
03 September 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Davide Lofano,  Giovanni Paolini (2021). Euclidean matchings and minimality of hyperplane
arrangements. DISCRETE MATHEMATICS, 344(3), 1-22 [10.1016/j.disc.2020.112232].

Published Version:

Euclidean matchings and minimality of hyperplane arrangements

Published:
DOI: http://doi.org/10.1016/j.disc.2020.112232

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/943297 since: 2023-09-30

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.disc.2020.112232
https://hdl.handle.net/11585/943297


This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/) 

When citing, please refer to the published version. 

 

 

 

 

 

This is the final peer-reviewed accepted manuscript of:  

Davide Lofano, Giovanni Paolini, Euclidean matchings and minimality of hyperplane 
arrangements, Discrete Mathematics, Volume 344, Issue 3, 2021, 112232, ISSN 
0012-365X 

The final published version is available online at: 
https://doi.org/10.1016/j.disc.2020.112232 

Terms of use: 

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are 
specified in the publishing policy. For all terms of use and more information see the publisher's 
website.   

 

https://cris.unibo.it/
https://doi.org/10.1016/j.disc.2020.112232


EUCLIDEAN MATCHINGS AND MINIMALITY OF

HYPERPLANE ARRANGEMENTS

DAVIDE LOFANO AND GIOVANNI PAOLINI

Abstract. We construct a new class of maximal acyclic matchings on the
Salvetti complex of a locally finite hyperplane arrangement. Using discrete

Morse theory, we then obtain an explicit proof of the minimality of the com-

plement. Our construction provides interesting insights also in the well-studied
case of finite arrangements, and gives a nice geometric description of the Betti

numbers of the complement. In particular, we solve a conjecture of Drton

and Klivans on the characteristic polynomial of finite reflection arrangements.
The minimal complex is compatible with restrictions, and this allows us to

prove the isomorphism of Brieskorn’s Lemma by a simple bijection of the crit-

ical cells. Finally, in the case of line arrangements, we describe the algebraic
Morse complex which computes the homology with coefficients in an abelian

local system.

1. Introduction

Let A be a locally finite arrangement of affine hyperplanes in Rn. The comple-
ment M(A) ⊆ Cn of the complexified arrangement AC is a well studied topological
space. As proved by Salvetti [Sal87, Sal94], M(A) has the homotopy type of an
n-dimensional CW complex. This complex is usually called the Salvetti complex of
A, and we denote it by Sal(A).

For a finite arrangement A, in [Ran02, DP03, Yos07] it was proved that the
complement M(A) has the homotopy type of a minimal CW complex, i.e. with
a number of k-cells equal to the k-th Betti number. This minimality result was
later made more explicit with discrete Morse theory, in [SS07] (for finite affine
arrangements), [Del08] (for finite central arrangements and oriented matroids in
general), [GS09] (for finite line arrangements), [dD15] (for affine arrangements with
a finite number of directions).

In this work we consider a (possibly infinite) affine arrangement A, and construct
a minimal CW model for the complement M(A). This is obtained applying discrete
Morse theory to the Salvetti complex of A. For a (possibly infinite) CW complex,
by “minimal” we mean that all the incidence numbers vanish. As in the well known
case of finite arrangements, we obtain a geometrically meaningful bijection between
cells in the minimal CW model and chambers of A.

Our starting point is the work of Delucchi on the minimality of oriented ma-
troids [Del08]. Specifically, we build on the idea of decomposing the Salvetti com-
plex according to some “good” total order of the chambers. For a general affine
arrangement, however, the combinatorial order used in [Del08] does not yield a
decomposition with the desired properties. In Section 3 we introduce a class of
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2 EUCLIDEAN MATCHINGS AND MINIMALITY OF HYPERPLANE ARRANGEMENTS

total orders of the chambers for which we are able to extend the construction of
Delucchi, and we call them valid orders. We remark that in [Del08, Question 4.18]
it was explicitly asked for one such extension to affine arrangements. For a finite
affine arrangement, the polar order of Salvetti and Settepanella [SS07] is valid (Re-
mark 3.7). Therefore our work contributes to linking the constructions of [SS07]
and [Del08] (see also [Del08, Remark 3.8]).

In Section 4 we show how to construct an acyclic matching on Sal(A) for any
given valid order.

Theorem 4.10. Let A be a locally finite hyperplane arrangement, with a given
valid order of the set of chambers. Then there exists a proper acyclic matching on
Sal(A) with critical cells in bijection with the chambers.

In the same section we also prove the following result that can be regarded as a
generalization of [Del08, Theorem 3.6].

Theorem 4.9. Let X be a k-dimensional polytope in Rk, and let y ∈ Rk be a point
outside X that does not lie in the affine hull of any facet of X. Then there exists
an acyclic matching on the poset of faces of X visible from y, such that no face is
critical.

In Section 5 we construct valid orders for any locally finite arrangement A,
considering the Euclidean distance of the chambers from a fixed generic point x0 ∈
Rn. In this way, we obtain a family of matchings on Sal(A) that we call Euclidean
matchings. The idea of constructing a minimal complex that depends on a “generic
point” appears to be new, as opposed to the more classical approach of using a
“generic flag” [Yos07, SS07, GS09]. The critical cells are in bijection with the
chambers, and can be described explicitly.

Theorem 5.9. Let A be a locally finite arrangement in Rn. For every generic
point x0 ∈ Rn, there exists a Euclidean matching on Sal(A) with base point x0.
Such a matching has exactly one critical cell 〈C,FC〉 for every chamber C ∈ C(A),
where FC is the smallest face of C that contains the projection of x0 onto C.

We prove that the Morse complex of a Euclidean matching is minimal.

Theorem 5.13. Let A be a locally finite hyperplane arrangement in Rn, and letM
be a Euclidean matching on Sal(A) with base point x0. Then the associated Morse
complex Sal(A)M is minimal (i.e. all the incidence numbers vanish).

In particular, we obtain a new geometric way to read the Betti numbers and the
Poincaré polynomial of M(A) from the arrangement A. This solves a conjecture
of Drton and Klivans on the coefficients of the characteristic polynomial of a finite
reflection arrangement [DK10].

Corollary 5.14. Let A be a (locally) finite hyperplane arrangement in Rn, and
let x0 ∈ Rn be a generic point. The k-th Betti number of the complement M(A)
is equal to the number of chambers C such that the projection of x0 onto C lies
in the relative interior of a face FC of codimension k. Equivalently, the Poincaré
polynomial of A is given by

π(A, t) =
∑

C∈C(A)

t codimFC .

In Section 6 we use Euclidean matchings to obtain a proof of Brieskorn’s Lemma
(for locally finite complexified arrangements) which makes no use of algebraic ge-
ometry. In addition, we show that for every flat X there exist Euclidean matchings
on Sal(A) for which the Morse complex of the subarrangement AX is naturally
included into the Morse complex of A.
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Finally, in Section 7 we give an explicit description of the algebraic Morse com-
plex that computes the homology of M(A) with coefficients in an abelian local
system, for any locally finite line arrangement A in R2. We compare our result
with the one of Gaiffi and Salvetti [GS09], where similar formulas are obtained
in the case of finite line arrangements (using the polar matchings of Salvetti and
Settepanella [SS07]).

2. Background and notations

In this section we briefly recall some basic definitions and results about hyper-
plane arrangements, discrete Morse theory, polytopes, and shellability.

2.1. Hyperplane arrangements. See [OT13] for a general reference about hyper-
plane arrangements. Our notations mostly agree with those of [SS07] and [Del08].

Let A be a locally finite arrangement of affine hyperplanes in Rn. Denote by
M(A) ⊆ Cn the complement of the complexified arrangement AC.

The arrangement A gives rise to a stratification of Rn into topological subspaces
called faces (see [Bou68, Chapter 5]). It is more convenient for us to work with the
closure of these subspaces, so we assume from now on that the faces are closed. By
relative interior of a face F we mean the topological interior of F inside the affine
span of F . The faces of codimension 0 are called chambers. Denote the set of faces
by F = F(A), and the set of the chambers by C = C(A). The set F has a natural
partial order: F � G if and only if F ⊇ G. The poset F is called the face poset of
A, and it is ranked by codimension.

Given two chambers C,C ′ ∈ C, let s(C,C ′) ⊆ A be the set of hyperplanes which
separate C and C ′. Also, denote by WC ⊆ A the set of hyperplanes that intersect
C in a face of codimension 1. These hyperplanes are called walls of C.

For every chamber C, the set C can be endowed with a partial order ≤C defined
as follows: D′ ≤C D if and only if s(C,D′) ⊆ s(C,D). In the language of oriented
matroids, (C,≤C) is called the tope poset based at C [BLVS+99, Definition 4.2.9].

Let L = L(A) be the poset of intersections of the hyperplanes in A, ordered by
reverse inclusion. An element X ∈ L is called a flat. Notice that the entire space
Rn is an element of L (being the intersection of zero hyperplanes), and it is in fact
the unique minimal element of L. The poset L is a geometric semilattice called the
poset of flats, and it is also ranked by codimension. Denote by Lk(A) ⊆ L(A) the
set of flats of codimension k.

For a subset U ⊆ Rn (usually a face or a flat), let supp(U) ⊆ A be the subar-
rangement of A consisting of the hyperplanes that contain U . This is called the
support of U . Also, denote by |U | ⊆ Rn the affine span of U . Notice that, for a
face F ∈ F , we have |F | ∈ L.

Given a flat X ∈ L, we also use the notation AX to indicate the support of X
(this operation is called restriction). Denote by AX the arrangement in X given by
{H ∩X | H 6∈ AX} (this operation is called contraction). Let πX : C(A)→ C(AX)
be the natural projection, which maps a chamber C ∈ C(A) to the unique chamber
of AX that contains C.

For a chamber C ∈ C and a face F ∈ F , denote by C.F the unique chamber
C ′ � F such that π|F |(C) = π|F |(C

′). In other words, this is the unique chamber
containing F and lying in the same chamber as C in A|F |. In addition, if C � F ,

denote by CF the chamber opposite to C with respect to F .
The Salvetti complex of A, first introduced in [Sal87], is a regular CW complex

homotopy equivalent to the complement M(A) in Cn (see also [GR89, BZ92, Sal94,
OT13]). Its poset of cells Sal(A) is defined as follows. There is a k-cell 〈C,F 〉 for
each pair (C,F ) where C ∈ C is a chamber and F ∈ F is a face of C of codimension
k. A cell 〈C,F 〉 is in the boundary of 〈D,G〉 if and only if F ≺ G and D.F = C.
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Theorem 2.1 ([Sal87]). The poset Sal(A) is the poset of cells of a regular CW
complex homotopy equivalent to M(A).

