 2-sphere S such that S∩HL is an incompressible
disk in HL; otherwise it is irreducible.
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Note that S in Definition 2.12 factorizes HL into two handlebody links, each of
which is called a factor of the factorization of HL.

A diagram with connectivity 0 (resp. connectivity 1) represents a split (resp.
reducible) handlebody link, so only diagrams with connectivity greater than 1 are
of interest to us; on the other hand, the connectivity of a diagram of a (n, t)-
handlebody link with t > 0 cannot exceed 3.

Now, we recall the order-2 vertex connected sum between spatial graphs [24] for
producing handlebody links represented by minimal diagrams with connectivity 2.
A trivial ball-arc pair of a spatial graph G is a 3-ball B with G∩B a trivial tangle
in B; it is oriented if an orientation of G ∩B is given.

Definition 2.13 (Knot sum). Given two spatial graphs G1,G2 with oriented
trivial ball-arc pairs B1, B2 of G1,G2, respectively, their order-2 vertex connected
sum (G1, B1)#(G2, B2) is a spatial graph obtained by removing the interiors of

B1, B2 and gluing the resulting manifolds S3 \B1 and S3 \B2 by an orientation-
reserving homeomorphism

h :
(
∂(S3 \B1

)
, ∂(G1 ∩B1))→ (∂

(
S3 \B2

)
, ∂(G2 ∩B2)).

The notation G1#G2 denotes the set of order-2 vertex connected sums of G1,G2

with all possible trivial ball-arc pairs.

Since an order-2 vertex connected sum depends only on the edges of G1,G2

intersecting with B1, B2 and their orientations, G1#G2 is a finite set.

3. Uniqueness, non-splittability, and irreducibility

Recall that, given a finite group G, the Kitano-Suzuki invariant ksG(HL) of a
handlebody link HL is the number of conjugate classes of homomorphisms from
π1(S3 \HL) to G [17]. Table 2 lists the invariants ksA4(HL) and ksA5(HL) of each

handlebody link HL in Table 1, as well as an upper bound of the rank of π1(S3 \HL)
computed by Appcontour [29], where Ak is the alternating group on k letters.

The entry “split” refers to the split handlebody link HL given by a trivial handle-
body knot and an unknotted solid torus; the entry “fake 65” is the split handlebody
link consisting of the handlebody knot HK 41, Ishii-Kishimoto-Suzuki-Moriuchi’s 41

in [14], and an unknotted solid torus; the entry “fake 611” is 611 in Table 1 with
one of the bottom crossings reversed, thus making the lower solid torus component
split off.

Theorem 3.1 (Uniqueness). Entries in Table 1 are all inequivalent.

Proof. All entries in Table 1 except for the pairs (62, 64) and (611, 614) are distin-
guished by comparing their ksA4

- and ksA5
-invariants (shown in Table 2). On the

other hand, 62 and 64 cannot be equivalent because the removal of the “unknot”
component produces inequivalent handlebody knots: one being trivial, the other
being HK 41. Similarly, one can distinguish 611 and 614 by removing the solid
torus component having a non-trivial linking number with the genus two handle-
body component [23] in each of them, and observing that, for 614, the resulting
handlebody link is 41, whereas for 611, we get the trivial split handlebody link. �

Remark 3.1. The pairs (62, 64) and (611, 614) in fact have homeomorphic comple-
ments, and hence the fundamental group cannot discriminate. Fig. 3.1 and 3.2
illustrate how to obtain the complements of 62 and 611 from 64 and 614, respec-
tively, via twisting (indicated by arrows).

Remark 3.2. 65 viewed as a diagram of a spatial graph is the notorious figure eight
puzzle devised by Stewart Coffin [3]. The goal of the puzzle is to free the circle
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Table 2. Kitano-Suzuki invariant for entries in Table 1.

handlebody link components ksA4 ksA5 rank
split trivial + unknot 178 3675 3
41 trivial + unknot 114 600 3
51 trivial + unknot 98 660 ≤ 4
61 trivial + unknot 90 600 3
62 trivial + unknot 106 689 3
63 trivial + unknot 90 469 3
64 HK41 + unknot 106 689 3
65 HK41 + unknot 210 ≤ 4

fake 65 HK41 + unknot 274
66 trivial + unknot 130 1380 3
67 trivial + unknot 98 597 ≤ 4
68 trivial + unknot 114 1401 3
69 trivial + 2 unknots 310 1841 4
610 trivial + 2 unknots 326 4
611 trivial + 2 unknots 486 5876 4

fake 611 trivial + 2 unknots 694
612 trivial + 2 unknots 502 5883 4
613 trivial + 2 unknots 822 4
614 trivial + 2 unknots 486 5876 4
615 trivial + 3 unknots 1242 5

component from the knotted handcuff graph, i.e. to obtain the fake 65 as a spatial
graph. The impossibility of solving the puzzle then follows from computing ksA4(•)
of 65 and fake 65 (Table 2). See [1], [22] for other proofs of this.

' ' '

Figure 3.1. 62 and 64 have homeomorphic complements.

' '

Figure 3.2. 611 and 614 have homeomorphic complements.

Theorem 3.2 (Unsplittability). Entries in Table 1 are all unsplittable.

