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a b s t r a c t

The effects of hydrodynamic fluctuations on the subdiffusive motion of a particle
subject to one parameter Mittag-Leffler friction are examined by means of the fractional
Langevin equation. The particle experiences an overall additive colored noise formed
by, on the one hand, the hydrodynamic back flow effects and, on the other hand, an
additional contribution predicted by fluctuation dissipation relation. Particle motion may
or may not be subject to a restoring force. All possible combinations of forces exerted
on the test particle are being studied, and for each of them the generalized response
function in terms of multinomial Mittag-Leffler functions is provided. Mean square
displacement, normalized velocity and position auto-correlation functions are furnished
as special cases of the generalized response function, and their short and long time
limits are analytically given. In addition, for the same measures analytical expressions
valid for time windows much broader than the usual asymptotic limit are provided, and
can be used to fit real life data. We demonstrate that normalized velocity and position
auto-correlation functions are the main sources providing information on the effect of
hydrodynamic fluctuations on particle motion. Actually, they oppose to friction and to
restoring force, and smooth out the anti-persistent character of the motion.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

In complex environments the erratic motion of particles departs from Brownian motion, and many factors can be
esponsible for that. Approaching a system phenomenologically, the origin of such a behavior can be sought either on a
ime- dependent friction coefficient, or on the presence of hydrodynamic fluctuations, or on conservative forces acting
n the particle, or on any combination of some or all of them. [1–4] The effect of a time-dependent friction coefficient or
f a time-dependent diffusion coefficient has been extensively investigated usually through an internal noise of various
orms, [5–16] which establishes, in the long time limit, a link with the friction via the dissipation fluctuation theorem
FDT) considering that the system is within the linear response regime and thus any conservative forces do not affect
his link. [17]. On the other hand, analytical investigation of the role of hydrodynamic fluctuations on the dynamics of a
iffusing particle has attracted less interest [18–21] even though numerical simulations and experimental evidence have
hown that hydrodynamic fluctuations effectuate on the diffusional particle and give rise to interesting dynamics. [22–27]
Hydrodynamic fluctuations are triggered and become important when the ratio χ = ρf /ρp is not negligible, ρf and ρp

being the densities of the fluid and of the diffusing particle respectively. For an incompressible fluid, as χ departs from
zero values, the flow is not any more steady and the friction coefficient cannot be considered as constant, see [28] where
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lso a discussion is made on how the research in this field has been evolved.[29] Actually, the source of the hydrodynamic
luctuations is the momentum of the displaced fluid molecules due to particle movements back to it during the course of
ts motion, and it is well known in the literature as Boussinesq–Basset force(BB). [30,31]

The following fractional generalized Langevin Equation (fGLE), [17]

mpu̇i(t) = −

∫ t

0
γ (t − t ′)ui(t ′)dt ′  

FS (t)

−
mf

2
u̇i(t) −

∫ t

t0

ζ (t − t ′)u̇i(t ′)dt ′  
FBB(t)

−
∂V (xi)
∂xi  
FC (t)

+ ξi(t)
FR(t)

(1)

models the motion of a probe particle in the presence of hydrodynamic fluctuations and contains deterministic and
stochastic terms. The deterministic part is local in time, only the close neighbors of the particle affect it. Instead, there are
contributions arising from non-local sources, which means that an effect originated at time t ′ is retarded and persists for
times t > t ′. In Eq. (1), a particle of mass mp, radius r , and density ρp moves within a fluid of density ρf , and it is subject to:
(i) generalized Stokes friction force FS =

∫ t
0 γ (t − t ′)u(t ′)dt ′, which reduces to FS = γ0u(t) for constant friction coefficient

γ0 = 6πηr , and η being the dynamic viscosity of the medium. (ii) hydrodynamic fluctuations or Boussinesq–Basset (BB)
force, FBB(t) =

mf
2 u̇(t) +

∫ t
t0

ζ (t − t ′)u̇(t ′)dt ′. (iii) conservative forces FC = −
∂V (xi)
∂xi

, and (iv) random force, FR, whose mean
s zero and its correlation remains to be specified since it defines the statistical properties of the random force. Any other
onservative external force and/or periodic force can also be exerted on the probe particle acting or not as perturbation.
ote that in Eq. (1) ui =

dxi
dt is the particle velocity along the ith direction.

In Eq. (1), the memory kernel appears in the generalized Stokes force, it has meaning in distributional sense, and it is
qual to zero for t < 0, (casuality). For constant drag coefficient, the memory kernel is expressed through the Dirac Delta
unction, γ (t − t ′) = 2γ0δ(t − t ′). The BB force consists of two terms; the first one describes the changes of the velocity
caused by the molecules of the liquid being displaced by the tracer particle, mf is the mass of the fluid element with a
volume equal to that of the particle, and the second one expresses the convolution of a time dependent friction coefficient,
ζ (t) = γ0

√
τν
π
t−

1
2 , weighted by the vorticity time, τν =

r2ρf
η

, with the acceleration. The lower bound of the convolution
integral in BB force t0 can be set to −∞, and thus the contribution

∫ 0
−∞

ζ (t − t ′)u̇(t ′)dt ′ corresponds to a colored noise
aused by BB force, whose correlation goes as ⟨ξBB(t)ξBB(0)⟩ ∼ t−

3
2 [32,33]. The conservative force is expressed as the

gradient of the potential energy. The overall random force contains at least thermal fluctuations which can be additively,
multiplicatively, or convolutively modified by random forces reflecting internal processes evolving at much faster time
scales than the random motion itself.

In Eq. (1), we assume that the noise term, ξ (t), is internal and it may be the additive effect of all noise sources. In the
presence of just one noise source the fluctuation dissipation theorem (FDT) states

⟨ξ (0)ξ (τL)⟩ = kBTγ (τL) (2)

where kBT is the Boltzmann’s constant times the temperature of the bath, T , and τL is the lag time whose minimum value
is equal to the difference between two consecutive time moments. Yet, in the realm of a FDT the complexity of the initial
set of equations may be reduced and lead to simplified drift terms.[34] For experimental measurements, its minimum
value is the time difference between two consecutive recordings and it depends on the used machinery. Eq. (2) holds
true when the system reaches equilibrium, or for large values of τL. It means that we can use Eq. (2) to access properties
of the system, when the observation time is orders of magnitude larger than the time scale where the random collisions
take place between tracer particle and molecules/obstacles of the solution, actual scale. Given that the actual scale is of
order of picoseconds and the time scale of a routinely carried out experiment is from micro to milliseconds it is obvious
that the system has already reached equilibrium at the minimum experimental time lag. Eq. (2) makes the connection
between dissipation and friction given that both have common origin [17]. If more than one noises act cumulatively onto
the probe particle, Eq. (2) still holds true, that is, instead of γ (τL) appears the generalized friction term γG(τL) which is
he sum of the contributions of all noises, [21] see also Eq. (A.4) in Appendix A for an alternative derivation.

To the best of our knowledge, Eq. (1) has been solved for constant friction coefficient, [28], and slowly decaying friction
erm [19,20]. In the present work, which is a generalization of many works up to today, a one parameter Mittag-Leffler
ML) function, Ea(z) =

∑
∞

n=0
za

Γ (an+1) describes the friction coefficient, and our choice assures that it goes to zero for t → 0
nd it behaves as power law for large times [35]. Mittag-Leffler functions have found many applications in areas unrelated
o the present one such as pharmacokinetics [36]. We solve Eq. (1) and obtain closed analytical solutions through the
ultinomial ML function [37] for the generalized response function. VAF and PAF (velocity and position auto-correlation

espectively) functions as well the MSD (mean-square displacement) are close related to response functions, and their
arly time behavior as well as their asymptotic solutions are provided. In addition to that, we provide closed analytical
olutions, expressed in terms of the two parameter ML function, amenable to be used in fitting experimental evidence.
uch solutions are valid for much broader time windows than the usual asymptotic limit and are given for very first time.
2
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. Generalized fractional Langevin equation and response functions

We set M = mp +
mf
2 , and ∂V (x)

∂x = kx (restoring force), in Eq. (1), and by taking the Laplace pair, L{f (t)} = f (s) =∫
∞

0 e−st f (t)dt , we find

x(s) =
x(0)
s

+ u(0)
(
1 +

ζ (s)
M

)
G(s) − ω2x(0)I(s) +

ξ (s)G(s)
M

(3)

and

u(s) = u(0)
(
1 +

ζ (s)
M

)
g(s) − ω2x(0)G(s) +

ξ (s)g(s)
M

(4)

where

G(s) =

(
s2 +

s
M

(γ (s) + sζ (s)) + ω2
)−1

(5)

I(s) = G(s)/s and g(s) = sG(s). In Eqs. (3–5) the term τh = ω−1
=

√
M/k denotes the period of oscillation and ω is thus

he frequency of oscillation. At the same set of equations and other time scales exist, namely, τd =
M
γ0

delivering how fast

he effect of friction force is attenuated, τν =
r2ρf

η
is the vorticity time providing the loss of hydrodynamic memory, and

τk = γ /k yielding the antagonism between friction coefficient and the stiffness of the harmonic potential and defines the
trapping time.