2.2. Discrete Morse theory. We recall here the main concepts of Forman’s dis-
crete Morse theory [For98, For02]. We follow the point of view of Chari [Cha00],
using acyclic matchings instead of discrete Morse functions, and we make use of
the generality of [Bat02, Section 3] for the case of infinite CW complexes.

Let (P,<) be a ranked poset. If q < p in P and there is no element r ∈ P with
q < r < p, then we write q l p. Given p ∈ P we define P≤p = {q ∈ P | q ≤ p}.

Let G be the Hasse diagram of P , i.e. the graph with vertex set P and having
an edge (p, q) whenever q l p. Denote by E = {(p, q) ∈ P × P | q l p} the set of
edges of G.

Given a subset M of E , we can orient all edges of G in the following way: an
edge (p, q) ∈ E is oriented from p to q if the pair does not belong to M, otherwise
in the opposite direction. Denote this oriented graph by GM.

Definition 2.2 (Acyclic matching [Cha00]). A matching on P is a subset M⊆ E
such that every element of P appears in at most one edge ofM. A matchingM is
acyclic if the graph GM has no directed cycle.

Given a matching M on P , an alternating path is a directed path in GM such
that two consecutive edges of the path do not both belong toM or both to E \M.
The elements of P that do not appear in any edge of M are called critical (with
respect to the matching M).

Definition 2.3 (Grading [Bat02]). Let Q be a poset. A poset map ϕ : P → Q is
called a Q-grading of P . The Q-grading ϕ is compact if ϕ−1(Q≤q) ⊆ P is finite
for all q ∈ Q. A matching M on P is homogeneous with respect to the Q-grading
ϕ if ϕ(p) = ϕ(p′) for all (p, p′) ∈ M. An acyclic matching M is proper if it is
homogeneous with respect to some compact grading.

The following is a direct consequence of the definition of a proper matching (cf.
[Bat02, Definition 3.2.5 and Remark 3.2.17]).

Lemma 2.4 ([Bat02]). Let M be a proper acyclic matching on a poset P , and let
p ∈ P . Then there is a finite number of alternating paths starting from p, and each
of them has a finite length.

We are ready to state the main theorem of discrete Morse theory. This particular
formulation follows from [Bat02, Theorem 3.2.14 and Remark 3.2.17]

Theorem 2.5 ([For98, Cha00, Bat02]). Let X be a regular CW complex, and let P
be its poset of cells. If M is a proper acyclic matching on P , then X is homotopy
equivalent to a CW complex XM (called the Morse complex of M) with cells in
dimension-preserving bijection with the critical cells of X.

The construction of the Morse complex is explicit in terms of the CW complex
X and the matching M (see for example [Bat02]). This allows us to obtain rela-
tions between the incidence numbers with Z coefficients in the Morse complex and
incidence numbers in the starting complex.

Theorem 2.6 ([Bat02, Theorem 3.4.2]). Let X be a regular CW complex, P its
poset of cells andM a proper acyclic matching on P . Let XM be the Morse complex
of M. Given two critical cells σ, τ ∈ X with dimσ = dim τ + 1, denote by σM and
τM the corresponding cells in XM. Then the incidence number between σM and
τM in XM is given by

[σM : τM]XM =
∑

γ∈Γ(σ,τ)

m(γ),
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where Γ(σ, τ) is the set of all alternating paths between σ and τ . If γ ∈ Γ(σ, τ) is
of the form

σ = σ0 ↘ τ1 ↗ σ1 ↘ . . . τk ↗ σk ↘ τ,

then m(γ) is given by

m(γ) = (−1)k[σk : τ ]

k∏
i=1

[σi−1 : τi][σi : τi].

Finally, recall the following standard tool for constructing acyclic matchings.

Theorem 2.7 (Patchwork theorem [Koz08, Theorem 11.10]). Let ϕ : P → Q be
a Q-grading of P . For all q ∈ Q, assume to have an acyclic matching Mq ⊆ E
that involves only elements of the subposet ϕ−1(q) ⊆ P . Then the union of these
matchings is itself an acyclic matching on P .

2.3. Polyhedra, polytopes, and shellability. In this section we briefly recall
some notions and results from [Zie12].

Definition 2.8. A polyhedron is an intersection of finitely many closed halfspaces
in some Rd. A polytope is a bounded polyhedron.

Given a polyhedron P , denote by F(P ) the complex of its faces (considering the
polyhedron P itself as a trivial face). The faces of codimension 1 are called facets.
In addition, denote by F(∂P ) the boundary complex of P , i.e. the complex that
contains only the proper faces of P .

Definition 2.9. We say that a facet G ∈ F(P ) is visible from a point p ∈ Rd
if every line segment from p to a point of G does not intersect the interior of P
(cf. [Zie12, Theorem 8.12]). We say that a face F ∈ F(P ) is visible from p if all
the facets G ⊇ F of P are visible from p. In particular, notice that the entire
polyhedron P is always visible from p.

We are now able to recall the notion of shellability of the boundary complex of
a polytope.

Definition 2.10 ([Zie12, Definition 8.1]). A shelling of the boundary complex of
a polytope P is a linear ordering F1, F2, . . . , Fs of the facets of P such that either
the facets are points, or the following conditions are satisfied.

(1) The boundary complex F(∂F1) of the first facet has a shelling.
(2) For 1 < j ≤ s, the intersection of the facet Fj with the previous facets is

nonempty and is a beginning segment of a shelling of F(∂Fj), that is

Fj ∩

(
j−1⋃
i=1

Fi

)
= G1 ∪G2 ∪ · · · ∪Gr

for some shelling G1, G2, . . . , Gr, . . . , Gt of Fj , with 1 ≤ r ≤ t. A facet Fj
is called a spanning facet if r = t.

A polytope is shellable if its boundary complex has a shelling.

To conclude, recall the following two results about shellability of the boundary
complex of a polytope.

Lemma 2.11 ([Zie12, Lemma 8.10]). If F1, F2, . . . , Fs is a shelling order for the
boundary of a polytope P , then so is the reverse order Fs, Fs−1, . . . , F1.

Theorem 2.12 ([BM72], [Zie12, Theorem 8.12]). Let P ⊆ Rd be a d-polytope, and
let x ∈ Rd be a point outside P . If x lies in general position (that is, not in the
affine hull of a facet of P ), then the boundary complex of the polytope has a shelling
in which the facets of P that are visible from x come first.
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3. Decomposition of the Salvetti complex

Our aim is to construct an acyclic matching on the Salvetti complex of a lo-
cally finite affine arrangement A, with critical cells in explicit bijection with the
chambers of A. Following the ideas of Delucchi [Del08], we want to decompose
the Salvetti complex into “pieces” (one piece for every chamber) and construct
an acyclic matching on each of these pieces with exactly one critical cell. More
formally, we are going to decompose the poset of cells Sal(A) as a disjoint union

Sal(A) =
⊔
C∈C

N(C),

so that every subposet N(C) ⊆ Sal(A) admits an acyclic matching with one critical
cell.

Definition 3.1. Given a chamber C ∈ C, let S(C) ⊆ Sal(A) be the set of all the
cells 〈C ′, F 〉 ∈ Sal(A) such that C ′ = C.F . In other words, a cell 〈C ′, F 〉 is in S(C)
if all the hyperplanes in supp(F ) do not separate C and C ′.

Notice that the cells in S(C) form a subcomplex of the Salvetti complex (using
poset terminology, S(C) is a lower ideal in Sal(A)). This subcomplex is dual to the
stratification of Rn induced by A. Also, the natural map S(C) → F which sends
〈C ′, F 〉 to F is a poset isomorphism.

Now fix a total order a of the chambers:

C = {C0 a C1 a C2 a . . . }

(when C is infinite, the order type is that of natural numbers).

Definition 3.2. For every chamber C ∈ C, let N(C) ⊆ S(C) be the subset con-
sisting of all the cells not included in any S(C ′) with C ′ a C.

The union of the subcomplexes S(C), for C ∈ C, is the entire complex Sal(A).
Thus the subsets N(C), for C ∈ C, form a partition of Sal(A). All the 0-cells are
contained in N(C0) = S(C0). Therefore, for C 6= C0, the cells of N(C) do not form
a subcomplex of the Salvetti complex. If A is a (finite) central arrangement, this
definition of N(C) coincides with the one given in [Del08, Section 4].

We want now to choose the total order a of the chambers so that each N(C)
admits an acyclic matching with exactly one critical cell. In [Del08], this is done
taking any linear extension of the partial order ≤C0

, for any base chamber C0.
Such a total order works well for central arrangements but not for general affine
arrangements, as we see in the following two examples.

Example 3.3. Consider a non-central arrangement of three lines in the plane, as
in Figure 1 on the left. Choose C0 to be one of the three unbounded chambers with
two walls. In any linear extension of ≤C0

, the last chamber C6 must be the non-
simplicial unbounded chamber opposite to C0. However, S(C6) ⊆

⋃
C 6=C6

S(C),

so N(C6) is empty, and therefore it does not admit an acyclic matching with one
critical cell. Figure 2 shows the decomposition of the Salvetti complex for one of
the possible linear extensions of ≤C0

.

Example 3.4. Consider the arrangement of five lines depicted on the right in
Figure 1. For every choice of a base chamber C0 and for every linear extension of
≤C0

, there is some chamber C such that N(C) is empty.

We are now going to state a condition on the total order a on C that produces a
decomposition of the Salvetti complex with the desired properties. First recall the
following definition from [Del08].
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C0 C6

Figure 1. Two line arrangements.

Definition 3.5. Given a chamber C and a total order a on C, let

J (C) = {X ∈ L | supp(X) ∩ s(C,C ′) 6= ∅ ∀C ′ a C}.

Notice that J (C) is an upper ideal of L, and it coincides with L for C = C0. In
[Del08, Theorem 4.15] it is proved that, if A is a (finite) central arrangement and
a is a linear extension of ≤C0

(for any choice of C0 ∈ C), then J (C) is a principal
upper ideal for every chamber C ∈ C. This is the condition we need.

Definition 3.6 (Valid order). A total order a on C is valid if, for every chamber
C ∈ C, J (C) is a principal upper ideal generated by some flat XC = |FC | ∈ L
where FC is a face of C.

The total orders of Example 3.3 are not valid, because J (C6) is empty. A valid
order that begins with the chamber C0 of Example 3.3 is shown in Figure 3.

The previous definition is the starting point of our answer to [Del08, Question
4.18], where it was asked for an extension of the arguments of [Del08] to affine
arrangements. Sections 4 and 5 will motivate this definition.

Remark 3.7. If A is a finite affine arrangement, the polar order of the chambers
defined by Salvetti and Settepanella [SS07, Definition 4.5] is valid. Indeed, J (C) is
a principal upper ideal generated by XC = |FC |, where FC is the smallest face of C
with respect to the polar order of the faces. Therefore Definition 3.6 highlights the
link between the constructions of [SS07] and [Del08] (see also [Del08, Remark 3.8]).
The results of Section 4, if applied to polar orders, give rise to acyclic matchings
that are related to the polar matchings of [SS07].

