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SHELLABILITY OF GENERALIZED DOWLING POSETS

GIOVANNI PAOLINI

Abstract. A generalization of Dowling lattices was recently introduced by

Bibby and Gadish, in a work on orbit configuration spaces. The authors left
open the question as to whether these posets are shellable. In this paper
we prove EL-shellability and use it to determine the homotopy type. Our

result generalizes shellability of Dowling lattices and of posets of layers of
abelian arrangements defined by root systems. We also show that subposets
corresponding to invariant subarrangements are not shellable in general.

Keywords: Shellability, configuration spaces, posets, Dowling lattices.

Mathematics Subject Classification (2010): Primary 06A07; Secondary

05E18, 52B22, 52C35.

1. Introduction

In a recent contribution to the study of orbit configuration spaces [BG18], Bibby
and Gadish introduced a class of posets Dn(G,S) which they called S-Dowling
posets. Here n is a positive integer, S is a finite set, and G is a finite group acting
on S. These posets arise as posets of layers of arrangements An(G,X) of “singular
subspaces” in Xn, where X is a space with a G-action. They generalize both
Dowling lattices [Dow73] (which are obtained for |S| = 1) and posets of layers of
linear, toric and elliptic arrangements defined by root systems of type C [Bib17]
(obtained if G = Z2 acts trivially on S, and |S| ∈ {1, 2, 4}).

Dowling lattices have long been known to be shellable [Got98], and a recent work
of the author with Delucchi and Girard establishes shellability of posets of layers
of arrangements defined by root systems [DGP17]. A natural question posed in
[BG18] is to prove shellability for the S-Dowling posets Dn(G,S). In Section 3 we
solve this conjecture in a positive way (Theorem 3.5):

Theorem A. The poset Dn(G,S) ∪ {1̂} is EL-shellable.

The order complex of a shellable poset is homotopy equivalent to a wedge of
spheres. In Section 4 we determine the number of these spheres, by counting certain
rooted trees (Theorem 4.4):

Theorem B. The order complex of the poset Dn(G,S)\{0̂} is homotopy equivalent
to a wedge of

(−1)ϵ
n−1∏
i=0

(|S| − 1 + |G|i)

(n− 1− ϵ)-dimensional spheres, except for the empty poset D̄1({e},∅). Here ϵ = 0
for S ̸= ∅ and ϵ = 1 for S = ∅.

This refines the results of [BG18] about the characteristic polynomial and the
homology of Dn(G,S).
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2 GIOVANNI PAOLINI

In the study of the posets of layers of invariant arrangements, Bibby and Gadish
also introduced subposets Pn(G,S, T ) ⊆ Dn(G,S) corresponding to any G-invariant
subset T ⊆ S. When G = Z2 acts trivially on S, suitable choices of T yield
posets of layers of arrangements defined by root systems of type B and D [Bib17],
which were proved to be shellable [DGP17]. Therefore it is natural to ask if the
subposets Pn(G,S, T ) are shellable in general. In Section 5 we exhibit a family of
counterexamples, obtained when all the elements of S have a trivial G-stabilizer.
However, we prove that Pn(G,S, T ) is shellable if the G-action on S \ T is trivial
(Theorem 5.8):

Theorem C. If the G-action on S \ T is trivial, the poset Pn(G,S, T ) ∪ {1̂} is
EL-shellable.

Finally, we determine the homotopy type of a larger class of subposets (Theorem
5.11):

Theorem D. Let n ≥ 2 and |S| ≥ 1. Suppose that all the G-orbits in S \ T either

have cardinality 1, or have a trivial stabilizer. Then the poset Pn(G,S, T ) \ {0̂} is
homotopy equivalent to a wedge of d-dimensional spheres with

d =

{
n− 1 if T ̸= ∅ or at least one G-orbit is trivial

n− 2 otherwise.