Inversion of Eqs. (3) and (4) return the position and the velocity as functions of time

x(t) = x(0) +

(
G(t) +

1
M

∫ t

0
ζ (t − t ′)G(t ′)dt ′

)
u(0) −

ω2x(0)I(t) +
1
M

∫ t

0
ξ (t − t ′)G(t ′)dt ′ (6)

and

u(t) =

(
g(t) +

1
M

∫ t

0
ζ (t − t ′)g(t ′)dt ′

)
u(0) − ω2x(0)G(t)

+
1
M

∫ t

0
ξ (t − t ′)g(t ′)dt ′ (7)

Given that ⟨ξ (t)⟩ = 0, the mean of position and velocity are obtained by Eqs. (6) and (7) and are ⟨x(t)⟩ = x(0) +

G(t)u(0) +
u(0)
M

∫
∞

0 ζ (t − t ′)G(t ′)dt ′ − ω2x(0)I(t) and ⟨u(t)⟩ = g(t)u(0) +
u(0)
M

∫
∞

0 ζ (t − t ′)g(t ′)dt ′ − ω2x(0)G(t).

. Friction coefficient as one parameter Mittag-Leffler function, and analytical solutions of the fractional generalized
angevin equation

We consider the friction term γ (t) = γ̄ Ea(−(t/µ)a), 0 < a < 1, where γ̄ =
γ0
µα , Ea(−(t/µ)a) being the one parameter

L function, µ reflects the time memory of the friction, and γ0 is the friction coefficient expressed in proper units. The
unction Ea(−(t/µ)a) behaves as a stretched exponential for short times and as inverse power law for long times. [35].
et, it encapsulates both power law and delta function representations for specific limits of µ and α. As µ → 0 and
or a ̸= 1 the friction force reads γ (t) = γ0

t−a

Γ (1−a) ,
1 while if α = 1 it returns γ (t) = γ0δ(t),2 memory-less friction and

thus standard Brownian motion. And yet, it vanishes as time goes to zero and to infinity, in contrast with the divergence
of power law friction when time goes to zero. L{Ea(−(t/µ)a)}(s) =

sa−1

sa+µ−a is the Laplace pair of the one-parameter ML
function. Substituting in Eq. (5) the Laplace pairs of both friction and BB force we end up with the generalized response
function R(s), Eq. (8).

R(s) =
sδ

s2 +
γ̄

M
sa

(sa+µ−a) +
γ0
M

√
τνs3/2 + ω2

(8)

In Eq. (8), the exponent δ takes three values; δ = 1 returns the response function g(s), δ = 0 provides the response
unction G(s), and δ = −1 gives the response function I(s), see below for their connection with frequent used statistical
easures. The function R(s) =

sδ

s2+
γ̄
M

sa
(sa+µ−a)

+
γ0
M

√
τν s3/2+ω2

, is split into two terms R1(s) =
sδ−2

R0(s)
and R2(s) =

ν2sδ−a−2

R0(s)
, where

1 For µ → 0 the argument of Ea(−(t/µ)a) goes to infinity for every value of t , so using eq.(C.4) for n = 1 and b = 1, we end up with
γ (t) = γ0

t−α

Γ (1−α)
2 Given that E (−(t/µ)) = e(−(t/µ)) , then the expression, lim 1 e−

t
µ is the limit representation of delta function.
1 µ→0 2µ

3
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0(s) = 1+ν1s−1/2
+ν2s−a

+ν3s−
1
2 −a

+ν4s−2
+ν5s−2−a, with ν1 =

γ0
M

√
τν , ν2 = µ−a, ν3 =

γ0
M µ−a√τν = ν1ν2, ν4 = ν4,1+ν4,2

with ν4,1 =
γ̄

M , ν4,2 = ω2, and ν5 = µ−aω2. The inversion of R1,2(s) in the time domain is made through the multinomial
ML function [37,38] and reads

R1(t) = t1−δE(2+a,2, 12 +a,a, 12 ),2−δ
(−ν5t2+a, −ν4t2, −ν3t

1
2 +a, −ν2ta, −ν1t

1
2 ) (9)

and

R2(t) = t1+a−δE(2+a,2, 12 +a,a, 12 ),2+a−δ
(−ν5t2+a, −ν4t2, −ν3t

1
2 +a, −ν2ta, −ν1t

1
2 ) (10)

ee eq. (C.9), Appendix C, for the definition of the multinomial ML function. For t → 0, the overall response function
R(t) = R1(t) + R2(t) is expanded and the first member of the expansion is equal to t1−δ

Γ (2−δ) and consequently g(t) goes to
1 and G(t), I(t) are zero, (δ = 1, 0, −1). Relaxing the condition t → 0, expansion of R(t) in the short time limit returns

R(t) = t1−δ
{

1
Γ (2 − δ)

−
ν1

Γ ( 52 − δ)
t
1
2 +

ν2
1

Γ (3 − δ)
t −

ν3
1

Γ ( 72 − δ)
t
3
2 +

(ν4
1 − ν4)

Γ (4 − δ)
t2} (11)

It is worth mentioning that Eq. (11) contains only terms due to hydrodynamic fluctuations up to t
3
2 term. Eqs. (9) and

(10) can be further simplified following the steps provided in Appendix C, and R(t) for ν4
ν3
t
3
2 −α > 1 reads

R(t) =
t−1−δ

ν4
{Eα,−δ(−

ν5

ν4
tα) + ν2tαEα,α−δ(−

ν5

ν4
tα)} (12)

For t > ( ν4
ν5
)
1
α , the two parameter ML function Ea,b(z) goes asymptotically as −

∑
∞

n=1
z−n

Γ (b−an) [39] and the asymptotic
behavior of Eq. (12) takes the form

R(t) =
ν2

ν5
t−1−δ

{
1

Γ (−δ)
− (

1
ν2

−
ν4

ν5
)

t−a

Γ (−a − δ)
+

ν4

ν5
(
1
ν2

−
ν4

ν5
)

t−2a

Γ (−2a − δ)
} (13)

As t → ∞, Eq. (13) returns g(t) → 0, G(t) → 0, and I(t) →
1

ω2 indicating the trapping of the particle as we will
iscuss below. Both short and long time limit are listed in Table 2.
Eqs. (11) and (13) provide the early and the long time behavior of the most frequent used statistical measures like

SD, and NVAF/NPAF (the normalized velocity and position autocorrelation function respectively) in characterizing the
ynamics of diffusing particles. Eqs. (B.13) and (B.14), see Appendix B, provide the detailed forms of MSD and of NVAF
espectively as functions of the actual time moments t, t ′. The time evolution of NPAF is given by Eq. (16) and will be
treated separately, see below. Given that recording techniques have time lags, τL, much larger that the actual time, it
akes sense to take t, t ′ → ∞ and |t − t ′| = τL finite, which simplifies a lot the forms of MSD, ⟨∆x2⟩(τL) =

2kBT
M I(τL),

nd of NVAF Cu(τL)
Cu(0)

=
m
M g(τL), with I(τL) = R(τL)|δ=−1, and g(τL) = R(τL)|δ=1. Of note that Cu(0) =

kBT
mp

, and it is worth
entioning that in Eq. (B.14) the term kBT

M is coming from equi- partition in the long time limit. At time t = 0, and
assuming thermal equilibrium the corresponding term is kBT

mp
which differs in the mass term when hydrodynamic effects

re coming into play.
All forces described by Eq. (1) are not necessarily applied on a diffusing particle, a part of them may be non-active.

esponse functions for such cases are of interest because of they may describe experimental processes. We consider four
ifferent scenarios with common element a friction of the form γ (t) = γ̄ Ea(−(t/µ)a), 0 < a < 1, and we obtain analytical
olutions for (i) ζ (t) = 0, and ω = 0, (ii) ζ (t) = 0, and ω ̸= 0, (iii) ζ (t) ̸= 0, and ω = 0. The fourth scenario has already
een presented, eqs(9–13), for ζ (t) ̸= 0, and ω ̸= 0
Table D.1, see Appendix D, contains the response functions for each scenario. These functions are valid for all time

oments, however, in presence of hydrodynamic fluctuations their validity holds true for t ≫ r/c , where r is the radius
f the particle and c the velocity of the sound in the medium. For t < r/c compressibility effects should be taken into
ccount. [40] Table 1 shows simplified forms of these functions which apply for t > tc , where tc is the minimum time for
hich the multinomial ML function can be expressed by a two-parameter ML function. The latter can be used directly for
raphical illustration or can be used as trial functions for fitting real life data. [41] Table 2 contains the short time limit
nd the asymptotic behavior of the aforementioned response functions.