4. Construction of the acyclic matching

Throughout this section we assume that we have an arrangement A together
with a valid order a of C (as in Definition 3.6). Using the decomposition

Sal(A) =
⊔
C∈C

N(C)

of Section 3 (induced by the valid order a), we are going to construct a proper
acyclic matching on Sal(A) with critical cells in bijection with the chambers. More
precisely, we are going to construct an acyclic matching on every N(C) with exactly
one critical cell, and then attach these matchings together using the Patchwork The-
orem (Theorem 2.7). This strategy is the same as the one employed in [Del08], but
our proofs are different since we deal with affine and possibly infinite arrangements.

Lemma 4.1. Suppose that a is a valid order of C, in the sense of Definition 3.6.
Then

N(C) = {〈D,F 〉 ∈ S(C) | F ⊆ XC}.
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C0

C1

C2

C3

C4

C5

C6

(a) Total order of the chambers

C0

(b) N(C0)

C1

(c) N(C1)

C2

(d) N(C2)

C3

(e) N(C3)

C4

(f) N(C4)

C5

(g) N(C5)

C6

(h) N(C6) is empty

Figure 2. A non-central arrangement of three lines in the plane,
with a linear extension of ≤C0

. Here N(C5) and N(C6) do not
admit acyclic matchings with one critical cell.
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C0

C1

C2

C3

C5

C6

C4

(a) Total order of the chambers

C0

(b) N(C0)

XC1

C1

(c) N(C1)

XC2

C2

(d) N(C2)

XC3

C3

(e) N(C3)

XC4

C4

(f) N(C4)

XC5

C5

(g) N(C5)

XC6

C6

(h) N(C6)

Figure 3. A non-central arrangement of three lines in the plane,
with a valid order of the chambers. For every chamber C except
C0, the generator XC of J (C) is highlighted.
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FC
D

E

D′

F ′
E′

Figure 4. Proof of Lemma 4.2.

Proof. To prove the inclusion ⊆, assume by contradiction that there exists some
cell 〈D,F 〉 ∈ N(C) with F * XC . By minimality of XC in J (C), we have that
|F | /∈ J (C). This means that there exists a chamber C ′ a C such that supp(F ) ∩
s(C,C ′) = ∅. Then C and C ′ are contained in the same chamber of A|F |, which
implies C ′.F = C.F . By definition of S(C), we have that C.F = D. Then C ′.F =
D, so 〈D,F 〉 ∈ S(C ′). This is a contradiction, since 〈D,F 〉 ∈ N(C) and C ′ a C.

For the opposite inclusion, consider a cell 〈D,F 〉 ∈ S(C) with F ⊆ XC . Then
|F | ∈ J (C), so for every chamber C ′ a C there exists an hyperplane in supp(F ) ∩
s(C,C ′). By the same argument as before we can deduce that D = C.F 6= C ′.F
for all C ′ a C, which means that 〈D,F 〉 /∈ S(C ′) for all C ′ a C. Therefore
〈D,F 〉 ∈ N(C). �

Recall that, for a chamber D ∈ C and a face F � D, we denote by DF the
chamber opposite to D with respect to F . For every chamber C ∈ C, consider the
map

η̃C : S(C)→ C
that sends a cell 〈D,F 〉 to DF .

Lemma 4.2. The map η̃C : S(C)→ (C,≤C) is order-preserving.

Proof. Let 〈D,F 〉, 〈D′, F ′〉 ∈ S(C), and suppose that 〈D′, F ′〉 ≤ 〈D,F 〉 (see Figure

4). Then F ′ � F and therefore supp(F ′) ⊆ supp(F ). Call E = DF and E′ = D′F
′
.

By definition of S(C), we have that s(C,E) = s(C,D) ∪ supp(F ) and s(C,E′) =
s(C,D′) ∪ supp(F ′). In addition, F ′ � F implies that s(D,D′) ⊆ supp(F ) \
supp(F ′). Since s(C,D′) ⊆ s(C,D) ∪ s(D,D′), we conclude that

s(C,E′) = s(C,D′) ∪ supp(F ′) ⊆ s(C,D) ∪ s(D,D′) ∪ supp(F ′)

⊆ s(C,D) ∪ supp(F ) = s(C,E).

Therefore E′ ≤C E. �

Consider the restriction ηC = η̃C |N(C) : N(C)→ C. The matching on N(C) will

be obtained as a union of acyclic matchings on each fiber η−1
C (E) of ηC . Lemma

4.2, together with the Patchwork Theorem, will ensure that the matching on N(C)
is acyclic. We now fix two chambers C and E, and study the fiber η−1

C (E).

Lemma 4.3. Let a be a valid order of C, and let C,E be two chambers. A cell
〈D,F 〉 ∈ Sal(A) is in the fiber η−1

C (E) if and only if D = EF , F ⊆ XC , and
supp(F ) ⊆ s(C,E).
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Proof. Suppose that 〈D,F 〉 ∈ η−1
C (E). In particular, 〈D,F 〉 ∈ N(C), thus by

Lemma 4.1 we have that F ⊆ XC . By definition of ηC , DF = E and so EF = D.
Finally, we have supp(F ) ⊆ s(D,E) by definition of ηC , and supp(F )∩s(C,D) = ∅
by definition of S(C), so supp(F ) ⊆ s(D,E) \ s(C,D) ⊆ s(C,E).

We want now to prove that a cell 〈D,F 〉 that satisfies the given conditions is
in the fiber η−1

C (E). Since D is opposite to E with respect to F , we deduce that
supp(F ) ⊆ s(D,E). Then, using the hypothesis supp(F ) ⊆ s(C,E), we obtain
supp(F )∩ s(C,D) = ∅. This means that C.F = D, i.e. 〈D,F 〉 ∈ S(C). By Lemma
4.1, we conclude that 〈D,F 〉 ∈ N(C). The fact that ηC(〈D,F 〉) = E follows
directly from the definition of ηC . �

A cell 〈D,F 〉 in the fiber η−1
C (E) is determined by F , because D = EF . Thus

we immediately have the following corollary.

Corollary 4.4. The fiber η−1
C (E) is in order-preserving (and rank-preserving) bi-

jection with the set of faces F � E such that F ⊆ XC and supp(F ) ⊆ s(C,E). In
particular, if η−1

C (E) is non-empty, then supp(XC) ⊆ s(C,E). �

Assume from now on that the fiber η−1
C (E) is non-empty. The above corollary

can be restated as follows, restricting to the flat XC .

Corollary 4.5. Suppose that the fiber η−1
C (E) is non-empty. Then C ′ = C ∩XC

and E′ = E∩XC are chambers of the (contraction) arrangement AXC , and η−1
C (E)

is in order-preserving bijection with the set of faces F � E′ such that supp(F ) ⊆
s(C ′, E′) in AXC .

Proof. By Definition 3.6, XC = |FC | for some face FC of C. Then C ′ = C ∩XC =
FC is a chamber of AXC .

Consider now any cell 〈D,F 〉 ∈ η−1
C (E), and let D′ = D ∩XC . If we prove that

D′ is a chamber of AXC , then the same is true for E′, since they are opposite with
respect to F and F ⊆ XC (by Lemma 4.1). Let F ′C = FC .F in the arrangement

AXC (so F ′C is a chamber of AXC ), and consider the chamber D̃ = C.F ′C in A.

Then D̃ = C.F = D (the first equality holds because F ′C � F , and the second

equality because D ∈ S(C)). Therefore D′ = D∩XC = D̃∩XC = F ′C is a chamber
of AXC .

The second part is mostly a rewriting of Corollary 4.4, but some care should
be taken since we are passing from the arrangement A to the arrangement AXC .
To avoid confusion, in AXC write supp′ and s′ in place of supp and s. Given
a face F ⊆ XC , we need to prove that supp(F ) ⊆ s(C,E) in A if and only if
supp′(F ) ⊆ s′(C ′, E′) in AXC . This is true because

supp′(F ) = {H ∩XC | H ∈ supp(F ) and H + XC};
s′(C ′, E′) = {H ∩XC | H ∈ s(C,E) and H + XC}. �

Constructing an acyclic matching on η−1
C (E) is then the same as constructing

an acyclic matching on the set of faces of E′ given by Corollary 4.5. We start by
considering the special case E′ = C ′.

Lemma 4.6. Suppose that the fiber η−1
C (E) is non-empty. Then E′ = C ′ if and

only if E is the chamber opposite to C with respect to XC . In this case, η−1
C (E)

contains the single cell 〈C,FC〉.

Proof. If E is opposite to C with respect to XC , then clearly E′ = C ′. Conversely,
suppose that E′ = C ′ = FC . Let 〈D,F 〉 be any cell in η−1

C (E). As in the proof
of Corollary 4.5, we have that D ∩XC = F ′C , where F ′C = FC .F in AXC . Notice
that F ⊆ E ∩XC = E′ = FC , so F ′C = FC .F = FC . In other words, the chambers
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E′ C ′
yC′

Figure 5. The faces of E′ that are visible from a point yC′ in the
interior of C ′.

C, D and E all contain the face FC . Since F ⊆ FC ⊆ C ∩ D, we have that
s(C,D) ⊆ supp(F ). But D ∈ S(C) implies that D = C.F , i.e. s(C,D)∩ supp(F ) =
∅. Therefore s(C,D) = ∅, so C = D. Now, E is the opposite of D with respect to
F , and E ∩XC = D ∩XC = FC , so F = FC . This means that E is the opposite
of C with respect to XC . The previous argument also shows that η−1

C (E) contains
the single cell 〈C,FC〉. �

In particular, for every chamber C there is exactly one fiber η−1
C (E) for which

E′ = C ′. This fiber contains exactly one cell, which is going to be critical with
respect to our matching.

Consider now the case E′ 6= C ′. In view of Corollary 4.5, we work with the
restricted arrangement AXC in XC . Until Lemma 4.8, all our notations (for exam-
ple, supp(F ) and s(C ′, E′)) are intended with respect to the arrangement AXC . In
what follows, we make use of the definitions and facts of Section 2.3.

Lemma 4.7. Let yC′ be a point in the interior of C ′. The faces F � E′ such that
supp(F ) ⊆ s(C ′, E′) are exactly the faces of E′ that are visible from yC′ .

Proof. Suppose that supp(F ) ⊆ s(C ′, E′). In particular, for every facet G ⊇ F of
E′, the hyperplane |G| ∈ AXC separates C ′ and E′ and so G is visible from yC′ .
Then F is visible from yC′ .