Proof. In most cases (51, 61, 62, 63, 64, 67, 69, 610) unsplittability follows by comput-
ing the linking number [23] between pairs of components of a handlebody link.
There are a few cases where the linking number vanishes, and we deal with these
cases by computing the ksA4

- and ksA5
-invariants of the corresponding split han-

dlebody links (Table 2).
If 65 were split, then 65 would be equivalent to the fake 65 but this is not possible

by Table 2. In the case of 41, 66, 68, if any of them were split, than it would be
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equivalent to “split” in Table 2, but that is not the case. A similar argument can be
applied to 611 and 614: if one of them were split, it would be equivalent to the fake
611, in contradiction to Table 2. Lastly, we observe that 612 and 613 are non-split,
for otherwise 41 would be split. �

Below we recall the irreducibility test developed in [2]. An r-generator link is a
link whose knot group, the fundamental group of its complement, is of rank r.

Lemma 3.3. If the trivial knot is a factor of some factorization of a reducible
(n, 1)-handlebody link HL, then

12 | ksA4
(HL)+6 ·3n +2 ·4n and 60 | ksA5

(HL)+14 ·4n +19 ·3n +22 ·5n. (3.1)

Lemma 3.4. If a 2-generator knot is factor of some factorization of a reducible
(n, 1)-handlebody link HL, then

12 + 24p | ksA4
(HL) + (6 + 16p) · 3n + (2 + 6p) · 4n, where p = 0 or 1. (3.2)

Lemma 3.5. If a 2-component, 2-generator link is a factor of some factorization
of a reducible (n, 1)-handlebody link HL, then

48 + 24p | ksA4
(HL) + (26 + 16p) · 3n−1 + (8 + 6p) · 4n−1, where p = 0, 1, 2, 3 or 4.

(3.3)

From the above lemmas, one derives the following irreducibility test (see [2] for
more details), making use of the Grushko theorem [8].

Corollary 3.6 (Irreducibility test). A 3-generator (2, 1)-handlebody link is irre-
ducible if it fails to satisfy (3.1); a 4-generator (2, 1)-handlebody link is irreducible if
it fails to satisfy (3.2); a 4-generator (3, 1)-handlebody link or a 5-generator (4, 1)-
handlebody link is irreducible if it fails to satisfy (3.1) and (3.3).

Theorem 3.7 (Irreducibility). Entries in Table1 are irreducible.

Proof. Corollary 3.6, together with Table 2, shows that all but 69, 612 are irre-
ducible. The irreducibility of 612 and 69 follows from computing the linking number
between each pair of components in each of them. Specifically, if 612 (resp. 69) is
reducible, then either the trivial knot or a 2-generator 2-component link is a factor
of some factorization of 612 (resp. 69). For 612, the former case is not possible by
(3.1); the latter impossible too, for otherwise the two solid torus components would
have a trivial linking number. The same argument implies that 69 cannot have a
2-generator 2-component link as a factor, and the trivial knot cannot be its factor
either, since the homomorphism of integral homology

H1(V1)⊕H1(V2)→ H1(S3 \W )

is onto, where V1, V2 are the solid torus components, and W the genus two compo-
nent. �

Remark 3.3. The complement of 69 is in fact ∂-reducible; one can see this by
performing the twist operation, indicated by the arrow in Fig. 3.3a, where it shows
that its complement is homeomorphic to the complement of the order-1 connected
sum (Definition 6.1) between two Hopf links (Fig. 3.3a, right). The same argument
implies that Fig. 3.3b is an irreducible (m+ 3, 1)-handlebody link with ∂-reducible
complement, m ≥ 0.
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'' '

(a) 69 and fake 69.

m︷︸︸︷

(b)

Figure 3.3. Irreducible handlebody links with a ∂-reducible com-
plement.

4. Completeness

This section discusses completeness of Table 1. Recall first that a minimal di-
agram of a non-split, irreducible handlebody link has either connectivity 2 or 3.
IH-minimal diagrams with connectivity 3 are obtained from a software code, and
handlebody links represented by IH-minimal diagrams with connectivity 2 are re-
covered by knot sum of spatial graphs.

4.1. Minimal diagrams with connectivity 3. We consider plane graphs with
two trivalent vertices and up to six quadrivalent vertices satisfying the properties:

(1) each of them has edge-connectivity 3 as an abstract graph,
(2) their double arcs can only connect two quadrivalent vertices as abstract

graphs, and
(3) their double arcs only form a “bigon” (a polygon with two sides; the case

‘i’ in Fig. 4.1) as plane graphs.

The reason of considering only double arcs connecting two quadrivalent vertices
with a bigon configuration is because all the other cases lead to either non-R-
minimal diagrams or diagrams with connectivity less than 3 (see Fig. 4.1, where
“d, e, f, g, h” illustrate those double arcs connecting at least one trivalent vertex and
“j, k, l” those connecting two quadrivalent vertices with a non-bigon configuration.)

d f g he

i j k l

Figure 4.1. Possible configurations for loops and double arcs.