. Discussion

Eq. (11) provides the short time limit of MSD and NVAF for δ = −1 and δ = 1 respectively, and their detailed form is
iven by Eqs. (14) and (15). Note that the mass M is replaced by the mass of the diffusing particle mp when hydrodynamic
luctuations are not present.

⟨∆x2⟩(τL) =
2kBT

τ 2
L {

1
−

8ν1
√ τ

1
2
L +

ν2
1 τL −

16ν3
1

√ τ
3
2
L +

(ν4
1 − ν4)

τ 2
L } (14)
M 2 15 π 6 105 π 24
4
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Table 1
The response function, R(t) of a diffusing particle valid for t > tc .

R(t)

ζ (t) = 0
ω = 0

t1−δ
{

1
Γ (2−δ) −

ν4, 1
ν2

t2−αE2−α, 4−δ−α(−
ν4, 1
ν2

t2−α)}, t > ( 1
ν2
)
1
α

ζ (t) = 0
ω ̸= 0

t−1−δ

ν4
{Eα, −δ(−

ν5
ν4
ta) + ν2tαEα,α−δ(−

ν5
ν4
ta)}, t > ( ν2

ν4
)

1
2−α

ζ (t) ̸= 0,
ω = 0

t
1
2 −α−δ

ν3
{E 3

2 −α, 3
2 −δ−α

(− ν4, 1
ν3

t
3
2 −α) + ν2tαE 3

2 −α, 3
2 −δ

(− ν4, 1
ν3

t
3
2 −α)}, t > ( ν1

ν3
)
1
α

ζ (t) ̸= 0,
ω ̸= 0

t−1−δ

ν4
{Eα,−δ(−

ν5
ν4
tα) + ν2tαEα,α−δ(−

ν5
ν4
tα)}, t > ( ν3

ν4
)(

3
2 −α)−1

Table 2
The response function, R(t), in the short and long time limit.

R(t → 0) R(t → ∞)

ζ (t) = 0
ω = 0

t1−δ
{

1
Γ (2−δ) −

ν4, 1
Γ (4−δ) t

2
+

ν2ν4, 1
Γ (4+α−δ) t

2+α
}

t−1−δ

ν4, 1
{

1
Γ (−δ) + ν2

tα
Γ (α−δ) }

ζ (t) = 0
ω ̸= 0

t1−δ
{

1
Γ (2−δ) −

ν4
Γ (4−δ) t

2
+

(ν2ν4−ν5)
Γ (4+α−δ) t

2+α
}

ν2
ν5
t−1−δ

{
1

Γ (−δ) − ν4
t−α

Γ (−α−δ) }

ζ (t) ̸= 0,
ω = 0

t1−δ
{

1
Γ (2−δ) −

ν1
Γ ( 52 −δ)

t
1
2 −

ν21
Γ (3−δ) t −

ν31
Γ ( 72 −δ)

t
3
2 +

(ν41−ν4, 1)
Γ (4−δ) t2} t−1−δ

ν4, 1
{

1
Γ (−δ) + ν2

tα
Γ (α−δ) }

ζ (t) ̸= 0,
ω ̸= 0

t1−δ
{

1
Γ (2−δ) −

ν1
Γ ( 52 −δ)

t
1
2 −

ν21
Γ (3−δ) t −

ν31
Γ ( 72 −δ)

t
3
2 +

(ν41−ν4)
Γ (4−δ) t

2
}

ν2
ν5
t−1−δ

{
1

Γ (−δ) − ( ν4
ν5

−
1
ν2
) t−α

Γ (−α−δ) +
ν4
ν5
( ν4

ν5
−

1
ν2
) t−2α

Γ (−2α−δ) }

and
Cu(τL)
Cu(0)

=
mp

M
{1 −

2ν1
√

π
τ
1/2
L + ν2

1τL −
4ν3

1

3
√

π
τ

3
2
L +

(ν4
1 − ν4)
2

τ 2
L } (15)

Eq. (14) states that the MSD is ballistic, ∼ τ 2
L , at early time moments, and in absence of hydrodynamic fluctuations the

first correction term is proportional to τ 4
L accompanied by a factor containing information about the presence, ν4, or not,

ν4,1, of the restoring force. In this limit, hydrodynamic fluctuations change significantly the time dependence of the MSD.
Three correction terms appear before the fourth order term, and all contain the influence of the BB force and their scaling

goes from
√

τL, to τL and up to τ
3
2
L . Eq. (15) provides the early behavior of the NVAF, which always starts with the value

mp
M . As in the case of MSD, the first correction term is quadratic reducing its value, when BB forces are not present, and
its cofactor depends on the forces exerted on the diffusing particle. On the contrary, BB forces abruptly reduce the value
of the NVAF because of the existence of three terms before the quadratic one. Solution of exactly the same structure has
been reported, namely, Cu(τL)/Cu(0) = 1 −

2
√

π

√
τν

τd
t
1
2 +

(τν−τd)
τ2d

t +
4

3
√

π

√
τν (2τd−τν )

τ3d
t
3
2 describing the dynamics of diffusing

particle under restoring force and hydrodynamic fluctuations by assuming constant friction [42].
The solutions presented so far are general, can access particle dynamics in complex environments, and furthermore,

distinguish the nature of the forces acting on the tagged particle. In the following, we demonstrate how these relations can
reveal insights about a system dynamics given that experimental evidence is available. We will use, as an example, two
systems which have already been studied and presented elsewhere, and for which we use only some numerical values
concerning properties of the particle (radius), the environment (viscosity, density), and the restoring force (stiffness) [25].
We consider all possible combinations of forces and we comment on their effect on particle dynamics.

Fig. 1 shows the NVAF (left panel) and the MSD for a barium titanate microsphere executing random motion in acetone.
Fig. 1a–1d are based on the analytical expressions listed in Table 1 (valid for t > tc), and Fig. 1e–1h are based on numerical
inversion of Laplace transform of Eq. (8). [43] Friction obeys a one parameter ML function in all four different models
examined in this work. All graphs displayed in Fig. 1 have been drawn for a = 0.9. The NVAF for zero restoring force
s displayed in Figs. 1a and 1e. Red for z(t) = 0 where both the analytical expression and the numerical inversion of
Eq. (8) for ν1 = ν3 = ν5 = 0 and ν4,1 ̸= 0 present a nice agreement. At the same graphs the presence of hydrodynamic
luctuations, green lines, change the decline rate of NVAF. The analytical expression, Fig. 1a, works well for t > τν , which
overs a much broader time window than the usual asymptotic limit. The MSD for the same combination of forces is
llustrated in Figs. 1c and 1g, where in addition a straight line (magenta) stands for Brownian motion. For z(t) = k = 0
red lines), analytical expression and numerical inversion present a nice agreement, MSD starts balistically and gradually
he slope decreases reaching the value of α for long times, see similarity between MSD and magenta straight line (α = 1).
he effects of the hydrodynamic fluctuations, for k = 0 (green lines), with respect to the red lines are mainly reflected
n the smoother change in slope of MSD from its initial value of 2 to its final value of 0.9, and MSD rises slower under
5
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Fig. 1. It displays the NVAF (left panel) and the MSD (right panel) for various combinations of forces for a barium titanate microsphere in acetone
with r = 1.86 ± 0.03 µm, k = 3.2 ± 0.2 x 10−4 N/m, τν = 8.5 µs, see Fig.2 of [25]. Color code: red for z(t) = k = 0, green for k = 0, z(t) ̸= 0, blue
or k ̸= 0, z(t) = 0, black for z(t) ̸= 0, k ̸= 0; magenta shows the time evolution of MSD for a truly Brownian motion, and cyan illustrates Eq. (15).
ertical lines indicate time scales, namely, vorticity time, tν , diffusion time, td , and trapping time, tk .