Conversely, suppose that F is visible from yC′ . Denote by B ⊆ supp(F ) the
set of hyperplanes |G| where G ⊇ F is a facet of E′. All the facets G ⊇ F of E′

are visible from yC′ , so the hyperplanes |G| separate C ′ and E′. In other words,

B ⊆ s(C ′, E′). In the central arrangement AXC

|F | = supp(F ), the chambers π|F |(C
′)

and π|F |(E
′) are therefore opposite to each other, and B is the set of their walls.

Then every hyperplane in supp(F ) separates C ′ and E′. �

Fix an arbitrary point yC′ in the interior of C ′. By the previous lemma, the
faces F given by Corollary 4.5 are exactly the faces of E′ that are visible from yC′ .
See Figure 5 for an example.

The idea now is that, if E′ is bounded, the boundary of E′ is shellable and we
can use a shelling to construct an acyclic matching on the set of visible faces. We
first need to reduce to the case of a bounded chamber (i.e. a polytope).

Lemma 4.8. There exists a finite set A′ of hyperplanes in XC , and a bounded
chamber Ẽ ⊆ E′ of the hyperplane arrangement A′ ∪ AXC , such that the poset of
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E′ C ′
yC′

Figure 6. Construction of the bounded chamber Ẽ ⊆ E′ in the
proof of Lemma 4.8. The points of Q are highlighted, and the
hyperplanes of A′ are dashed.

faces of Ẽ that are visible from yC′ is isomorphic to the poset of faces of E′ that
are visible from yC′ .

Proof. Let XC
∼= Rk. Let Q be a finite set of points which contains yC′ and a point

in the relative interior of each visible face of E′. For i = 1, . . . , k, define qi ∈ R as
the minimum of all the i-th coordinates of the points in Q, and qi as the maximum.

Choose A′ as the set of the 2k hyperplanes of the form {xi = qi − 1} and

{xi = qi + 1}, for i = 1, . . . , k. Let Ẽ be the chamber of AXC ∪ A′ that contains

Q \ {yC′}. By construction, Ẽ is bounded and is contained in E′. See Figure 6 for
an example.

The walls of E′ and of Ẽ are related as follows: WẼ = WE′ ∪ A′′ for some

A′′ ⊆ A′. The hyperplanes in WE′ separate yC′ and Ẽ, whereas the hyperplanes
in A′′ do not. This means that a facet G̃ of Ẽ is visible if and only if |G̃| ∈ WE′ .

There is a natural order-preserving (and rank-preserving) injection ϕ from the

set V of the visible faces F of E′ to the set of faces of Ẽ, which maps a face F to
the unique face F̃ of Ẽ such that F ∩Q ⊆ F̃ ⊆ F . We want to show that the image
of ϕ coincides with the set of visible faces of Ẽ.

Consider a facet G̃ of Ẽ. Then G̃ is in the image of ϕ if and only if |G̃| 6∈ A′′,
which happens if and only if G̃ is visible.

Consider now a generic face F̃ of Ẽ. If F̃ = ϕ(F ) for some F ∈ V, then Q∩F ⊆ F̃
and so F̃ is not contained in any hyperplane of A′′. Then all the facets G̃ ⊇ F̃ of
Ẽ are visible, and so F̃ is visible. Conversely, if F̃ is not in the image of ϕ, then F̃
is contained in some hyperplane of A′′ and therefore also in some non-visible facet
G̃. Then F̃ is not visible. �

We now show that the poset of visible faces of a polytope admits an acyclic
matching such that no face is critical. We will use this result on the polytope Ẽ,
in order to obtain a matching on the fiber η−1

C (E).

Theorem 4.9. Let X be a k-dimensional polytope in Rk, and let y ∈ Rk be a point
outside X that does not lie in the affine hull of any facet of X. Then there exists
an acyclic matching on the poset of faces of X visible from y such that no face is
critical.
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Proof. By [Zie12, Theorem 8.12] and [Zie12, Lemma 8.10], there is a shelling
G1, . . . , Gs of ∂X such that the facets visible from y are the last ones. Suppose that
Gt, Gt+1, . . . , Gs are the visible facets. Notice that there is at least one visible facet
and at least one non-visible facet. In particular, the first facet G1 is not visible and
the last facet Gs is visible. In other words, we have 2 ≤ t ≤ s.

In [Del08, Proposition 1] it is proved that a shelling of a regular CW complex
Y induces an acyclic matching on the poset of cells (P,<) of Y (augmented with
the empty face ∅), with critical cells corresponding to the spanning facets of the
shelling. In our case, Y = ∂X is a regular CW decomposition of a sphere, so the
only spanning facet of a shelling is the last one (see for example [Del08, Lemma
2.13]).

Let M be an acyclic matching on ∂X induced by the shelling G1, . . . , Gs, as
in [Del08, Proposition 1]. We claim that the construction of [Del08] produces a
matching which is homogeneous with respect to the grading ϕ : (P,<)→ {1, . . . , s}
given by

ϕ(F ) = min{i ∈ {1, . . . , s} | F ≤ Gi}.
To prove this, we need to briefly go through the construction of M. The first step
[Del08, Lemma 2.10] is to construct a total order @i on each Pi (the set of faces of
codimension i). The order @0 is simply the shelling order of the facets. It follows
from the recursive construction of @i that each ϕ|Pi : (Pi,@i)→ {1, . . . , s} is order-
preserving. Then the linear extension C of P constructed in [Del08, Definition 2.11]
is such that ϕ : (P,C)→ {1, . . . , s} is also order-preserving. By construction of the
matching [Del08, Lemma 2.12], if (p, q) ∈ M (with p ≥ q) then p C q. From this
we obtain ϕ(p) ≥ ϕ(q) and ϕ(p) ≤ ϕ(q), so ϕ(p) = ϕ(q). Therefore the matching
is homogeneous with respect to ϕ.

The set of visible faces of X is ϕ−1({t, . . . , s}) ∪ {X}. Notice that the empty
face ∅ belongs to ϕ−1(1), so it does not appear in ϕ−1({t, . . . , s}) because t ≥ 2.

LetM′ be the restriction ofM to ϕ−1({t, . . . , s}). This is an acyclic matching on
ϕ−1({t, . . . , s}) with exactly one critical face, the facet Gs. ThenM′∪{(X,Gs)} is
an acyclic matching on the poset of visible faces ofX such that no face is critical. �

We are finally able to attach the matchings on the fibers η−1
C (E), using the

previous results of this section.

Theorem 4.10. Let A be a locally finite hyperplane arrangement, and let a be a
valid order of the set of chambers C(A). For every chamber C ∈ C(A), there exists
a proper acyclic matching on N(C) such that the only critical cell is 〈C,FC〉. The
union of these matchings forms a proper acyclic matching on Sal(A) with critical
cells in bijection with the chambers.

Proof. Consider the map η : Sal(A)→ C × C defined as

η(〈D,F 〉) = (C,DF ),

where C ∈ C is the chamber such that 〈D,F 〉 ∈ N(C).
Corollary 4.5 provides a description of the non-empty fibers η−1(C,E), since by

definition we have η−1(C,E) = η−1
C (E). By Lemma 4.6, we know that for every

C ∈ C there is exactly one non-empty fiber such that E ∩ XC = C ∩ XC , and
this fiber contains the single cell 〈C,FC〉. By Lemma 4.7 and Lemma 4.8, every
other non-empty fiber η−1(C,E) is isomorphic to the poset of visible faces of some
polytope in XC (with respect to some external point not lying on the affine hull of
the facets). Finally, by Theorem 4.9, this poset admits an acyclic matching with
no critical faces.

We want to use the Patchwork Theorem (Theorem 2.7) to attach these matchings
together. To do so, we first need to define a partial order on C × C that makes η a
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poset map. The order ≤ on C × C is the transitive closure of:

(C ′, E′) ≤ (C,E) if and only if C ′ �C and E′ ≤C E

(here we denote by �the “less than or equal to” with respect to the total order a).
To prove that η is a poset map, suppose to have 〈D′, F ′〉 ≤ 〈D,F 〉 in Sal(A).

Let η(〈D′, F ′〉) = (C ′, E′) and η(〈D,F 〉) = (C,E). Since S(C) is a lower ideal
of Sal(A), we immediately obtain that 〈D′, F ′〉 ∈ S(C) and thus C ′ �C. Then,
Lemma 4.2 implies that E′ ≤C E. Therefore (C ′, E′) ≤ (C,E).

By the Patchwork Theorem, the union of the matchings on the fibers of η forms
an acyclic matching on Sal(A), with critical cells in bijection with the chambers.

We now need to prove that this matching is proper. To do so, we prove that
the (C × C)-grading η is compact. Since every fiber η−1(C,E) is finite by Lemma
4.3, we only need to show that the poset (C × C)≤(C,E) is finite for every pair of
chambers (C,E).

We prove this by double induction, first on the chamber C (with respect to the
order a) and then on m = |s(C,E)|. The base case C = C0 and m = 0 is trivial,
since E = C0.

We want now to prove the induction step. Given a pair (C,m) ∈ C ×N, suppose
that the claim is true for every pair (C ′,m′) such that either C ′ a C, or C ′ = C
and m′ < m. For every chamber E with |s(C,E)| = m we have that

(C × C)≤(C,E) =
⋃
C′ �C
E′≤CE

(C′,E′) 6=(C,E)

(C × C)≤(C′,E′) ∪ {(C,E)}.

This is a union of a finite number of sets, and by the induction hypothesis every
set (C × C)≤(C′,E′) is finite. Therefore the set (C × C)≤(C,E) is finite.

By the Patchwork Theorem, the matchings on the fibers η−1(C,E) can be at-
tached together to form a proper acyclic matching on Sal(A). By construction, this
matching is a union of proper acyclic matchings on the subposets N(C) for C ∈ C,
each of them having 〈C,FC〉 as the only critical cell. �

We end this section with a few remarks. We are not going to use them in the
rest of this paper, but they are interesting by themselves (especially in relation with
[Del08]).

The first remark is that, without the need of a valid order, the results of this
section allow us to obtain a proper acyclic matching on S(C0) (for any chamber
C0 ∈ C) with the single critical cell 〈C0, C0〉. This is because N(C0) = S(C0),
and in the construction of the matching on N(C0) we do not use the existence of
a valid order that begins with C0. As noted in Section 3, there is a natural poset
isomorphism S(C0) ∼= F for every chamber C0 ∈ C. Then the existence of an
acyclic matching on S(C0) can be stated purely in terms of F , without speaking
of the Salvetti complex. This result appears in [Del08, Theorem 3.6] in the case of
the face poset of an oriented matroid.

Theorem 4.11. Let A be a locally finite hyperplane arrangement. For every cham-
ber C ∈ C(A), there is a proper acyclic matching on the poset of faces F(A) such
that C is the only critical face. �

The second remark is that, given a valid order a of C and a chamber C ∈ C,
the poset N(C) is isomorphic to F(AXC ). This is the analogue of [Del08, Lemma
4.20].