2. Preliminaries

2.1. Generalized Dowling posets. The definition of the poset (Dn(G,S),⪯)
is as follows [BG18, Section 2]. Let [n] = {1, 2, . . . , n}. A partial G-partition is
a partition β = {B1, . . . , Bℓ} of the subset ∪Bi ⊆ [n] together with functions
bi : Bi → G defined up to the following equivalence relation: bi ∼ b′i if bi = b′ig for
some g ∈ G. The functions bi can be regarded as projectivized G-colorings. Define
the zero block of β as Z = [n]\∪Bi. Then Dn(G,S) is the set of partial G-partitions
β of [n] together with an S-coloring of its zero block, i.e. a function z : Z → S.

Following the conventions of [BG18], we use an uppercase letter B for a subset

of [n], the corresponding lowercase letter for the function b : B → G, and B̃ for the
data (B, b̄) where b̄ is the equivalence class of b : B → G. Then elements of Dn(G,S)

take the form (β̃, z), where β̃ = {B̃1, . . . , B̃ℓ} and z : Z → S is the S-coloring of the
zero block.

The set Dn(G,S) is partially ordered by covering relations (for which we use the
symbol ≺·), given by either merging two blocks or coloring one by S:

(merge) (β̃ ∪ {Ã, B̃}, z) ≺· (β̃ ∪ {C̃}, z) where C = A ∪ B and c = a ∪ bg for some
g ∈ G;

(color) (β̃ ∪ {B̃}, z)≺· (β̃, z′) where z′ is an extension of z to Z ′ = B ∪Z such that
z′|B is a composition

B
b−→ G

f−→ S

for some G-equivariant function f . Since f is uniquely determined by
s = f(e) ∈ S (where e is the identity element of G), we can equivalently say
that z′(i) = b(i) · s for all i ∈ B.
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The poset Dn(G,S) is ranked by the rank function rk((β̃, z)) = n− |β̃|. For S = ∅,
the zero blocks are always empty. Therefore the rank of Dn(G,S) is n− ϵ, where

ϵ =

{
0 if S ̸= ∅
1 if S = ∅.

An element (β̃, z) ∈ Dn(G,S) will be written also as in the following example:

[1g13g3 | 2g24g46g6 ∥ 5s57s7 ]

denotes the partial set partition [13 | 246] with projectivized G-colorings [g1 : g3]
and [g2 : g4 : g6], and zero block {5, 7} colored by 5 7→ s5 and 7 7→ s7.

Following [BG18, Section 3.4], we also introduce a subposet Pn(G,S, T ) ⊆
Dn(G,S) for any G-invariant subset T ⊆ S:

Pn(G,S, T ) = {(β̃, z) ∈ Dn(G,S) : |z−1(O)| ≠ 1 for every G-orbit O ⊆ S \ T}.
It arises as the poset of layers of a suitable invariant subarrangement An(G,X;T ) ⊆
An(G,X). The subposet Pn(G,S, T ) is ranked, with rank function induced by
Dn(G,S). The case n = 1 does not yield anything new, because P1(G,S, T ) =
D1(G,T ). For n ≥ 2 we have rkPn(G,S, T ) = rkDn(G,S) = n− ϵ.

2.2. EL-shellability. We refer to [Bjö80, BW83, BW96, BW97, Wac06] for the
definition and basic properties of shellability. We are particularly interested in the
notion of EL-shellability, which we now recall.

Let P be a bounded poset. Denote by 1̂ and 0̂ the top and bottom elements of
P , respectively. Also let E(P ) = {(x, y) ∈ P × P | x≺· y} be the set of edges of the
Hasse diagram of P (i.e. the covering relations of P ).

An edge labeling of P is a map λ : E(P ) → Λ, where Λ is some poset. Given an
edge labeling λ, each maximal chain γ = (x≺· p1 ≺· · · · ≺· pk ≺· y) between any two
elements x ⪯ y has an associated word

λ(γ) = λ(x, p1)λ(p1, p2) · · ·λ(pk, y).
The chain γ is said to be increasing if the associated word λ(γ) is strictly increasing,
and decreasing if the associated word is weakly decreasing. Maximal chains in a fixed
interval [x, y] ⊆ P can be compared lexicographically, by using the lexicographic
order on the corresponding words.