Fig. 2. It displays the NVAF and the MSD for various combinations of forces for a silica microsphere in water with r = 1.43±0.015 µm, k = 1.6±0.3
10−4 N/m, τν = 2 µs, see Fig.2 of [25]. Color code: red for z(t) = k = 0, green for z(t) ̸= 0, k = 0, blue for z(t) ̸= 0 and k = 0, black for z(t) ̸= 0
nd k ̸= 0, magenta illustrates a truly Brownian motion, and cyan displays Eq. (15). Vertical lines indicate the three time scales; vorticity time, tnu ,
iffusion time, td , and trapping time, tk .

his influence. Again, the analytical expression works well for a big time window and also covers the smooth change of
he slope.

When restoring force is present, Figs. 1b and 1f display the NVAF and Figs. 1d and 1h show the MSD. The analytical
olutions in the absence of hydrodynamic fluctuations (blue), Fig. 1b, as well as in their presence (black), describe only
ow the NVAF goes to zero. Instead, numerical inversion, which covers the whole time window, highlights that BB forces
ead to smoother changes of NVAF, and to smaller negative minimum, a concept associated to anti-persistent motion.
dditionally, the short time behavior of NVAF, Eq. (15), has been drawn (cyan line), which seats well on the numerical
olution. The MSD does not differ significantly in the presence and absence of hydrodynamic fluctuations. The presence
f a restoring force leads to a plateau, the value of which is similar in both cases.
Fig. 2 shows the NVAF (left panel) and the MSD (right panel) for a silica microsphere executing random motion in

ater. For this system the vorticity time is larger than the diffusive time, the opposite is true for BTG particle. Assuming
ero restoring force, the pattern behavior is the same as for the BTG particle; the NVAF of silica microsphere becomes
lightly negative when only the friction force is present, while, the presence of hydrodynamic fluctuations washes out
he anti- persistency of particle movements and NVAF is always positive. Furthermore, the MSD follows similar trends
or both cases, however, the transition from the ballistic to diffusive regime is smoother in presence of BB forces. The
6
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ynamics change in presence of restoring force. Analytical expressions satisfactorily capture the NVAF for times much
onger than the vorticity time, Fig. 2b. In Fig. 2f, numerical inversion of Eq. (8) for the corresponding parameters show
hat hydrodynamic fluctuations smooth anti-persistence and impose a kind of persistence. Figs. 2d and 2h display the
SD in both cases, hydrodynamic fluctuations likely lead the MSD to plateau regime a bit later than in their absence. It

s worth mentioning that Eq. (15) (cyan line in Fig. 2f), except the very first few points, does not fit well the curve of the
VAF; similar behavior has been depicted in the original work.[25]
PAF or its normalized version (NPAF) accesses particle dynamics, however, its handling is more cumbersome than VAF

ecause of usually behaves as two point correlator. From Eqs. (B.1) and (B.6), we get

⟨x(t)x(t ′)⟩ = ⟨x2(0)⟩ −
kBT
M

I(|t − t ′|) +(
kBT
M

− ω2
⟨x2(0)⟩

)
(I(t) + I(t ′) − ω2I(t)I(t ′)) (16)

Eq. (16) describes the PAF of a stationary process in wide sense, only when a restoring force is present, otherwise, it
does not depend only on the time lag, τL where τL = t ′ − t but also on the actual time t and reads ⟨x(t)x(t + τL)⟩ =

⟨x2(0)⟩ +
kBT
M {I(t + τL) + I(t) − I(|τL|)}. For diffusing motion within a harmonic potential and assuming thermal initial

conditions, ⟨ξ (t)x(0)⟩ = 0, < x2(0) >=
kBT
mω2 , and ⟨x(0)u(0)⟩ = 0, Eq. (16) takes the simpler form

Cx(τL)
Cx(0)

= 1 − ω2I(τL) (17)

hich behaves for short and long times as follows

Cx(τL)
Cx(0)

=

⎧⎨⎩ 1 −
ω2

2 τ 2
L +

8ω2ν1
15

√
π
τ

5
2
L , τL → 0

γ0
k

τ−α
L

Γ (1−α) −
γ0
k ( γ0

k +
1
ν2
) τ−2α

L
Γ (1−2α) , τL → ∞

(18)

here the expansion, limt→∞ I(t) =
1

ω2 −
(ν2ν4−ν5)

ν25

t−α

Γ (1−α) +
ν4
ν5

(ν2ν4−ν5)
ν25

t−2α

Γ (1−2α) , has been used. Eq. (18) can access both
the analytic form of the friction expressed by the one parameter ML function as well the stiffness of the restoring force.
And yet, Eq. (18) can also provide the autocorrelation of the restoring force (FAC), Eq. (19), since limt→∞⟨F (t)F (t + τL)⟩ =

limt→∞ k2⟨x(t)x(t + τL)⟩, with k being the stiffness.

lim
t→∞

⟨F (t)F (t + τL)⟩
k2⟨x2(0)⟩

= 1 −
ν5

ν2ν4
{Eα(−

ν5

ν4
τ α
L ) + ν2τ

α
L Eα,α+1(−

ν5

ν4
τ α
L )} (19)

The asymptotic behavior of Eq. (19) is given by Eq. (18).
Fig. 3a displays the NPAF for BTG in acetone in absence (red) and in presence (black) of hydrodynamic fluctuations as

it is predicted by the numerical inversion of Eq. (8). Restoring force and friction (one parameter ML function) are always
present, and the value of α has been set to 0.9. Fig. 3b provides the behavior of PACF as it is predicted by Eq. (17) under
the assumption of thermal initial conditions and it valid for t > (ν3/ν4)1/(1.5−a). It states that for time larger than the
trapping time the position loses any kind of correlation and NPAF goes to zero. However, this argument is challenged by
Fig. 3a, where, For t > tk, NPAF becomes negative,higher the minimum in absence of BB forces, and then it returns to zero.
Zooming in this regime, Fig. 3c, it becomes apparent that hydrodynamic fluctuations smooth out the oscillatory behavior
of the NPAF around zero. On the other hand, for Silica in water, Eq. (17) returns quasi similar behavior in absence/presence
(green/magenta) of hydrodynamic fluctuations, Fig. 3d. However, according to numerical inversion of Eq. (8), Fig. 3g, this is
true in long times. There is a short time window where hydrodynamic fluctuations differentiate the behavior of NPAF with
respect to their absence, Fig. 3e which is zoom in of Fig. 3g. Notice, that for silica in water, NPAF decreases monotonically,
and furthermore, in the short time limit, Eq. (19), fits well on the curve (cyan).

5. Conclusions

The model presented in this article investigates the features of the sub-diffusive motion of a particle in the presence of
hydrodynamic fluctuations and harmonic restoring force under the influence of friction modeled by a one-parameter ML
function. The model is a generalization of other investigations and distinct from them due to one-parameter ML friction
term. The use of the latter is of great importance since it ensures a smooth transition of friction from zero at t = 0
to a power law behavior at long times. It also fits better the friction properties of then environment where a diffusion
motion evolves. We provide the solution in Laplace space. We then express the generalized response function in real
space in terms of the multinomial ML function. The asymptotic limits are extracted, and, in addition to that, we obtain
closed analytical solutions for time windows much broader than the usual long time limit. These solutions are given as
combinations of a two-parameter ML functions, and its value is due to the fact that it can be easily used to access system
dynamics through a fitting process [41].

