
Received 4 April 2023, accepted 10 May 2023, date of publication 15 May 2023, date of current version 23 May 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3276240

Accountable Clouds Through Blockchain
MIRKO ZICHICHI 1, GABRIELE D’ANGELO 2,4, STEFANO FERRETTI 3, (Member, IEEE),
AND MORENO MARZOLLA 2,4
1Ontology Engineering Group, Universidad Politécnica de Madrid, ETSIINF Campus de Montegancedo s/n, Boadilla del Monte, 28660 Madrid, Spain
2Department of Computer Science and Engineering (DISI), University of Bologna, 40126 Bologna, Italy
3Dipartimento di Scienze Pure e Applicate (DiSPeA), University of Urbino Carlo Bo, 61029 Urbino, Italy
4Center for Inter-Department Industrial Research ICT, University of Bologna, 40126 Bologna, Italy

Corresponding author: Stefano Ferretti (stefano.ferretti@uniurb.it)

This work has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie International Training Network European Joint Doctorate grant agreement No 814177 Law, Science and Technology
Joint Doctorate - Rights of Internet of Everything. This work was also partially supported by the University of Urbino Carlo Bo through the
‘‘Bit4Food’’ research project, as well as by project SERICS (PE00000014) under the MUR National Recovery and Resilience Plan funded
by the European Union - NextGenerationEU.

ABSTRACT We present a solution for accountability in Cloud infrastructures based on blockchain.We show
that, through smart contracts, it is possible to create an unforgeable log that can be used for auditing and
automatic Service Level Agreement (SLA) verification. As a practical case study, we consider Cloud storage
services and define interaction protocols for registering the outcome of each file operation in the blockchain.
We developed a prototype implementation that runs on the GoQuorum, Hyperledger Besu, and Polygon
blockchains, using different consensus protocols. Using a dedicated testbed, we discuss the performance
of our implementation in terms of latencies, error rates and gas usage. Results demonstrate the viability
of our approach over permissioned blockchains, with better performance for the Polygon and GoQuorum
Raft decentralized systems. Our implementation enables interoperability, given that it is supported by the
Ethereum Virtual Machine which currently is underlying several blockchain platforms.

INDEX TERMS Blockchain, smart contracts, cloud computing.

I. INTRODUCTION
Cloud computing is a well-established paradigm for provid-
ing computation and storage resources according to a ‘‘pay
as you go’’ model. In Cloud computing, service providers
own computing resources and provide remote access to those
resources to customers for a fee [2].

The level of abstraction at which a customer interacts
with a Cloud infrastructure is defined by the service
model. In a Software as a Service (SaaS) Cloud, cus-
tomers are provided with application services running in the
Cloud infrastructure. ‘‘Google Workspace’’ and ‘‘Microsoft
Office Online’’ are examples of widely used SaaS Clouds.
A Platform as a Service (PaaS) Cloud provides program-
ming languages, tools, and a hosting environment for appli-
cations developed by the customer. Examples of PaaS solu-
tions are AppEngine by Google, Force.com from SalesForce,

The associate editor coordinating the review of this manuscript and

approving it for publication was Nitin Gupta .

Microsoft’s Azure, and Amazon’s Elastic Beanstalk. Finally,
an Infrastructure as a Service (IaaS) Cloud provides low-level
computing capabilities such as processing, storage, and net-
works where the customer can run arbitrary software, includ-
ing operating systems and applications. Amazon EC2 is an
example of IaaS Cloud.

The mode of operation of a Cloud defines its deployment
model. A Private Cloud is operated exclusively for a cus-
tomer organization; it might be managed or owned by that
organization, although this is not required. A Community
Cloud is shared by several organizations and supports a
specific community with common concerns (e.g., regulatory
requirements). A Public Cloud is made available to the gen-
eral public and is owned by an organization selling Cloud
services. Finally, a Hybrid Cloud is built upon a combination
of private, public, and community Clouds.

Cloud computing allows separation between construction
and operation of the infrastructure and providing end-user
services. This opportunity enables the existence of at least

48358
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-4159-4269
https://orcid.org/0000-0002-3690-6651
https://orcid.org/0000-0002-1911-4708
https://orcid.org/0000-0002-2151-5287
https://orcid.org/0000-0001-5067-858X


M. Zichichi et al.: Accountable Clouds Through Blockchain

three categories of providers and users: (i) the provider of
Cloud resources, (ii) the provider of services implemented
upon these resources, and (iii) the customer of these services.
Although providers and customers could be the same (e.g.,
in the case of Private Clouds), in most cases, they are different
entities. This implies that customers have no control over
the resources they use: a common joke is to replace ‘‘Cloud
computing’’ with ‘‘other people’s computers’’ so that the
sentence ‘‘storing data in the Cloud’’ becomes ‘‘storing data
on other people’s computers’’.

The lack of direct control over the Cloud infrastructure is a
serious concern for some users, e.g., those subject to regula-
tory obligations or handling sensitive information. The legal
implications of sending data and computation to a third party
located in a different country with a different data protection
legislation are still a gray area [3]. It is essential to recognize
that these are old problems arising in a new context: for
example, moving the production of goods to other countries
may require the transfer of valuable information (e.g., chip
design, special production techniques) to a legal context that
may differ strikingly from that of the owner company.

The separation between resource providers and customers
introduces a problem that is not unique to Clouds, as every
service provider faces it: if something goes wrong (e.g., data
is lost, or the computation returns an incorrect result), how do
we determinewhether the customer or the provider caused the
problem? As an example, consider the following scenarios:

A. SCENARIO 1
Company A offloads its customer-facing application to a
Cloud provider B. Suddenly, A’s application crashes, and
customers complain with A, asking for compensation. In turn,
A accuses the Cloud provider B of the caused service unavail-
ability. However, B asserts that its infrastructure was oper-
ating correctly during service unavailability, thus suggesting
that the problemwas at the software level, i.e., A’s application
fault.

B. SCENARIO 2
Company A stores important data on a Cloud operated by B.
At some point, some data is found to be missing. A blames B,
who claims that the missing data have never been uploaded.
(An alternative scenario is that B asserts that the data have
been deleted upon explicit request by A).
Cloud providers offer services on an as-is and as-

available basis, subject to terms and conditions that dis-
claim any responsibility no matter what. For example,
Microsoft’s Service Level Agreements (SLAs) for online
services contain a clause according to which the entity that
decides on client-initiated disputes is the service provider
(i.e., Microsoft) itself:1

We [Microsoft] will evaluate all information
reasonably available to us and make a good faith

1https://www.microsoft.com/licensing/docs/view/Service-Level-
Agreements-SLA-for-Online-Services, Accessed on 2022-11-25

determination of whether a Service Credit is owed.
We will use commercially reasonable efforts to
process claims during the subsequent month and
within forty-five (45) days of receipt. You must be
in compliance with the Agreement in order to be
eligible for a Service Credit. If we determine that
a Service Credit is owed to you, we will apply the
Service Credit to your Applicable Monthly Service
Fees.

Having the service provider make ‘‘a good faith determina-
tion’’ about SLA violations is far from satisfactory. Amazon
Web Services is even more dismissive: their general customer
agreement2 denies any compensation for a broad range of
failures, no matter what, so that there is no need to decide
who’s to blame:

[. . . ] Neither we nor any of our affiliates or
licensors will be responsible for any compensation,
reimbursement, or damages arising in connection
with: [. . . ] d) any unauthorized access to, alter-
ation of, or the deletion, destruction, damage, loss,
or failure to store any of your content or other data.

Clauses like those above are common in the Information
Technology world, since they favor the party that defines
them (i.e., the service providers). There is, however, an objec-
tive problem in resolving disputes in the absence of solid
evidence, so it is no surprise that SLA are as forgiving as pos-
sible, ultimately limiting the adoption of Cloud technologies.
All these issues might be addressed by adding accountabil-

ity to Cloud services [4], [5], [6], [7], [8]. Indeed, an account-
able Cloud would be capable of attributing actions and trans-
actions to specific entities, thus adding responsibility to the
functionalities and behavior of all actors involved in the
Cloud service applications.
So far, accountability in distributed systems has relied on

a trusted third party or to tamper-proof hardware devices [9].
Neither of these is desirable because, in both cases, trust is
assumed rather than derived from verifiable system proper-
ties.
In this paper, we argue that blockchain technology can

address the accountability problem in Cloud infrastructures.
To support this claim, we have developed a prototype compo-
nent responsible for logging events in a distributed, unforge-
able event log. The log contains the sequence of interactions
between a customer and the service provider and can be
used to settle disputes if problems arise. Additionally, the
blockchain allows the implementation of smart contracts
through which it might be possible to write programs that
can negotiate and verify the fulfillment of SLAs. Moreover,
an effective use of a blockchain-based system, such as the
one we present in this work, can help auditors implement
an integrated and automated audit framework that enhances
the efficiency, effectiveness, and quality of Cloud operations.

2https://aws.amazon.com/agreement/ Section 11; Accessed on 2022-11-
25

VOLUME 11, 2023 48359



M. Zichichi et al.: Accountable Clouds Through Blockchain

Indeed, such a system would enhance auditing with COSO,
COBIT, and ISO Control Frameworks [10].

The main contribution of this paper is as follows:

• We provide a protocol that, based on blockchain tech-
nologies, allows us to build an unforgeable log for Cloud
accountability. The blockchain allows tamper-proof log-
ging of events to verify if Cloud Service Level Agree-
ments are violated.