We enumerate such plane graphs by the software code, and then recover diagrams
from these plane graphs by adding an over- or under-crossing to each quadrivalent
vertex. Note that the number (n in Table 3) of components of the associated spatial
graphs is independent of how over/under-crossings are chosen. To provide a glimpse
of how the code works, we record in Table 3 the number of such plane graphs with
c quadrivalent vertices for each n. To recover (n, 1)-handlebody links with n > 1
represented by IH-minimal diagrams with connectivity 3, we need to consider the
cases with n > 1 in Table 3. On the other hand, to produce (n, 1)-handlebody links
represented by IH-minimal diagrams with connectivity 2, spatial graphs admitting
an R-minimal diagram with connectivity 3 up to 4 crossings are required; thus all
cases with c ≤ 4 have to be examined.
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Table 3. Plane graphs given by the code.

c n = 1 n = 2 n = 3 total
2 1 1
3 2 1 3
4 8 2 10
5 29 8 37
6 144 34 3 181

IH-minimal diagrams. We examine IH-minimality of diagrams produced by
plane graphs with n ≥ 2, and discard those obviously not IH-minimal. This excludes
all diagrams produced by the code up to 5 crossings (Table 7), but for diagrams with
6 crossings, some diagrams are potentially IH-minimal: they represent handlebody
links 61, 62, 63 or 69 in Table 1.

Lemma 4.1. An IH-minimal diagram with connectivity 3 has crossing number
c ≥ 6, and if c = 6, it represents a handlebody link equivalent to 61, 62, 63 or 69,
up to mirror image.

Note that we cannot conclude diagrams of 61, 62, 63 and 69 in Table 1 are IH-
minimal yet, as they might admit diagrams with connectivity 2 and fewer crossings.

R-minimal diagrams. To produce minimal diagrams with connectivity 2 up to 6
crossings, we need R-minimal diagrams up to 4 crossings. Inspecting R-minimality
of diagrams produced by the code (Table 6) gives us the following lemma.

Lemma 4.2. An R-minimal diagram with connectivity 3 and crossing number less
than 5 represents one of the spatial graphs in Table 4, up to mirror image.

Table 4. Spatial graphs up to four crossings.

G01 G21 G31 G41

G42 G43 G44 G45

4.2. Minimal diagrams with connectivity 2. Recall a diagram D with 2-conn-
ectivity can be decomposed into finitely many simpler tangle diagrams such that
each associated diagram of spatial graphs has connectivity 3 or 4 (Fig. 1.1). Fur-
thermore, if D is R-minimal, each induced spatial graph diagram is also R-minimal.
In particular, an IH-minimal diagram with connectivity 2 can be recovered by per-
forming the order-2 vertex connected sum between spatial graphs admitting a min-
imal diagram with connectivity k > 2. Since we are interested in (n, 1)-handlebody
links, only one summand is a spatial graph with two trivalent vertices, and the
rest are links admitting a minimal diagram with connectivity 4. Note that the
simplest minimal diagram with connectivity 4 represents the Hopf link, and since
we only consider minimal diagrams up to 6 crossings, there are at most three link
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summands. Thus, IH-minimal diagrams with connectivity 2 can be recovered by
considering the seven possible configurations below:

(1) G#L1,
(2) (G#L1)#L2,
(3) G#(L1#L2),

(4) ((G#L1)#L2)#L3,
(5) (G#L1)#(L2#L3),
(6) (G#(L1#L2))#L3,
(7) G#((L1#L2)#L3),

where G is a spatial graph admitting a minimal diagram with connectivity 3, and
Li is a link admitting a minimal diagram with connectivity 4. In general it is not
known if a minimal diagram with connectivity 4 always represents a prime link; it
is the case, however, when crossing number is less than 5. In fact, there are only
four minimal diagrams with connectivity 4 up to 4 crossings, and they represent the
Hopf link, the trefoil knot, the figure eight, and Solomon’s knot (L4a1), respectively.

Cases 4 through 7 are easily dealt with since G must have no crossings, and
hence it is the trivial theta curve G01, and thus each Li is necessarily the Hopf
link, so the knot sums actually consist in ‘inserting a ring’ somewhere to the result
of the previous knot sums. To produce irreducible handlebody links there is only
one possibility, that is, adding one Hopf link to each of the three arcs of the trivial
theta curve, and this gives us entry 615 in Table 1.

Cases 2 and 3 force G to have 2 crossings at most. It cannot have zero crossing
(G01), for otherwise, it produces only reducible handlebody links. On the other
hand, there is no R-minimal diagram with 1 crossing, and one R-minimal diagram
with 2 crossings, this is, G21 in Table 4 (Moriuchi’s 21 in [25]).

Now, to add two Hopf links to G21, namely to place two rings successively, we
observe that one of them must be placed around the connecting arc of the handcuff
graph by irreducibility. The second ring can be placed in three inequivalent ways,
which yield entries 612, 613 and 614 of Table 1.

Case 1 is more complicated, and we divided it into subcases based on the crossing
number c := c(G). The case c = 0 is immediately excluded by irreducibility, so
three possibilities remain: c ∈ {2, 3, 4}.

Subcase c(G) = 2. G is necessarily G21 in Table 4, and L cannot be a knot.
Since the crossing number of L cannot exceed 4, L is either L2a1 (Hopf link) or
L4a1 (Solomon’s knot). In either case, L is to be added to the connecting arc of the
handcuff graph to produce irreducible handlebody links, yielding entries 41 and 68

in Table 1.
Subcase c(G) = 3. G is necessarily G31 (Moriuchi’s theta curve 31 in [24]), so L

cannot be a knot, and hence is the Hopf link. There is only one place to add L by
irreducibility, and this leads to entry 51 in Table 1.

