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FACTORING ISOMETRIES OF QUADRATIC SPACES
INTO REFLECTIONS

JON MCCAMMOND AND GIOVANNI PAOLINI

Abstract. Let V be a vector space endowed with a non-degenerate quadratic form Q. If
the base field F is different from F2, it is known that every isometry can be written as a
product of reflections. In this article, we detail the structure of the poset of all minimal length
reflection factorizations of an isometry. If F is an ordered field, we also study factorizations
into positive reflections, i.e., reflections defined by vectors of positive norm. We characterize
such factorizations, under the hypothesis that the squares of F are dense in the positive
elements (this includes Archimedean and Euclidean fields). In particular, we show that an
isometry is a product of positive reflections if and only if its spinor norm is positive. As a
final application, we explicitly describe the poset of all factorizations of isometries of the
hyperbolic space.

Let V be a finite-dimensional vector space over a field F. A quadratic form on V is a
map Q : V → F such that: (1) Q(av) = a2Q(v) for all a ∈ F and v ∈ V ; (2) the polar form
β(u, v) = Q(u+ v)−Q(u)−Q(v) is bilinear. When F is different from the two-element field
F2, every isometry of a non-degenerate quadratic space (V,Q) can be written as a product of
at most dimV reflections and the minimal length of a reflection factorization is determined
by geometric attributes of the isometry [Car38, Die48, Sch50, Die55, Cal76, Tay92]. For
some applications, e.g. when studying dual Coxeter systems and the associated Artin groups
[Bes03, BW08, McC15, MS17, PS21], more fine-grained information is useful: What is the
set of all minimal length reflection factorizations? What is the combinatorial structure of the
intervals in the orthogonal group O(V,Q), with respect to the metric defined by the reflection
length? Answers to these questions have been given for anisotropic quadratic spaces [BW02]
and for (affine) Euclidean spaces [BM15]. In the first part of this paper, we give answers for
general quadratic spaces. Our treatment is based on Wall’s parametrization of the orthogonal
group [Wal59, Wal63], which we recall in Section 1.

In the second part of this paper, we turn our attention to the case where F is an ordered field.
We say that a reflection with respect to some vector v ∈ V is positive if Q(v) is positive. One
can ask all the previous questions while restricting to factorizations into positive reflections
only. The following are our main motivations for studying this problem: (1) understand
reflection factorizations in Coxeter groups (which are discrete groups generated by positive
reflections with respect to some quadratic form in Rn); (2) describe reflection factorizations
of isometries of the hyperbolic space Hn. We characterize the positive reflection length of
all isometries, and we describe the minimal factorizations, under the hypothesis that F is
square-dense: the squares of F are dense in the set of positive elements. Most notably, the
class of square-dense ordered fields includes all Archimedean fields (i.e., the subfields of R)
and Euclidean fields (i.e., fields where every positive element is a square). In particular, we
show that an isometry can be written as a product of positive reflections if and only if its
spinor norm is positive.
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As an application, we study the reflection factorizations of isometries of the hyperbolic
space Hn. In the hyperboloid model Hn ⊆ Rn+1, the isometries of Hn form an index-two
subgroup of the orthogonal group O(Rn+1, Q), where Q is a quadratic form of signature
(n, 1). In fact, they are precisely the isometries of (Rn+1, Q) with a positive spinor norm.
This observation allows us to give an explicit description of minimal reflection factorizations
and intervals in O(Hn).

Acknowledgments. The authors are grateful to the anonymous referees for their useful
suggestions.

1. Wall’s parametrization of the orthogonal group

In this section, we recall Wall’s parametrization of the orthogonal group of a quadratic
space, which was first introduced in [Wal59]. Here and in Section 2, we give proofs for
the most important results while omitting the proofs of the lemmas. We largely follow the
treatment of [Tay92, Chapter 11], but the reader can also refer to [Wal59, Wal63, Hah79].

Let V be a finite-dimensional vector space over a field F. For now, no hypothesis on F is
required. A quadratic form on V is a map Q : V → F such that:

(1) Q(av) = a2Q(v) for all a ∈ F and v ∈ V ;
(2) the map β(u, v) = Q(u+ v)−Q(u)−Q(v) is bilinear.

The pair (V,Q) is called a quadratic space, and the symmetric bilinear form β is called the
polar form of Q. From now on, assume that (V,Q) is a non-degenerate quadratic space, i.e.,
the polar form β is non-degenerate: β(u, v) = 0 for all v ∈ V implies u = 0.

If the characteristic of F is not 2, the polar form β determines Q via the relation Q(u) =
1
2
β(u, u). On the other hand, if the characteristic of F is 2, β is alternating (i.e., β(u, u) = 0

for all u ∈ V ) and does not determine Q.
A non-zero vector u ∈ V is isotropic if β(u, u) = 0 and it is singular if Q(u) = 0. These

two notions coincide when the characteristic of F is not 2. Given a linear subspace W ⊆ V ,
its orthogonal subspace is defined as W⊥ = {v ∈ V | β(v, w) = 0 for all w ∈ W}. A
subspace W ⊆ V is totally singular if Q(u) = 0 for all u ∈ W , and it is non-degenerate if
W ∩W⊥ = {0} (i.e., if β|W is non-degenerate). Since β is non-degenerate, we have that
dim(W ) + dim(W⊥) = dim(V ) and (W⊥)⊥ = W for every subspace W ⊆ V . However, note
that W ∩W⊥ might be non-trivial, so V is not necessarily the direct sum of W and W⊥. If
V = W1 ⊕W2 and W1 = W⊥

2 , we also write V = W1 ⊥ W2.

Definition 1.1 (Orthogonal group). The orthogonal group of (V,Q) is

O(V,Q) = {f ∈ GL(V ) | Q(f(u)) = Q(u) for all u ∈ V }.
The elements of the orthogonal group are called isometries. We also write O(V ) in place of
O(V,Q), since the ambient quadratic form Q is always fixed.

By definition, an isometry f ∈ O(V ) also preserves the polar form β:

β(f(u), f(v)) = Q(f(u) + f(v))−Q(f(u))−Q(f(v))

= Q(f(u+ v))−Q(f(u))−Q(f(v))

= Q(u+ v)−Q(u)−Q(v)

= β(u, v).
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Notice that if f : V → V is a linear map that preserves β, then f ∈ GL(V ) because β is
non-degenerate.

Our aim is to characterize the factorizations of isometries as products of reflections. A
reflection is a non-trivial isometry that fixes every vector in a hyperplane of V . Every
reflection can be written as

rv(u) = u− β(u, v)

Q(v)
v (1)

for some non-singular vector v ∈ V [Tay92, Theorem 11.11], and rv is called the reflection with
respect to v. Note that rv = rw for every non-zero scalar multiple w of v. As a consequence of
eq. (1), any reflection rv fixes the hyperplane 〈v〉⊥, sends v to −v, has order 2 and determinant
−1. In particular, having order 2 is a consequence of the definition of reflection. The set of
reflections is closed under conjugation: frvf

−1 = rf(v) for every f ∈ O(V ).
The following are two important subspaces associated with an isometry.

Definition 1.2. Given an isometry f ∈ O(V ), its fixed space is Fix(f) = ker(id−f) and its
moved space is Mov(f) = im(id−f).

The fixed space is simply the subspace of vectors that are fixed by f . The moved space is
the subspace of “movement” vectors f(u)− u, for u ∈ V . It is also called the residual space
of f . The notation “Fix(f)” and “Mov(f)” is the one used in [BM15], but several different
notations for the moved space have appeared in the literature, including Vf , [V, f ], and M(f)
[Wal59, Wal63, Tay92, BW02].

Lemma 1.3. For every isometry f ∈ O(V ), we have that Fix(f) = Mov(f)⊥.

Notice that an isometry f ∈ O(V ) is a reflection if and only if Mov(f) is one-dimensional
(in which case f = rv where Mov(f) = 〈v〉), and this happens if and only if Fix(f) is a
hyperplane (in which case Fix(f) = 〈v〉⊥).

When f is not a reflection, its moved space Mov(f) does not determine f uniquely. For
example, if V = Rn and Q is the standard (positive definite) quadratic form, a 2-dimensional
subspace W ⊆ V is the moved space of infinitely many rotations. By Lemma 1.3, each of
Fix(f) and Mov(f) determines the other, so no additional information comes from knowing
both of them. The Wall form adds the information needed to determine f .

Definition 1.4 ([Wal59]). Let f ∈ O(V ) be an isometry. The Wall form of f is the bilinear
form χf on Mov(f) defined as χf(u, v) = β(w, v), where w ∈ V is any vector such that
u = w − f(w).

Theorem 1.5. The Wall form χf is a well-defined non-degenerate bilinear form on Mov(f),
and it satisfies χf (u, u) = Q(u) for all u ∈Mov(f).