• We implement our protocol through a smart contract
set in Solidity. Our solution, concerning state of the art,
is supported by the Ethereum Virtual Machine, which
is currently used by several blockchain-based systems.
Thus, this design choice enables interoperability over
multiple blockchain platforms.

• We deploy and test our implementation over differ-
ent blockchain platforms, i.e., GoQuorum, Hyperledger
Besu, and Polygon, and different consensus protocols.
Results demonstrate the viability of our approach, with
better performance for Polygon and GoQuorum Raft.

This paper is organized as follows. In Section II, we pro-
vide some background on Cloud computing, blockchain, and
smart contracts. In Section III, we highlight some of the chal-
lenges and requirements of accountable Clouds. Section IV
investigates how blockchain-based technologies can enforce
accountability in a case study dealing with a cloud-based
storage service. SectionV describes an actual implementation
of the proposed system, whose performance is experimen-
tally evaluated in Section VI. Finally, conclusions and future
research directions are discussed in Section VIII.

II. BACKGROUND
To make this paper self-contained, we provide some back-
ground on Cloud computing infrastructures, accountability,
blockchain technology, and smart contracts.

A. CLOUD COMPUTING
The main characteristics of a Cloud environment are [11]:

• On-demand self-service: the ability to provide resources
(e.g., CPU time, network storage) as needed [2], [12];

• Broad network access: resources can be accessed
through the network [2];

• Resource pooling: virtual and physical resources can be
pooled and assigned dynamically to consumers using a
multi-tenant model [12];

• Elasticity: dynamic provision of resources to enable
customer applications to scale up and down [2], [12];

• Measured service: resource and service usages are opti-
mized through a pay-per-use model [5], [13].

B. ACCOUNTABILITY IN CLOUD COMPUTING
The importance of accountability in distributed systems in
general [14], [15] and Cloud computing in particular [5],
[16], [17], [18], [19], [20], [21] has already been recognized.
In [5] the author discusses the requirements for achieving
accountability in clouds through tamper-evident logs: com-

pleteness (all SLA violations are eventually reported), accu-
racy (no violations are reported if the SLA is not violated),
and verifiability (a third party can independently verify all
reported violations). To realize an accountable Cloud based
on trusted logs, it is necessary to decide what to log and how
to log. We consider ‘‘how’’ first. Logging must guarantee
fairness and non-repudiation, ensuring that the misbehavior
of others does not disadvantage well-behaved parties and that
no party can subsequently deny their participation. It should
enable tracing back the causes of an ‘‘incident’’ (i.e., a
behavior that is not SLA compliant) after it has occurred.
Cloud providers and customers require protection for each
other’s actions, with all assurances rooted on an independent
source of trust. For example, there should be a user-verifiable
assurance that the data, applications, and services they deploy
in the Cloud are secure even against impairment by Cloud
system administrators. As concerns ‘‘what’’ to record, Cloud
computing creates new relationships between an organization
and third-party Cloud service providers. The general scenario
is that Cloud services could be arbitrarily complex. Providers
will offer their services to consumers with specific Quality
of Service (QoS) attributes, such as reliability and security,
under specific terms and conditions [13]. Most of the existing
research on SLA management focuses on computational and
algorithmic aspects of QoS monitoring and provisioning.
Specifically, considerable effort has been spent developing
proactive or reactive algorithms for allocating the appropriate
number and resources needed to meet a set of QoS require-
ments. However, SLA violations happen in practice, and it is
necessary to deal with them. Currently, the handling of SLA
violations is entirely based on ‘‘out of band’’ negotiations
between service providers and customers since the systems
being monitored cannot provide legal evidence of malfunc-
tions (or lack of). What is needed is a framework or a set
of technologies that enable the creation of SLA clauses in
a machine-readable form, such that users can be assured of
their effective enforcement in the event of a violation. The
blockchain’s transparency and immutability and the smart
contracts’ automation have already been proposed to deal
with SLA violations in Cloud services. However, such solu-
tions still need to be thoroughly studied and evaluated [22].

In [1], the authors introduced the problem and proposed
an initial blockchain-based solution that needed to be imple-
mented and evaluated in terms of performance (e.g., scala-
bility). A partially overlapping problem is discussed in [23],
in which the authors explore the usage of blockchains to
support cloud exchanges (i.e., marketplaces for cloud ser-
vices). QoS and SLA violations are relevant topics for cloud
exchanges that need specific and trusted solutions. On the
other hand, in [24] the authors present an accountable cloud
data storage that, similarly to our work, is implemented using
Ethereum smart contracts. The difference with our work is
that their evaluation focuses only on off-chain operations
related to data storage, and only the gas usage is measured
regarding on-chain operations. Additionally, we test the per-
formance of three different blockchain implementations.

48360 VOLUME 11, 2023



M. Zichichi et al.: Accountable Clouds Through Blockchain

Another partially overlapping problem is data accountabil-
ity, in which the goal is to obtain unified control and assign
responsibilities to the operation on data hosted on a cloud
infrastruture. Also, in this case, a solution based on cloud-
blockchain fusion [21] can be implemented. Worth of notice
is also the work presented in [25], since it is one of the first
works that integrates a blockchain with a cloud system to
provide accountability. However, both solutions [21], [25]
are limited to the Hyperledger Fabric blockchain and are not
interoperable with blockchains based on the EthereumVirtual
Machine.

C. BLOCKCHAIN AND SMART CONTRACTS
Distributed Ledger Technologies (DLT) consist of networks
of nodes that maintain a single ledger and follow the same
protocol for appending information to it. The blockchain is
a type of DLT where the ledger is organized into blocks, and
each block is sequentially linked to the previous one [26]. The
execution of the same protocol, i.e., source code, guarantees
(most of the time) the property of being tamper-proof and
not forgeable. This allows a trust mechanism to be created
without the need for third-parties [27]. The untampered data
availability makes DLT a promising tool for developing new
types of applications where immutability and transparency
are requiremed. Examples of these applications can be found
in general-purpose blockchains [28], [29], [30].

There are different implementations of DLTs, each with
its pros and cons. Permissionless DLTs are systems in which
anyone can participate in the consensus mechanism. Permis-
sioned DLTs, on the other hand, have a privileged set of nodes
that are authorized to execute the consensus mechanism.
In both cases, the full ledger can be either private or accessible
by anyone, i.e., public. Another distinction lies in the support
for smart contracts, a feature that quite often has a negative
impact on the system scalability and responsiveness [28].
In fact, DLTs that are believed to provide better scalability
often lack support for smart contracts. To address this issue,
IOTA [31] implements a more scalable solution for distribut-
ing the ledger.

A smart contract is a program, in compiled or source
form, that is deployed in a DLT environment [32]. The pro-
gram is executed deterministically by different participants in
the DLTwith the same inputs, and therefore must produce the
same results. When a smart contract is deployed on the DLT
and the issuer is confident (e.g., by reviewing the code) that
the code embodies the intended behavior, then transactions
originating from that contract can be considered ‘‘trusted’’
without requiring the presence of a third party. This principle
is based on the assumption that most DLT nodes are honest
and follow the same protocol.

However, smart contracts are usually isolated from the
outside world, e.g., they cannot contact a website, in order
to ensure that execution is more resistant to attacks with a
higher degree of certainty [29]. This limits the possibilities
of using these technologies, given that many applications

require real-time information from the outside world. In this
context, oracles assist DLTs in enabling smart contracts to
operate in the real world by flowing data from services exter-
nal to the DLT [33]. They act as a bridge, providing the
ability to retrieve, verify and digest data into smart contracts.
Their off-chain execution can be centralized, i.e., from a
single source, or decentralized, based on the consensus of a
multitude of sources.

An exciting aspect of smart contracts is their ability
to be self-enforcing in verifying the fulfillment of SLA
agreements. Smart contracts allow the formulation of sets
of machine-readable rules from service contracts, therefore
transforming rules that are typically written in ‘‘legal-ese’’
into software programs. In our scenario, smart contracts
might contain two kinds of contractual clauses: (i) terms
and conditions and (ii) SLAs. Terms and conditions are con-
cerned with rights, obligations, and prohibitions to perform
a particular action; whereas SLAs are concerned with rights,
obligations, and prohibitions to maintain a given service in
a particular state. Smart contracts allow the definition of
computational procedures for monitoring and detecting rule
violations. This can be accomplished by recording service
interactions at a granularity that is sufficient for checking if
they comply with the rights (permissions), obligations, and
prohibitions stipulated in contract clauses and tracing the
causes of violations.

III. OVERVIEW OF CloudSLA
This section presents CloudSLA, a protocol that builds a
trusted, tamper-proof log of actions executed in a cloud
service through blockchain technologies. These interactions
are represented as transactions recorded in the blockchain.
Through smart contracts, all parties can check the trusted log
and find and resolve disputes arising from SLA violations.

When API calls involve transferring a large amount of data
(e.g., a file upload), cryptographic hashes are used in order
not to store too much information into the blockchain. There
are no particular constraints on the Cloud APIs under consid-
eration: instantiating a virtual machine, uploading, deletion,
ormodification of files, and accessing a given resource, are all
examples of events that can be recorded. All these events are
notified in the blockchain by the entity invoking the request
(the end user or a delegate) and/or by the entity receiving the
request (the Cloud provider). The rationale is that recording
all the involved parties’ activities can help reveal the causes
of a SLA violation.