Subcase c(G) = 4. In this case, L has to be the Hopf link; and there are five
possible spatial graphs for G, namely G41, G42, G43, G44, and G45:

• For G41 in Table 4 (Moriuchi’s non-prime handcuff graph 21#321 [26]),
there are two inequivalent ways to add L which produce entries 64 and 65.

• For G42 and G43 in Table 4 (Moriuchi’s prime handcuff graph 41 [25] and
prime theta-curve 41 [24], respectively), there is only one way to add the
Hopf link in each case because of irreducibility, and this gives 66, 67 in
Table 1, respectively.

• For G44 and G45 in Table 4, again by irreducibility, there is only one way
to add the Hopf link in each case, which result in 610 and 611 in Table 1,
respectively.

We summarize the above discussion in the following:
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Lemma 4.3. A non-split, irreducible handlebody link admitting an IH-minimal
diagram with connectivity 2 and crossing number c ≤ 6 is equivalent, up to mirror
image, to one of the following handlebody links:

41, 52, 64, 65, 66, 67, 68, 610, 611, 612, 613, 614. (4.1)

By Lemma 4.1, if any of (4.1) admits an IH-minimal diagram with connectivity
3, it is equivalent to one of 61, 62, 63, 69, while by Lemma 4.1 if 61, 62, 63 or 69

admits an IH-minimal diagram with connectivity 2 and less than 6 crossings, it is
equivalent to 41 or 51, but neither situation can happen by Theorem 3.1.

Corollary 4.4. Diagrams in Table 1 are all IH-minimal.

5. Chirality

5.1. Decomposable links. Here we consider order-2 connected sum of handlebody-
link-disk pairs; compare with Definition 6.1. A handlebod-link-disk pair is a han-
dlebody link HL with an oriented incompressible disk D ⊂ HL. A trivial knot with
a meridian disk is regarded as a trivial handlebody-link-disk pair.

Definition 5.1 (Order-2 connected sum). Given two handlebody-link-disk
pairs (HL1, D1), (HL2, D2) the order-2 connected sum (HL1, D1)#(HL2, D2) is ob-
tained as follows: choose for each i a 3-ball neighborhood Bi of Di in S3 with
B̊i ∩ HLi a tubular neighborhood N(Di) of Di in HLi. Next, identify N(Di) with
Di× [0, 1] via the orientation of Di. Then (HL1, D1)#(HL2, D2) is given by remov-

ing B̊i and gluing the resulting manifolds via an orientation-reversing homeomor-
phism:

h : ∂(S3 \B1)→ ∂(S3 \B2) with h(D1 × {j}) = D2 × {k}, k ≡ j + 1 mod 2.

A handlebody link is decomposable if it is equivalent to an order-2 connected sum
of some non-trivial handlebody-link-disk pairs.

B1

B2

HL1 HL2

D1 × {1}

D1
× {

0}
D2
× {

0}

D2 × {1}

Figure 5.1. Knot sum of handlebody-link-disk pairs

Lemma 5.1. Given a non-split, irreducible handlebody link HL, HL is decomposable
if and only if S3 \HL admits an incompressible, ∂-incompressible annulus A with
∂A inessential in HL.

Proof. This follows from the definition of (∂-) incompressibility. �

The “∂-incompressible” above can be replaced with “non-boundary parallel” in
view of the irreducibility of HL.

Definition 5.2. A properly embedded annulus A in S3 \HL is a decomposing
annulus of HL (resp. of (HL, D)) if A is incompressible and ∂-incompressible (with
A ∩ ∂D = ∅), and ∂A is inessential in HL.
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Theorem 5.2. Given a non-split, irreducible handlebody link HL with no compo-
nent of HL having genus g ≥ 2, suppose A,A′ are decomposing annuli inducing

HL ' (HL1, D1)#(HL2, D2), HL ' (HL′1, D
′
1)#(HL′2, D

′
2), respectively, (5.1)

and (HLi, Di), i = 1, 2, admit no decomposing annulus. Then A and A′ are isotopic,
in the sense that there exists an ambient isotopy ft : S3 → S3 fixing HL with
f1(A) = A′.

Proof. Note first that if A, A′ are disjoint, then the assumption implies that they
must be parallel and hence isotopic. Suppose A ∩A′ 6= ∅. Then we isotopy A such
that the number of components of A ∩A′ is minimized.
Claim: any circle or arc in A ∩ A′ is essential in both A and A′. Observe
first that a circle component C or an arc component l of A ∩ A′ is either essential
in both A and A′ or inessential in both A and A′ by the incompressibility and
∂-incompressibility of A and A′.

Suppose C is inessential in both A and A′, and is innermost in A′. Then C
bounds disks D,D′ in A,A′, respectively. Since HL is non-split, D ∪D′ bounds a
3-ball B in S3 \HL. Isotopy D across B to D′ induces a new annulus A isotopic to
the original one with A∩A′ having less components, contradicting the minimality.