Lemma 4.12. Suppose that a is a valid order of C. For every chamber C ∈ C there
is a poset isomorphism

N(C) ∼= F
(
AXC

)
.
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Proof. The isomorphism from N(C) to F
(
AXC

)
sends a cell 〈D,F 〉 ∈ N(C) to

the face F , which is in F(AXC ) by Lemma 4.1. The inverse map sends a face
F ∈ F(AXC ) to the cell 〈C.F, F 〉, which is in N(C) by definition of S(C) and by
Lemma 4.1. These maps are order-preserving. �

Together, Lemma 4.12 and Theorem 4.11 give an alternative (but equivalent)
construction of our matching on Sal(A), closer to the approach of [Del08].

5. Euclidean matchings

In this section we are going to construct a valid order aeu of the set of chambers
C, for any locally finite arrangement A, using the Euclidean distance in Rn. Then
we are going to prove that the matching induced by this order (given by Theorem
4.10) yields a minimal Morse complex.

Denote by d the Euclidean distance in Rn. Also, if K is a closed convex subset
of Rn, denote by ρK(x) the projection of a point x ∈ Rn onto K. The point ρK(x)
is the unique point y ∈ K such that d(x, y) = d(x,K).

The first step is to prove that there exist a lot of generic points with respect to
the arrangement A. For this, we need the following technical lemma. By measure
we always mean the Lebesgue measure in Rn.

Lemma 5.1. Let K1 and K2 be two closed convex subsets of Rn. Let

S = {x ∈ Rn | d(x,K1) = d(x,K2) and ρK1
(x) 6= ρK2

(x)}.

Then S has measure zero.

Proof. This proof was suggested by Federico Glaudo. Let di(x) = d(x,Ki) for
i = 1, 2. Each function di : Rn → R is differentiable on Rn \Ki by [GM12, Lemma
2.19], and its gradient in a point x 6∈ Ki is the versor with direction x− ρKi

(x).
Let f(x) = d1(x)−d2(x). Denote by A the open set of points x ∈ Rn \ (K1∪K2)

such that ρK1(x) 6= ρK2(x). On this set, the function f is differentiable and its
gradient does not vanish. It is known that the gradient of f must vanish almost
everywhere on A∩ f−1(0) [EG92, Corollary 1 of Section 3.1], hence A∩ f−1(0) has
measure zero.

It is easy to check that the points in K1 ∪ K2 cannot belong to S. Then S =
A ∩ f−1(0) has measure zero. �

Lemma 5.2 (Generic points). Given a locally finite hyperplane arrangement A in
Rn, let G ⊆ Rn be the set of points x ∈ Rn such that:

(i) for every C,C ′ ∈ C with d(x,C) = d(x,C ′), we have ρC(x) = ρC′(x) ∈ C∩C ′;
(ii) for every L,L′ ∈ L with L′ ( L, we have d(x, L′) > d(x, L).

Then the complement of G has measure zero. In particular, G is dense in Rn.

Proof. Given C,C ′ ∈ C, let SC,C′ be the set of points x ∈ Rn such that d(x,C1) =
d(x,C2) and ρC1

(x) 6= ρC2
(x). By Lemma 5.1, every SC,C′ has measure zero.

Similarly, for every L,L′ ∈ L with L′ ( L, denote by TL,L′ the set of points
x ∈ Rn such that d(x, L′) = d(x, L). We have that TL,L′ is an affine subspace of
Rn of codimension at least 1, and in particular it has measure zero.

The complement of G is the union of all the sets SC,C′ for C,C ′ ∈ C and TL,L′
for L,L′ ∈ L with L′ ( L. This is a finite or countable union of sets of measure
zero, hence it has measure zero. �

We call generic points the elements of G, as defined in Lemma 5.2. Notice that,
by condition (ii) with L = Rn, a generic point must lie in the complement of A.
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Remark 5.3. An alternative proof of the previous Lemma can be found in [GM88,
Part III, Section 3.1 and Part I, Section 2.2], within the more general setting of
density of Morse functions.

Remark 5.4. An equivalent definition of a generic point is the following: x0 ∈ Rn is
generic with respect to A if and only if every flat of A has a different distance from
x0. Indeed, this definition immediately implies condition (ii) of Lemma 5.2. It also
implies condition (i), because for any chamber C we have d(x0, C) = d(x0, L) where
L is the smallest flat that contains ρC(x0). Conversely, suppose that x0 satisfies
both conditions (i) and (ii). Given two flats L,L′ ∈ L with d(x0, L) = d(x0, L

′),
by condition (ii) the projections ρL(x0) and ρL′(x0) must lie in the relative interior
of faces F, F ′ ∈ F with |F | = L and |F ′| = L′. Defining C as the chamber
containing F and with the greatest distance from x0, we immediately obtain that
ρL(x0) = ρC(x0). If C ′ in defined in the same way (using F ′ and L′), the chambers
C and C ′ violate condition (ii) unless L = L′. With this equivalent definition, it is
possible to prove Lemma 5.2 in an alternative way without using Lemma 5.1 (cf.
Lemma 5.12).

We are now able to define Euclidean orders.

Definition 5.5 (Euclidean orders). A total order aeu of the set of chambers C
is Euclidean if there exists a generic point x0 such that C aeu C

′ implies that
d(x0, C) ≤ d(x0, C

′). The point x0 is called a base point of the Euclidean order aeu.
Notice that a Euclidean order is any linear extension of the partial order on C

given by C < C ′ if d(x0, C) < d(x0, C
′), for some fixed generic point x0 ∈ Rn.

In particular, for every generic point x0 there exists at least one Euclidean order
with x0 as a base point. Since the set of generic points is dense, we immediately
get the following corollary.

Corollary 5.6. For every chamber C0 ∈ C, there exists a Euclidean order aeu that
starts with C0.

Proof. It is enough to take the base point x0 in the interior of the chamber C0. �

See Figure 7 for an example of a Euclidean order. We now prove that every
Euclidean order is valid, in the sense of Definition 3.6.

Theorem 5.7. Let aeu be a Euclidean order with base point x0. For every chamber
C, let xC = ρC(x0) and let FC be the smallest face of C that contains xC . Then
J (C) is the principal upper ideal generated by XC = |FC |. Therefore aeu is a valid
order.

Proof. First we want to prove that XC ∈ J (C). This is equivalent to proving that
for every chamber C ′ aeu C there exists a hyperplane H ∈ supp(XC)∩s(C,C ′). We
have that ρXC

(x0) = xC because FC is the smallest face that contains xC . Thus
it is also true that ρπXC

(C)(x0) = xC . Given a chamber C ′ aeu C, we have two
possibilities.

• d(x0, C
′) < d(x0, C). Then C ′ * πXC

(C), because all the points of πXC
(C)

have distance at least d(x0, C) from x0. This means that there exists a
hyperplane H ∈ supp(XC) = AXC

which separates C and C ′.
• d(x0, C

′) = d(x0, C). Since x0 is a generic point, we have that xC = xC′ ∈
C ∩ C ′. Then FC is a common face of C and C ′, and every hyperplane in
s(C,C ′) contains FC .

Now we want to prove that X ⊆ XC for every X ∈ J (C). Suppose by contradic-
tion that X * XC for some X ∈ J (C). In particular, XC 6= Rn and thus x0 6= xC .
We first prove that supp(XC ∪X) is non-empty.
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Let C ′ be the chamber of A such that x0 ∈ πXC
(C ′) and C ′ ≺ FC . Since

xC ∈ XC ⊆ πXC
(C ′), the entire line segment ` from x0 to xC is contained in

πXC
(C ′). Thus there is a neighborhood of xC in ` which is contained in C ′, hence

d(x0, C
′) < d(x0, xC) and therefore C ′ aeu C. Since X ∈ J (C), there exists a

hyperplane H ∈ supp(X) ∩ s(C,C ′). We also have that FC ⊆ C ∩ C ′, and thus
XC ⊆ H.

Consider now the flat X ′ =
⋂
{Z ∈ L | XC ∪X ⊆ Z}, i.e. the meet of XC and

X in L. The flat X ′ is contained in the hyperplane H constructed above, so in
particular X ′ 6= Rn. In addition, since X * XC , X ′ is different from XC . Then the
point y0 = ρX′(x0) is different from xC , and we have d(x0, y0) < d(x0, xC), because
x0 is generic (see condition (ii) of Lemma 5.2). Let F be the smallest face that
contains the line segment [xC , xC + ε(y0 − xC)] for some ε > 0. By construction,
for every chamber C ′′ such that C ′′ � F we have that C ′′ aeu C. This holds in
particular for C ′′ = C.F . Then we have supp(F ) ∩ s(C,C ′′) = ∅.

Since X ∈ J (C) and C ′′ aeu C, there exists a hyperplane H ∈ supp(X) ∩
s(C,C ′′). By construction, xC ∈ C ∩ C ′′ and then XC is contained in every hy-
perplane of s(C,C ′′). In particular, XC ⊆ H. Therefore XC ∪ X ⊆ H, which
means that H ∈ supp(XC ∪ X) ⊆ supp(X ′). Both xC and y0 belong to X ′,
hence F ⊆ X ′. Putting everything together, we get H ∈ supp(X ′) ∩ s(C,C ′′) ⊆
supp(F ) ∩ s(C,C ′′) = ∅. This is a contradiction. �

Since Euclidean orders are valid, we are able to construct acyclic matchings on
the Salvetti complex of any arrangement.

Definition 5.8 (Euclidean matchings). Let A be a locally finite hyperplane ar-
rangement in Rn. We say that an acyclic matching M on Sal(A) is a Euclidean
matching with base point x0 ∈ Rn if:

(i) the point x0 is generic with respect to A;
(ii) M is homogeneous with respect to the poset map η : Sal(A) → C × C in-

duced by a Euclidean order aeu with base point x0 (defined as in the proof of
Theorem 4.10);

(iii) there is exactly one critical cell 〈C,FC〉 for every chamber C ∈ C, where FC
is the smallest face of C that contains ρC(x0).

Notice that, by condition (ii), a Euclidean matching is also proper.

Theorem 5.9. Let A be a locally finite arrangement in Rn. For every generic
point x0 ∈ Rn, there exists a Euclidean matching on Sal(A) with base point x0.

Proof. It follows from Theorems 4.10 and 5.7. �

Remark 5.10. For a given generic point x0, there might be more than one Euclidean
order aeu with base point x0. Nonetheless, all Euclidean orders with a given base
point produce the same faces FC (by Theorem 5.7) and the same critical cells (by
Theorem 4.10). The decomposition

Sal(A) =
⊔
C∈C

N(C)

also depends only on x0 (by Lemma 4.1), and therefore the definition of a Euclidean
matching is not influenced by the choice of aeu (once the base point x0 is fixed).

We are going to prove that a Euclidean matching yields a minimal Morse com-
plex. In order to do so, we first prove two lemmas about generic points.