Proof. Suppose that u = w−f(w) = w′−f(w′) for some w,w′ ∈ V . Then w−w′ ∈ Fix(f) =
Mov(f)⊥ by Lemma 1.3, and therefore β(w, v)− β(w′, v) = β(w − w′, v) = 0, so χf (u, v) is
well-defined.

It is immediate to see that χf is a bilinear form. If χf is degenerate, then there is a
non-zero vector v ∈Mov(f) such that χf(u, v) = 0 for all u ∈Mov(f). Then β(w, v) = 0
for all w ∈ V . This is impossible, because β is non-degenerate.

Finally, if u = w−f(w), we have χf (u, u) = β(w, u) = −β(w,−u) = Q(w)+Q(u)−Q(w−
u) = Q(w) +Q(u)−Q(f(w)) = Q(u). �
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The Wall form χf is not necessarily symmetric. In fact, we show in Lemma 1.7 that χf is
symmetric if and only if f is an involution. As anticipated, the Wall form χf carries enough
information to recover the isometry f .

Theorem 1.6 (Wall’s parametrization). The map f 7→ (Mov(f), χf ) is a one-to-one corre-
spondence between the orthogonal group O(V ) and the set of pairs (W,χ) such that W is a
subspace of V and χ is a non-degenerate bilinear form on W satisfying χ(u, u) = Q(u) for
u ∈ W .

Proof. To prove injectivity, consider two isometries f, g ∈ O(V ) such that Mov(f) =
Mov(g) = W and χf = χg = χ. By definition of Wall form, χf(w − f(w), v) = β(w, v) =
χg(w − g(w), v) and therefore χ(w − f(w), v) = χ(w − g(w), v), for every v ∈ W and w ∈ V .
Since χ is non-degenerate, this implies that w − f(w) = w − g(w) for all w ∈ V , thus f = g.

To prove surjectivity, given a pair (W,χ), we want to construct an isometry f ∈ O(V )
such that Mov(f) = W and χf = χ. For w ∈ V , denote by αw ∈ W ∗ the linear functional
given by αw(v) = β(w, v). Since χ is non-degenerate, the linear map ϕ : W → W ∗ given by
ϕ(u)(v) = χ(u, v) is an isomorphism. Define f : V → V as follows: f(w) = w − ϕ−1(αw). By
construction, for any w ∈ V and v ∈ W we have

β(w, v) = αw(v) = ϕ(w − f(w))(v) = χ(w − f(w), v). (2)

This allows us to check that f is an isometry. Indeed, by setting v = w − f(w) in eq. (2)
we obtain

β(w,w − f(w)) = χ(w − f(w), w − f(w)) = Q(w − f(w))

= Q(w) +Q(f(w))− β(w, f(w)),

which simplifies to Q(f(w)) = Q(w). By definition of f , we immediately see that Mov(f) =
W , and eq. (2) implies that χ = χf . �

We now list some properties of the Wall form.

Lemma 1.7. For every f ∈ O(V ) and u, v ∈Mov(f), the following properties hold.

(i) χf (u, v) + χf (v, u) = β(u, v).
(ii) χf (f(u), v) = −χf (v, u).

(iii) Mov(f) = Mov(f−1) and χf−1(u, v) = χf (v, u).
(iv) Mov(gfg−1) = g(Mov(f)) and χgfg−1(g(u), g(v)) = χf (u, v) for every g ∈ O(V ).
(v) χf is symmetric if and only if f is an involution.

Fix a subspace W ⊆ V , and look at all isometries f ∈ O(V ) such that Mov(f) = W .
Property (i) of Lemma 1.7 says that the symmetrization of the Wall form χf is necessarily
equal to the ambient bilinear form β (restricted to W = Mov(f)). In particular, if W is
non-degenerate and the characteristic of F is not 2, there is exactly one isometry f such that
Mov(f) = W and χf is symmetric, and f is an involution by property (v). On the opposite
side, if W is totally singular, then χf is alternating by Theorem 1.5. In this case, isometries
f with Mov(f) = W only exist if dimW is even (otherwise every alternating bilinear form
on W is degenerate, as the rank is necessarily even; see for example [Gro02, Theorem 2.10]).
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2. Factorizations and reflection length

In this section, we continue to follow [Wal59] and [Tay92, Chapter 11] and show how Wall’s
parametrization leads to a nice procedure to build factorizations of isometries. For a field
F 6= F2, this allows proving that any isometry f ∈ O(V ) can be written as a product of
reflections. It also allows us to characterize the reflection length, i.e., the minimal length k
of a factorization f = r1r2 · · · rk as a product of reflections. We refer to [Tay92, Theorem
11.41] for the case F = F2, which we do not treat here. Finally, at the end of this section, we
introduce the spinor norm.

Definition 2.1 (Orthogonal complements). Let χ be a non-degenerate bilinear form on a
finite-dimensional vector space W . Define the left and right orthogonal complement of a
subspace U ⊆ W as

U/ = {v ∈ W | χ(v, u) = 0 for all u ∈ U}
U. = {v ∈ W | χ(u, v) = 0 for all u ∈ U},

respectively.

Since χ is non-degenerate, we have that dimU/ = dimU. = dimW − dimU . As an
immediate consequence, (U.)/ = (U/). = U . We will mostly use this notation in the case
where χ = χf is the Wall form of an isometry f ∈ O(V ) and W = Mov(f).

The following is the basic building block that allows us to construct factorizations of
isometries.

Theorem 2.2 (Factorization theorem). Let f ∈ O(V ) be an isometry, and let U1 ⊆Mov(f)
be a subspace such that the restriction χ1 = χf |U1 is non-degenerate. Let U2 = U.

1 (respectively,
U2 = U/

1 ), and χ2 = χf |U2. Denote by f1 and f2 the elements of O(V ) associated with (U1, χ1)
and (U2, χ2) under Wall’s parametrization.

(a) Mov(f) = U1 ⊕ U2, and f = f1f2 (respectively, f = f2f1).
(b) f1f2 = f2f1 if and only if Mov(f) = U1 ⊥ U2. In this case, f1 coincides with f on

U⊥2 , and f2 coincides with f on U⊥1 .

Conversely, every factorization f = f1f2 with Mov(f) = Mov(f1)⊕Mov(f2) arises in this
way.

Proof. We prove part (a) in the case U2 = U.
1 , the case U2 = U/

1 being analogous. Since
χ1 is non-degenerate, no non-zero vector of U1 can be right-orthogonal to all of U1. This
means that U1 ∩ U2 = {0}. We also have dimU1 + dimU2 = dimMov(f), and therefore
Mov(f) = U1 ⊕ U2.

Notice that χ2 is non-degenerate because χf is non-degenerate, so f2 is well-defined. To
prove that f = f1f2, consider the following chain of equalities that holds for every w ∈ V ,
u1 ∈ U1, and u2 ∈ U2:

χf
(
w − f1f2(w), u1 + u2

)
= χf

(
w − f2(w) + f2(w)− f1f2(w), u1 + u2

)
= χf (w − f2(w), u1 + u2) + χf

(
(id−f1)f2(w), u1 + u2

)
(1)
= χf

(
w − f2(w), u1

)
+ χf

(
w − f2(w), u2

)
+ χf

(
(id−f1)f2(w), u1

)
(2)
= β

(
w − f2(w), u1

)
+ β(w, u2) + β

(
f2(w), u1

)
5



= β(w, u1 + u2)

= χf
(
w − f(w), u1 + u2

)
.

Here (1) follows from bilinearity of χf , the term χf
(
(id−f1)f2(w), u2

)
vanishing because

(id−f1)f2(w) ∈Mov(f1) = U1 and u2 ∈ U2; in (2), the first term is rewritten using property
(i) of Lemma 1.7, whereas the other two terms are rewritten using the definitions of χ1 and
χ2. From the previous equalities and the fact that χf is non-degenerate, it follows that
w − f1f2(w) = w − f(w) for all w ∈ V , so f = f1f2.

We now prove part (b). Suppose that f1f2 = f2f1. By property (iv) of Lemma 1.7, f fixes
Mov(f1) = U1. Then, by property (ii), we have that χf (u2, u1) = −χf (f(u1), u2) = 0 for all
u1 ∈ U1 and u2 ∈ U2. Therefore U2 = U.

1 = U/
1 . Property (i) implies that Mov(f) = U1 ⊥ U2.