Suppose l is inessential in both A and A′ and an innermost arc in A′. Then
l cuts off a disk D′ from A′ and a disk D from A. Let D̂ := D ∪ D′. If ∂D̂ is
inessential, then we can remove the intersection l by isotopying A across the ball
bounded by D̂ and the disk bounded by ∂D̂ in ∂HL, contradicting the minimality.

If ∂D̂ is essential, then isotopying D̂, we can disjoin D̂ from A. Now, it may
be assumed that D1 is in a genus one component of HL1, and hence D2 is in a
component of HL2 with genus g ≤ 2. Since ∂D̂ is essential, D̂ has to be in a genus
two component of HL2 containing D2. Because ∂D̂ ∩D2 = ∅, if ∂D̂ is essential on
the boundary of the embedded solid torus

(
HL2 \ N(D2)

)
⊂ S3, ∂D̂ would be its

longitude, where N(D2) is a tubular neighborhood of D2, disjoint from D̂, in HL2.
Particularly, HL2 and therefore HL would be reducible, a contradiction. On the
other hand, if ∂D̂ bounds a disk on ∂

(
HL2\N(D2)

)
that contains some components

of ∂N(D2), then ∂D̂ is inessential in HL2, and hence in HL, again contradicting
the irreducibility of HL.

The claim is proved, and A∩A′ contains either essential circles or essential arcs.
No essential circles. Suppose C is an essential circle, and a closest circle to ∂A′.
Let R′ be the annulus cut off by C from A′ with A∩R′ = C and R an annulus cut
off by C from A. We isotopy the incompressible annulus R̂ := R ∪ R′ away from
A. Since components of ∂R̂ are inessential in HL, by the assumption, R̂ is either
parallel to A or boundary-parallel. In the former case, replacing A with R leads to
a contradiction since R ∩ A′ has less components than A ∩ A′. In the latter case,
isotopying R through the solid torus V bounded by R̂ and the part of ∂HL parallel
to R̂ gives a new A isotopic to the original one but with less components in A∩A′,
contradicting the minimality.
No essential arcs. Suppose l1 is an essential arc. Then choose the essential arc l2
next to l1 in A′ such that the disk D′ cut off by l1, l2 from A′ has D′ ∩A = l1 ∪ l2
and is on the side of A containing components of HL1. Let D be a disk cut off by
l1, l2 from A. It may be assumed, by pushing D away from A, that D∪D′ is disjoint
from A, and hence is on the genus one complement of HL1 containing D1. Since
Â := D∪D′ is disjoint from D1, it is necessarily an annulus, for if it were a Möbious
band, we would get a non-orientable surface embedded in S3. Furthermore, each
component of ∂Â is necessarily inessential in HL1, so it either bounds a meridian
disk or is inessential in ∂HL1. Note also it cannot be the case that one component
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of ∂Â is essential in ∂HL1 and the other inessential by the irreducibility of HL.
Suppose both components are inessential in ∂HL1. Then Â, together with disks on
∂HL1 bounded by ∂Â, bounds a 3-ball, with which we can isotopy A to remove the
intersection l1, l2, contradicting the minimality. Suppose both components bound
meridian disks in HL1. Then Ã = Dc ∪ D′ has ∂Ã inessential in ∂HL1, where
Dc = A \D. Thus we reduce it to the previous case. �

5.2. Chirality. We divide the proof of Theorem 1.2 into two lemmas.

Lemma 5.3. All handlebody links except for 51, 63, 66, 67, 68, 610 in Table 1 are
achiral.

Proof. An equivalence between 62 and r62 is depicted in Fig. 5.2; the chirality of
the other handlebody links are easy to see.

' ' ' '

Figure 5.2. 62 and r62.

�

Lemma 5.4. 51, 63, 66, 67, 68, 610 in Table 1 are chiral.

Proof. Recall that, given a handlebody link HL, if HL and rHL are equivalent, then
there is an orientation-reversing self-homeomorphism of S3 sending HL to HL.

Observe that each of 51, 66, 68, 610 admits an obvious decomposing annulus satis-
fying conditions in Theorem 5.2; particularly the annulus in each of them is unique.
Their chirality then follows readily from the fact that torus links are chiral.

To see chirality of 63, we observe that, given a (2, 1)-handlebody link HL, any
self-homeomorphism of S3 preserving HL sends the meridian m and the preferred
longitude l of the circle component to m±1 and l±1, respectively. In particular,
any isomorphism on knot groups induced by such a homeomorphism sends the
conjugacy class of m · l in π1(S3 \HL) to the conjugacy class of m · l, m−1 · l, m · l−1

or m−1 · l−1, depending on whether the homeomorphism is orientation-preserving.
Let N be the number of conjugacy classes of homomorphisms from π1(S3 \HL)

to a finite group G that sends m · l (and hence m−1 · l−1) to 1, and rN the number

of conjugacy classes of homomorphisms from π1(S3 \HL) to G that sends m · l−1

(and hence m−1 · l) to 1. Now, if HL and its mirror image rHL are equivalent,
then N = rN . This is however not the case with 63; when G = A5, we have
(N, rN) = (77, 111) as computed by [29].

D

(a) Pair (T,D).

α

(b) Dual pair (K41, α).

S

α

(c) Seifert surface S.

Figure 5.3. •
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S \N(α)

(a) Induced Hopf link.

link number = −1

link number = 1

(b) Hopf links with different orientations.