In the rest of this paper, we consider a specific use case for
implementing a Cloud storage service for data archival and
backup, similar to Amazon Glacier. The service exposes the
following Application Programming Interface (API):

• Upload(f, c): Upload a file with unique identifier f
and content c; if a file with id f already exists, its content
is overwritten;

• Delete(f): Delete a file with id f ; if the file does not
exist, this operation does nothing;

VOLUME 11, 2023 48361



M. Zichichi et al.: Accountable Clouds Through Blockchain

• c ← Read(f): Return the content c of the file whose
id is f ; if the file does not exist, return the special value
Nil.

We assume the existence of some authorization/
authentication mechanism that allows users to access only the
files that they are allowed to. We also assume that the User
encrypts each file before uploading it to the Cloud. The Cloud
should not be able to decrypt any user-generated content, to
prevent a class of insider threats.

The blockchain can be used following a notary scheme:
let us assume that the provider fails to deliver a data block x
requested by the user, or that the delivered data is differ-
ent from what is expected. In this case, inspection on the
blockchain can reveal whether the provider lost x or some
updates to x, or the user has deleted or never uploaded x (or
some modifications to x).

Another classic SLA example is: ‘‘99% of transactions
during a daily activity must have a response time below
a certain threshold t’’. This SLA can be safely monitored
if we assume the presence of a (third) trusted component
that logs response times and can audit (virtualized) resource
usage [34]. In practice, self-enforcing smart contracts should
be coupled with specific oracles to monitor response times
and, based on the SLA, pay the damaged entity (more often,
the customer) accordingly.

A similar strategy could work as well to monitor SLAs
stipulated in terms of adequate resource capacities provided
by the Cloud, rather than applications-specific performance
metrics [35]. Thus, CloudSLA would allow checking if the
Cloud provider allocated the proper amount of resources,
e.g. processing and storage capacities, RAM, andmiddleware
software.

As a concrete example, let us consider a customer who
uploads some content on a Cloud storage service. For sim-
plicity, let us assume that the content is a file (similar rea-
soning would apply to data chunks or other kinds of infor-
mation). In the following, the customer wants to be sure that
the uploaded files are not removed or altered by the Cloud
provider. This can be obtained by using different execution
architectures:

1) blockchain-based double signed transactions;
2) blockchain-based logging without smart contracts;
3) blockchain-based logging and smart contracts.

Double-signed transactions are signed by multiple parties,
and can be used to certify that a transaction has been agreed
upon by both the customer and the cloud provider. Double-
signed transactions are simple to use and require a low over-
head since they can be realized with few interactions. On the
other hand, this approach would provide a coarse-grained
representation of the interactions between the user and the
cloud, because double-signed transactions certify whether the
parties agree on something. This all-or-nothing result can be
quite limiting since it relies on the two parties to agree.

Blockchain-based logging (without smart contracts) allows
the recording of all interactions between the User and the

FIGURE 1. Cloud Service Level Agreement environment interactions.

Cloud. In the case of SLA violations, each party can trigger
a verification by a third entity (e.g., an arbitrator) to identify
who is responsible for such a violation. It is worth noting that,
in this architecture, the arbitrator is not required to have been
involved in any previous interaction with either the User or
the Cloud since it can use the information publicly provided
by the blockchain to determine the responsibilities. Another
option is to employ a smart contract acting as the arbitra-
tor. In this approach, the smart contract verifies all events
stored in the blockchain, identifying SLA violations, and
calculates compensations if necessary. The main advantage
of this approach is that no third party needs to be involved
in resolving disputes. In particular, since the content of the
smart contract can be accessed by both parties, they can verify
its correctness before agreeing to its terms. In other words,
the trust of the User and the Cloud provider is on the smart
contract (that can be inspected and verified), following the
notion that ‘‘code is law’’.

IV. SMART CONTRACTS FOR CLOUD SERVICE LEVEL
AGREEMENTS
In this section we describe a smart contract that leverages
blockchain-based logging for monitoring SLA violations of
functional requirements of the file storage case study. The
CloudSLA smart contract can help attribute SLA violations
to the appropriate party for the following three operations:
upload, delete, and read. We assume that the following active
entities are involved (see Figure 1): User, Cloud provider,
CloudSLA smart contract, andMonitor (i.e., an oracle).

For simplicity, we consider the blockchain as a passive
entity that receives and stores events generated by active
entities (User and Cloud). However, in the following discus-
sion, we might state that an entity, say the Cloud, receives a
transaction from the blockchain. This is a simplification to
state that the blockchain network nodes reached a consensus
on a transaction that includes a smart contract event triggered
by the execution of a method while the Cloud was listening
for such events.

48362 VOLUME 11, 2023



M. Zichichi et al.: Accountable Clouds Through Blockchain

FIGURE 2. UML sequence diagram for the interactions involved in the file
upload operation.

It is important to remark that the assumptions above are
only intended to simplify the discussion. In other words, they
are not needed for guaranteeing the correctness of the pro-
posed approach. The proposed system can operate correctly
by adhering to nothing more than the usual development
practices employed in common DLT-based systems.

A. SMART CONTRACT OPERATION
The CloudSLA smart contract is the on-chain representation
of a SLA contract. CloudSLA includes most of the informa-
tion that builds up the agreement between a User and a Cloud
provider. The operations enabled by this smart contract are
described below.

1) UPLOAD
Figure 2 shows the behavior of the involved entities when the
User uploads a file. What follows is the description of the
Upload operation execution.

(a) Before transmitting the file to the Cloud, the User starts
the upload operation using the smart contract method
UploadRequest(). This method registers the upload
request in the blockchain (arrow a in the diagram).
It takes as input a filepath, i.e., a unique identifier by
which the Cloud identifies a user’s file in its storage. The
identifier will be stored in the blockchain ledger, so it
should not convey any information that could reveal its
content or true location. The UploadRequest() function
also takes as input a challenge [36], which consists of
the hash digest of the file’s hash digest, i.e., the result
of executing the hash function twice, one after the other,
on the file. This is done to hide the hash of the content
so that it can be verified (by the smart contract) once
the Cloud has uploaded the file. This is sometimes called
‘‘hash masking’’.

(b) Once the Cloud receives the transaction, including the
upload request event from the blockchain, it can accept
such a request by issuing an upload ACK message to

the User through the invocation of the method Upload-
RequestAck().

(c) Once the User receives the transaction, including the
upload ACK event, it can start the data upload to the
Cloud.

(d) Once the upload finishes, the Cloud logs the success of
this operation with a new transaction; in this transaction,
the Cloud invokes theUploadTransferAck()method that
stores the file’s hash digest in the blockchain.

(e) Finally, the previous method invokes the UploadCon-
firm() method, (arrow e), which uses the file’s hash
digest provided by the Cloud as a response to the chal-
lenge set previously by the User. This method executes
the hash function on the file’s digest and checks the result
with the data provided by the User. This operation con-
firms or rejects the hash digest published by the Cloud.
If rejected, then the Cloud should delete the received file.

Through these steps, anyone can verify the correctness of
the uploaded file by checking the digest provided by the
Cloud and the related confirmation by the User. Recall
that anyone who has access to the blockchain can check
what the Cloud and the User stored, and thus he/she
can understand if one of the two parties did not behave
correctly. Moreover, the automatic execution of the smart
contract challenge-response method enables file integrity
validation and the possible rejection of the upload opera-
tion. This might not be considered a violation since there
could have been some transmission issues not due to the
Cloud.
Analysis: Upon registration of message e (Upload Con-

firm), the following properties are guaranteed:

1) Neither the User nor the Cloud provider can claim
that no upload was requested; indeed, the User stored
a publicly-visible upload request on the blockchain
(request a), that the Cloud acknowledged with message
b; if the Cloud was unavailable right after message a,
e.g., because it was down, it can nevertheless see the
request from the blockchain as soon as it is operational
again;

2) Neither the User nor the Cloud provider can claim that
no file was transferred; indeed, an explicit upload trans-
fer ack d , containing the file hash digest, is stored in
the blockchain. The User can verify the correctness of
the hash and repeat the upload in case of mismatch;
the has must match the one from the initial upload
request a.

2) DELETE
The interactions required to delete a file from the Cloud are
shown in Figure 3. What follows is the description of the
Delete operation execution.

(a) The User issues a delete request by invoking the
DeleteRequest() method with a filepath parameter.

(b) The Cloud receives the delete request event and deletes
the file. The Cloud acknowledges the completion of

VOLUME 11, 2023 48363



M. Zichichi et al.: Accountable Clouds Through Blockchain

FIGURE 3. UML sequence diagram for the interactions involved in the file
delete operation.

FIGURE 4. UML sequence diagram for the interactions involved in the
read request operation. Note the two branches that describe the behavior
depending on the file’s existence.

the request by registering the event into the blockchain
through the method Delete().

After these operations, future disputes on the presence or
absence of a file can be resolved by looking at the log.
If the User requests a file not present in the Cloud, the smart
contract automatically verifies whether the User previously
requested deletion for that file. If such a request is present,
the Cloud correctly deleted that file; if no delete request was
logged for that file, there is a SLA violation. Furthermore,
if the Cloud is found to have a copy of a file for which a
successful and legit delete request is in the blockchain, then
the Cloud would again be in violation of SLA since it did not
correctly remove the file as requested.
Analysis: Upon registration of message b (Delete), neither

the User nor the Cloud can claim that no delete operation
was actually requested, since a publicly visible request a was
stored in the blockchain. Furthermore, neither the User nor
the Cloud can claim that the delete operation failed, due to the
acknowledgement b being stored in the blockchain as well.