Definition 2.1 ([Bjö80, Definitions 2.1 and 2.2], [BW96, Definition 5.2]). Let P be
a bounded poset. An edge-lexicographical labeling (or simply EL-labeling) of P is an
edge labeling such that in each closed interval [x, y] ⊆ P there is a unique increasing
maximal chain, and this chain lexicographically precedes all other maximal chains
of [x, y]. The poset P is EL-shellable if it admits an EL-labeling.

Suppose that P is an EL-shellable bounded poset, and let P̄ = P \ {0̂, 1̂}. Then
the order complexes of P and P̄ are shellable (see [Bjö80, Theorem 2.3] and [BW96,
Theorem 5.8]). Also, the order complex of P̄ is homotopy equivalent to a wedge
of spheres indexed by the decreasing maximal chains of P [BW96, Theorem 5.9].
When P is a ranked poset, all spheres have dimension rk(P )− 2 and their number

equals (−1)rk(P )µP (0̂, 1̂) where µP is the Möbius function of P (this is a standard
application of a theorem by Hall [Sta12, Theorem 3.8.6], cf. [DGP17, Theorem

2]). Notice that µP (0̂, 1̂) = χP (0) = −χP ′(1), where P ′ = P \ {1̂} and χQ is the
characteristic polynomial of a poset Q.
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3. EL-shellability of S-Dowling posets

The poset Dn(G,S) contains a bottom element 0̂ but it is usually not bounded

from above. We therefore introduce the bounded poset D̂n(G,S) = Dn(G,S) ∪ {1̂}
with x ≺ 1̂ for all x ∈ Dn(G,S). In this section we are going to prove that D̂n(G,S)
is EL-shellable for every positive integer n, finite set S and finite group G acting on
S. This solves [BG18, Conjecture 2.7.1]. The construction of the EL-labeling takes
ideas from (and generalizes) the EL-labeling of [DGP17].

Definition 3.1. Consider an edge (x, y) ∈ E = E(D̂n(G,S)) with y ̸= 1̂.

• Suppose that (x, y) is of type “merge”, i.e. x = (β̃ ∪ {Ã, B̃}, z) and y =

(β̃∪{C̃}, z), where C = A∪B and c = a∪ bg. We say that (x, y) is coherent
if c(minA) = c(minB) and non-coherent otherwise. If (x, y) is non-coherent,
define α(x, y) ∈ G \ {e} as

α(x, y) =

{
c(minB) · c(minA)−1 if minA < minB

c(minA) · c(minB)−1 otherwise.

Notice that this definition only depends on the ∼-equivalence class of c.
The definition of α is motivated as follows: if c is normalized by setting
c(minC) = e, then {c(minA), c(minB)} = {e, α(x, y)}.

• Suppose that (x, y) is of type “color”, i.e. x = (β̃ ∪ {B̃}, z) and y = (β̃, z′).
Then we say that (x, y) is colored, and its color is z′(minB).

Remark 3.2. The previous definition is a generalization of the one given in [DGP17],
with “signed” replaced by “colored”.

Definition 3.3 (Edge labeling of D̂n(G,S)). Fix any total order s1 < s2 < · · · < sm
on S and any total order on G \ {e} (no compatibility with the group structure,

nor with the action, is needed). Let λ be the edge labeling of D̂n(G,S) defined as
follows (A, B and C are as in Definition 3.1).

λ(x, y) =


(0, max(minA,minB)) if (x, y) is coherent

(2, minC, α(x, y)) if (x, y) is non-coherent

(1, k) if (x, y) is colored of color sk

(1, 2) if y = 1̂.