Conversely, suppose that Mov(f) = U1 ⊥ U2. Since U2 = U.
1 , property (i) of Lemma 1.7

implies that U2 = U/
1 . By the first part of this theorem, we obtain that f = f2f1, and therefore

f1f2 = f2f1. In addition, Fix(f2) = Mov(f2)
⊥ = U⊥2 , and thus f(v) = f1f2(v) = f1(v) for

every v ∈ U⊥2 . Similarly, f(v) = f2f1(v) = f2(v) for every v ∈ U⊥1 .
Finally, given any factorization f = f1f2 such that Mov(f) = Mov(f1)⊕Mov(f2), we

need to show that χf |Mov(f2) = χf2 . Let u, v ∈ Mov(f2). By definition of χf , we have
that χf(u, v) = β(w, v), where w ∈ V is a vector such that u = w − f(w). Now write
u = w − f2(w) + f2(w) − f1f2(w), and notice that w − f2(w) ∈ Mov(f2) and f2(w) −
f1f2(w) ∈Mov(f1). Since u ∈Mov(f2) and Mov(f) = Mov(f1)⊕Mov(f2), we have that
u = w − f2(w). Then χf2(u, v) = β(w, v) = χf (u, v). �

From the definition of moved space, it is easy to see that Mov(f1f2) ⊆Mov(f1)+Mov(f2)
for any two isometries f1, f2 ∈ O(V ). Theorem 2.2 allows to construct factorizations
f = f1f2 where the equality Mov(f1f2) = Mov(f1)⊕Mov(f2) holds. These are called direct
factorizations in [Wal59]. More generally, we give the following definition.

Definition 2.3 (Direct factorization). A factorization f = f1 · · · fk is called a direct factor-
ization if Mov(f) = Mov(f1)⊕ · · · ⊕Mov(fk) and no fi is the identity.

Recall that the reflections are precisely the isometries with a one-dimensional moved space.
The relation Mov(f1f2) ⊆Mov(f1) +Mov(f2) yields a lower bound on the reflection length
of an isometry f ∈ O(V ): if f = r1 · · · rk is a product of k reflections, then Mov(f) ⊆
Mov(r1) + · · ·+Mov(rk), so k ≥ dimMov(f). This lower bound is attained precisely when
the factorization is direct. In the rest of this section, we are going to see that most isometries
admit a direct factorization, but not all of them.

Lemma 2.4. Let χ be a non-degenerate bilinear form on a finite-dimensional vector space
W over a field F 6= F2. If χ is not alternating, then W has a basis e1, . . . , em such that
χ(ei, ei) 6= 0 for all i, and χ(ei, ej) = 0 for i < j.

Remark 2.5. It is worth noting that Lemma 2.4 is false for F = F2. See [Tay92, Chapter
11] for additional details.

The following lemma describes how the moved space changes when multiplying an isometry
by a reflection.

Lemma 2.6. Let f ∈ O(V ) be an isometry, and let v ∈ V be a non-singular vector.
6



(a) If v ∈ Mov(f), then Mov(rvf) = 〈v〉., where the right orthogonal complement is
taken inside Mov(f) with respect to the Wall form χf . In particular, dimMov(rvf) =
dimMov(f)− 1.

(b) If v 6∈ Mov(f), then Mov(rvf) = Mov(f) ⊕ 〈v〉. In particular, dimMov(rvf) =
dimMov(f) + 1.

As a consequence, if f is a product of k reflections, then dimMov(f) ≡ k (mod 2).

We are now ready to give a simple formula for the reflection length of any isometry. In the
case of fields of characteristic 6= 2, this result was first proved by Scherk [Sch50].

Theorem 2.7 (Reflection length). Assume F 6= F2, and let f ∈ O(V ) be an isometry different
from the identity. The reflection length of f is equal to dimMov(f) if Mov(f) is not totally
singular, and to dimMov(f) + 2 otherwise. In particular, every isometry can be written as a
product of at most dimV reflections.

Proof. If Mov(f) is not totally singular, then Lemma 2.4 applies to the Wall form χf and
yields a basis of Mov(f) consisting of non-singular vectors e1, . . . , em such that χ(ei, ej) = 0 for
i < j. By a repeated application of Theorem 2.2, we get a direct factorization f = re1 · · · rem
of length m = dimMov(f).

Suppose now that Mov(f) is totally singular. Choose any non-singular vector v ∈ V ,
and consider g = rvf . By Lemma 2.6, we have Mov(g) = Mov(f) ⊕ 〈v〉. In particular,
Mov(g) contains the non-singular vector v, so by the previous part g can be written as a
product of dimMov(g) reflections. Then f can be written as a product of dimMov(g) + 1 =
dimMov(f) + 2 reflections. It is not possible to use less than dimMov(f) + 2 reflections:
a factorization into dimMov(f) reflections would be a direct factorization, which does not
exist because Mov(f) is totally singular; a factorization into dimMov(f) + 1 reflections
does not exist by the last part of Lemma 2.6.

Finally, we want to show that the reflection length is always at most dimV . This is
immediate if Mov(f) is not totally singular, so assume now that Mov(f) is totally singular.
Since χf is non-degenerate, we have dimMov(f) ≥ 2. On the other hand, dimMov(f) is
bounded above by the Witt index of β, which is at most 1

2
dimV . Therefore the reflection

length is dimMov(f) + 2 ≤ 2 dimMov(f) ≤ dimV . �

In the final part of this section, we introduce the spinor norm following [Wal59, Section 4].
See also [Zas62, Hah79, Sch12]. Let F× = F \ {0}.

Definition 2.8 (Wall’s spinor norm). The spinor norm is the map θ : O(V ) → F×/(F×)2

defined as θ(f) = [det(A)], where A is the matrix of χf with respect to any basis of Mov(f).
Here [a] indicates the class of a ∈ F× in the quotient group F×/(F×)2.

Note that det(A) 6= 0 because χf is non-degenerate, and θ(f) does not depend on the
choice of the basis. For example, we have θ(id) = 1 and θ(rv) = [Q(v)] for every non-singular
vector v ∈ V . The following lemma follows immediately from Theorem 2.2.

Lemma 2.9. Given a direct factorization f = f1f2, we have θ(f) = θ(f1)θ(f2).

Theorem 2.10. The spinor norm is a group homomorphism.

Proof. If F = F2, the spinor norm is trivial, so we can assume from now on that F 6= F2.
Then O(V ) is generated by reflections by Theorem 2.7. Therefore it is enough to show that,
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for every factorization f = r1 · · · rk into reflections, we have θ(f) = θ(r1) · · · θ(rk). We prove
this by induction on k, the cases k = 0 and k = 1 being trivial.

Fix a length k reflection factorization f = r1 · · · rk with k ≥ 2. Let g = r1f = r2 · · · rk.
If f = r1g is a direct factorization, then θ(f) = θ(r1)θ(g) by Lemma 2.9. If f = r1g
is not a direct factorization, then g = r1f is a direct factorization by Lemma 2.6, and
θ(g) = θ(r1)θ(f) by Lemma 2.9. Since all non-trivial elements of F×/(F×)2 have order
2, we have θ(f) = θ(r1)θ(g) in both cases. By induction, θ(g) = θ(r2) · · · θ(rk) and thus
θ(f) = θ(r1)θ(g) = θ(r1) · · · θ(rk). �

3. Partial order on the orthogonal group

In this section, we introduce the partial order on O(V ) naturally induced by minimal
reflection factorizations. It generalizes the partial order of [BW02]. We show that for most
isometries f ∈ O(V ), the interval [id, f ] naturally includes into the poset (i.e., partially
ordered set) of subspaces of Mov(f). We assume throughout this section that F 6= F2, so
that Theorem 2.7 applies.

Definition 3.1 (Partial order on O(V )). Given two isometries f, g ∈ O(V ), define g ≤ f if
and only if f admits a minimal length reflection factorization that starts with a minimal
length reflection factorization of g. Equivalently, g ≤ f if and only if l(f) = l(g) + l(g−1f),
where l : O(V )→ N denotes the reflection length.

Since the set of reflections is closed under conjugation, it is equivalent to require that f
admits a minimal factorization that ends with a minimal factorization of g. Notice that O(V )
is ranked (in the sense of posets) by the reflection length l, and it has the identity as the
unique ≤-minimal element. This partial order was studied in [BW02] for isometries of an
anisotropic bilinear form β, and in [BM15] for isometries of the affine Euclidean space.

Although the global combinatorics of O(V ) is complicated, most of the intervals

[g, f ] = {h ∈ O(V ) | g ≤ h ≤ f} for g ≤ f

have a structure that we can explicitly describe. Notice that the interval [g, f ] is isomorphic (as
a poset) to the interval [id, g−1f ] via the isomorphism h 7→ g−1h. Therefore, the combinatorial
study of all intervals in O(V ) reduces to the study of the intervals of the form [id, f ].

Recall from Section 2 that the reflection length of an isometry f ∈ O(V ) is at least
dimMov(f), and the reflection factorizations of length dimMov(f) (if they exist) are the
direct factorizations. In light of Theorem 2.7, we can characterize in a couple of different
ways the isometries f with reflection length equal to dimMov(f).

Definition 3.2. An isometry f ∈ O(V ) is minimal if any of the following equivalent
conditions hold:

(i) f admits a direct factorization as a product of reflections;
(ii) its reflection length is equal to dimMov(f);

(iii) f = id, or Mov(f) is not totally singular.