3) READ
Figure 4 shows the interactions required to read a file stored
in the Cloud. What follows is the description of the Read
operation execution.

insane

(a) In order to access a file, the User issues a transaction in
order to invoke the ReadRequest() method, providing
as input the filepath.

(b) To give access to the file, the Cloud invokes Read-
RequestAck() and inserts into the blockchain an URL,
where the file can be retrieved.3 This procedure is
required to witness that the Cloud has granted access to
the User and that the file is valid.

(c) Finally, the User can read the file through the URL
provided by the Cloud.

(b∗) When the file specified in the request is missing, the
Cloud responds with a missing message by invoking
ReadRequestDeny().

(c∗) To assess if there is a SLA violation the User executes
the FileOnCloud() operation. This method analyzes the
smart contract storage that keeps track of the operations
and determines if a SLA violation has occurred

(d∗) The output of this process is stored on the blockchain.

Analysis: After message a (Read request) is stored in
the blockchain, the expected outcome can be anticipated by
checking the log of all operations involving the same file that
have been previously stored there. In fact, the User can not
held the Cloud responsible for the unavailability of a file that
the User did not upload, since the Cloud can simply point
to the lack of a matching Upload operation on the publicly
readable log. Similarly, the Cloud can not held the User
responsible for the unavailability of a file that must indeed
be present, since the User can point to a previous Upload
operation not followed by any deletion request on the public
ledger. The basic principle is that the history of all interactions
is permanently stored in the blockchain in a tamper-resistant
way, so anyone can verify the availability (or lack of) of every
file at any point in time by simply ‘‘playing back’’ the log.

B. OFF-CHAIN MONITORING
At each execution of a method in the CloudSLA smart
contract, some operational and file integrity checks are
autonomously executed before the method can go through
with its implemented behavior. For instance,ReadRequest()
checks that a file has already been uploaded before instan-
tiating the request, and UploadTransferAck() checks the
file integrity. However, the CloudSLA smart contract cannot
directly read a file from the Cloud using the URL inserted
into the blockchain. This represents an off-chain operation
where the Monitor comes into play. The Monitor is an oracle
fetching data from, and providing data to, the blockchain.
We focus on three different scenarios where the Monitor is
needed:

Case 1After a delete operation, the Monitor can check
if the Cloud still has a copy of the file that was
requested for deletion;

Case 2After a read operation, the Monitor can check if the
Cloud has corrupted the content of the file, i.e., if the

3Also in this case, hash masking can be used to provide privacy.

48364 VOLUME 11, 2023



M. Zichichi et al.: Accountable Clouds Through Blockchain

FIGURE 5. UML sequence diagram for the interactions involved with a
monitoring request operation.

digest stored during the upload is different from the
digest of the data read back using a read operation;

Case 3After a read operation, the Monitor can check if the
Cloud replies with a ‘‘file not found’’ error, whereas
the file should be present because no deletion has
been requested.

Figure 5 shows the behavior of the involved entities when
the User asks the Monitor to check a file. What follows is the
description of the Monitor check operation.

(a) First of all, the User requests to start a check operation
using the smart contract method DigestRequest(). This
operation registers the request to fetch a file from the
Cloud and obtain its digest in the blockchain. It takes as
input the URL of the file.

(b) Once the Monitor receives the transaction, including the
digest request event from the blockchain, it can accept
such a request by reading the file from the Cloud using
the provided URL.

(c) Once the Monitor reads the file and obtains its hash
digest, it can store the digest in the blockchain through
the DigestStore() method.

(d) Once the User receives the transaction, including the
Monitor’s digest store event from the blockchain, it can
invoke FileCheck() with a new transaction.

(e) Such FileCheck() method triggers some processing in
which the Monitor’s file digest is retrieved and compared
with the hash digest of the original file, stored earlier by
the Cloud during an upload operation. If the two digests
are different, there has been a violation of the SLA.
This violation falls into one of the three cases presented
above. Consequently, depending on the case, it may incur
into a sanction, automatically paid by the Cloud provider
through the smart contract (more details in the next sub-
section).

Analysis: Similarly to the Upload and Delete request, the
expected result of a monitoring operation can be computed
by anyone that has read access to the blockchain by playing
back the sequence of operations involving the file under
consideration. The Cloud can not fabricate a fictitious Upload
or Delete operation on behalf of the User, since it is assumed
that the User’s credentials required to sign a transaction on

the blockchain are private. For the same reason, the User
can not fabricate a file Upload or Delete operation that did
not happen (the User can not sign a blockchain transaction
without the Cloud credentials). Finally, the Monitor can not
alter the result of a Digest Store operation (message c),
e.g., by asserting that the content of a file is different from
the expected one, or that a file that should be there is not
available, since any deviation from the expected result can
be independently verified by anyone from the file hash that
is included within the previous file operations stored on the
blockchain.

C. AUTOMATIC CREDITS SETTLEMENT
The distributed computation feature embodied by smart con-
tracts enables us to include an automatic credits settlement
mechanism into each operation in response to SLAviolations.
In particular, several blockchain implementations enable
the creation of multiple second-layer assets. These assets
might represent different means of value exchange between
blockchain Users (an example being ERC20 tokens [30]).
In the case of a SLA, these assets can automatically handle
situations in which the Cloud is liable to the User due to a
violation. Some ‘‘credits’’ can be moved to the User account
directly on the chain and then redeemed for paying Cloud
services. Thus, upon SLA violations, credits are directly
moved to the User. For instance, when, after a read operation,
the Cloud has lost the file (Figure 4), then after the process
is stored on the blockchain (arrow d∗ in the same figure),
another smart contract method is invoked to move credits
from the Cloud to the User. For each type of violation, the
number of credits can be set up through the SLA during the
initialization phase.

D. THREAT MODEL AND LIMITATIONS
The solution above has been designed to fulfill the require-
ments of a specific threat model that will be briefly described
in this section. As usual, each threat model has limitations
that need to be carefully considered.

The entities that we consider in our security analysis are 1)
the User, 2) the Cloud, 3) the CloudSLA smart contract, and
4) the Monitor (i.e., the oracle).

In the proposed solution, the User and the Cloud can be
malicious. They may operate in a way that does not conform
to the SLA without paying for the prescribed compensations.
However, this malicious behavior is cushioned by automatic
penalty payments in smart contracts. On the other hand,
both the CloudSLA smart contract and the Monitor must be
trusted by both the User and the Cloud provider. Trusting
the smart contract should not be a problem since its source
code is available for review, and the contract itself runs on a
blockchain that both parties can assess. Vulnerabilities can be
found in the smart contract and on the blockchain, but this is
common to all solutions that are based on smart contracts and
blockchains.

The situation is different when we consider the oracle that,
in the current proposal, is a centralized external service. This

VOLUME 11, 2023 48365



M. Zichichi et al.: Accountable Clouds Through Blockchain

component is mandatory and needs to be trusted by the parties
(without the ability to perform a preliminary validation such
as the one that can be done for the smart contract). To address
this concern, we are working on an extension of this solution
that involves a decentralized oracle instead of a centralized
one (see Section VII).

Even assuming the trust structure we described above, fur-
ther limitations must be considered. First of all, the proposed
architecture can not prevent the possibility for the Cloud
to create unauthorized copies of files. This should not be
an issue if the User adequately encrypts the content before
uploading it to the Cloud (as mandated by the proposed
solution) and securely manages the encryption keys. Our
Monitor implementation can detect this behavior if the Cloud
still exposes the copy to the public. Another relevant aspect
is that the Cloud could obtain some information on the User
behavior (or his data) by performing inference analysis on
the stored data and the User interaction patterns. Again, the
stored data is encrypted, and if extended privacy is required,
many mitigation techniques can be employed [37].

Finally, targeted attacks can be executed to reduce or nul-
lify the availability of both the CloudSLA smart contract and
the Monitor. Disrupting the availability of the smart contract
would require attacking the whole blockchain. On the other
hand, attacking the Monitor is again an issue in the presence
of a centralized oracle. In this case, a distributed oracle is
preferred. Another possible attack could aim to reduce the
smart contract’s ability (or the Monitor’s ability) to complete
some of the operations on the files to trigger improper SLA
violations and gain from the related compensations. Many
mitigation techniques can be implemented, but they are out
of the scope of this paper that aims for a general validation of
the proposed solution.

V. SOLIDITY SMART CONTRACT IMPLEMENTATION
This section discusses a prototype implementation of the
smart contracts described in Section IV. The implemen-
tation is written in Solidity, a language compatible with
the Ethereum Virtual Machine (EVM) that runs in the
Ethereum public blockchain as well as other public and pri-
vate blockchains. The source code is available onGithub [38].

In the following, we first describe the software design
pattern used in our development, the implementation of the
main smart contract, and, finally, the implementation of the
oracle.

A. PATTERN
In our implementation, we use the factory pattern [39], a soft-
ware pattern for creating several smart contracts workingwith
the same logic. In particular, a single Factory smart contract is
deployed, which is in charge of instantiating several ‘‘child’’
contracts with the same code. This enables the creation of
several SLAs between different Users and the Cloud. The
following components make up our Factory contract (see the
Factory contract in Figure 6):

FIGURE 6. UML diagrams of the CloudSLA smart contract.

• The Cloud address uniquely represents this entity on-
chain.

• A mapping of Users’ addresses to contracts’ addresses
representing the ‘‘children’’ of the Factory.