Figure 5.4. •

In the case of 67, by Theorem 5.2 every self-homeomorphism f of S3 sending
67 to itself induces a self-homeomorphism f sending the handlebody-knot-disk pair
(T,D) in Fig. 5.3a to itself, or equivalently sending the (fattened) figure eight with
an arc (K41, α) in Fig. 5.3b to itself, where α is the dual one-simplex to D.

Let S be a minimal Seifert surface of the figure eight (Fig. 5.3c) containing the
arc α, and D+, D− be two disjoint meridian disks containing ∂α, respectively. By
the standard covering space argument [30], one can assume f(∂S) ∩ (D+ ∪D−) =
∂α = ∂f(α), and hence we can further isotopy f such that f(N(α)) = N(α) for
some tubular neighborhood N(α) of α in S.

Both complements S \N(α) and f(S) \N(α) are Seifert surfaces of the induced
Hopf link (Fig. 5.4a), and up to ambient isotopy, the Hopf link only admits two
minimal Seifert surfaces, among which only one is compatible with N(α). Thus
S \N(α) and f(S)\N(α) are ambient isotopic. Now if f is orientation-reversing, it
implies the two oriented Hopf links in Fig. 5.4b are ambient isotopic, contradicting
their link numbers.

�

6. Reducible handlebody links

In this section, we show that Table 5 classifies, up to ambient isotopy and mirror
image, all non-split, reducible (n, 1)-handlebody links up to six crossings (Theorem
1.3). We begin by considering the order-1 connected sum for handlebody links.

6.1. Order-1 connected sum. A handlebody-link-component pair (HL, h) is a
handlebody link HL with a selected component h of HL.

Definition 6.1 (Order-1 connected sum). Let (HL1, h1) and (HL2, h2) be two
handlebody-link-component pairs. Then their order-1 connected sum (HL1, h1)--
(HL2, h2) is given by removing the interior of a 3-ball B1 (resp. B2) in S3 with
B1 ∩ ∂HL1 = B1 ∩ ∂h1 (resp. B2 ∩ ∂HL2 = B2 ∩ ∂h2) a 2-disk, and then gluing the

resulting 3-manifolds S3 \B1, S3 \B2 via an orientation-reversing homeomorphism
f : (∂B1, (∂B1) ∩ h1)→ (∂B2, (∂B2) ∩ h2). We use HL1--HL2 to denote the set of
order-1 connected sums between HL1,HL2 with all possible selected components.

f

B1

B2

HL1 HL2

h1

h2

(HL1, h1)--(HL2, h2)

Figure 6.1. Order-1 connected sum of (HL1, h1)--(HL2, h2).

The following generalizes the case of handlebody knots in [34, Theorem 2].
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Theorem 6.1 (Uniqueness). Given a non-split, reducible (n, 1)-handlebody link
HL, if HL ' (HL1, h1)--(HL2, h2), and HL ' (HL′1, h

′
1)--(HL′2, h

′
2), then (HLi, hi) '

(HL′i, h
′
i), i = 1, 2, up to reordering.

Proof. Note first that, since HL is non-split and reducible, HLi,HL′i, i = 1, 2, are

non-split, and π1(S3 \HL) is a non-trivial free product G1 ∗G2, where Gi is the knot
group of HLi, i = 1, 2.

Let D and D′ be the separating disks in S3 \HL given by the factorizations
HL ' (HL1, h1)--(HL2, h2) and HL ' (HL′1, h

′
1)--(HL′2, h

′
2), respectively. Suppose

neither G1 nor G2 is isomorphic to Z. Then, up to isotopy, D′ ∩ D = ∅ by the
innermost circle/arc argument.

Suppose one of Gi, i = 1, 2, say G1, is isomorphic to Z, that is, HL1 is a trivial
solid torus in S3. Then G2 must be non-cyclic, since n > 1. Let Dl be the disk
bounded by the longitude of HL1, and isotopy D,Dl such that the number n (resp.
nl) of components of D′ ∩D (resp. D′ ∩Dl) is minimized.
Claim: nl = 0. Note first that the minimality implies that D′ ∩ Dl contains no
circle components. Now, consider a tubular neighborhood N(Dl) of Dl in S3 \HL

small enough such that N(Dl)∩D = ∅ and N(Dl)∩D′ are some disks, each of which

intersects D+
l (resp. D−l ) at exactly one arc on its boundary, where D±l ⊂ ∂N(Dl)

are proper disks in S3 \HL parallel to Dl. The claim then follows once we have
shown that N(Dl) can be isotopied away from D′.

To see this, we construct a labeled tree Υ from the complement of the intersection
D′ ∩D±l in D′, where D± := D+

l ∪D
−
l . Regard each component of D′ \

(
D′ ∩D±

)
as a node in Υ, and each arc in D′ ∩D±l as an edge in Υ connecting the two nodes

representing the components of D′ \
(
D′ ∩D±

)
whose closures intersect at the arc.

Since each arc in D′ ∩D± cuts D′ into two, Υ is a tree. The first two figures from
the left in Fig. 6.2 illustrate the construction.
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Figure 6.2. h(Dl) and Υ.