Lemma 5.11. Let x0 ∈ Rn. If x0 is generic with respect to an arrangement A,
then it is also generic with respect to any subarrangement A′ ⊆ A.
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Proof. Condition (i) for A′ holds because a chamber of A′ is a union of chambers
of A. Condition (ii) follows from the fact that L(A′) ⊆ L(A). �

Lemma 5.12. Let A be a locally finite arrangement in Rn, and let x0 ∈ Rn be
a generic point with respect to A. Let I ⊆ (Rn \ {0}) × R ⊆ Rn+1 be the set of
elements (a1, . . . , an, b) such that x0 is generic also with respect to the arrangement
A∪{H}, where H is the hyperplane defined by the equation a1x1 + · · ·+ anxn = b.
Then the complement of I in Rn+1 has measure zero. In particular, I is dense in
Rn+1.

Proof. In this proof we use the equivalent definition of a generic point given in
Remark 5.4. Assume that H intersects generically every flat X ∈ L(A), i.e.
codim(X ∩ H) = codim(X) + 1. This condition excludes a subset of measure
zero in Rn+1.

Since x0 is generic with respect to A, the distances between x0 and the flats of
A are all distinct. Consider now a flat of A ∪ {H} of the form X ∩ H, for some
flat X ∈ L(A) of dimension ≥ 1. The squared distance d2(x0, X ∩H) is a rational
function of the coefficients (a1, . . . , an, b) that define H.

Given two flats X,Y ∈ L(A) with dim(X) ≥ 1, the condition d2(x0, X ∩H) =
d2(x0, Y ) can be written as a polynomial equation p(a1, . . . , an, b) = 0. This equa-
tion is not satisfied if d(x0, H) > d(x0, Y ), therefore the polynomial p is not iden-
tically zero. Then the zero locus of p has measure zero.

Similarly, given two flats X,Y ∈ L(A) with dim(X) ≥ 1 and dim(Y ) ≥ 1, the
condition d2(x0, X ∩H) = d2(x0, Y ∩H) can be written as a polynomial equation
q(a1, . . . , an, b) = 0. Up to exchanging X and Y , we can assume that ρX(x0) 6∈ Y ,
because d(x0, X) 6= d(x0, Y ). If H is the hyperplane orthogonal to the vector
ρX(x0) − x0 that passes through ρX(x0), then we have d(x0, X ∩ H) = d(x0, X)
and d(x0, Y ∩ H) > d(x0, H) = d(x0, X) (the inequality is strict because Y does
not contain ρH(x0) = ρX(x0)). Therefore the polynomial q is not identically zero,
and the zero locus of q has measure zero.

Thus the complement of I is contained in a finite or countable union of sets of
measure zero, and hence it has measure zero. �

Theorem 5.13 (Minimality). Let A be a locally finite hyperplane arrangement
in Rn, and let M be a Euclidean matching on Sal(A) with base point x0. Then
the associated Morse complex Sal(A)M is minimal (i.e., all the incidence numbers
vanish).

Proof. If the arrangement A is finite, it is well known that the sum of the Betti
numbers of Sal(A) is equal to the number of chambers [OS80, Zas97]. By Theorem
4.10, the critical cells of M are in bijection with the chambers. Thus the Morse
complex is minimal.

Suppose from now on that A is infinite. Fix a chamber C ∈ C, and consider the
associated critical cell 〈C,FC〉 ∈ N(C). Recall from the proof of Theorem 4.10 the
definition of the poset map η : Sal(A)→ C × C, and let (C,E) = η(〈C,FC〉). Since
the matching is proper, the set η−1((C × C)≤(C,E)) is finite.

Consider now the finite set of faces

U = {F ∈ F | 〈D,F 〉 ∈ η−1((C × C)≤(C,E)) for some chamber D ∈ C}.
Let B ⊆ Rn be an open Euclidean ball centered in x0 that contains the projection
ρF (x0) for every face F ∈ U . Let Ā be a set of n + 1 hyperplanes that do not
intersect B, such that: x0 is still generic with respect to A∪ Ā; the chamber K of
the arrangement Ā containing B is bounded. Such an arrangement Ā exists thanks
to Lemma 5.12. Consider the finite arrangement

A′ = {H ∈ A | H ∩K 6= ∅} ∪ Ā,
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and let FK ⊆ F(A) be the set of faces of A that intersect the interior of K. Notice
that, by construction, we have U ⊆ FK . In addition, there is a natural order-
preserving and rank-preserving injection ϕ : FK → F(A′) given by ϕ(F ) = F ∩K.
The image of ϕ consists of the faces of A′ that intersect the interior of K.

By construction and by Lemma 5.11, x0 is still generic with respect to A′ and
all the chambers D ∈ C(A) with d(x0, D) ≤ d(x0, C) intersect the interior of K.
Thus, given a Euclidean order aeu of C(A) with base point x0, there exists a Eu-
clidean order a′eu of C(A′) with base point x0 such that ϕ is an order-preserving
bijection between the initial segment of (C(A),aeu) up to C and the initial segment
of (C(A′),a′eu) up to ϕ(C).

Consider the subcomplex S = η−1((C × C)≤(C,E)) of Sal(A). Since U ⊆ FK , the
map ϕ induces an order-preserving and orientation-preserving injection ψ : S →
Sal(A′) that maps a cell 〈D,G〉 ∈ S to the cell 〈ϕ(D), ϕ(G)〉 ∈ Sal(A′). Let
S′ = ψ(S) be the copy of S inside Sal(A′). By definition of S, a fiber of η is either
disjoint from S or entirely contained in S. Therefore, a non-critical cell of S is
matched with another cell of S.

We now use the order a′eu to construct a Euclidean matching M′ on Sal(A′).
Denote by η′ : Sal(A′) → C(A′) × C(A′) the analogue of η for the arrangement A′
(see the proof of Theorem 4.10). Consider a fiber η′−1(C ′, E′) that intersects S′.
Then there is some cell 〈D′, G′〉 ∈ η′−1(C ′, E′) ∩ S′, with 〈D′, G′〉 = ψ(〈D,G〉) for
some 〈D,G〉 ∈ S. If we define (C̄, Ē) = η(〈D,G〉), we have that ϕ(C̄) = C ′

and ϕ(Ē) = E′, because by construction the cell 〈ϕ(D), ϕ(G)〉 is in the fiber
η−1(ϕ(C̄), ϕ(Ē)). By Corollary 4.5 and Lemma 4.7, the fiber η′−1(C ′, E′) is iso-
morphic to the poset of faces of E′∩XC′ visible from some point yC′ in the relative
interior of C′ ∩XC′ . By construction of A′, the map ϕ induces a bijection between
the faces of E′ ∩XC′ visible from yC′ and the faces of Ē ∩XC̄ = Ē ∩XC′ visible
from yC′ : if F is a visible face of Ē ∩XC′ , then F ∈ U and so ϕ(F ) is still visible;
conversely, a visible face F ′ of E′ ∩ XC̄ cannot be contained in any hyperplane
of Ā, and by construction of A′ it must also be a face of Ē. Therefore the fiber
η′−1(C ′, E′) is the isomorphic image of the fiber η−1(C̄, Ē) under the map ψ.

We have proved that a fiber of η′ is either disjoint from S′ or entirely contained
in S′. Then we can choose the Euclidean matching M′ so that its restriction to
S′ coincides with the image of the restriction of M to S under the isomorphism
ψ : S → S′. In particular, a cell 〈D,G〉 ∈ S isM-critical if and only if ψ(〈D,G〉) ∈
S′ is M′-critical.

Consider now a M-critical cell 〈D,G〉 ∈ Sal(A) such that there is at least one
alternating path from 〈C,FC〉 to 〈D,G〉. SinceM is homogeneous with respect to η,
every alternating path starting from 〈C,F 〉 is entirely contained in S. In particular,
〈D,G〉 ∈ S. Thus the map ψ : S → S′ induces a bijection between the alternating
paths from 〈C,F 〉 to 〈D,G〉 in Sal(A) (with respect to the matching M) and
the alternating paths from ψ(〈C,F 〉) to ψ(〈D,G〉) in Sal(A′) (with respect to the
matching M′). In particular, the incidence number between 〈C,F 〉 and 〈D,G〉 in
the Morse complex Sal(A)M is the same as the incidence number between ψ(〈C,F 〉)
and ψ(〈D,G〉) in the Morse complex Sal(A′)M′ . Since A′ is finite, the Morse
complex Sal(A′)M′ is minimal and all its incidence numbers vanish. Therefore the
incidence number between 〈C,F 〉 and 〈D,G〉 in Sal(A)M also vanishes. �

The following result is a direct consequence of Theorems 5.9 and 5.13. It gives
a simple geometric way to compute the Betti numbers of the complement of an
arrangement.

Corollary 5.14 (Betti numbers). Let A be a (locally) finite hyperplane arrange-
ment in Rn, and let x0 ∈ Rn be a generic point. The k-th Betti number of the
complement M(A) is equal to the number of chambers C such that the projection
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Figure 7. Euclidean order with respect to x0. The faces Fi = FCi

defined in Theorem 5.7 are highlighted.

ρC(x0) lies in the relative interior of a face FC of codimension k. Equivalently, the
Poincaré polynomial of A is given by

π(A, t) =
∑

C∈C(A)

t codimFC . �

In particular, Corollary 5.14 solves a conjecture by Drton and Klivans on the
characteristic polynomial of finite reflection arrangements [DK10, Conjecture 6],
since the coefficients of the characteristic and Poincaré polynomial coincide up to
sign and reordering [OT13, Definition 2.52].

Example 5.15. Consider the line arrangement A of Figure 7. For the given generic
point x0 in the interior of C0, the computation of the Betti numbers bi according
to Corollary 5.14 goes as follows: there is one chamber (namely C0) such that the
projection of x0 lies in its interior, so b0 = 1; there are four chambers (namely C1,
C2, C3 and C5) such that the projection of x0 lies in the interior of a 1-dimensional
face, so b1 = 4; finally, for the remaining chambers (C4, C6, C7, C8 and C9) the
projection of x0 is a 0-dimensional face, so b2 = 5.

Remark 5.16. For any choice of the generic point x0, the only chamber that con-
tributes to the 0-th Betti number is the one containing x0. In addition, for every
hyperplane H ∈ A there is exactly one chamber C such that ρC(x0) ∈ H and
ρC(x0) 6∈ H ′ for every H ′ ∈ A\{H}. Therefore Corollary 5.14 immediately implies
the well-known facts that b0(A) = 1 and b1(A) = |A|.

6. Brieskorn’s Lemma and naturality

In this section we are going to relate the Morse complex of A, constructed using
a Euclidean matching, to the Morse complexes of subarrangements AX .