And yet, the general model presented in this work may describe a number of different situations where some or all
of the force/s exerted on the tagged particle, e.g. hydrodynamic fluctuations and/or restoring force, is/are not active. This
7
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Fig. 3. It shows the NPAF of BTG in acetone and of Silica in water. Color code: red and black for BTG, green and magenta for silica. Restoring force
s present in all cases displayed herein. Black and magenta for activated hydrodynamic fluctuations, while, red and green for the opposite. Figs. 2b
nd 2d have been drawn based on Eq. (17), where the rest are based on numerical inversion of Eq. (8).

an be done with a slight modification of the general solution in Laplace space, deactivation of the corresponding term/s,
hich return/s different multinomial ML functions as solutions of the generalized response function. In this context, we
resent solutions when both hydrodynamic fluctuations and restoring forces are not present, as well when only one of
he two is active. For each case, the generalized response function is obtained and closed analytical expressions for large
ime windows are extracted. Furthermore, the most frequent measures in both statistical treatment and experimental
rocesses such as MSD, NVAF, and NPAF are provided. Their analytical forms are listed in Table 1, and their short and
ong time behavior is listed in Table 2. All analytical expressions listed in Table 1 are combinations of two-parameter ML
unctions and can be used to fit experimental evidence, when available, and thus leading to uncover features of the system
ynamics. Notice that the numerical simulations reported here concern only the inversion of the Laplace transform. The
imulations were carried out to demonstrate the equivalence of the analytical solutions and numerical inversion for time
oments t > tc . Indeed, the aim of this work is to provide a number of analytical equations that can be used in support of
xperiments or of simulations. As such, it is not the intent of this work to further extend the use of numerical simulations.
An obvious extension of the present work is to consider the friction term as either a two or a three-parameter ML

unction. However, there is room, in the existing model, for searching further special features and dynamics of a diffusing
article. For example, it has been reported experimentally that hydrodynamic memory causes resonances in Brownian
otion.[24] The present model enhanced with a fluctuating stiffness term can be used for analytical investigation of

esonance effects, [44] and such a study may be supported by extensive numerical simulations.[45] It is worth mentioning
hat resonance effects due to fluctuating mass in the presence of a one-parameter ML friction and in the absence of
ydrodynamic forces has been studied [46]. Another possibility is the investigation of system behavior when the scaling
xponent α is very small and friction itself behaves as a restoring force. In addition, the present work can support
he study of systems where the diffusing particle has a density that allows the activation of hydrodynamic effects, for
xample nanostructures/nanoparticles moving on surfaces under the stimulus of either electrons [47] or light [48], and
or which analysis showed intriguing behavior.[49]. A safe route of testing and validating the present model is the study of
xperimental evidence coming from AFM experiments since they offer high resolution and usual long trajectories [50,51].
8
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In a more practical summary of the work one can say that Eq. (1) has not been solved before in the presence of
one-parameter ML friction. Under this general framework, a number of sub-cases, active and non-active forces, have been
studied, and for each case analytical solutions valid for large time windows have been obtained. Through comparative
analysis we provided qualitative evidence that hydrodynamic fluctuations smooth out the anti-persistent character of
particle motion. The friction, always present, imposes a sub-diffusive character, which entails that NVAF becomes negative
and its absolute minimum becomes larger as the sub-diffusion becomes stronger. Smoothing out anti-persistence is
visually conspicuous from the time evolution of NVAF, whose value of the absolute minimum is reduced and accordingly
never takes negative values. In addition to that, an active harmonic restoring force enhances the sub-diffusive character
of the motion, which however, is attenuated by hydrodynamic fluctuations. NPAF confirms the way hydrodynamic
fluctuations alter particle motion, and it is more pronounced when the diffusion time, τd, is larger than the vorticity
time τν . On the other hand, MSD does not greatly contribute to distinguishing the effects hydrodynamic fluctuations have
on motion. Actually, it starts ballistically and scales as tα , in the long time limit, when a restoring force does not exist,
opposed to complete trapping when it is present. For intermediate times, some slight differentiation exists in its form
in the presence/absence of hydrodynamic fluctuations. The same analysis can be carried out for any combination of the
scaling exponent, α, and all existing time scales (diffusion, vorticity, trapping).
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Appendix A. Derivation of fluctuation dissipation relations

Fluctuation dissipation relations (FDR) are not affected by the presence of a conservative force when the latter is
assumed within the linear response regime. [17,52]. For zero conservative forces, and by using the notation M = mp +

mf
2 ,

q. (1), for t = 0, returns ξ (0) = Mu̇i(0), a result that is used to obtain the mean average of the noise auto-correlation,
(t) = ⟨ξ (t)ξ (0)⟩

Ξ (t) = M2
⟨u̇(t)u̇(0)⟩ + M

∫ t

0
γ (t − t ′)⟨u(t ′)u̇(0)⟩dt ′

+M
∫ t

0
ζ (t − t ′)⟨u̇(t ′)u̇(0)⟩dt ′ (A.1)

Assuming velocity at least wide sense stationary process (mean and autocorrelation are time invariant), its autocor-
relation function is defined as, Cu(t1, t2) = ⟨u(t1)u(t2)⟩ = ⟨u(t)u(0)⟩, with t = t1 − t2. By making use of the identity,
⟨u̇(t1)u(t2)⟩+ ⟨u(t1)u̇(t2)⟩ = 0, Eq. (A.1) is transformed into a second order stochastic differential equation with respect to
Cu(t), and reads

−M2C̈u(t) − M
∫ t

0
γ (t − t ′)Ċu(t ′)dt ′ − M

∫ t

0
ζ (t − t ′)C̈u(t ′)dt ′ = Ξ (t) (A.2)

Eq. (A.2) interrelates velocity and noise autocorrelation functions. The Laplace pair of Eq. (A.2) returns

Ξ (s) = M(sCu(s) − Cu(0))(−Ms − γ (s) − sζ (s)) (A.3)

For t → ∞, or equivalently in Laplace space for s → 0, the term sCu(s) should go to zero, as we demand equilibrium
conditions. It remains, Ξ (s) = MCu(0)(γ (s) + sζ (s)), and assuming equilibrium conditions, Mu2

= kBT at t = 0, we end
up with

Ξ (s) = kBT {γ (s) + sζ (s)} (A.4)

Eq. (A.4) is the fluctuation dissipation relation (FDR), also known as fluctuation dissipation theorem (FDT), for the
system described by Eq. (1) [18]. Of note, in Eq. (A.4) the term originated from the BB force reminds in Laplace space a
quantity derived as the time derivative of the BB force, L{ḟ (t)}(s) = sf (s)−f (0), however the latter at least suffers at t → 0
since it diverges. [53] One can define a generalized friction term, γ (s) = γ (s) + sζ (s), and Eq. (A.4) takes the familiar
G
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orm of FDT’s ⟨ξ (s)⟩ = kBTγG(s). Because of stationary conditions, only the time difference is important, we define the
oise autocorrelation for two distinct time moments t1, and t2 as ⟨ξ (t1)ξ (t2)⟩ = Ξ (|t1 − t2|). By taking a double Laplace
ransform, s for t1, and s′ for t2, of Ξ (|t1 − t2|), [6] we write

⟨ξ (s)ξ (s′)⟩ = kBT
γG(s) + γG(s′)

s + s′
(A.5)

Eq. (A.5) is the general form of the FDT and it is in line with previous results extracted by more sophisticated
echniques. [21]

ppendix B. Observables and response functions

The mean square displacement, ⟨(x(t)−x(t ′))2⟩ = ⟨x(t)2⟩−2⟨x(t)x(t ′)⟩+⟨x(t ′)2⟩, and Cu,u(t, t ′) = ⟨u(t)u(t ′)⟩ the velocity
utocorrelation function, are quantities directly evaluated in an experiment. Towards assessing the dynamics of a tracer
article the following response functions are also of interest; position covariance σx,x(t, t ′) = (x(t) − ⟨x⟩)(x(t ′) − ⟨x⟩),
elocity covariance σu,u(t, t ′) = (u(t) − ⟨u⟩)(u(t ′) − ⟨u⟩), and σx,u(t, t ′) = (x(t) − ⟨x⟩)(u(t ′) − ⟨u⟩) the position velocity

covariance. Common in all mentioned measures is either the term ⟨x(t)x(t ′)⟩ or the term ⟨u(t)u(t ′)⟩, which can be easily
constructed in Laplace space by using Eqs. (3) and (4)

⟨x(s)x(s′)⟩ = A(s)A(s′) +
1
M2 ⟨ξ (s)ξ (s′)⟩G(s)G(s′) (B.1)

and

⟨u(s)u(s′)⟩ = B(s)B(s′) +
1
M2 ⟨ξ (s)ξ (s′)⟩g(s)g(s′) (B.2)

where, A(s) =
x(0)
s +(1+M−1ζ (s))u(0)G(s)−ω2x(0)I(s), B(s) = (1+M−1ζ (s))u(0)g(s)−ω2x(0)I(s), G(s) is given by Eq. (5), and