Roughly speaking, condition (iii) tells us that most isometries are minimal. There are
many simple sufficient conditions for an isometry to be minimal: if dimMov(f) > 1

2
dimV ,

then f is minimal; if dimMov(f) is odd, then f is minimal (because all alternating forms
are degenerate, so χf is not alternating); if V contains no singular vectors, then all isometries
are minimal.
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Remark 3.3. If the characteristic of F is not 2, there are several additional conditions
equivalent to Definition 3.2. In fact, the moved space Mov(f) is totally singular if and only if
β vanishes on Mov(f), which happens if and only if the Wall form χf is skew-symmetric (by
property (i) of Lemma 1.7). In addition, it is noted in [Gro02, Corollary 6.3] that Mov(f) is
totally singular if and only if (f− id)2 = 0 (i.e., the unipotency index of f is 2), or equivalently
Mov(f) ⊆ Fix(f). See also [Nok17].

In what follows, we aim to describe the combinatorics of the interval [id, f ] associated with
a minimal isometry f .

Lemma 3.4. Let f ∈ O(V ) be a minimal isometry, and let g ≤ f . Then:

(a) Mov(g) ⊆Mov(f);
(b) g is minimal;
(c) χg is the restriction of χf to Mov(g).

Proof. Let k = dimMov(f). Since f is minimal, its reflection length is equal to k, and
Mov(f) = Mov(r1)⊕ · · · ⊕Mov(rk) for every minimal length factorization f = r1 · · · rk of
f as a product of reflections. Then there is one such factorization for which g = r1 · · · rm
for some m ≤ k, and the reflection length of g is equal to m. By a repeated application of
part (b) of Lemma 2.6, we get that Mov(g) = Mov(r1) ⊕ · · · ⊕Mov(rm) ⊆ Mov(f). In
addition, the reflection factorization g = r1 · · · rm is a direct factorization, so g is minimal.

If g = f , then χg = χf and we are done. Suppose now that g 6= f , i.e., m < k. Since
Mov(rk) is 1-dimensional, the property χ(u, u) = Q(u) (Theorem 1.5) implies that χrk
is the restriction of χf to Mov(rk). By Theorem 2.2, χr1···rk−1

is the restriction of χf to
Mov(r1 · · · rk−1). Now, f ′ := r1 · · · rk−1 is minimal by part (b), and g ≤ f ′, so we are done
by induction on k. �

In the full group O(V ), there can be many isometries with the same moved space. However,
once we restrict to an interval [id, f ] where f is minimal, an isometry is completely determined
by its moved space.

Theorem 3.5 (Minimal intervals). Let f ∈ O(V ) be a minimal isometry. Then g 7→Mov(g)
is an order-preserving bijection between the interval [id, f ] and the poset of linear subspaces
U ⊆Mov(f) that satisfy the following conditions:

(i) U = {0} or U is not totally singular;
(ii) U. = {0} or U. is not totally singular;

(iii) χf |U is non-degenerate.

In addition, the rank of g ∈ [id, f ] is equal to dimMov(g).

Proof. Let g ∈ [id, f ], and let U = Mov(g). We have that g is minimal by Lemma 3.4,
so U satisfies condition (i). In addition, we have U. = Mov(g−1f) by Theorem 2.2, and
g−1f ∈ [id, f ] is also minimal, so condition (ii) is satisfied. Finally, condition (iii) is a
consequence of Theorem 2.2.

We now explicitly construct the inverse map φ. Suppose that U ⊆ Mov(f) satisfies all
three conditions. By Theorem 2.2 and condition (iii), there is a direct factorization f = f1f2
where f1 is the isometry associated with (U, χf |U ). By conditions (i) and (ii), both f1 and f2
are minimal. Then their reflection lengths are dimMov(f1) and dimMov(f2), which add
up to dimMov(f). Therefore f1 ∈ [id, f ]. Define φ(U) = f1.
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We now check that φ is indeed the inverse of Mov. For any isometry g ∈ [id, f ], we have
that g′ = φ(Mov(g)) is an isometry such that Mov(g′) = Mov(g), and χg′ = χf |Mov(g). By
Lemma 3.4, we also have that χg = χf |Mov(g). This means that g′ and g have the same moved
space and the same Wall form, so g′ = g by Theorem 1.6. In addition, for any subspace
U ⊆Mov(f) satisfying conditions (i)-(iii), we have that Mov(φ(U)) = U by construction of
φ.

If g ≤ g′ in [id, f ], then g′ is minimal by part (b) of Lemma 3.4, and Mov(g) ⊆Mov(g′)
by part (a) of Lemma 3.4. This means that the bijection g 7→Mov(g) is order-preserving.
Finally, the rank of an isometry g in [id, f ] is given by its reflection length, which is equal to
dimMov(g) because g is minimal. �

For every U ⊆Mov(f), we have that U/ = f(U.) by property (ii) of Lemma 1.7, so U/

and U. are isometric. In particular, U/ is totally singular if and only if U. is totally singular,
and this gives an equivalent way to write condition (ii) of Theorem 3.5. Note that condition
(ii) is not redundant, due to the following example.

Example 3.6. Consider an isometry f with a 3-dimensional moved space and a Wall form
given by the following matrix, with respect to some basis e1, e2, e3 of Mov(f):

1 0 0

0 0 1

0 −1 0

 .

If U1 = 〈e1〉 and U2 = U.
1 = 〈e2, e3〉, then Theorem 2.2 yields a direct factorization f = f1f2

such that χf1 = χf |U1 is not alternating, whereas χf2 = χf |U2 is alternating. Then f1 is
minimal, and f2 is not. As a consequence, we have f1 6≤ f despite the inclusion Mov(f1) ⊆
Mov(f).

Notice that the bijection g 7→Mov(g) of Theorem 3.5 is not a poset isomorphism. Indeed,
it is possible to have elements g, g′ ∈ [id, f ] with g 6≤ g′ but Mov(g) ⊆ Mov(g′). We
construct such a case in the following example.

Example 3.7. Consider an isometry f with a 4-dimensional moved space and a Wall form
given by the following matrix, with respect to some basis e1, e2, e3, e4 of Mov(f):

1 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 1

 .

By Theorem 3.5, the subspaces U = 〈e1〉 and U ′ = 〈e1, e2, e3〉 have associated isometries
g, g′ ∈ [id, f ] with Mov(g) = U and Mov(g′) = U ′. Then Mov(g) ⊆ Mov(g′), but g 6≤ g′

as seen in Example 3.6.

In the case where the bilinear form β is anisotropic, we recover the description of the
intervals in O(V ) given in [BW02]. In fact, the same description is obtained in the more
general setting where V contains no singular vectors.
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Corollary 3.8. Suppose that V contains no singular vectors, and let f ∈ O(V ) be any
isometry. Then f is minimal, and g 7→ Mov(g) is an isomorphism between the interval
[id, f ] and the poset of all linear subspaces U ⊆Mov(f).

Proof. We already noted that every isometry f is minimal if V contains no singular vectors.
To prove that g 7→Mov(g) is an order-preserving bijection, it is enough to apply Theorem 3.5
and show that conditions (i)–(iii) are satisfied by every subspace U ⊆Mov(f). Conditions
(i) and (ii) are trivially satisfied because {0} is the only totally singular subspace of V . For
condition (iii), χf (u, u) = Q(u) 6= 0 for any non-zero vector u ∈ U , so χf |U is non-degenerate.
To conclude the proof, we need to show that Mov(g) ⊆ Mov(g′) implies g ≤ g′ for every
g, g′ ∈ [id, f ]. If we define h = g−1g′, we obtain that g′ = gh is a direct factorization by
Theorem 2.2. Since h is minimal, we deduce that l(g′) = l(g) + l(h) and therefore g ≤ g′. �

In the last part of this section, we turn our attention to non-minimal isometries, which
behave in a substantially different way.

Theorem 3.9. Let f ∈ O(V ) be a non-minimal isometry.

(a) For every reflection r ∈ O(V ), we have r < f and rf < f .
(b) Every isometry g < f is minimal.
(c) f is ≤-maximal in O(V ).

Proof. In the proof of Theorem 2.7, it is shown that any reflection r ∈ O(V ) is part of some
minimal length reflection factorization of f . This implies both r ≤ f and rf ≤ f . Note that
r 6= f because every reflection is minimal, and clearly rf 6= f , so the strict relations of part
(a) hold. From that proof it is also clear that rf is minimal, so every isometry g < f is
minimal by Lemma 3.4, proving part (b). Part (c) follows from Lemma 3.4 and part (b). �

In the following, we give a coarse description of the structure of [id, f ] for a non-minimal
isometry f . Note that [id, f ] contains multiple isometries with the same moved space, so
a bijection like the one of Theorem 3.5 does not exist. Denote by (id, f) = [id, f ] \ {id, f}
the open interval between the identity and f . Let Wf be the set of all subspaces W ⊆ V
containing Mov(f) as a codimension-one subspace and not totally singular. For any subspace
W ∈ Wf , let Pf,W = {g ∈ (id, f) |Mov(g) ⊆ W}.