• The method createChild() for the creation of the
mentioned child smart contracts. Each child contract
(described in the next Sub-Section): i) is attributed to
a User using the User’s address; (ii) has a price value
indicating the User’s payment for the Cloud service; (iii)
has a SLA validity duration that starts when the child
contract is instantiated.

B. SERVICE LEVEL AGREEMENT SMART CONTRACT
The Service Level Agreement Smart Contract implements
a set of methods to execute the logging on-chain, namely
the log operations for Upload, Delete and Read. Moreover,
it implements a set of methods for checking the file integrity
or deletion status through an oracle. The following compo-
nents make up our CloudSLA contract (see Figure 6):
• The contract attributes:

– the addresses that uniquely represent (i) the opera-
tional oracle, (ii) the User, and (iii) the Cloud.

– the list of files uploaded to the Cloud storage after
the SLA began (files mapping in Figure 6). In the
smart contract, a File is represented by: (i) a unique
filepath by which the Cloud identifies a file in the

48366 VOLUME 11, 2023



M. Zichichi et al.: Accountable Clouds Through Blockchain

User’s personal storage; (ii) an identifier obtained
by hashing the filepath; (iii) its presence on the
Cloud storage, i.e., if it has been deleted (onCloud
boolean in Figure 6); (iv) a state indicating the
actual request being executed on it, e.g., upload-
Requested, deleted, readRequestAck (states array in
Figure 6); (v) its hash digests, obtained using the
SHA256 function and/or other functions; (vi) URL
that is used to access the file externally through the
Cloud service.

– the SLA information, namely (i) the price value the
User pays for the service, (ii) the credits accumu-
lated after a violation to be paid by the Cloud, (iii)
the start time (in UNIX time) and (iv) the end time.
Using the same smart contract, a structure named
Sla is used for instantiating a new SLA contract
when the previous one has been terminated.

• The methods for performing the Upload operation log-
ging are: (i)UploadRequest() to start the upload taking
in input the filepath; (ii) UploadRequestAck() invoked
by the Cloud; (iii)UploadTransferAck() invoked by the
Cloud after the file has been uploaded and indicating the
file digest; (iv) UploadConfirm() invoked by the User.

• The methods for performing the Delete operation log-
ging are: (i) the DeleteRequest() to delete the file indi-
cating its path; (ii) Delete() to provide a confirmation
by the Cloud.

• The methods for performing the Read operation log-
ging are: (i) ReadRequest() to read the file indicat-
ing its path; (ii) ReadRequestAck() invoked by the
Cloud indicating the file URL; (iii) ReadRequest-
Deny() invoked by the Cloud indicating the file is not
present.

• Themethods for invoking a file check through aMonitor
are: (i) FileHashRequest() method requests a check to
the oracle smart contract indicating the filepath and the
file URL; (ii) the FileCheck() method executes a logic
after the oracle replied to the request, i.e., increment the
credit value if a violation, corrupted or undeleted file,
has been detected.

• Other methods for ending the SLA or enabling the User
to deposit an amount of the blockchain currency equal to
the price value for starting a new SLA. When a SLA is
terminated, the credit amount of currency will be trans-
ferred to the User, while the remaining price amount will
be transferred to the Cloud.

C. FILE DIGEST ORACLE
The Monitor operation is implemented using an inbound
Oracle pattern. Generally, it can be seen as a unique smart
contract that receives requests on-chain and an off-chain
software component that listens to them and injects data into
the blockchain. In this particular instance, the injected data
consists of file hash digests. The following components make
up our File Digest Oracle contract:

• The Oracle provider (i.e., the Monitor) address uniquely
represents this entity on-chain.

• A list of requests, where each request includes a unique
id (obtained by hashing the file URL) and the expected
file hash digest.

• The DigestRequest() method for making the request,
invoked by the FileHashRequest() method on the
CloudSLA contract.

• The method DigestStore() invoked by the Monitor to
store the file hash digest that has been obtained by
reading the file at the URL indicated.

• The method DigestRetrieve() for obtaining the digest
stored by the Monitor, invoked by the FileCheck()
method on the CloudSLA contract.

VI. PERFORMANCE EVALUATION
We now evaluate the performance of a prototype implemen-
tation of the smart contract described in Section V. All smart
contracts have been deployed and tested on three differ-
ent blockchain environments. The source code and the raw
results for the experiments described below are available on
GitHub [38].
We assume that the system would be deployed onto a per-

missioned blockchain. The reason is that public blockchains,
such as Ethereum, have known scalability issues [40] that
make them unlikely to handle the high request rate that a
Cloud demands. However, any EVM-based blockchain can
run our implementation, even if the blockchain is permission-
less.

A. CONFIGURATION SETUP
Our tests have been executed on three permissioned
blockchain environments, all supporting the Ethereum pro-
tocol and thus allowing the execution of smart contracts
compiled using Solidity. The first two environments are based
on the ConsenSys Quorum permissioned blockchain, while
the third is based on the Polygon framework for build-
ing Ethereum-compatible blockchains. In the following we
present the configuration setup.
The general configuration setup of the three permissioned

blockchains used in the performance evaluation is as follows:

• Each blockchain network is independently run on a
server with an Intel i7 CPU (12 physical execution cores)
and equipped with 16 GB of DDR4 RAM.

• Four validator blockchain nodes are deployed to create a
base network. Each node executes one of the consensus
mechanisms described above. The parameters for such
a mechanism are configured using the recommended
values (see [41]).

• One non-validator node is used to expose the APIs for
external clients to interact with the blockchain.

• Several user nodes are created to interact with the net-
work.

• The blockchain ‘‘gas limit’’ is set to 16 234 336.
In Ethereum, the gas is a unit that measures the amount

VOLUME 11, 2023 48367



M. Zichichi et al.: Accountable Clouds Through Blockchain

of computational effort needed to execute operations.
The gas limit indicates the maximum amount of gas for
a block [40].

In the following, we describe the configuration setup for
the three permissioned blockchain environments.

1) GoQuorum
ConsenSys Quorum4 is an open-source protocol for building
Ethereum-compatible environments for enterprises. It is com-
posed of a suite of different technologies that include GoQuo-
rum.5 This software is a fork of the Ethereum node imple-
mentationwritten in the Go programming language [42], with
some enhancements in terms of (i) privacy, i.e., private trans-
actions and private contracts; (ii) consensus mechanisms, i.e.,
QBFT, Raft, and others; (iii) peer authorization, i.e., access to
the network; (iv) account management; and (v) performance.
As far as consensus mechanisms are concerned, we tested the
following:
• Istanbul BFT (IBFT) [43], a Byzantine Fault-Tolerant
(BFT) consensus algorithm in which each block requires
multiple rounds of voting by a set of validators (> 66%),
recorded as a collection of signatures on the block;

• QBFT [44], a BFT consensus algorithm similar to IBFT.
The key difference between QBFT and IBFT is that the
validators take turns creating the next block within a
non-randomized dynamic validator set. This is consid-
ered an improvement on IBFT’s security properties;

• Raft [45], a Crash Fault Tolerant (CFT) consensus mech-
anism in which the leader is always assumed to act
correctly (honestly) and, whenever the leader crashes,
the rest of the network automatically elects a new one.

2) HYPERLEDGER BESU
Hyperledger Besu6 is an open-source Ethereum client written
in Java. It is included in the suite of technologies of Quorum
for building permissioned networks; however, it can be run on
the Ethereum public blockchain too. Besu includes several
consensus algorithms and has comprehensive authorization
schemes designed for enterprise environments. As far as con-
sensus mechanisms are concerned, these are the ones tested:
• IBFT, described above;
• QBFT, described above;
• Clique [46] a consensus algorithm that, similarly to
IBFT, uses digital signatures to seal the blocks but sac-
rifices consistency (a fork can happen) for better avail-
ability and faster block generation.

3) POLYGON
Polygon7 is a protocol and a framework for building
second-layer solutions on top of the Ethereum blockchain.
Polygon is used to bootstrap new blockchains while providing

4https://consensys.net/quorum/, accessed 2022-10-04
5https://github.com/ConsenSys/quorum, accessed 2022-10-04
6https://besu.hyperledger.org/en/stable/, accessed 2022-10-04
7https://polygon.technology/, accessed 2022-10-04

full compatibility with Ethereum smart contracts and transac-
tions. The difference with the previous two Quorum solutions
is that Polygon blockchains also support communication with
multiple blockchain networks, enabling the transfer of ERC-
20 and ERC-721 tokens through a bridge. As far as consensus
mechanisms are concerned, these are the ones tested:

• IBFT, described above;
• Proof of Stake (PoS) [47], a consensus algorithm in
which each block validator is required to prove posses-
sion of a certain amount of cryptocurrency.

B. EXPERIMENTATION PROCEDURE
The experimentation procedure consists of the repeated exe-
cution of each smart contract operation described in Sec-
tion IV-A, so that average performance measures can be
computed. For the Read operation, we considered both the
case where the requested file is found and the case in which
the file is not found.
Specifically, we considered the following interactions:

• Read_found: a Read operation that successfully finds
the file invokes the ReadRequest() and ReadReques-
tAck() methods, in that order.

• Read_not_found: a Read operation that does not find
the file invokes the ReadRequest() and ReadRequest-
Deny() methods.

• Upload: the Upload operation invokes the Upload-
Request(), UploadRequestAck() and UploadTrans-
ferAck() in order.