Given a flat X ∈ L(A), for every face F̄ ∈ F(A) such that |F̄ | = X there is a
natural inclusion of Sal(AX) into Sal(A). It maps a cell 〈D,G〉 ∈ Sal(AX) to the
unique cell 〈C,F 〉 ∈ Sal(A) such that F̄ ⊆ F ⊆ G, dimF = dimG, and C ⊆ D.
We call this the inclusion of Sal(AX) into Sal(A) around F̄ . Geometrically, this
corresponds to including the complement of AC

X , intersected with a neighborhood
of some point in the interior of F̄ , into M(A). The inclusions Sal(AX) ↪→ Sal(A)
that we are going to consider in this section are always of this type, for some face
F̄ ∈ F(A) with |F̄ | = X.
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Recall from Definition 5.8 that a Euclidean matching has a critical cell 〈C,FC〉 ∈
Sal(A) for every chamber C, where FC is the smallest face of C containing ρC(x0).
Every critical cell 〈C,FC〉 is thus associated to a flat XC = |FC |. Conversely, given
a flat X ∈ L(A), the critical cells 〈C,FC〉 associated to X are exactly those for
which ρC(x0) = ρX(x0).

This simple observation yields a proof of Brieskorn’s Lemma, a classical result in
the theory of hyperplane arrangements due to Brieskorn [Bri73]. See also [OT13,
Lemma 5.91] and [CD17, Proposition 3.3.3].

Lemma 6.1 (Brieskorn’s Lemma [Bri73]). Let A be a locally finite arrangement in
Rn. For every k ≥ 0, there is an isomorphism

θk :
⊕
X∈Lk

Hk(M(AX);Z)→ Hk(M(A);Z)

induced by suitable inclusions jX : Sal(AX) ↪→ Sal(A) of CW complexes. The
inverse isomorphism θ−1

k is induced by the natural inclusion maps iX : M(A) ↪→
M(AX).

Proof. Let x0 ∈ Rn be a generic point with respect to A, and letM be a Euclidean
matching on Sal(A) with base point x0. Let X ∈ Lk be a flat of codimension k.
By Lemma 5.11, the point x0 is generic also with respect to the subarrangement
AX . Consider the inclusion jX : Sal(AX) ↪→ Sal(A) around the unique face of A
containing the projection ρX(x0). Let MX be a Euclidean matching on Sal(AX)
with base point x0.

All homology groups in this proof are with integer coefficients. By Theorem 5.13,
we have that Hk(Sal(A)) is a free abelian group generated by elements of the form

[〈C,FC〉+ a finite sum of non-critical k-cells]

for each critical k-cell 〈C,FC〉 of Sal(A). Similarly, for every flat X ∈ Lk, we have
that Hk(Sal(AX)) is a free abelian group generated by elements of the same form
as above, one for every critical k-cell of Sal(AX). The critical k-cells of Sal(AX)
are in bijection (through the map jX) with the critical k-cells 〈C,F 〉 of Sal(A) such
that |F | = X. Then the inclusions jX induce an isomorphism

θ̄k :
⊕
X∈Lk

Hk(Sal(AX))→ Hk(Sal(A)).

Let ϕ : Sal(A)
'
↪−→M(A) and ϕX : Sal(AX)

'
↪−→M(AX) be the homotopy equiv-

alences constructed in [Sal87]. Then the composition⊕
X∈Lk

Hk(M(AX))
⊕

(ϕX)−1
∗−−−−−−→

⊕
X∈Lk

Hk(Sal(AX))
θ̄k−→ Hk(Sal(A))

ϕ∗−−→ Hk(M(A))

is the isomorphism θk as in the statement.
By naturality of Salvetti’s construction, the following diagram is commutative

up to homotopy.

Sal(AX) Sal(A)

M(AX) M(A)

jX

ϕX ϕ

iX

Looking at the induced commutative diagram in homology, we obtain that the
inverse isomorphism θ−1

k is induced by the inclusion maps iX . �
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If we fix a flat X ∈ L(A), it is possible to choose the base point x0 so that the
Morse complex of Sal(AX) injects into the Morse complex of Sal(A). We prove this
naturality property in the following lemma.

Lemma 6.2. Let X ∈ L(A) be a flat, and fix an inclusion j : Sal(AX) ↪→ Sal(A)
around some face F̄ with |F̄ | = X. There exist Euclidean matchings MX and M,
on Sal(AX) and Sal(A) respectively, such that:

(i) they share the same base point x0;
(ii) (j × j)(MX) ⊆M;

(iii) the inclusion j induces an inclusion of the Morse complex of Sal(AX) into the
Morse complex of Sal(A).

Proof. Let x0 ∈ Rn be a generic point such that d(x0, F̄ ) < d(x0, H) for every
hyperplane H ∈ A\AX (the existence of x0 follows from Lemma 5.2). For example,
we can choose a point y in the relative interior of F̄ , and then take x0 in a small
neighborhood of y.

Let aeu and a′eu be Euclidean orders with base point x0 on C(A) and C(AX),
respectively. Notice that, by construction of x0, the total order aeu starts with the
chambers containing F̄ .

Let η : Sal(A)→ C(A)×C(A) be the poset map defined in the proof of Theorem
4.10, induced by the total order aeu. Let η′ : Sal(AX) → C(AX) × C(AX) be the
analogous poset map for the arrangement AX , induced by the total order a′eu.
Then, for every pair of chambers C,E ∈ C(A) containing F̄ , we have

η−1(C,E) = j(η′
−1

(πX(C), πX(E))).

In other words, the inclusion j maps fibers of η′ to fibers of η. Notice that, by
Remark 5.10, these fibers only depend on x0 and not on the particular choices of
the Euclidean orders aeu and a′eu.

Let MX be a Euclidean matching on Sal(AX) with base point x0. Recall that
such a matching is constructed on the fibers of η (see Definition 5.8). Then there
exists a Euclidean matching M on Sal(A) with base point x0 that contains (j ×
j)(MX).

The alternating paths in Sal(A) starting from cells in the subcomplex j(Sal(AX))
remain in this subcomplex. Therefore j induces an inclusion of the Morse complex
of Sal(AX) (with respect to the matching MX) into the Morse complex of Sal(A)
(with respect to the matching M). �

7. Local system homology of line arrangements

In the case of a line arrangement in R2 it is possible to explicitly describe alter-
nating paths between critical cells of a Euclidean matching. As an application, in
this section we are going to describe the algebraic Morse complex that computes
the homology of the complement M(A) with coefficients in an abelian local system.
Then we are going to compare the obtained complex with the algebraic complex
of Gaiffi and Salvetti [GS09], which is based on the polar matching of Salvetti and
Settepanella [SS07].

Let A be a locally finite line arrangement in R2. An abelian local system L
on M(A) is determined by the elements t` ∈ Aut(L) associated to elementary
positive loops around every line ` ∈ A (cf. [GS09, Section 2.4]). The bound-
aries ∂i of the algebraic Morse complex are determined by the incidence numbers
[〈D,G〉, 〈C,F 〉]M ∈ Z[t±1

` ]`∈A, between critical i-cells 〈D,G〉 and critical (i − 1)-
cells 〈C,F 〉, in the Morse complex.

We refer to [SS07, Section 5] for a detailed explanation of how to compute these
incidence numbers, given an acyclic matching on the Salvetti complex Sal(A). We
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only make the following substantial change of convention with respect to [SS07,
GS09]: given a cell 〈C,F 〉, we choose as its representative point the 0-cell 〈CF , CF 〉,
where CF is the chamber opposite to C with respect to F (the role of the repre-
sentative point is thoroughly described in [Ste43, Section 9]). It is more convenient
to choose 〈CF , CF 〉 instead of 〈C,C〉, because in this way two matched cells have
the same representative point.

We recall some useful definitions and facts from [SS07, Chapter 5], adapting
them to our different convention on the representative point. Given two chambers
D and C, denote by u(D,C) a combinatorial positive path of minimal length from
〈D,D〉 to 〈C,C〉, in the 1-skeleton of Sal(A). In particular, let Γ(C) = u(C,C0) be
a minimal positive path from the chamber C to a base chamber C0. Every path
u(D,C) crosses each line at most once by [SS07, Lemma 5.1]. Consider the closed
path Γ(D)−1 u(D,C) Γ(C), which starts from C0, passes throughD and C, and then
goes back to C0. This path determines an element ū(D,C) ∈ H1(M(A)) which is
equal to the product of the positive loops around the lines in s(C0, C) ∩ s(D,C).
Then the incidence number [〈D,G〉, 〈C,F 〉] ∈ Z[t±1

` ]`∈A between an i-cell 〈D,G〉
and an (i− 1)-cell 〈C,F 〉 in Sal(A) is given by

[〈D,G〉 : 〈C,F 〉] = [〈D,G〉 : 〈C,F 〉]Z ū(DG, CF ),

where [〈D,G〉 : 〈C,F 〉]Z = ±1 denotes the integral incidence number in Sal(A).
Let x0 ∈ R2 be a generic point with respect to the line arrangement A, and fix

a Euclidean matching M on the Salvetti complex Sal(A) with base point x0. Let
C0 be the chamber containing x0 (this is the first chamber in any Euclidean order
with base point x0). Recall that the matching M is constructed on the fibers of
the map η : Sal(A)→ C × C.

To compute the algebraic Morse complex (see [Koz08, Definition 11.23]), we first
need to describe the alternating paths between critical cells. The alternating paths
between a critical 1-cell 〈C,F 〉 and the only critical 0-cell 〈C0, C0〉 are particularly
simple, since all the 0-cells are in N(C0).

Lemma 7.1. Let 〈C,F 〉 be a critical 1-cell. Denote by C ′ the unique chamber
containing F other than C. There are exactly two alternating paths from 〈C,F 〉 to
the only critical 0-cell 〈C0, C0〉:

• 〈C,F 〉 ↘ 〈C,C〉 ↗ 〈C ′, F 〉 ↘ 〈C ′, C ′〉 ↗ · · · ↘ 〈C0, C0〉
• 〈C,F 〉 ↘ 〈C ′, C ′〉 ↗ · · · ↘ 〈C0, C0〉

(after 〈C ′, C ′〉, they continue in the same way).

Proof. Since 〈C,F 〉 is critical, the line |F | separates C and C0. In the boundary
of the 1-cell 〈C,F 〉 there are the two 0-cells 〈C,C〉 and 〈C ′, C ′〉. The 0-cell 〈C,C〉
is matched with the 1-cell 〈C ′, F 〉, because these are the unique cells in the fiber
η−1(C0, C). Then an alternating path starting with 〈C,F 〉 ↘ 〈C,C〉 is forced to
continue with ↗ 〈C ′, F 〉 ↘ 〈C ′, C ′〉. After 〈C ′, C ′〉 there is exactly one way to
continue the path, because every non-critical 0-cell is matched with some 1-cell,
and this 1-cell has exactly one other 0-cell in the boundary. Since the matching is
proper, one such path must eventually reach the critical 0-cell 〈C0, C0〉. �

We can use the previous lemma to compute the boundary ∂1. The resulting
formula coincides with the one of [GS09, Proposition 4.1].