Theorem 3.10 (Non-minimal intervals). Let f ∈ O(V ) be a non-minimal isometry. As a
poset, the open interval (id, f) is the disjoint union (also called “parallel composition”) of the
subposets Pf,W :

(id, f) =
⊔

W∈Wf

Pf,W .

Proof. Let g ∈ (id, f). Then g ≤ rf for some reflection r, and rf is minimal by Theorem 3.9.
Since f is non-minimal, Mov(f) is a codimension-one subspace of W = Mov(rf) by part
(b) of Lemma 2.6. Then W ∈ Wf because rf is minimal, and g ∈ Pf,W by Lemma 3.4.

Let W ′ ∈ Wf be any subspace such that g ∈ Pf,W ′ . Note that g is minimal by Theorem 3.9,
so Mov(g) * Mov(f). Since Mov(f) is a codimension-one subspace of W ′, we have that
W ′ = Mov(f) + Mov(g). Therefore W ′ is uniquely determined by f and g. In other words,
g is contained in exactly one Pf,W ′ .

11



id

f

Pf,W Pf,W ′ . . .Pf,W ′′

rf for all reflections r

all reflections r

Figure 1. Coarse structure of an interval [id, f ] for a non-minimal isometry
f , as described by Theorem 3.10.

Finally, if g ∈ Pf,W and g′ ≤ g, then Mov(g′) ⊆ Mov(g) by Lemma 3.4 and therefore
g′ ∈ Pf,W ∪ {id}. This means that there is no order relation between Pf,W and Pf,W ′ if
W 6= W ′. �

Figure 1 shows the Hasse diagram of a non-minimal interval [1, f ], as described by the
previous theorem. Note that each subposet Pf,W is self-dual: the map g 7→ g−1f is an
order-reversing bijection from Pf,W to itself.

4. Positive factorizations

Let (V,Q) be a non-degenerate quadratic space over an ordered field F. In particular, F
has characteristic 0. A non-singular vector v ∈ V is said to be positive if Q(v) > 0, and
negative if Q(v) < 0. In this section we focus on the factorizations of isometries into positive
reflections, i.e., reflections with respect to positive vectors. We refer to these factorizations as
positive reflection factorizations. Under the hypothesis that F is square-dense (the squares
are dense in the positive elements), we obtain a clean description of the minimal length of
a positive reflection factorization of any isometry f ∈ O(V ). In particular, we show that f
admits a positive reflection factorization if and only if its spinor norm is positive.

Recall that a subspace W ⊆ V is positive definite (resp. negative definite) if Q(v) > 0 (resp.
< 0) for every non-zero vector v ∈ W . It is positive semi-definite (resp. negative semi-definite)
if Q(v) ≥ 0 (resp. ≤ 0) for all v ∈ W . By the inertia theorem of Jacobi and Sylvester [Sch12,
Theorem 4.4], V can be decomposed as an orthogonal direct sum V + ⊥ V −, where V + is
a positive definite subspace and V − is a negative definite subspace. The dimensions of V +

and V − do not depend on the chosen decomposition, and the pair (dimV +, dimV −) is called
the signature of (V,Q). We refer to [Sch12] for additional theory on quadratic spaces over
ordered fields. We assume from now on that V is not negative definite, because otherwise
there are no positive vectors.

Denote by F+ ⊆ F the subset of all positive elements of F. Since (F×)2 ⊆ F+, there is a
well-defined quotient map π : F×/(F×)2 → F×/ F+ ∼= Z2. In other words, every element of
F×/(F×)2 is either positive or negative, and this notion is well-defined.

Definition 4.1. An isometry f ∈ O(V ) is positive (resp. negative) if its spinor norm θ(f) is
positive (resp. negative).
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Notice that this definition is compatible with the previous definition of positive reflection:
a reflection rv is positive if and only if Q(v) > 0. The positive isometries form a subgroup
O+(V ) of O(V ), being the kernel of the composition

O(V )
θ−→ F×/(F×)2

π−→ Z2.

In particular, if an isometry f ∈ O(V ) can be written as a product of positive reflections,
then it is positive. The subgroup O+(V ) has index 2 in O(V ) unless V is positive definite, in
which case O+(V ) = O(V ).

Example 4.2 (Isometries over the real numbers). If F = R and V is not (positive or negative)
definite, then O(V ) has four connected components. They are detected by the surjective
group homomorphism O(V ) → Z2 × Z2 defined as f 7→ (π(θ(f)), det(f)). The connected
component of the identity is O+(V ) ∩ SO(V ).

We are interested in determining the positive reflection length of a positive isometry
f ∈ O+(V ), i.e., the minimal length of a positive reflection factorization of f . A lower bound
for the positive reflection length is given by the reflection length, which is computed in
Theorem 2.7. The following example shows that this lower bound is not always attained.

Example 4.3. Suppose that W ⊆ V is a 2-dimensional negative definite subspace, and
let χ = 1

2
β|W . Let f ∈ O(V ) be the isometry with Mov(f) = W and χf = χ. Then f is

positive and minimal (in the sense of Definition 3.2), but all the reflections r ≤ f are negative.
Therefore f is a product of 2 negative reflections, but it cannot be written as a product of 2
positive reflections. Note that f is an involution, by property (v) of Lemma 1.7.

More generally, if f is an involution, we have χf = 1
2
β|Mov(f) by properties (i) and (v) of

Lemma 1.7. Then a triangular basis (as in Lemma 2.4) of positive vectors exists if and only
if Mov(f) is positive definite. In other words, an involution f admits a direct factorization
into positive reflections if and only if Mov(f) is positive definite.

We aim to show that all positive non-involutions admit a direct factorization into positive
reflections provided that Mov(f) contains at least one positive vector. To prove this, in the
rest of this section, we are going to assume that the field F satisfies the following property.

Definition 4.4. An ordered field F is square-dense if the set of squares (F×)2 is dense in the
set of positive elements F+. In other words, for every 0 < a < b, there exists a square c2 such
that a < c2 < b.

The class of square-dense fields includes all Archimedean fields (i.e., the subfields of R)
and Euclidean fields (i.e., ordered fields where every positive element is a square), which
include all real closed fields. See [Sch12, Chapter 3] for the definitions and properties of these
classes of fields, particularly in relation to the theory of quadratic forms. An example of an
ordered field that is not square-dense is the field of rational functions Q(X), with the order
determined by a < X for all a ∈ Q (this is a typical example of a non-Archimedean field).

Our reason to choose the square-dense property as our working hypothesis is that it is
quite general, but at the same time, it allows us to obtain the same characterization of the
positive reflection length (Theorem 4.11) that we would obtain over the real numbers.

We start by proving a variant of Lemma 2.4.

Lemma 4.5. Let χ be a non-degenerate bilinear form on a finite-dimensional vector space
W over an ordered field F, with dimW ≥ 2. Suppose that there is at least one vector u ∈ W
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with χ(u, u) > 0. Then there is a basis e1, . . . , em such that χ(e1, e1) > 0, χ(ei, ei) 6= 0 for
i ≥ 2, and χ(ei, ej) = 0 for i < j.

Proof. Proceed as in the proof of Lemma 2.4, starting with a vector u such that χ(u, u) > 0.
Choose a ∈ F× such that χ(u, u) + aχ(v, u) > 0, for example by taking a = χ(v, u). Then
the first basis vector e1 satisfies χ(e1, e1) > 0. The rest of the proof is unchanged. �

Next, we prove a technical lemma in dimension 3. This is the building block that allows us
to construct triangular bases of positive vectors when the Wall form is not symmetric.

Lemma 4.6. Let W be a 3-dimensional vector space over a square-dense field F. Let χ be a
non-degenerate bilinear form on W . Suppose that χ is not symmetric, and that there is at
least one vector u ∈ W with χ(u, u) > 0. Then there exist two vectors v1, v2 ∈ W such that
χ(v1, v1) > 0, χ(v2, v2) > 0, and χ(v1, v2) = 0.

Proof. By Lemma 4.5, there exists a vector e1 ∈ W such that χ(e1, e1) > 0 and χ|〈e1〉. is
not alternating. Fix any non-zero vector e2 ∈ 〈e1〉/ ∩ 〈e1〉.. If χ(e2, e2) > 0, we are done by
choosing v1 = e1 and v2 = e2. So we may assume that χ(e2, e2) ≤ 0.

Case 1: χ(e2, e2) = 0. Since χ|〈e1〉. is not alternating, there exists a vector e3 ∈ 〈e1〉. such
that χ(e3, e3) 6= 0. If χ(e3, e3) > 0, we are done by choosing v1 = e1 and v2 = e3. So we can
assume that χ(e3, e3) < 0. Note that e3 is not a scalar multiple of e2, so e2, e3 is a basis of
〈e1〉.. Therefore e1, e2, e3 is a basis of W , and in this basis the matrix of χ has the following
form: 

γ 0 0

0 0 c

a b −δ

 ,

with γ, δ > 0, and b, c 6= 0 (otherwise χ is degenerate). We may also assume a 6= 0 since
otherwise we can exchange e2 and e3 and reduce to the case 2 below.