We label nodes and edges of Υ as follows: A node is labeled with I if the
corresponding component of D′ \

(
D′ ∩D±

)
is inside N(Dl); otherwise the node is

labeled with O. An edge of Υ is labeled with + if the corresponding component of
D′ ∩D±l is in D+

l ; otherwise, it is labeled with −.
The labeling on Υ has the following properties: (a) adjacent nodes have different

labels; (b) a node with label I is bivalent, and the two adjacent edges are labeled
with + and −, respectively, whereas a node labeled with O could be multi-valent;
(c) a one-valent node corresponds to an innermost arc in D′, and always has label
O.

Consider a maximal path Γ ⊂ Υ starting from a one-valent node and with the
property that adjacent edges of Γ have different labels. Then the other end point
of the path must be labeled with O and it is either a one-valent node of Υ or a
multi-valent node with all adjacent edges having the same label; the two figures
from the right in Fig. 6.2 illustrate two possible maximal paths.
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Without loss of generality, we may assume that the adjacent edge of the starting
one-valent node of Γ is labeled with +. Denote the closure of the corresponding
component of D′\

(
D′∩D±

)
by Ds

Γ. Then ∂Ds
Γ bounds a disk T on ∂(HL∪N(Dl)).

If T ∩ D−l = ∅, then Ds
Γ ∩ D = ∅ and hence T ∩ D = ∅ by the minimality of n;

however, if it were the case, one could reduce nl by isotopying Dl across the 3-ball
bounded by Ds

Γ and T . Hence T must contain D−l . Since the adjacent edge of
the starting node is labeled with +, adjacent edges of the end node of Γ in Υ are
labeled with −. Denote by De

Γ the closure of the component corresponding to the

end node. Then ∂De
Γ bounds a disk in ∂(HL∪N(Dl)) that is contained in T and has

no intersection with D+
l . Particularly, De

Γ∩D = ∅ by the minimality of n, and there

is an arc in ∂De
Γ cutting a disk D′′ off T \D−l with D̊′′ ∩D′ = D′′ ∩D = ∅, so one

can slide N(Dl) over D′′ (Fig. 6.3) to decrease nl, a contradiction. Consequently,

D′

T

Dl

T
D′

Dl

D′′

slide over D′′

Figure 6.3

such a path Γ cannot exist, but this can happen only if Υ is empty. The claim is
thus proved. It implies that HL1,HL′1 are trivial solid tori in S3, and HL2, HL′2 are

equivalent to N(Dl) ∪HL. �

Table 5. Reducible links with up to six crossings.

crossings c(L1) + c(L2) description |L1--L2|
2 (1) 0 + 2 unknot -- Hopf 1
4 (4) 0 + 4 unknot -- L4a1 1

unknot -- Hopf#Hopf 2
2 + 2 Hopf -- Hopf 1

5 (4) 0 + 5 unknot -- Whitehead 1
unknot -- Trefoil#Hopf 2

3 + 2 trefoil -- Hopf 1
6 (17) 0 + 6 unknot -- L6ai, i = 1, . . . , 5 1

unknot -- L6n1 1
unknot -- L4a1#Hopf 3
unknot -- (Hopf#Hopf)#Hopf 4

2 + 4 Hopf -- L4a1 1
Hopf -- Hopf#Hopf 2

4 + 2 K4a1 -- Hopf 1

6.2. Non-split, reducible handlebody links. Table 5 lists all non-split, re-
ducible (n, 1)-handlebody links obtained by performing order-1 connected sum on
pairs of links (L1,L2) with crossing numbers (c1, c2) and c1 + c2 ≤ 6, the notation
L•a• or L•n• refers to links in the Thistlethwaite link table. Since n > 1, one of
L1, L2 is a link with more than one component, and by convention we let L2 be
the factor. The number in parentheses indicates the total number of inequivalent
reducible handlebody links of the given crossing number. By Theorem 6.1, isotopy
types of L1 and L2 with selected components determine the isotopy type of the
resulting handlebody link in L1--L2. Thus there are no duplicates in Table 5.
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On the other hand, by Lemmas 4.1 and 4.3 and Theorem 3.7, minimal dia-
grams of non-split, reducible (n, 1)-handlebody links up to 6 crossings cannot have
connectivity k > 1. This shows the completeness of Table 5.

7. Perspectives

Our classification of non-split (n, 1)-handlebody links, and [14], provide examples
that shed light on several interesting properties of (n, 1)-handlebody links. Here we
collect some questions arising from the study.

Crossing number. The result in Section 6 implies that every handlebody link
in Table 5 admits a minimal diagram with connectivity 1; not all their minimal
diagrams have connectivity 1 though. Thus we ask the following question.

Question 7.1. Does every non-split, reducible handlebody link always admit a min-
imal diagram with connectivity 1?

An affirmative answer to Question 7.1, together with Theorem 6.1 and [33, The-
orem 2], implies the additivity of crossing number, a reminiscence of a one-hundred
years old problem in knot theory (see [19], [21] and references therein).

Conjecture 7.2. If (HL1, h1)--(HL2, h2) is an (n, 1)-handlebody link, then

c
(
(HL1, h1)--(HL2, h2)

)
= c(HL1) + c(HL2). (7.1)

Decomposability. Decomposability is reflected in the connectivity of minimal
diagrams in most examples here; in general one may ask the following question.