The values of λ are compared lexicographically. In the second case, λ(x, y) is a triple
and is lexicographically larger than all the pairs that occur in the other cases.

Lemma 3.4 (Non-coherent increasing chains). Let p1 ≺· p2 ≺· · · · ≺· pk be an

increasing chain in Dn(G,S) such that (pi, pi+1) is non-coherent for all i. Let Ã, B̃

be (non-zero) blocks of p1 such that A ∪B ⊆ C for some (non-zero) block C̃ of pk.
Then c(minA) ̸= c(minB).

Proof. Suppose that γ = (p1≺· p2≺· · · ·≺· pk) is a chain of minimal length for which
the lemma is false. By minimality, pk is the first element of γ where A and B
are contained in the same block. In other words, the edge (pk−1, pk) merges two
blocks A′ ⊇ A and B′ ⊇ B of pk−1 into the single block C = A′ ∪B′ of pk. Also by
minimality, p1 is the last element of γ where both A and B are not contained in a
larger block. Then assume without loss of generality that the edge (p1, p2) merges
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A and some other block of p1 into a single block A′′ ⊇ A of p2. Therefore we have
the inclusions A ⊂ A′′ ⊆ A′ ⊂ C.

Let λ(pi, pi+1) = (2, ji, gi). Then we have the following increasing sequence of
labels:

(2, j1, g1) < (2, j2, g2) < · · · < (2, jk−1, gk−1).

We have that j1 = minA′′ ≥ minC = jk−1, so j1 = j2 = · · · = jk−1 = minC. This
means that each edge of γ consists of a merge which involves the element minC.
Also, g1 < g2 < · · · < gk−1. If we normalize c so that c(minC) = e, by definition of
λ we have that:

• c(minA) =

{
e if minA = minC

g1 otherwise;

• c(minB) =

{
e if minB = minC (this can only happen if k = 2)

gk−1 otherwise.

If k = 2, then A′′ = A ∪B and exactly one of c(minA) and c(minB) is equal to e.
If k > 2, we have c(minB) = gk−1, which is different from both e and g1. In any
case, c(minA) ̸= c(minB). □

Theorem 3.5 (EL-shellability). The edge labeling λ of Definition 3.3 is an EL-

labeling of D̂n(G,S).

Proof. In order to check Definition 2.1, consider an interval [x, y] of D̂n(G,S). For

x = y or x≺·y there is nothing to prove, so assume rk(y)− rk(x) ≥ 2. Let x = (β̃, z),

with underlying partition β̃ = {B̃1, . . . , B̃ℓ} and zero block Z. Order the blocks of
x so that minB1 < · · · < minBℓ.

Case 1: y = 1̂. Suppose that γ = (x = p0 ≺· p1 ≺· · · · ≺· pk ≺· 1̂) is an increasing

maximal chain in the interval [x, 1̂], with k ≥ 1. Colored edges exist along γ if and

only if S ̸= ∅ and β̃ ̸= ∅. Since γ is increasing, we can deduce the following: the
last edge (pk, 1̂) is labeled (1, 2); at most one edge (namely (pk−1, pk)) is labeled
(1, 1) and is colored; all other edges are coherent and their labels are forced to be
(0,minB2), (0,minB3), . . . , (0,minBℓ). Notice that k = ℓ if (pk−1, pk) is colored

(which happens if and only if S ≠ ∅ and β̃ ̸= ∅), otherwise k = ℓ− 1. In any case
pℓ−1 has a single non-zero block B = B1 ∪ · · · ∪ Bℓ, with G-coloring b uniquely
determined by b(minB1) = · · · = b(minBℓ) since all edges from x to pℓ−1 are
coherent. Therefore pℓ−1 is uniquely determined by x. If k = ℓ the edge (pk−1, pk) is
colored with color s1, and thus pk = (∅, zk) is uniquely determined by the condition
zk(minB) = s1. Finally, there is exactly one coherent increasing chain from x to
pℓ−1, in which (pi, pi+1) is the coherent edge which merges the blocks B1∪· · ·∪Bi+1

and Bi+2.
The previous argument also shows how to construct an increasing maximal chain

γ = (x = p0 ≺· p1 ≺· · · · ≺· pk ≺· 1̂) in [x, 1̂], so there is exactly one such chain. For all
i ∈ {0, . . . , k − 1}, the label λ(pi, q) is minimized (only) when q = pi+1. Therefore
γ is lexicographically minimal.