If b+ c 6= 0, then set v1 = e1 and v2 = 2δe2 + (b+ c)e3. We have that χ(v1, v2) = 0, and
χ(v2, v2) = δ(b + c)2 > 0, so we are done. Suppose now that b + c = 0, so the matrix of χ
becomes 

γ 0 0

0 0 −b

a b −δ

 .

Let v1 = abe1 + γδe2 and v2 = δe1 + ae3. Then

χ(v1, v1) = γ(ab)2 > 0

χ(v1, v2) = γ · ab · δ − b · γδ · a = 0

χ(v2, v2) = γδ2 + a · δ · a− δa2 = γδ2 > 0.

Case 2: χ(e2, e2) < 0. Then χ|〈e1,e2〉 is non-degenerate, and 〈e1, e2〉 ∩ 〈e1, e2〉. = {0}. Let
e3 ∈ 〈e1, e2〉. be any non-zero vector. Note that χ(e3, e3) 6= 0, because χ is non-degenerate. If
χ(e3, e3) > 0, we are done by setting v1 = e1 and v2 = e3, so we can assume that χ(e3, e3) < 0.
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Then the matrix of χ with respect to the basis e1, e2, e3 has the following form:
γ 0 0

0 −δ 0

a b −ε

 ,

where γ, δ, ε > 0, and at least one of a and b is non-zero (because χ is not symmetric). Define

v1 = qe1 + e2

v2 = e1 +
γ

δ
qe2 +

1

2ε

(
a+

γ

δ
bq
)
e3,

where q ∈ F is yet to be determined. Then

χ(v1, v1) = γq2 − δ

χ(v1, v2) = γq − δ · γ
δ
q = 0

χ(v2, v2) = γ − γ2

δ
q2 +

1

4ε

(
a+

γ

δ
bq
)2
.

We are going to show how to choose q so that χ(v1, v1) > 0 and χ(v2, v2) > 0. The first
condition is

q2 >
δ

γ
. (3)

Now fix the sign of q so that abq ≥ 0. Then

χ(v2, v2) ≥ γ − γ2

δ
q2 +

1

4ε

(
a2 +

(γ
δ
b
)2
q2
)
.

In order to have χ(v2, v2) > 0, it is enough to have that the right hand side of the previous
equation is positive, and this condition can be rewritten as(

1− b2

4δε

)
q2 <

(
1 +

a2

4γε

)
δ

γ
. (4)

If b2 ≥ 4δε, then eq. (4) is always satisfied, and eq. (3) is satisfied for

q = ±
(
δ

γ
+ 1

)
.

If b2 < 4δε, then eqs. (3) and (4) are satisfied if

δ

γ
< q2 <

1 + a2/4γε

1− b2/4δε
· δ
γ

Recall that at least one of a and b is non-zero, so these inequalities define a non-empty
interval in F+. Since F is square-dense, this interval contains at least one square q2. �

It is worth mentioning that Lemma 4.6 does not hold over a general ordered field F, as we
show in the next example.
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Example 4.7. Let F = Q(X), with the non-Archimedean order determined by a < X for
all a ∈ Q. On W = F3, consider the non-symmetric bilinear form χ defined by the following
matrix: 

1 0 0

0 −X 0

0 1 −X

 .

Let v = (p, q, r) ∈ W be any vector satisfying χ(v, v) > 0. Then we have p2−Xq2−Xr2+qr >
0. Note that deg(qr) < max{deg(Xq2), deg(Xr2)}, unless both q and r are zero. Therefore we
must have deg(p2) ≥ max{deg(Xq2), deg(Xr2)}, which can be rewritten as deg(p) > deg(q)
and deg(p) > deg(r). Now, suppose to have two vectors v1 = (p1, q1, r1), v2 = (p2, q2, r2) with
χ(v1, v1) > 0 and χ(v2, v2) > 0. Then χ(v1, v2) = p1p2 −Xq1q2 −Xr1r2 + r1q2, and here the
degree of p1p2 is greater than the degree of all other terms. Therefore χ(v1, v2) 6= 0.

We are going to need some flexibility in the choice of the vectors v1, v2 given by Lemma 4.6.
The following two easy lemmas allow us to modify a pair (v1, v2) while maintaining the
properties we need.

Lemma 4.8. Let W be a finite-dimensional vector space over an ordered field F, with
dimW ≥ 2. Let χ be a non-degenerate bilinear form on W , and suppose to have two non-zero
vectors v1, v2 ∈ W with χ(v1, v2) = 0. For every u ∈ W , there exists a vector w ∈ W such
that χ(v1 + au, v2 + aw) = 0 for all a ∈ F.

Proof. If u ∈ 〈v1〉, then we can simply choose w = 0. Suppose now that u 6∈ 〈v1〉. Then 〈v1〉.
and 〈u〉. are two distinct hyperplanes of W . The set H = {w ∈ W | χ(u, v2) + χ(v1, w) = 0}
is an affine translate of 〈v1〉., and so it intersects the linear hyperplane 〈u〉.. Let w ∈ H∩〈u〉..
Then

χ(v1 + au, v2 + aw) = χ(v1, v2) + a
(
χ(u, v2) + χ(v1, w)

)
+ a2χ(u,w) = 0

for all a ∈ F. �

Lemma 4.9. Let W be a finite-dimensional vector space over an ordered field F. Let χ be a
non-degenerate bilinear form on W , and suppose to have a vector v ∈ W with χ(v, v) > 0.
For every u ∈ W , there exists δ ∈ F+ such that χ(v + au, v + au) > 0 for all a in the open
interval (−δ, δ).

Proof. We have

χ(v + au, v + au) = χ(v, v) + aχ(u, v) + aχ(v, u) + a2χ(u, u).

The absolute value of the last three summands can be made smaller than 1
3
χ(v, v), for a

sufficiently small a. �

We are finally able to refine Lemma 4.5, and obtain a whole triangular basis of positive
vectors.

Proposition 4.10. Let W be a finite-dimensional vector space over a square-dense field
F. Let χ be a non-degenerate bilinear form on W with det(χ) > 0. Suppose that χ is not
symmetric, and that there is at least one vector u ∈ W with χ(u, u) > 0. Then W has a basis
e1, . . . , em such that χ(ei, ei) > 0 for all i, and χ(ei, ej) = 0 for i < j.
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Proof. The proof is by induction on m = dimW , the case m = 1 being trivial. By Lemma 4.5,
there is a basis e1, . . . , em such that χ(e1, e1) > 0, χ(ei, ei) 6= 0 for i ≥ 2, and χ(ei, ej) = 0 for
i < j. If m = 2, since det(χ) > 0, we deduce that χ(e2, e2) > 0 and we are done. Assume
from now on that m ≥ 3.

Since χ is not symmetric, there exist two indices 2 ≤ i < j ≤ m such that at least one
of χ(ei, e1), χ(ej, e1), χ(ej, ei) is not zero. Apply Lemma 4.6 to the restriction of χ to the
3-dimensional subspace U = 〈e1, ei, ej〉 and get two positive vectors v1, v2 ∈ U such that
χ(v1, v2) = 0. In particular, the subspace 〈v1〉. contains the positive vector v2 (here the right
orthogonal complement is taken in the entire space W with respect to the bilinear form χ).

By Lemmas 4.8 and 4.9, there exists a ∈ F× such that for all i = 1, . . . ,m we have: (1)
χ(v1 + aei, v1 + aei) > 0; (2) the subspace 〈v1 + aei〉. contains some positive vector v2 + ae′i.
Let N = {v1, v1 + ae1, . . . , v1 + aen}, and notice that 〈N〉 = W . We are going to prove that
there is at least one vector u ∈ N such that χ|〈u〉. is not symmetric. Then we are done by
applying the induction hypothesis on χ|〈u〉. .

Suppose by contradiction that χ|〈u〉. is symmetric for every u ∈ N . In other words, the
alternating form γ(v, w) := χ(v, w)−χ(w, v) vanishes on the hyperplane 〈u〉. for every u ∈ N .
In particular, the rank of γ is at most 2. However, the rank of γ is even (because γ is
alternating) and non-zero (because χ is not symmetric), so it is equal to 2. For u ∈ W ,
denote by αu, α

′
u ∈ W ∗ the linear forms defined by αu(w) = χ(u,w) and α′u(w) = γ(u,w).