• Delete: the Delete operation invokes the
DeleteRequest() and Delete() methods.

• Monitor_check: the Monitor’s operation for checking a
corrupted file invokes the FileHashRequest(), (Oracle
smart contract) DigestStore() and FileCheck() meth-
ods.

A steady-state simulation consisting of two phases was per-
formed for each consensus mechanism of each blockchain,
during testing:

• Transient phase: To compute the distribution mean,
we conducted tests on the Upload operation. We mea-
sured the mean response time of each Upload request,
which includes all the interactions with the blockchain,
as described in Section VI-B. We generated a stream
of Upload requests with an exponentially distributed
inter-request time with a rate of λ ∈ 0.5, 1, 2 req/s. The
response time of the n-th operation is shown in Figure 7,
where each data point is the average of 5 independent
executions of the entire sequence, which lasted for 200s.

• Steady-state phase: The steady-state phase involved test-
ing all operations for the computation of metrics over
subsequent runs. Each operation was considered in iso-
lation over a period of 600s with a request rate of λ ∈
0.5, 1, 2 req/s. Each test was repeated 5 times for each
parameter combination, and each data point represents
the average response time of all executions. The metrics
of interest included (i) response time, (ii) throughput,

48368 VOLUME 11, 2023



M. Zichichi et al.: Accountable Clouds Through Blockchain

FIGURE 7. Performance of the transient phase; a stream of requests is
injected into an initially idle system and the average latency of the i -th
request is plotted. All combinations of blockchain/consensus and
inter-arrival rate λ are considered. For λ = 0.5 curves are plot together
with bands that indicate the confidence interval at 95%.

and (iii) error rate, which is the fraction (percentage) of
operations that could not be completed successfully. The
most common causes of errors were (HTTP) 503 Service
Unavailable errors, indicating that some services were
overloaded.

To evaluate the performance of different blockchain/consensus
combinations, we generate a stream of requests with expo-
nentially distributed inter-request time, that is, the time
between successive requests has probability density func-
tion fλ(x) = λe−λx . The average time between successive
requests is 1/λ; we select λ ∈ {0.5, 1, 2}, where λ = 2 req/s
is near the maximum load that our testbed can sustain (see
below).

C. RESULTS
1) TRANSIENT ANALYSIS
We start by analyzing the transient phase, i.e., the warm-up
period where a stream of Upload operations is injected into
an initially idle system. The upload operation was cho-
sen because it involves several interactions and is more
likely to stress the system. All blockchain/consensus and
arrival rate combinations reach a steady-state behavior after
about 30 operations. Polygon shows a lower response time
(2.2s) than both Besu (12s) and GoQuorum (13s). We also
observe that the response time is not significantly influenced
by the request rate λ.

2) STEADY-STATE ANALYSIS
We now analyze the steady-state performance mea-
sures for each operation listed in Section VI-B and
blockchain/consensus combination. Figures 8, 9, 10, 11, and
12 show the results for each operation. We use the ‘‘box and
whisker’’ plot to report the minimum and maximum values
(lower and upperwhisker), the lower and upper quartile (box),
and the average over 5 runs (orange line) for the metric
taken into consideration. Each column of histograms plots

TABLE 1. Gas usage for different operations/Smart Contract
combinations.

the results for the increasing values of the request rate λ ∈
{0.5, 1, 2}.
Discussion: We observe that the response time is more or

less independent from the arrival rate λ of requests; interest-
ingly, the response time is also more or less the same for all
types of requests once the blockchain/consensus combination
has been chosen. The latter is somewhat surprising since we
know from Section V that different types of operation trigger
different interactions among the involved entities.

On the other hand, the error rate is greatly influenced by λ.
In particular, few errors are reported when λ = 0.5, while
with λ = 2, many blockchain/consensus combinations result
in 2% and 8% operations failing. This is why we have chosen
λ = 2 req/s as the maximum request rate our testbed can
sustain. Again, the error rate is more or less independent of
the operation.

As the middle row shows, although the throughput is
the same, response times vary greatly depending on the
blockchain used. Polygon IBFT, Polygon PoS, and GoQuo-
rum Raft have a lower response time. Polygon’s configu-
rations have a latency between 1.7 and 2.8 for all oper-
ations, while GoQuorum’s configuration always responds
with an average latency of about 0.6s. The three Besu
configurations have a fluctuating behavior, with latencies
between 7.7 and 13 seconds, while GoQuorum’s IBFT
and QBFT have the worst performances with a maximum
latency of 16.2 seconds.

As expected, the two operations that need more time to
be completed are the Upload and Monitor_check since these
involve three smart contract methods instead of only two,
as the other operations do.

3) GAS USAGE
Table 1 shows the gas usage of our implementation. The
Factory contract has the methods with the highest gas usage;
however, these methods are invoked rarely. The deploy()
factory method is called only once with a gas usage of 4000k,
while createChild() is invoked for each instance of a new

VOLUME 11, 2023 48369



M. Zichichi et al.: Accountable Clouds Through Blockchain

FIGURE 8. Steady-state performance measures for the Read_found operation.

FIGURE 9. Steady-state performance measures for the Read_not_found operation.

CloudSLA contract with a gas usage of 3400k. The Cloud-
SLA contract includes most of the methods invoked more
frequently, with gas usage ranging from 36k to 115k. These
methods have a more reasonable gas usage and favor a feasi-
ble usage by the User. The ReadRequest() method is likely
to be the most frequently used in practice and has the lowest
gas usage, which is desirable indeed. Finally, the deploy()
method of FileDigestOracle is invoked only once per Oracle
with 600k gas units, while DigestStore() gas usage is in the
same order as gas usage of the CloudSLA contract methods.

VII. DISCUSSION
In this section we discuss two issues that are central
to our proposal: (i) the issue of efficiency in a mixed

cloud/blockchain environment; (ii) the issue of Monitor cen-
tralization (i.e., centralized vs. decentralized oracle).

Overall, the results discussed in Section VI show that
Polygon and GoQuorum Raft perform better. Indeed, they
achieve zero error rate and a reasonable latency, that seems
not to be influenced by the inter-arrival rate λ, i.e., they
are more scalable. However, evidence shows that current
incarnations of blockchain technologies might not provide
response times low enough to support a large number of
concurrent customers. Additionally, transaction fees might
represent an economic disincentive to the above-mentioned
approach, even if gas usage is low for frequent operations
(see Section VI-C3). Thus, the choice of which blockchain
technology to use remains a significant problem that needs

48370 VOLUME 11, 2023



M. Zichichi et al.: Accountable Clouds Through Blockchain

FIGURE 10. Steady-state performance measures for the Upload operation.

FIGURE 11. Steady-state performance measures for the Delete operation.

to be addressed in future research. Indeed, it is possible that
traditional Ethereum-like blockchain solutions are not the
most appropriate in this context. Other approaches are based
on a different, more scalable structure for representing the
distributed ledger and removing fees, such as IOTA [30].
Indeed, a permissioned blockchain would have the advantage
of being more efficient, scalable, and only accessible by a
dedicated group of entities who have the eligibility to join it.

The second issue concerns the centralization of the Mon-
itor. The oracle component that implements the Monitor is
a standalone module that can be de-centralized. A decen-
tralized oracle allows both the User and the Cloud to put

their trust in a group of coordinated oracles instead of a
single Monitor entity. In practice, a pool of monitors reduces
the likelihood of incurring in a malicious third-party ora-
cle while, at the same, making it harder for an attacker to
compromise a (possibly large) set of servers [48]. In what
follows, we describe a preliminary implementation of such a
decentralized version of theMonitor based on Chainlink [49].

Chainlink is a general-purpose framework and infrastruc-
ture for providing computational resources to smart contracts.
It can transfer tamper-proof data from off-chain sources
to on-chain smart contracts. Our preliminary implementa-
tion uses the Chainlink decentralized network of oracles to

VOLUME 11, 2023 48371



M. Zichichi et al.: Accountable Clouds Through Blockchain

FIGURE 12. Steady-state performance measures for the Monitor_check operation.

check file hashes to ensure their integrity. This allows the
implementation of a Monitor as an unbiased, decentralized
entity. The Monitor implementation is an extension of a base
Chainlink node. This extension adds the Monitor operations
described above to a Chainlink node software. The prototype
CloudSLA smart contract then ‘‘invokes’’ the decentralized
oracle network and receives a reply fromChainlink nodes that
implemented the extension.

In order to describe how the procedure works, we use
a modified version of Figure 5. In Figure 13 we can see
how the Monitor has been split into two entities, one on-
chain, i.e., the Chainlink smart contract, and one off-chain,
i.e., the Chainlink monitor node. Once the User invokes the
Digest request operation (a), the CloudSLA smart contract
invokes the Chainlink smart contract with a new Chainlink
request (x). Upon execution of this function, the Chainlink
smart contract emits a Read request event (y1) containing
information about the request. This event is crucial, as several
off-chain ChainlinkMonitor nodes monitor it. This Chainlink
smart contract, indeed, mainly provides an on-chain interface
to the Chainlink decentralized infrastructure. The off-chain
Chainlink monitor node is responsible for listening for events
emitted, and once it detects a request, it uses the data emitted
to perform a ‘‘job’’. This requested job is the same as before,
i.e., the Read operation (b), but now executed in a decen-
tralized way as many nodes can reply and get an automatic
reward (through the Chainlink smart contract). Moreover,
the Chainlink decentralized infrastructure verifies the process
because all the procedure’s metadata passes through its net-
work. Finally, a Chainlink monitor node can Fulfill a request
(y2) once the job results. The original request contained a
callback to be executed upon completion of the job that,
in our case, consists of the Digest store operation (c). The

FIGURE 13. UML sequence diagram for the interactions involved with a
decentralized monitor.

monitoring process then terminates, as in the centralized
case, with an on-chain File-check (d) and result processing
(e). The implementation of our prototype can be found on
GitHub [50].