(s) = G(s)/s, g(s) = sG(s). The cross terms are zero because of ⟨ξ (s)⟩ = 0. Furthermore, in Laplace space the covariance
unctions read

σx,x(s, s′) =
⟨ξ (s)ξ (s′)⟩G(s)G(s′)

M2 (B.3)

σu,u(s, s′) =
⟨ξ (s)ξ (s′)⟩g(s)g(s′)

M2 (B.4)

σx,u(s, s′) =
⟨ξ (s)ξ (s′)⟩G(s)g(s′)

M2 (B.5)

By using Eq. (A.5), the second term at the r.h.s of Eq. (B.2) , after some algebra [10], is rearranged as

⟨ξ (s)ξ (s′)⟩G(s)G(s′)
M2 =

kBT
M

{
I(s′)
s

+
I(s)
s′

−
I(s) + I(s′)

s + s′

−G(s)G(s′) − ω2I(s)I(s′)} (B.6)

and the second term at the r.h.s of Eq. (B.2) as

1
M2 ⟨ξ (s)ξ (s′)⟩g(s)g(s′) =

kBT
M

{
g(s) + g(s′)

s + s′
− g(s)g(s′) − ω2G(s)G(s′)} (B.7)

Position and velocity covariance, Eqs. (B.3) and Eq. (B.4), are expressed through Eq. (B.7) and Eq. (B.8), whose inverse
aplace transform deliver

σx,x(t, t ′) =
kBT
M

(I(t) + I(t ′) − I(|t − t ′|) − G(t)G(t ′) − ω2I(t)I(t ′)) (B.8)

and

σu,u(t, t ′) =
kBT
M

(g(|t − t ′|) − g(t)g(t ′) − ω2G(t)G(t ′)) (B.9)

Eqs. (B.4) and (B.5) can be used to define variances, when we set t = t ′, [5,9,54]

σx(t) =
kBT
M

(2I(t) − I(0) − G2(t) − ω2I2(t)) (B.10)

σu(t) =
kBT
M

(g(0) − g2(t) − ω2G2(t)) (B.11)

and

σx,u(t) =
1 dσx,x(t)

=
2kBT G(t)(1 − g(t) − ω2I(t)) (B.12)
2 dt M
10
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Eqs. (B.8)–(B.10) can provide probability density function, at least in the long time limit where the system reaches

equilibrium and obeys a quasi Gaussian distribution, P(y, y0, t) =
1

2
√

πσy(t)
e
−

1
2

(y−y0)
2

σ2
y (t) , y = x, u.

By using Eq. (B.1) and Eq. (B.2) and after some algebra the mean square displacement reads

⟨(x(t) − x(t ′))2⟩ =
2kBT
M

I(|t − t ′|) + (u2(0) −
kBT
M

)(G(t) − G(t ′))2

+ω2(ω2x20 −
kBT
M

)(I(t) − I(t ′))2 +
u2(0)
m2 (φ(t) − φ(t ′))2

+
2u2(0)
M

(G(t) − G(t ′))(φ(t) − φ(t ′))

−
2ω2x(0)u(0)

M
(I(t) − I(t ′))(φ(t) − φ(t ′)) (B.13)

and the velocity autocorrelation function takes the form

⟨u(t)u(t ′)⟩ =
kBT
M

g(|t − t ′|) + (u(0)2 −
kBT
M

)g(t)g(t ′)

ω2(ω2x2(0) −
kBT
M

)G(t)G(t ′) +
u(0)2

M2 λ(t)λ(t ′) −

ω2x(0)u(0)(G(t)g(t ′) + G(t ′)g(t)) +
u(0)2

M
(g(t)λ(t ′) + g(t ′)λ(t))

ω2x(0)u(0)
M

(G(t)λ(t ′) + G(t ′)λ(t)) (B.14)

where, φ(t) =
∫ t
0 ζ (t − y)G(y)dy and λ(t) =

∫ t
0 ζ (t − y)g(y)dy, notice also that φ(t) =

∫ t
0 λ(t − x)dx.

Finally there is a direct relation between the diffusion coefficient, D, and the velocity autocorrelation function. We start
rom the mean square displacement, < ∆x2 > (t) = ⟨(x(t) − x0)2⟩ =

∫ t
0

∫ t
0 ⟨u(t ′)u(t ′′)⟩dt ′dt ′′, and assuming that u(t) is

tationary at least in wide-sense, we write in Laplace domain

⟨∆x2⟩(s) =
2
s2

Cu(s) (B.15)

and for the diffusion coefficient

D(s) =
Cu(s)
s

(B.16)

Appendix C. Mittag-Leffler functions

At the beginning of the 20th century the Swedish mathematician Magnus Gustaf Mittag-Leffler introduced a function
related with summation of divergent series,[55,56] which got his name (ML) and reads

Ea(z) =

∞∑
n=0

zn

Γ (an + 1)
(C.1)

where a > 0. A two parameter ML function is defined as follows

Ea,b(z) =

∞∑
n=0

zn

Γ (an + b)
(C.2)

here a > 0 and b ∈ C . For b = 1, Eq. (C.2) returns Eq. (C.1). The three parameter ML function, which is also known as
rabhakar function, [57] reads

En
a,b(z) =

1
Γ (n)

∞∑
k=0

Γ (k + n)
Γ (ak + b)

(z)k

k!
(C.3)

here Re(a) > 0, Re(b) > 0, and n > 0. For n = 1, Eq. (C.3) becomes the two parameter ML function. Several other
unctions of the same type has been proposed, see for example [58]. The importance of the ML functions is that they play
he role of the exponential functions in the integer order calculus. For |z| > 1, Eq. (C.3) reads [39,41,59]

En
a,b(z) =

(−z)−n

Γ (n)

∞∑ Γ (k + n)
Γ (b − a(k + n))

z−k

k!
(C.4)
k=0

11
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The third parameter in Eq. (C.4) can be reduced using either the formula [57]

anEn+1
a,b (z) = En

a,b−1(z) + (1 − b + an)En
a,b(z) (C.5)

or the formula [60]

anzEn+1
a,b (z) = En

a,b−a−1(z) + (1 − b + a)En
a,b−a(z) (C.6)

The Laplace pair of the three parameter ML function is given by [61,62]

L{tb−1En
a,b(±λta)}(s) =

san−b

(sa ∓ λ)n
(C.7)

In many problems, the response function is of the form G(s) = s−b(1−
∑k

i=1(−λi)sai )−1, where the exponents αi satisfy
the condition α1 > α2 > · · · . > αk. The inverse Laplace of G(s) is expressed through the multinomial Mittag-Leffler
function, which has been introduced as the fundamental solution of the ordinary differential equation of fractional discrete
distributed order, [37] and reads

G(t) = tb−1E(a1,a2,a3,...,an),b(z1, z2, . . . , zn) (C.8)

where zi = −λitαi and

E(a1,a2,a3,...,an),b(z1, z2, . . . , zn) =

∞∑
k=0

m1+m2+..+mn=k∑ k!
m1!m2!...mn!

∏n
i=1 z

mi
i

Γ (b +
∑n

i=1 aimi)
(C.9)

Simplification of Eq. (C.9): Let E(a1,a2),b(−λ1ta1 , −λ2ta2 ) with λ1 > λ2 is the function of interest. According to Eq. (C.9)
e write

E(a1,a2),b(−λ1ta1 , −λ2ta2 ) =

∞∑
n=0

n∑
k=0

n!
k!(n − k)!

(−λ1ta1 )n−k(−λ2ta2 )k

Γ (b + (n − k)a1 + ka2)
(C.10)

By setting n = n + k, Eq. (C.9) reads

E(a1,a2),b(−λ1ta1 , −λ2ta2 ) =

∞∑
n=0

(−λ2ta2 )n
∞∑
k=0

(n + k)!
k!n!

(−λ1ta1 )k

Γ (ka1 + b + na2)
(C.11)

Given that En+1
a,b (−zta) =

∑
∞

k=0
(n+k)!
n!k!