Question 7.3. Does every minimal diagram of a non-split, irreducible, decompos-
able handlebody link have connectivity 2?

A positive answer to Question 7.3 implies that 61, 62, 63 and 69 in Table 1 are
indecomposable. As Question 7.3 is expected to be hard, easier methods might be
required to determine indecomposability.

Problem 7.4. Find computable criteria for indecomposability of handlebody links.

Handlebody link complement. The question of whether irreducibility of a han-
dlebody link implies ∂-irreducibility of its complement has been studied in several
situations. In the case of handlebody knot of genus two, this is always true [34,
Theorem 1], whereas for handlebody knots of genus g > 2, there are counterexam-
ples [32, Example 5.5], [34, Section 5]. Now, Remark 3.3 provides counterexamples
in the case of non-split, irreducible (n, 1)-handlebody links with n > 2. We ask
whether n = 2 is the largest n for such a phenomenon to happen.

Question 7.5. Is the complement of a non-split, irreducible (2, 1)-handlebody link
always ∂-irreducible?
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Appendix A. Output of the code

A.1. Minimal diagrams from the code. The software code used in the paper
exhaustively enumerates 3-edge-connected plane graphs with two trivalent vertices
and q quadrivalent vertices, 0 < q ≤ 6, without double arcs that form a non-bigon.
Note that the trivial theta curve is the only 3-edge-connected plane graph without
quadrivalent vertices. The output of the code is examined and summarized in
Table 3, while the detailed list is available on http://dmf.unicatt.it/paolini/

handlebodylinks/, where each plane graph is described by its adjacent matrix
together with a fixed ordering (clockwise or counterclockwise) of the edges adjacent
to every vertex, as determined by the planar embedding.

A.1.1. Four crossings or less. In Table 6, we analyze the output of the code up to 4
quadrivalent vertices, where the column “quad. v.” lists the number of quadrivalent
vertices and “ref. no.” the reference number of each plane graph in the output of the
code. The column “induced diagrams” describes minimality of diagrams induced
by each plane graph. Most induced diagrams are not minimal, and we record those
that are and their isotopy types as special graphs or handlebody links, up to mirror
image. No IH-minimal diagram with more than one component is found in this
case.

Table 6. Diagrams with up to 4 crossings.

quad. v. ref. no. induced diagrams
1 none none
2 #1 R-minimal; G21 in Table 4; not IH-minimal

3
#1, not R-minimal

#2,#3 R-minimal; G32 in Table 4; not IH-minimal

4

#1,#2 IH-minimal; G41 in Table 4
#3 R-minimal; G32 in Table 4; not IH-minimal

#4, #8 R-minimal; G42 in Table 4; not IH-minimal
#5, #6, #7 R-minimal; G43 in Table 4; not IH-minimal

#9 R-minimal; G44 in Table 4; not IH-minimal
#10 R-minimal; G45 in Table 4; not IH-minimal

Table 7. Diagrams with 5 crossings.

ref. no. description
#6, #11, #14 not R-minimal
#22, #26, #35 not IH-minimal

#36 not IH-minimal
#37 not R-minimal

A.1.2. Five and six crossing cases. In the 5 crossing case, the code finds 8 plane
graphs with more than one components, out of a total of 37 planar embeddings.

http://dmf.unicatt.it/paolini/handlebodylinks/
http://dmf.unicatt.it/paolini/handlebodylinks/
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Table 7 records the analysis for their induced diagrams; none of them gives IH-
minimal diagrams. In the 6 crossing case, out of 181 plane graphs, 37 induces
diagrams with more than one components. Table 8 records the minimality of their
induced diagrams.

Table 8. Diagrams with 6 crossings.

ref. no. description
#5 61 in Table 1

#15, #22, #34, #45, #54 not R-minimal
#56 61 in Table 1
#60 62 in Table 1
#70 63 in Table 1
#73 not R-minimal
#83 62 in Table 1
#84 61 in Table 1

#86, #91, #92, #93 not R-minimal
#104, #105, #114, #117, #123 not IH-minimal

#134, #135, #137, #144 not IH-minimal
#161, #165 61 in Table 1

#168, #169, #170,#171 not IH-minimal
#175 69 in Table 1
#176 not IH-minimal
#177 not R-minimal

#179, #180 not IH-minimal
#181 69 in Table 1

Fig. A.1 exemplifies how the analysis is done. Fig. A.1a shows how the diagrams
induced by Plane Graph #5 are equivalent to those by #161 and #165 in the case
of 6 crossings, and Fig. A.1b explains non-minimality of diagrams induced by Plane
Graphs #168, #169, #170, #171.

Ext

(a) Equivalent handlebody links from plane
graphs.

IH moveReidemeister

(b) Non-minimal diagrams.

Figure A.1. •

A.1.3. Inequivalent planar embeddings. As a side remark, Fig. A.2 illustrates two
examples of abstract graphs with inequivant planar embeddings: one with five
quadrivalent vertices and the other with six. Note that the abstract graphs have
vertex connectivity 2, consistent with the Whitney uniqueness theorem [35].
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#14 #15

(a) Five-quadrivalent-vertex graph.

#91

#90

#89

(b) Six-quadrivalent-vertex graph.

Figure A.2. Inequivalent planar embeddings.
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