VIII. CONCLUSION
In this paper, we explored the use of blockchain technolo-
gies to build an unforgeable log for Cloud accountability.
The blockchain allows tamper-proof logging of events into a
distributed ledger that can then be used to verify if SLAs are
violated.We have shown that smart contracts allow automatic
identification of responsibilities if SLA violations occur,
therefore simplifying the process of settling disputes. As a
practical case study, we considered a standard cloud storage
service, and, for each possible operation, we described an
interaction protocol that logs all relevant events using a smart
contract. We developed our smart contract in the Solidity
language to allow interoperability since this language is sup-
ported by the Ethereum Virtual Machine on which several
blockchain platforms are based.

48372 VOLUME 11, 2023



M. Zichichi et al.: Accountable Clouds Through Blockchain

Our implementation was deployed and tested over dif-
ferent blockchain platforms, i.e., GoQuorum, Hyperledger
Besu, and Polygon, with different consensus protocols to
study response times, error rates, and gas usage. Performance
results show that in the configurations we have tested, Poly-
gon and GoQuorum Raft can provide significantly lower
response times and negligible (if not null) error rates. The
high gas usage for some operations suggests that a permis-
sioned blockchain should be preferred to avoid high fees and
offer better scalability.

Along the lines of this work, our future research will be
devoted to evaluate the performance of our prototype decen-
tralized oracle and enhance it.

ACKNOWLEDGMENT
The authors would like to thank Paola Persico, Giosué
Cotugno, Davide Pruscini, Emanuele Sinagra, and Valerio
Tonelli for their contribution on a preliminary implementa-
tion of the system.

An earlier version of this paper was presented at the
Proceedings of the 1st Workshop on Cryptocurrencies and
Blockchains for Distributed Systems, New York, NY, USA,
2018[DOI: 10.1145/3211933.3211950].

REFERENCES
[1] G. D’Angelo, S. Ferretti, andM.Marzolla, ‘‘A blockchain-based flight data

recorder for cloud accountability,’’ inProc. 1stWorkshopCryptocurrencies
Blockchains Distrib. Syst., NewYork, NY, USA, Jun. 2018, pp. 93–98, doi:
10.1145/3211933.3211950.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, ‘‘A view of
cloud computing,’’ Commun. ACM, vol. 53, no. 4, pp. 50–58, Apr. 2010.

[3] C. Esposito, A. De Santis, G. Tortora, H. Chang, and K. R. Choo,
‘‘Blockchain: A panacea for healthcare cloud-based data security and
privacy?’’ IEEE Cloud Comput., vol. 5, no. 1, pp. 31–37, Jan. 2018.

[4] G. Ateniese, M. T. Goodrich, V. Lekakis, C. Papamanthou, E. Paraskevas,
and R. Tamassia, ‘‘Accountable storage,’’ in Applied Cryptography and
Network Security, D. Gollmann, A. Miyaji, and H. Kikuchi, Eds. Cham,
Switzerland: Springer, 2017, pp. 623–644.

[5] A. Haeberlen, ‘‘A case for the accountable cloud,’’ ACM SIGOPS
Operating Syst. Rev., vol. 44, no. 2, pp. 52–57, Apr. 2010, doi:
10.1145/1773912.1773926.

[6] R. Neisse, G. Steri, and I. Nai-Fovino, ‘‘A blockchain-based approach
for data accountability and provenance tracking,’’ in Proc. 12th Int. Conf.
Availability, Rel. Secur., Aug. 2017, p. 14, doi: 10.1145/3098954.3098958.

[7] H. Shafagh, L. Burkhalter, A. Hithnawi, and S. Duquennoy, ‘‘Towards
blockchain-based auditable storage and sharing of IoT data,’’ in
Proc. Cloud Comput. Secur. Workshop, Nov. 2017, pp. 45–50, doi:
10.1145/3140649.3140656.

[8] D. E. Adjepon-Yamoah, ‘‘Cloud accountability method: Towards account-
able cloud service-level agreements,’’ inProc. 6th Int. Congr. Inf. Commun.
Technol., X.-S. Yang, S. Sherratt, N. Dey, and A. Joshi, Eds. Singapore:
Springer, 2022, pp. 439–458.

[9] Y. S. Tan, R. K. L. Ko, and G. Holmes, ‘‘Security and data accountability in
distributed systems: A provenance survey,’’ in Proc. IEEE 10th Int. Conf.
High Perform. Comput. Commun. IEEE Int. Conf. Embedded Ubiquitous
Comput., Nov. 2013, pp. 1571–1578.

[10] J. Becker and E. Bailey, ‘‘A comparison of it governance & control frame-
works in cloud computing,’’ in Proc. 20th Americas Conf. Inf. Syst., 2014,
pp. 1–16.

[11] P. M.Mell and T. Grance, ‘‘The NIST definition of cloud computing,’’ Nat.
Inst. Standards Technol., Gaithersburg, MD, USA, Tech. Rep. SP 800-145,
2011.

[12] M. Marzolla, S. Ferretti, and G. D’Angelo, ‘‘Dynamic resource provi-
sioning for cloud-based gaming infrastructures,’’ Comput. Entertainment,
vol. 10, no. 1, pp. 1–20, Dec. 2012, doi: 10.1145/2381876.2381880.

[13] S. Ferretti, V. Ghini, F. Panzieri, M. Pellegrini, and E. Turrini, ‘‘Qos-
aware clouds,’’ in Proc. IEEE 3rd Int. Conf. Cloud Comput., Jul. 2010,
pp. 321–328, doi: 10.1109/CLOUD.2010.17.

[14] A. Haeberlen, P. Kouznetsov, and P. Druschel, ‘‘PeerReview:
Practical accountability for distributed systems,’’ ACM SIGOPS
Operating Syst. Rev., vol. 41, no. 6, pp. 175–188, Oct. 2007, doi:
10.1145/1323293.1294279.

[15] A. R. Yumerefendi and J. S. Chase, ‘‘Trust but verify: Accountability for
network services,’’ in Proc. 11th Workshop ACM SIGOPS Eur. Workshop,
Sep. 2004, pp. 175–188, doi: 10.1145/1133572.1133585.

[16] N. Santos, K. P. Gummadi, and R. Rodrigues, ‘‘Towards trusted cloud
computing,’’ in Proc. Conf. Hot Topics Cloud Comput., Berkeley, CA,
USA: USENIX Association, 2009, pp. 175–188. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855533.1855536

[17] J. Yao, S. Chen, C. Wang, D. Levy, and J. Zic, ‘‘Accountability as a service
for the cloud,’’ in Proc. IEEE Int. Conf. Services Comput., Jul. 2010,
pp. 81–88.

[18] R. K. L. Ko, P. Jagadpramana, M. Mowbray, S. Pearson, M. Kirchberg,
Q. Liang, and B. S. Lee, ‘‘TrustCloud: A framework for accountability and
trust in cloud computing,’’ in Proc. IEEEWorld Congr. Services, Jul. 2011,
pp. 584–588.

[19] S. Pearson, ‘‘Toward accountability in the cloud,’’ IEEE Internet Comput.,
vol. 15, no. 4, pp. 64–69, Jul. 2011.

[20] V. C. Emeakaroha, T. C. Ferreto, M. A. S. Netto, I. Brandic, and C. A. F. De
Rose, ‘‘CASViD: Application level monitoring for SLA violation detection
in clouds,’’ inProc. IEEE 36th Annu. Comput. Softw. Appl. Conf., Jul. 2012,
pp. 499–508.

[21] Q. Li, Z. Yang, X. Qin, D. Tao, H. Pan, and Y. Huang, ‘‘CBFF:
A cloud–blockchain fusion framework ensuring data accountability
for multi-cloud environments,’’ J. Syst. Archit., vol. 124, Mar. 2022,
Art. no. 102436.

[22] M. R. Dorsala, V. N. Sastry, and S. Chapram, ‘‘Blockchain-based solu-
tions for cloud computing: A survey,’’ J. Netw. Comput. Appl., vol. 196,
Dec. 2021, Art. no. 103246.

[23] S. Xie, Z. Zheng, W. Chen, J. Wu, H.-N. Dai, and M. Imran,
‘‘Blockchain for cloud exchange: A survey,’’ Comput. Electr.
Eng., vol. 81, Jan. 2020, Art. no. 106526. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0045790618332750

[24] M. Xie, Y. Yu, R. Chen, H. Li, J. Wei, and Q. Sun, ‘‘Accountable outsourc-
ing data storage atop blockchain,’’ Comput. Standards Interfaces, vol. 82,
Aug. 2022, Art. no. 103628.

[25] X. Liang, S. Shetty, D. Tosh, C. Kamhoua, K. Kwiat, and L. Njilla,
‘‘ProvChain: A blockchain-based data provenance architecture in cloud
environment with enhanced privacy and availability,’’ in Proc. 17th
IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput. (CCGRID), May 2017,
pp. 468–477.