Proposition 7.2. The incidence number between a critical 1-cell 〈C,F 〉 and the
only critical 0-cell 〈C0, C0〉 in the Morse complex is given by

[〈C,F 〉 : 〈C0, C0〉]M = (1− t |F |).
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Proof. The orientation of a 1-cell 〈C̃, F̃ 〉 is defined so that [〈C̃, F̃ 〉, 〈C̃F̃ , C̃F̃ 〉]Z = 1.

Now, if 〈C̃, F̃ 〉 ∈ N(C0), then C̃ is closer to C0 with respect to C̃F̃ and so we have
that:

[〈C̃, F̃ 〉, 〈C̃, C̃〉] = −1; [〈C̃, F̃ 〉 : 〈C̃F̃ , C̃F̃ 〉] = 1.

By Lemma 7.1 we see that there are exactly two alternating paths between 〈C,F 〉
and 〈C0, C0〉, and by [Koz08, Definition 11.23] the incidence number in the Morse
complex is given by

[〈C,F 〉 : 〈C0, C0〉]M = [〈C,F 〉 : 〈C,C〉] + [〈C,F 〉 : 〈C ′, C ′〉].
Since |F | ∈ s(C0, C) ∩ s(CF , C), the first term is

[〈C,F 〉 : 〈C,C〉] = [〈C,F 〉 : 〈C,C〉]Zū(CF , C) = −t|F |,
The second term is given by

[〈C,F 〉 : 〈C ′, C ′〉] = [〈C,F 〉 : 〈C ′, C ′〉]Zū(CF , C ′) = ū(C ′, C ′) = 1. �

Now we want to compute the boundary ∂2. To simplify the notation, denote a
2-cell 〈D, {p}〉 also by 〈D, p〉, where p ∈ R2 is the intersection point of two or more
lines of A.

It is convenient to assign the orientation of the 2-cells so that they behave well
with respect to the matching. Given a 2-cell 〈D, p〉 6∈ N(C0), we choose the orienta-
tion in the following way. Let `, `′ be the two walls of D that pass through p. Let `
be the one that does not separate D from C0 if it exists, or otherwise the closest one
to x0. Then the orientation of 〈D, p〉 is the one for which [〈D, p〉, 〈D, `〉]Z = 1. The
orientation of the 2-cells in N(C0) is assigned arbitrarily. The reason of this choice
is that the incidence number between two matched cells is always +1. Indeed, if
C ′ is the chamber such that XC′ = `′, then 〈D, p〉 ∈ N(C ′) by construction.

We are going to show that there is a correspondence between alternating paths
from critical 2-cells to critical 1-cells and certain sequences of elements of L1(A).
Consider an alternating path of the form

(7.1) 〈D, p〉 ↘ 〈C1, F1〉 ↗ 〈D1, p1〉 ↘ 〈C2, F2〉 ↗ · · · ↘ 〈Cn, Fn〉,
where 〈D, p〉 is a critical 2-cell and 〈Cn, Fn〉 is a critical 1-cell. By construction of
the matching, none of the cells in (7.1) belongs to N(C0). We have that the starting
cell 〈D, p〉 and the sequence (F1, . . . , Fn) uniquely determine the alternating path.
This is because for each i there are only two cells of the form 〈C ′, Fi〉 for some
C ′ ∈ C, and one of these cells is in N(C0). Thus Ci is uniquely determined by Fi
for every i, and 〈Di, pi〉 is the cell matched with 〈Ci, Fi〉.

We are now going to describe which sequences in L1(A) give rise to an alternating
path. Given a face F ∈ L1(A), let ` = |F |. If ρ`(x0) /∈ F , we denote by p(F ) the
endpoint of F which is closer to ρ`(x0). In addition, let C(F ) be the unique chamber
containing F such that 〈C(F ), F 〉 /∈ N(C0).

Definition 7.3. Given two different faces F, G ∈ L1(A), we write F → G if

• F ∩G = {p(F )};
• |F | = |G|, or F and C0 lie in the same half-plane with respect to |G|.

Lemma 7.4. Let 〈D, p〉 be a critical 2-cell and 〈C,F 〉 a critical 1-cell. The al-
ternating paths between 〈D, p〉 and 〈C,F 〉 are in one to one correspondence with
the sequences in L1(A) of the form (F1 → F2 → . . . → Fn = F ) such that
〈C(F1), F1〉 < 〈D, p〉.

Proof. Consider an alternating path as in (7.1). We have already seen that such
a path is completely determined by the starting cell 〈D, p〉 and by the sequence
(F1, . . . , Fn). Clearly the condition 〈C(F1), F1〉 < 〈D, p〉 must be satisfied. We
want to show that Fi → Fi+1 for each i = 1, . . . , n− 1.
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Let Ei be the chamber opposite to C(Fi) with respect to Fi. By construction
of the matching, it is immediate to see that the cell 〈C(Fi), Fi〉 is matched with
〈D(Fi), p(Fi)〉, where D(Fi) is the chamber opposite to Ei with respect to p(Fi).
By hypothesis we have that 〈C(Fi+1), Fi+1〉 < 〈D(Fi), p(Fi)〉 which implies that
Fi ∩ Fi+1 = {p(Fi)} and that D(Fi).Fi+1 = C(Fi+1). Since 〈C(Fi+1), Fi+1〉 /∈
N(C0), we have that C0 and C(Fi+1) are in opposite half-planes with respect to
|Fi+1|. The same is true for Fi and C(Fi+1), because D(Fi) and Fi are in opposite
half-planes with respect to |Fi+1|, unless Fi ⊂ |Fi+1|. Then we have that Fi → Fi+1.

Conversely, we now prove that every sequence (F1 → F2 → · · · → Fn = F )
satisfying 〈C(F1), F1〉 < 〈D, p〉 has an associated alternating path. We do this by
induction on the length n of the sequence.

The case n = 1 is trivial, since we already know that 〈C(F1), F1〉 < 〈D, p〉.
In the induction step, we need only to prove that F → G implies 〈C(G), G〉 <
〈D(F ), p(F )〉. From the first condition of Definition 7.3, we have that G ≺ {p(F )}.
We need to check that D(F ).G = C(G). By definition of C(G), this is equivalent
to proving that D(F ) and C0 lie in opposite half-planes with respect to |G|. This
is true because F and C0 lie in the same half-plane with respect to |G|. �

Now that we have a description of the alternating paths, we can use it to compute
the boundary of the Morse complex.

Definition 7.5. Given two different faces F, G ∈ L1(A), let

[F → G] =
[〈D(F ), p(F )〉 : 〈C(G), G〉]
[〈D(F ), p(F )〉 : 〈C(F ), F 〉]

,

where the incidence numbers on the right are taken in the Salvetti complex Sal(A),
and D(F ) is defined as in the proof of Lemma 7.4.

Lemma 7.6. Given two different faces F,G ∈ F1(A) such that F → G, we have

[F → G] = ±
∏

t`,

where the product is on the set of lines ` 6= |G| passing through p(F ), such that
G and C0 lie in opposite half-planes, whereas F and C0 lie in the same closed
half-plane (with respect to `). The sign is +1 if p(F ) = p(G), and −1 otherwise.

Proof. Denote by E(F ) and E(G) the chambers C(F )F and C(G)G, respectively.
Notice that E(F ) = D(F )p(F ), and therefore [〈D(F ), p(F )〉 : 〈C(F ), F 〉] = 1. See
Figure 8 for an example.

Now we need to determine ū(E(F ), E(G)), which is the product of the positive
loops around the lines in s(C0, E(G)) ∩ s(E(F ), E(G)). By definition of E(G), we
have that s(C0, E(G)) is the set of lines different from |G| for which G and C0 in
opposite half-planes. Since every line in s(E(F ), E(G)) goes through p(F ), it is now
easy to see that s(C0, E(G))∩ s(E(F ), E(G)) is the set described in the statement.

We now need to determine the sign. If p(G) = p(F ), then we immediately see
that G is in the half-plane delimited by |F | that contains D(F ). The opposite is true
if p(G) 6= p(F ). By our choice of the orientation, we obtain the stated result. �

Theorem 7.7. Let A be a locally finite line arrangement in R2. Let 〈D, p〉 be a
critical 2-cell and 〈C,F 〉 a critical 1-cell. Then their incidence number in the Morse
complex is given by

[〈D, p〉 : 〈C,F 〉]M =
∑
s∈Seq

ω(s),
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x0

C0

C(F )E(F )

C(G)

E(G)

F

G

p(F )

Figure 8. Faces F,G ∈ F1(A) such that F → G, as in Lemma
7.6.

where Seq is the set of sequences of Lemma 7.4, and for each sequence s = (F1 →
F2 → · · · → Fn = F ) ∈ Seq we define

ω(s) = (−1)n [〈D, p〉 : 〈C(F1), F1〉]
n−1∏
i=1

[Fi → Fi+1].

Proof. It follows directly from [Koz08, Definition 11.23] and Lemma 7.4. �

Remark 7.8. Computing the incidence numbers is not the only way to obtain the lo-
cal system homology of a line arrangement. For example a different, more algebraic
approach can be found in [Yos14].

Example 7.9 (Deconing A3). Consider the line arrangement A of Figure 9, ob-
tained by deconing the reflection arrangement of type A3. Given a chamber Ci,
denote by 〈Ci, Fi〉 the associated critical cell if it is of dimension 1, or by 〈Ci, pi〉
if it is of dimension 2. Applying Theorem 7.7 and Lemma 7.6, we obtain the
boundary matrix ∂2 of Table 1. This matrix is slightly simpler than the one com-
puted in [GS09, Section 7], but there are many similarities. Specializing to the case
t1 = . . . = t5 = t, we obtain that

H1(M(A); Q[t±1]) ∼=
(
Q[t±1]

t− 1

)3

⊕ Q[t±1]

t3 − 1
,

as already computed for example in [GS09].
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Figure 9. Deconing A3.

〈C4, p4〉 〈C5, p5〉 〈C7, p7〉 〈C9, p9〉 〈C10, p10〉 〈C11, p11〉
〈C1, F1〉 1− t4 t4(t2 − 1) 0 0 t1 − 1 t1(1− t5)
〈C2, F2〉 t2t3 − 1 t2 − 1 1− t1 0 0 0
〈C3, F3〉 t3(1− t4) 1− t3t4 0 t5 − 1 0 0
〈C6, F6〉 0 0 t4 − 1 0 1− t3t5 1− t5
〈C8, F8〉 0 0 0 1− t2 t3(t1 − 1) t1t3 − 1

Table 1. The boundary ∂2 of the deconing of A3.
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