(−zta)k
Γ (ak+b) , Eq. (C.10) reads

E(a1,a2),b(−λ1ta1 , −λ2ta2 ) =

∞∑
n=0

(−λ1ta1 )nEn+1
a2,b+nα1

(−λ2ta2 ) (C.12)

For λ2ta2 > 1, we use Eq. (C.4) and we write En+1
(a2,b+nα1)

(−λ2ta2 ) ∼
t−(n+1)a2

λn+1
2 Γ (b−a2+n(a1−a2))

, substituting the latter into
Eq. (C.11) we end up with

E(a1,a2),b(−λ1ta1 , −λ2ta2 ) =
t−a2

λ2

∞∑
n=0

(− λ2
λ1
t (a1−a2))n

Γ (n(a1 − a2) + b − a2)

=
t−a2

λ2
Ea1−a2,b−a2 (−

λ1

λ2
t (a1−a2)), λ2ta2 > 1 (C.13)

Eq. (C.13) can be further expanded in the long time limit, λ1
λ2
ta1−a2 ≫ 1, as it holds true that Ea1−a2,b−a2 (−

λ1
λ2
t (a1−a2)) ∼

λ2
λ1

t−a1+a2
Γ (b−a1)

in this limit, see also Eq. (C.4) for n = 1. Substitution of it into Eq. (C.13) yields

E(a1,a2),b(−λ1ta1 , −λ2ta2 ) =
t−a1

λ1Γ (b − a1)
,
λ1

λ2
ta1−a2 ≫ 1 (C.14)

We proceed with the analytical treatment of a multinomial Mittag-Leffler function with five arguments. In the
same way analysis can be conducted for less or more arguments. We introduce the shorthand function MMF5 =

E(a1,a2,a3,a4,a5),b(−λ1ta1 , −λ2ta2 , −λ3ta3 , −λ4ta4 , −λ5ta5 ), with α1 > α2 > · · · . > α5, and according to Eq. (C.9) reads

MMF5 =

∞∑
n=0

n∑
k=0

n−k∑
l=0

n−k−l∑
m=0

n−k−l−m∑
j=0

n!
k!l!m!j!(n − k − l − m − j)!

(−λ1ta1 )n−k−l−m−j(−λ2ta2 )k(−λ3ta3 )l(−λ4ta4 )m(−λ5ta5 )j (C.15)

Γ (b + (n − k − l − m − j)a1 + ka2 + la3 + ma4 + ja5)

12
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l

Step 1: Change of variables, n = n + j, so the variable j goes now from 0 to ∞. Furthermore, the factorial term reads
n!

k!l!m!(n−k−l−m)!
(n+j)!
n!j! . Eq. (C.15) takes the form

MMF5 =

∞∑
n=0

n∑
k=0

n−k∑
l=0

n−k−l∑
m=0

f (n, k, l,m)En+1
α5,β (−λ5tα5 ) (C.16)

f (n, k, l,m) =
n!

k!l!m!(n−k−l−m)! (−λ1ta1 )k(−λ2ta2 )l(−λ3ta3 )m(−λ5ta5 )n−k−l−m, and β = b+ (n− k− l−m)a1 + ka2 + la3 +ma4.

Eq. (C.16) is valid for all time moments. For λ5tα5 > 1, the function En+1
a5,β (−λ5ta5 ) can be replaced by t−a5(n+1)

λn+1
5 Γ (β−(n+1)α5)

,
Eq. (C.4), and substitution of it into Eq. (C.16), delivers

MMF5 =

∞∑
n=0

n∑
k=0

n−k∑
l=0

n−k−l∑
m=0

f (n, k, l,m)
t−a5(n+1)

λn+1
5 Γ (β − (n + 1)α5)

, λ5tα5 > 1 (C.17)

Step 2: We change the variable n to n = n + m, so m now goes from 0 to ∞. By rearranging the terms in Eq. (C.17)
nd by using the definition of three parameter Mittag-Leffler function we write

MMF5 =

∞∑
n=0

n∑
k=0

n−k∑
l=0

t−a5(n+1)

λn+1
5

f (n, k, l)En+1
a5−a4,β1

(−
λ4

λ5
ta4−a5 ), λ5tα5 > 1 (C.18)

where β1 = b + (n − k − l)a1 + ka2 + la3 − a5(n + 1) and f (n, k, l) =
n!

k!l!(n−k−l)! (−λ1ta1 )n−k−l(−λ2ta2 )k(−λ3ta5 )l. For
λ4
λ5
ta4−a5 > 1, we write the expansion of the En+1

a4−a5,β1
(− λ4

λ5
ta4−a5 ) which goes as t−(n+1)(a4−a5)

( λ4
λ5

)n+1Γ (β1−(n+1)(α4−α5))
. Substituting the

atter into Eq. (C.18) we end up with

MMF5 =

∞∑
n=0

n∑
k=0

n−k∑
l=0

f (n, k, l)t−a4(n+1)

λn+1
4 Γ (β1 − (n + 1)(α4 − α5))

,
λ4

λ5
ta4−a5 > 1 (C.19)

Step 3: We change the variable n to n = n + l so l now goes from 0 to ∞. By rearranging the terms in Eq. (C.19) we
write

MMF5 =

∞∑
n=0

n∑
k=0

t−a4(n+1)

λn+1
4

f (n, k)En+1
a3−a4,β2

(−
λ3

λ4
ta3−a4 ) (C.20)

where f (n, k) =
n!

k!(n−k)! (−λ1ta1 )n−k(−λ5ta5 )k, and β2 = b + (n − k)a1 + ka2 − a4(n + 1). Expansion of En+1
a3−a4,β2

(− λ3
λ4
ta3−a4 )

returns t−(n+1)(a3−a4)

( λ3
λ4

Γ (β2−(n+1)(a3−a4)))
, valid for λ3

λ4
ta3−a4 > 1. Substituting these into Eq. (C.20) we write

MMF5 =

∞∑
n=0

n∑
k=0

f (n, k)t−a3(n+1)

λn+1
3 Γ (β2 − (n + 1)(a3 − a4))

,
λ3

λ4
ta3−a4 > 1 (C.21)

Step 4: Change the variable n to n = n + k, and k goes from 0 to ∞. We following the same steps as above and after
some trivial calculus we end up with

MMF5 =
1

λ3tα3

∞∑
n=0

(−
λ1

λ3
tα1−α3 )nEn+1

α2−α3,β3
(−

λ2

λ3
tα2−α3 ),

λ3

λ4
ta3−a4 > 1 (C.22)

where β3 = b + nα1 − α3(n + 1).
Step 5: For λ2

λ3
ta2−a1 > 1, expansion of the three parameter Mittag-Leffler function in Eq. (C.22) returns

t−(n+1)(a2−a3)

( λ2
λ3

Γ (β3−(n+1)(a2−a3)))
, valid for λ2

λ3
ta2−a3 > 1. Substitute the latter into Eq. (C.22) we end up with

MMF5 =
1

λ2tα2
Eα1−α2,b−α2 (−

λ1

λ2
tα1−α2 ),

λ2

λ3
ta2−a3 > 1 (C.23)

Appendix D. Possible combinations of forces according to eq. (1) exerted on the diffusion particle.

The following Table D.1 summarizes the explicit solutions, expressed through the multinomial ML function, for all the
cases examined in this work.

A: Free particle subject to friction force given by the one parameter ML function, ζ (t) = 0 and ω = 0. We set
ν1 = ν3 = ν5 = ν4,2 = 0, ν2 = µ−α , and ν4,1 =

γ̄

m in Eqs. (9) and (10). The inverse Laplace pair returns the multinomial
ML function and the generalized response function reads

R(t) = t1−δ
{E (−ν t2, −ν tα) + ν tαE (−ν t2, −ν tα)} (D.1)
(2,α),2−δ 4,1 2 2 (2,α),2+α−δ 4,1 2
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a

ν

Table D.1
The response function, R(t) = R1(t)+R2(t) of a diffusing particle subject to γ (t) = γ̄ Ea(−(t/µ)a),
0 < a < 1 friction term, and to (i) ζ (t) = 0, and ω = 0, (ii) ζ (t) = 0, and ω ̸= 0, (iii) ζ (t) ̸= 0,
and ω = 0, and (iv) ζ (t) ̸= 0, and ω ̸= 0.