Let φ, ψ : W → W ∗ be the linear maps given by φ(u) = αu and ψ(u) = α′u. Note that φ is a
vector space isomorphism because χ is non-degenerate, whereas ψ has rank 2 because γ has
rank 2. For every u ∈ N we have γ|〈u〉. = 0, which can be written as: w ∈ kerα′v for every
v, w ∈ 〈u〉.. By definition of αu, we have 〈u〉. = kerαu. Therefore, for every u ∈ N and
v ∈ kerαu, we have kerαu ⊆ kerα′v and thus α′v is a scalar multiple of αu. This means that,
for every u ∈ N , the image of the restriction of ψ to the hyperplane kerαu is contained in the
1-dimensional subspace 〈αu〉. Since ψ has rank 2, αu must be in the image of ψ. Then the
isomorphism φ sends N inside the image of ψ, which is a 2-dimensional subspace of V ∗. This
is a contradiction, because N spans W , whereas the image of ψ has codimension m− 2 ≥ 1
in W ∗. �

We are now ready to compute the positive reflection length of any positive isometry. In
the case F = R, this was done by Malzan [Mal82] and Djoković [Djo83].

Theorem 4.11 (Positive reflection length). Let (V,Q) be a non-degenerate quadratic space
over a square-dense field F. Assume that V is not negative definite, and let f ∈ O+(V ) be a
positive isometry with f 6= id. If at least one of the following conditions holds:

(i) Mov(f) is positive definite,
(ii) f is not an involution and Mov(f) is not negative semi-definite,

then the positive reflection length of f is equal to dimMov(f). Otherwise, it is equal to
dimMov(f) + 2. In particular, every positive isometry is a product of positive reflections.

Proof. Let m = dimMov(f) ≥ 1. If (i) holds, then Mov(f) is not totally singular and f
has a direct factorization as a product of reflections by Theorem 2.7. These reflections are
positive, because Mov(f) is positive definite.

If (ii) holds, then χf is not symmetric by property (v) of Lemma 1.7, and Proposition 4.10
yields a basis e1, . . . , em such that χf(ei, ei) > 0 for all i and χ(ei, ej) = 0 for i < j. By
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Theorem 2.2, we have f = r1 · · · rm where ri is the reflection with respect to ei. Therefore, f
is a product of m positive reflections.

Conversely, if f can be written as a product of m positive reflections with respect to
some positive vectors e1, . . . , em, then by Theorem 2.2 we have χ(ei, ei) > 0 for all i and
χ(ei, ej) = 0 for i < j. In particular, Mov(f) contains at least one positive vector. If χf is
symmetric, then Mov(f) is positive definite and (i) holds. If χf is not symmetric, then (ii)
holds. Therefore, if both (i) and (ii) do not hold, then every factorization of f as a product
of positive reflections requires at least m+ 2 reflections.

Finally, we are going to show that any positive isometry f can be written as a product of
≤ m+ 2 positive reflections. We do this by induction on m, the case m = 0 being trivial. Let
m ≥ 1. If Mov(f) contains at least one positive vector u, then we can write f = ruf

′ where
dimMov(f ′) = m− 1 by Lemma 2.6, and proceed by induction. Therefore we may assume
that Mov(f) is negative semi-definite. We are going to show that there is at least one positive
vector v ∈ V such that χrvf is not symmetric. Notice that Mov(rvf) = Mov(f) ⊕ 〈v〉 by
Lemma 2.6, so Mov(rvf) contains the positive vector v. Then Proposition 4.10 can be
applied to χ = χrvf , yielding a factorization of rvf as a product of m+ 1 positive reflections,
and thus allowing us to write f as a product of m+ 2 positive reflections.

We only need to show that, if Mov(f) 6= {0} is negative semi-definite, then there is at
least one positive vector v ∈ V such that χrvf is not symmetric. Let v be any positive
vector. Recall that Mov(f) = 〈v〉., where the right orthogonal complement is taken in
Mov(rvf) = Mov(f)⊕ 〈v〉 with respect to the bilinear form χrvf . If χrvf is symmetric, then
Mov(rvf) = Mov(f) ⊥ 〈v〉. Therefore v ∈Mov(f)⊥ = Fix(f). The set of positive vectors
of V is non-empty because V is not negative definite, and it spans V by Lemma 4.9. If χrvf
is symmetric for all positive vectors v ∈ V , then v ∈ Fix(f) for all positive vectors v, so
Fix(f) = V and thus f = id, which is a contradiction. �

We say that an isometry f ∈ O+(V ) is positive-minimal if it is a product of dimMov(f)
positive reflections. Theorem 4.11 provides a characterization of positive-minimal isometries:
an involution is positive-minimal if and only if its moved space is positive definite; a non-
involution is positive-minimal if and only if its moved space is not negative semi-definite (i.e.,
it contains at least one positive vector).

If we replace reflection factorizations with positive reflection factorizations in Definition 3.1,
we obtain a partial order on the group O+(V ). This is not simply the restriction to O+(V ) of
the partial order on O(V ). Indeed, if f ∈ O+(V ) is minimal but not positive-minimal, then
there is a minimal positive factorization f = r1r2g with l(g) = l(f) = dimMov(f), and we
have g ≤ f in O+(V ) but g 6≤ f in O(V ). For the same reason, the rank function of O+(V )
is not the restriction of the rank function of O(V ).

If f ∈ O+(V ) is a positive-minimal isometry, then Theorem 4.11 allows us to include the
interval [id, f ] in O+(V ) into the poset of linear subspaces of Mov(f), in the same spirit as
Theorem 3.5.

5. Isometries of the hyperbolic space

In this section, we describe reflection length and intervals in the isometry group of the
hyperbolic space Hn. We follow the notation of [CFK+97].
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Let V = Rn+1, with the quadratic form Q(x) = x21 + · · ·+ x2n − x2n+1. Then (V,Q) is a real
quadratic space of signature (n, 1). The hyperboloid model of the hyperbolic space is

Hn = {x ∈ V | Q(x) = −1 and xn+1 > 0}.
The quadratic form Q induces a (positive definite) Riemannian metric on Hn. The condition
xn+1 > 0 selects the upper sheet of the hyperboloid {Q(x) = −1}. Every isometry of Hn

uniquely extends to an isometry of (V,Q); conversely, every isometry of (V,Q) that fixes Hn

(as a set) restricts to an isometry of Hn.

Lemma 5.1. The subgroup of O(V ) that fixes Hn (as a set) coincides with the index-two
subgroup O+(V ) of the positive isometries.

Proof. Both subgroups have index 2, so it is enough to show one containment. By Theo-
rem 4.11, the subgroup O+(V ) is generated by the positive reflections r ∈ O(V ), and therefore
it is enough to show that every positive reflection fixes Hn. If v ∈ V is a positive vector, then
〈v〉⊥ has signature (n− 1, 1), so it intersects Hn. Therefore rv fixes at least one point of Hn.
Note that any isometry f ∈ O(V ) fixes the hyperboloid {Q(x) = −1}, and Hn is one of the
two connected components of this hyperboloid. Then the reflection rv fixes Hn as a set. �

Reflections in the hyperbolic space Hn are restrictions of positive reflections of (V,Q).
Therefore, the study of reflection length and intervals in the isometry group of Hn reduces to
the study of positive reflection length and intervals in O+(V ). This is exactly the setting of
Section 4. It turns out that every isometry of Hn is positive-minimal.

Theorem 5.2. The positive reflection length of an isometry f ∈ O+(V ) is equal to dimMov(f).

Proof. We prove this by induction on k = dimMov(f), the case k = 0 (the identity)
being trivial. If k = 1, then f is a positive reflection. If k ≥ 2, then Mov(f) intersects
the hyperplane {xn+1 = 0} non-trivially, so it contains at least one positive vector v. By
Theorem 2.2, there is a direct factorization f = rvg. Then dimMov(g) = k − 1, and g can
be written as a product of k − 1 positive reflections by induction. �

We are then able to obtain a clean description of all intervals [id, f ] in O+(V ).

Theorem 5.3. Let f ∈ O+(V ). The interval [id, f ] in O+(V ) is isomorphic to the poset of
linear subspaces U ⊆Mov(f) such that det(χf |U) > 0.

Proof. By Theorem 5.2, we have that f is positive-minimal. Therefore, all minimal length
factorizations of f into positive reflections are direct factorizations. In particular, the interval
[id, f ] in O+(V ) is contained in the interval [id, f ] in the whole group O(V ). To avoid
confusion, denote by [id, f ]+ the interval in O+(V ). If g ∈ [id, f ] is a positive isometry, then
h = g−1f is also positive, and g and h are positive-minimal by Theorem 5.2. Therefore
g ∈ [id, f ]+. This shows that [id, f ]+ = [id, f ] ∩O+(V ).