[26] S. Nakamoto, ‘‘Bitcoin: A peer-to-peer electronic cash system,’’May 2008.
[Online]. Available: https://bitcoin.org/bitcoin.pdf

[27] M. Becker and B. Bodó, ‘‘Trust in blockchain-based systems,’’ Internet
Policy Rev., vol. 10, no. 2, pp. 1–10, Apr. 2021.

[28] Y. Kurt Peker, X. Rodriguez, J. Ericsson, S. J. Lee, and A. J.
Perez, ‘‘A cost analysis of Internet of Things sensor data storage on
blockchain via smart contracts,’’ Electronics, vol. 9, no. 2, p. 244,
Feb. 2020.

[29] Z. Zheng, S. Xie, H.-N. Dai, W. Chen, X. Chen, J. Weng, and
M. Imran, ‘‘An overview on smart contracts: Challenges, advances
and platforms,’’ Future Gener. Comput. Syst., vol. 105, pp. 475–491,
Apr. 2020.

[30] M. Zichichi, S. Ferretti, and G. D’angelo, ‘‘A framework based on dis-
tributed ledger technologies for data management and services in intel-
ligent transportation systems,’’ IEEE Access, vol. 8, pp. 100384–100402,
2020.

[31] S. Popov, ‘‘The tangle,’’White Paper, vol. 1, no. 3, pp. 1–28, 2018.
[32] P. De Filippi, C. Wray, and G. Sileno, ‘‘Smart contracts,’’ Internet Policy

Rev., vol. 10, no. 2, 2021.
[33] B. Liu, P. Szalachowski, and J. Zhou, ‘‘A first look into DeFi Oracles,’’

in Proc. IEEE Int. Conf. Decentralized Appl. Infrastructures (DAPPS),
Aug. 2021, pp. 39–48.

[34] H. Jayathilaka, C. Krintz, and R. Wolski, ‘‘Performance monitor-
ing and root cause analysis for cloud-hosted web applications,’’ in
Proc. 26th Int. Conf. World Wide Web, Apr. 2017, pp. 469–478, doi:
10.1145/3038912.3052649.

VOLUME 11, 2023 48373

http://dx.doi.org/10.1145/3211933.3211950
http://dx.doi.org/10.1145/1773912.1773926
http://dx.doi.org/10.1145/3098954.3098958
http://dx.doi.org/10.1145/3140649.3140656
http://dx.doi.org/10.1145/2381876.2381880
http://dx.doi.org/10.1109/CLOUD.2010.17
http://dx.doi.org/10.1145/1323293.1294279
http://dx.doi.org/10.1145/1133572.1133585
http://dx.doi.org/10.1145/3038912.3052649


M. Zichichi et al.: Accountable Clouds Through Blockchain

[35] G. Kesidis, B. Urgaonkar, N. Nasiriani, and C. Wang, ‘‘Neutrality
in future public clouds: Implications and challenges,’’ in Proc.
8th USENIX Conf. Hot Topics Cloud Comput. Berkeley, CA,
USA: USENIX Association, 2016, pp. 90–95. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3027041.3027056

[36] R. Merkle and M. Hellman, ‘‘Hiding information and signatures in trap-
door knapsacks,’’ IEEE Trans. Inf. Theory, vol. IT-24, no. 5, pp. 525–530,
Sep. 1978.

[37] P. Sun, ‘‘Security and privacy protection in cloud computing: Discus-
sions and challenges,’’ J. Netw. Comput. Appl., vol. 160, Jun. 2020,
Art. no. 102642.

[38] P. Persico, D. Pruscini, G. Cotugno, andM. Zichichi. (2022).Cloud-Chain.
[Online]. Available: https://github.com/miker83z/cloud-chain

[39] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Reading, MA, USA:
Addison-Wesley, 1994.

[40] L. Zhang, B. Lee, Y. Ye, and Y. Qiao, ‘‘Evaluation of Ethereum end-to-end
transaction latency,’’ in Proc. 11th IFIP Int. Conf. New Technol., Mobility
Secur. (NTMS), Apr. 2021, pp. 1–6.

[41] M. Mazzoni, A. Corradi, and V. Di Nicola, ‘‘Performance evaluation
of permissioned blockchains for financial applications: The ConsenSys
quorum case study,’’ Blockchain, Res. Appl., vol. 3, no. 1, Mar. 2022,
Art. no. 100026.

[42] A. Donovan and B. Kernighan, The Go Programming Language. Reading,
MA, USA: Addison-Wesley, 2015.

[43] H. Moniz, ‘‘The Istanbul BFT consensus algorithm,’’ 2020,
arXiv:2002.03613.

[44] R. Saltini. QBFT Blockchain Consensus Protocol Specification V1.
EEA Editor’s Draft. Accessed: Jun. 29, 2022. [Online]. Available:
https://entethalliance.github.io/client-spec/qbft_spec.html

[45] D. Ongaro and J. Ousterhout, ‘‘In search of an understandable consensus
algorithm,’’ in Proc. USENIX Conf. USENIX Annu. Tech. Conf. Berkeley,
CA, USA: USENIX Association, 2014, pp. 305–320.

[46] P. Szilágyi, ‘‘EIP-225: Clique proof-of-authority consensus protocol,’’
Ethereum Improvement Proposals, no. 225, Mar. 2017, Accessed:
Jun. 29, 2022. [Online]. Available: https://eips.ethereum.org/EIPS/eip-225

[47] S. King and S. Nadal, ‘‘Ppcoin: Peer-to-peer crypto-currency with proof-
of-stake,’’ Self-Published Paper, vol. 19, no. 1, pp. 1–6, Aug. 2012.

[48] L. Ma, K. Kaneko, S. Sharma, and K. Sakurai, ‘‘Reliable decentralized
Oracle with mechanisms for verification and disputation,’’ in Proc. 7th Int.
Symp. Comput. Netw. Workshops (CANDARW), Nov. 2019, pp. 346–352.

[49] L. Breidenbach, ‘‘Chainlink 2.0: Next steps in the evolution of decentral-
ized Oracle networks,’’ Chainlink Labs, vol. 1, pp. 1–136, Apr. 2021.

[50] E. Sinagra, V. Tonelli, P. Persico, D. Pruscini, G. Cotugno, andM. Zichichi.
Cloud-Chain Decentralized Oracle Prototype. (2023). [Online]. Available:
https://github.com/AnaNSi-research/cloud-chain-decentralized-oracle

MIRKO ZICHICHI received the bachelor’s degree
(summa cum laude) in computer science from
the University of Palermo, in 2017, and the
master’s degree (summa cum laude) in informa-
tion science for management from the Univer-
sity of Bologna, in 2019. In 2019, he joined the
Ontology Engineering Group (OEG), Universi-
dad Politécnica de Madrid. He is also a Ph.D.
Researcher in the Law, Science and Technology
Joint Doctorate-Rights of Internet of Everything,

funded by Marie Skłodowska-Curie Actions. His research interests include
location privacy and inference in online social networks and the use of
distributed ledger technologies and smart contracts for the protection and
distribution of individuals’ personal data.

GABRIELE D’ANGELO received the Laurea
(summa cum laude) and Ph.D. degrees in com-
puter science from the University of Bologna,
Italy, in 2001 and 2005, respectively. He is cur-
rently an Assistant Professor with the Department
of Computer Science and Engineering, University
of Bologna. His research interests include par-
allel and distributed simulation, distributed sys-
tems, online gaming, and computer security. Since
2019, he has been a Technical Program Committee

Member of INFOCOM. Since 2011, he has also been on the editorial board of
the Simulation Modelling Practice and Theory (SIMPAT) journal published
by Elsevier.

STEFANO FERRETTI (Member, IEEE) received
the Laurea (summa cum laude) and Ph.D. degrees
in computer science from the University of
Bologna, in 2001 and 2005, respectively. He was
an Associate Professor with the Department of
Computer Science and Engineering, University
of Bologna. Since 2020, he has been an Asso-
ciate Professor with the Department of Pure and
Applied Sciences, University of Urbino Carlo Bo.
His current research interests include distributed

systems, complex networks, data science, fintech, and blockchain technolo-
gies, multimedia communications, and hybrid and distributed simulation.
He is on the editorial board of the Simulation Modelling Practice and Theory
(Elsevier) and Encyclopedia of Computer Graphics and Games (Springer).
He is also on the Technical Committee of Computer Communications (Else-
vier) andOnline Social Networks andMedia (Elsevier). He acted as an editor
of special issues on other international journals (i.e., Wiley CPE and Elsevier
ComCom) and chairs for several conferences and workshops within flagship
conferences, such as ACM Mobisys and IEEE InfoCom.

MORENO MARZOLLA received the Ph.D.
degree in computer science from the Uni-
versità Ca’ Foscari Venezia, Italy, in 2004.
From 2004 to 2005, he was a Postdoctoral
Researcher with the Università Ca’ Foscari
Venezia. From 2005 to 2009, he was a Research
Engineer with the Italian National Institute for
Nuclear Physics (INFN), supported by several
EU-funded projects in the area of grid and cloud
computing. In 2009, he joined the Department of

Computer Science and Engineering, University of Bologna, where he is
currently an Associate Professor of computer science. His research interests
include distributed systems, performancemodeling and analysis, and parallel
algorithms. He served as the Co-Chair for the ProductionGrids Infrastructure
(PGI) Working Group, Open Grid Forum.

Open Access funding provided by ‘Alma Mater Studiorum - Università di Bologna’ within the CRUI CARE Agreement

48374 VOLUME 11, 2023