R(t)

ζ (t) = 0
ω = 0

t1−δ

Γ (2−δ) + t1−δ
∑

∞

n=1(−ν4, 1t2)nEn
a, 2n+2−δ(−ν2ta)

ζ (t) = 0
ω ̸= 0

t1−δ
{E(2+α, 2, a), 2−δ(−ν5t2+α, −ν4t2, −ν2tα) +

ν2tαE(2+α, 2, a),2+α−δ(−ν5t2+α, −ν4t2, −ν2tα)}

ζ (t) ̸= 0,
ω = 0

t1−δ
{E(2, 1

2 +a, a, 1
2 ), 2−δ

(−ν4, 1t2, −ν3t
1
2 +a, −ν2tα, −ν1t

1
2 ) +

ν2tαE(2, 1
2 +a, a, 1

2 ), 2+α−δ
(−ν4, 1t2, −ν3t

1
2 +a, −ν2tα, −ν1t

1
2 )}

ζ (t) ̸= 0,
ω ̸= 0

t1−δ
{E(2+a, 2, 1

2 +a, a, 1
2 ), 2−δ

(−ν5t2+a, −ν4t2, −ν3t
1
2 +a, −ν2ta, −ν1t

1
2 ) +

taE(2+a,2, 1
2 +a, a, 1

2 ), 2+a−δ
(−ν5t2+a, −ν4t2, −ν3t

1
2 +a, −ν2ta, −ν1t

1
2 )}

We simplify Eq. (D.1) by using arguments as they are described by Eq. (C.16), and we write

R(t) = t1−δ
{

∞∑
n=0

(−ν4,1t2)n{En+1
α,2+2n−δ(−ν2tα) + ν2tαEn+1

α,2+2n+α−δ(−ν2tα)}} (D.2)

Eq. (D.2) can be further simplified by using the reduction formulas in the third parameter of the ML function, see Eq. (C.5)
and Eq. (C.6), and reads3

R(t) =
t1−δ

Γ (2 − δ)
+ t1−δ

∞∑
n=1

(−ν4,1t2)nEn
a,2n+2−δ(−ν2ta) (D.3)

For t → 0, Eq. (D.1) returns, R(t) =
t1−δ

Γ (2−δ) , and thus g(t) → 1 (δ = 1), and G(t), I(t) = 0 for δ = 0, −1 respectively.
urthermore, by changing n− > n + 1 in Eq. (D.3), the sum at the r.h.s changes to

∑
∞

n=0(−ν4,1t2)n+1En+1
a,2n+4−δ(−ν2tα). In

ddition, for ν2tα > 1, the term En+1
a,2n+4−δ(−ν2tα) is replaced by its asymptotic expansion and the generalized response

function reads

R(t) = t1−δ
{

1
Γ (2 − δ)

−
ν4,1

ν2
t2−αE2−α,4−δ−α(−

ν4,1

ν2
t2−α)}, ν2tα > 1 (D.4)

Eq. (D.4) can easily be used to fit experimental data either of normalized velocity autocorrelation function or of the
MSD or of both, see for example [60]. The long time behavior of Eq. (D.4) holds true for t > ( ν2

ν4,1
)

1
2−α , and the response

function reads

lim
t→∞

R(t) =
ν2

ν4,1

tα−1−δ

Γ (α − δ)
(D.5)

B: Diffusing particle subject to one parameter ML type friction force, and to restoring force. In Eqs. (9) and (10) we set
1 = ν3 = 0, ν2 = µ−α , ν4 = ( γ

m + ω2), and ν5 = µ−αω2. Taking the inverse Laplace pair we end up with the overall
response function R(t) = R1(t) + R2(t), where

R1(t) = t1−δE(a+2,2,a),2−δ(−ν5t2+a, −ν4t2, −ν2ta) (D.6)

and

R2(t) = ν2t1+a−δE(a+2,2,a,),2+a−δ(−ν5t2+a, −ν4t2, −ν2ta) (D.7)

From the definition of the multinomial ML function and by using Eq. (C.14) we write Eq. (D.6) and Eq. (D.7) as follows,

R1(t) = t1−δ

∞∑
n=0

n∑
k=0

n!
k!(n − k)!

(−ν5t2+α)n−k(−ν4t2)kEn+1
a,b (−ν2ta) (D.8)

and

R2(t) = ν2t1+a−δ

∞∑
n=0

n∑
k=0

n!
k!(n − k)!

(−ν5t2+α)n−k(−ν4tα)kEn+1
a,b+α(−ν2ta) (D.9)

3 Eq. (D.3) can be found from the direct inversion of Eq. (8), R(s) =
sδ−2

sα−2 when τν = 0 and ω = 0

1+ν4,1 sα+ν2

14
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w

here b = 2− δ + (2+ α)(n− k)+ 2k. Taking the sum of Eqs. (D.8) and (D.9)and by using Eqs. (C.5) and (C.6) we end up
ith the generalized response function R(t)

R(t) = t1−δ

∞∑
n=0

n∑
k=0

n!
k!(n − k)!

(−ν5t2+α)n−k(−ν4t2)kEn
a,b(−ν2ta) (D.10)

For ν2tα > 1, Eq. (D.10) can be further simplified. We make use of the expansion (ν2tα )−n

Γ ((2−α)n+2−δ−ak) and we end up with

R(t) = t1−δ

∞∑
n=0

(−
ν5

ν2
t2)nEn+1

2−α,2−δ+2n(−
ν4

ν2
t2−α), ν2ta > 1 (D.11)

For ν4
ν2
t2−α > 1, is further simplified and reads

R(t) =
ν2

ν4
t−1−δ+αEα,α−δ(−

ν5

ν4
ta),

ν4

ν2
t2−α > 1 (D.12)

The asymptotic limit, as t → ∞, of eq.(D.12) reads

R(t) =
ν2

ν5

t−1−δ

Γ (−δ)
,
ν5

ν2
ta > 1 (D.13)

C: Diffusing particle subject to one parameter ML type friction force, and to hydrodynamic fluctuations. In Eqs. (9) and
(10), we set ν1 =

γ0
M

√
τf , ν2 = µ−α , ν3 = ν1ν2, ν4,1 =

γ̄

M , and ν5 = 0. The inversion of R1,2(s) in time domain, Laplace pair,
is made through the multinomial ML function. [38] The generalized response function R(t) = R1(t) + R2 takes the form

R(t) = t1−δ
{E(2, 12 +a,a, 12 ),2−δ

(−ν4,1t2, −ν3t
1
2 +a, −ν2tα, −ν1t

1
2 )

+ν2tαE(2, 12 +a,a, 12 ),2+α−δ
(−ν4,1t2, −ν3t

1
2 +a, −ν2tα, −ν1t

1
2 )} (D.14)

By following the procedure analyzed in Appendix C, the kernel E(2, 12 +a,a, 12 ),b
(−ν4,1t2, −ν3t

1
2 +a, −ν2tα, −ν1t

1
2 ) of

Eq. (D.14) is consecutive transformed to 1

ν1t
1
2

∑
∞

n=0
∑

k=0
n!

(n−k)!k!
(−ν4,1t2)n−k(−ν3t

1
2 +α )

ν2tα
En+1

α−
1
2 ,b1

(− ν2
ν1
t−

1
2 +α) for ν1t

1
2 > 1, with

b1 = b + 2(n − k) + k(α +
1
2 ) −

n+1
2 , then for ν2

ν1
tα−

1
2 > 1 it goes like 1

ν2tα
∑

∞

n=0(−
ν4,1
ν2

t2−α)nEn+1
1
2 ,b+(2−α)n−a

(− ν3
ν2
t
1
2 ), and

finally for ν3
ν2
t
1
2 > 1 goes as 1

ν3t
α+

1
2
E 3

2 ,b−α−
1
2
(− ν4,1

ν3
t
3
2 −α). By substituting the latter expression into Eq. (D.14) we end up

with

R(t) =
t
1
2 −α−δ

ν3
E 3

2 −α, 32 −δ−α
(−

ν4,1

ν3
t
3
2 −α) +

ν2

ν3
t
1
2 −δE 3

2 −α, 32 −δ
(−

ν4,1

ν3
t
3
2 −α) (D.15)

For t → ∞, or for t > ( ν4,1
ν3

)
1

3
2 −α , Eq. (D.16) provides the long time behavior of the response function

R(t) =
ν2

ν4,1

t−1−δ+α

Γ (α − δ)
+

1
ν4,1

t−1−δ

Γ (−δ)
−

ν3

ν2
4,1

tα−δ− 5
2

Γ (α − δ −
3
2 )

(D.16)
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