By Theorem 3.5, the map g 7→ Mov(g) is a bijection between [id, f ]+ and the poset of
linear subspaces U ⊆Mov(f) such that: U satisfies conditions (i)-(iii) of Theorem 3.5; (iv)
det(χf |U) > 0 (this is the same as saying that the preimage of U is a positive isometry).
Since the signature of V is (n, 1), the totally singular subspaces have dimension 0 or 1, so
conditions (i) and (ii) are implied by condition (iii). In addition, we can disregard condition
(iii) as it is implied by (iv). Putting everything together, the map g 7→Mov(g) is a bijection
between [id, f ]+ and the poset of linear subspaces U ⊆Mov(f) satisfying det(χf |U) > 0.
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If g ≤ g′ in [id, f ]+, then g ≤ g′ in [id, f ], and thus Mov(g) ⊆ Mov(g′) by Theo-
rem 3.5. Conversely, suppose that we have g, g′ ∈ [id, f ]+ such that Mov(g) ⊆ Mov(g′).
By Lemma 3.4, χg and χg′ are the restrictions of χf to Mov(g) and Mov(g′), respectively.
Then χg = χg′|Mov(g), so there is a direct factorization g′ = gh and h is positive-minimal by
Theorem 5.2. Therefore g ≤ g′ in [id, f ]+. This shows that the bijection g 7→Mov(g) is a
poset isomorphism. �

Notice that Theorem 5.3 gives a poset isomorphism, whereas Theorem 3.5 only gives an
order-preserving bijection. A counterexample like the one in Example 3.6 cannot occur in
this context, since all positive isometries are positive-minimal. Indeed, for Example 3.6 to
arise, the Witt index of the ambient space V needs to be at least 2 (in other words, over an
ordered field, the signature needs to be (p, q) with p, q ≥ 2).

It is also true that all isometries of O(V ) are minimal, by Theorem 2.7. Indeed, the only
non-trivial totally singular subspaces are one-dimensional, and they do not arise as moved
spaces of any isometry, because the Wall form would be identically zero.

Recall that, if we interpret the hyperboloid model as lying in the projective space P(V ), the
singular lines 〈v〉 ⊆ {Q(x) = 0} can be interpreted as “points at infinity” of the hyperbolic
space Hn. Then the isometries of Hn can be classified into three types: elliptic isometries,
that fix at least one point of Hn; parabolic isometries, that fix no point of Hn and fix exactly
one point at infinity; hyperbolic isometries, that fix no point of Hn and fix two points at
infinity. See [CFK+97, Section 12]. We now rewrite this classification in terms of fixed space
and moved space.

Definition 5.4. An isometry f ∈ O+(V ) is

• elliptic if Fix(f) contains a negative vector (i.e., it is not positive semi-definite);
• parabolic if Fix(f) is positive semi-definite but not positive definite;
• hyperbolic if Fix(f) is positive definite.

Lemma 5.5. Let f ∈ O+(V ). We have that Fix(f) ∩Mov(f) = {0} if f is elliptic or
hyperbolic, whereas Fix(f) ∩Mov(f) is a singular line if f is parabolic. In addition:

• f is elliptic if and only if Mov(f) is positive definite;
• f is parabolic if and only if Mov(f) is positive semi-definite but not positive definite;
• f is hyperbolic if and only if Mov(f) contains a negative vector.

Proof. We have that Mov(f) = Fix(f)⊥ by Lemma 1.3. Therefore Fix(f) ∩Mov(f) is
a totally singular subspace, so its dimension is at most 1. If Fix(f) ∩Mov(f) contains a
non-trivial singular vector v, then Fix(f) is not positive definite, so f is elliptic or parabolic.

If f is elliptic, then up to conjugating by an isometry in O+(V ) we may assume that f fixes
the point en+1 = (0, . . . , 0, 1) ∈ Hn. Then f is an isometry also with respect to the standard
(positive definite) Euclidean quadratic form QE(x) = x21 + . . .+ x2n+1. Therefore Fix(f) and
Mov(f) are QE-orthogonal by Lemma 1.3, and in particular Fix(f) ∩Mov(f) = {0}. If
f is parabolic, then Fix(f) contains a singular line, so Fix(f) ∩Mov(f) is a singular line.
This finishes the proof of the first part of the statement.

We now prove the classification in terms of the moved space. If f is elliptic, then Fix(f)
contains a negative vector and V = Fix(f) ⊥ Mov(f), so Mov(f) is positive definite.
Similarly, if f is hyperbolic, then Fix(f) is positive definite and V = Fix(f) ⊥ Mov(f),
so Mov(f) contains a negative vector. If f is parabolic, then Mov(f) contains a singular
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vector and so it is not positive definite. Finally, if Mov(f) contains a negative vector w, then
〈w〉⊥ is positive definite and Fix(f) = Mov(f)⊥ ⊆ 〈w〉⊥, so f is not parabolic. �

For elliptic isometries, the description of the intervals given by Theorem 5.3 becomes
particularly simple thanks to the following observation.

Lemma 5.6. Let f ∈ O+(V ). If U ⊆ Mov(f) is a positive definite subspace, then
det(χf |U) > 0.

Proof. The restriction χf |U is non-degenerate, because χ(u, u) = Q(u) > 0 for all u ∈ U .
Applying Lemma 2.4 to χf |U , we obtain a basis e1, . . . , em of U such that χf (ei, ei) 6= 0 for all
i, and χ(ei, ej) = 0 for i < j. Additionally, we have χf (ei, ei) = Q(ei) > 0 for all i. Therefore,
det(χf |U) > 0. �

Theorem 5.7 (Elliptic intervals). Let f ∈ O+(V ) be an elliptic isometry. Then the interval
[id, f ] is isomorphic to the poset of all linear subspaces of Mov(f). In particular, the
isomorphism type of [id, f ] only depends on the dimension of Mov(f), and not on the Wall
form χf .

Proof. This follows immediately from Theorem 5.3 and Lemma 5.6. �

The description of Theorem 5.3 can be simplified also for parabolic intervals.

Lemma 5.8. Let f ∈ O+(V ) be a positive isometry, and U ⊆ Mov(f) a subspace. The
restriction χf |U is degenerate if and only if there is a singular vector v ∈Mov(f) \ {0} such
that 〈v〉 ⊆ U ⊆ 〈v〉.. Note that 〈v〉. = 〈w〉⊥ where w is any vector such that w − f(w) = v.

Proof. The restriction χf |U is degenerate if and only if there is a non-zero vector v ∈ U such
that χf(v, u) = 0 for all u ∈ U , or equivalently 〈v〉 ⊆ U ⊆ 〈v〉.. Since χf(v, v) = Q(v), the
containment 〈v〉 ⊆ 〈v〉. holds if and only if v is singular. Finally, by definition of χf , we have
χf (v, u) = β(w, u) for all u ∈ U , and therefore 〈v〉. = 〈w〉⊥. �

Theorem 5.9 (Parabolic intervals). Let f ∈ O+(V ) be a parabolic isometry which pointwise
fixes the singular line 〈v〉. Then the interval [id, f ] is isomorphic to the poset of linear
subspaces U ⊆Mov(f) that do not satisfy 〈v〉 ⊆ U ⊆ 〈v〉.. In particular, the isomorphism
type of [id, f ] only depends on the dimension of Mov(f), and not on the Wall form χf .

Proof. Let U ⊆ Mov(f) be a subspace. If 〈v〉 * U , then U is positive definite and thus
det(χf |U) > 0 by Lemma 5.6. Since 〈v〉 is the only singular line in Mov(f), the restriction
χf |U is degenerate if and only if 〈v〉 ⊆ U ⊆ 〈v〉. by Lemma 5.8. Finally, if 〈v〉 ⊆ U * 〈v〉.,
then Lemma 2.4 yields a basis e1, . . . , em of U such that χf (ei, ei) 6= 0 for all i and χf (ei, ej) = 0
for i < j. Since f is parabolic, Mov(f) is positive semi-definite by Lemma 5.5 and therefore
χ(ei, ei) = Q(ei) > 0 for all i. Thus det(χf |U ) > 0 also in this case. We conclude by applying
Theorem 5.3. �

The subgroup of O+(V ) that fixes a singular line 〈v〉 is isomorphic to the isometry group
of the affine Euclidean space Rn. This is easily seen in the half-space model of the hyperbolic
space (see [CFK+97, Section 12]). In particular, parabolic intervals are isomorphic to intervals
in the group of affine Euclidean isometries, which have been explicitly described in [BM15].
Our description is more compact than the one of [BM15], where the elliptic and the parabolic
portions of an interval are described separately.
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The results of this section leave open the following natural question: if f ∈ O+(V ) is a
hyperbolic isometry, does the isomorphism type of [id, f ] depend only on the dimension of
Mov(f)?
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(1959), 7–23.

[Wal63] G. E. Wall, On the conjugacy classes in the unitary, symplectic and orthogonal groups, J. Austral.
Math. Soc. 3 (1963), 1–62. MR 0150210

[Zas62] H. Zassenhaus, On the spinor norm, Arch. Math. 13 (1962), 434–451. MR 148760

22


	Copertina_postprint_IRIS_UNIBO (2)
	Factoring_isometries_of_quadratic_spaces.pdf
	Acknowledgments.
	1. Wall's parametrization of the orthogonal group
	2. Factorizations and reflection length
	3. Partial order on the orthogonal group
	4. Positive factorizations
	5. Isometries of the hyperbolic space
	References