Case 2: y = (β̃′,∅), and β̃′ has only one non-singleton block B̃. Let b

be the G-coloring of B̃ in y, normalized to have b(minB) = e. Suppose without
loss of generality that B = B1 ∪ · · · ∪ Bℓ′ , for some ℓ′ ≤ ℓ. Let gi = b(minBi) for
i = 1, . . . , ℓ′. Notice that g1 = e, since minB1 = minB.
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Suppose that γ = (x = p0 ≺· p1 ≺· · · · ≺· pk = y) is an increasing maximal chain in
[x, y]. Since the zero block of y is empty, along γ there are no colored edges. Then
the edges are coherent from x to pm for some m ∈ {0, . . . , k}, and non-coherent

from pm to y. Let pm = ({Ã1, . . . , Ãs},∅). Since there is a coherent chain from
x to pm, any block Aj of pm is a union Bi1 ∪ · · · ∪ Bir with gi1 = · · · = gir , and
b(minAj) = gi1 = · · · = gir . Lemma 3.4 implies that b(minAi) ̸= b(minAj) for all
i ̸= j. Therefore pm is uniquely determined by x and y.

The part of γ from x to pm consists only of coherent edges, and it is uniquely
determined by x and pm as in Case 1. Consider now the part of γ from pm to y. If
pm = y there is nothing to prove, so suppose pm ̸= y. The labels from pm to y take
the form

(2, jm, hm) < (2, jm+1, hm+1) < · · · < (2, jk−1, hk−1).

By definition of λ, we have jk−1 = minB and jm = min(Ai ∪ Aj) for some i ̸= j.
Since Ai ∪ Aj ⊆ B, we can deduce that jm ≥ jk−1. This implies jm = jm+1 =
· · · = jk−1 = minB. Therefore every non-coherent edge consists of a merge which
involves the element minB. Also, we have that hm < hm+1 < · · · < hk−1. The
elements e, hm, hm+1, . . . , hk−1 of G are all distinct, and by definition of λ they
coincide (up to some permutation) with b(minA1), b(minA2), . . . , b(minAs). Then
the chain from pm to y is forced by the order hm < hm+1 < · · · < hk−1: first merge
the block corresponding to e with the block corresponding to hm; then merge the
resulting block with the block corresponding to hm+1; and so on. At each step, the
G-coloring is determined by b.

We proved that an increasing chain γ in [x, y] is uniquely determined by x and y,
and our argument shows how to construct such a chain. We still need to prove that
γ is lexicographically minimal in [x, y]. Suppose that a lexicographically minimal
chain γ′ first differs from γ at some edge (pr, p

′
r+1), i.e. λ(pr, p

′
r+1) < λ(pr, pr+1).

• If r < m, the edge (pr, pr+1) is coherent, so the edge (pr, p
′
r+1) must also be

coherent. In order to remain in the interval [x, y], a coherent merge between
two blocks C1 and C2 of pr is possible only if b(minC1) = b(minC2). Then
λ(pr, p

′
r+1) is minimized for p′r+1 = pr+1.

• If r ≥ m, the chain γ′ coincides with γ at least up to pm = ({Ã1, . . . , Ãs},∅).
The edge (pr, p

′
r+1) cannot be coherent, because b(minAi) ̸= b(minAj) for

all i ≠ j. Then (pr, p
′
r+1) is non-coherent. The second entry of λ(pr, p

′
r+1) is

at least minB, so it must be equal to minB by minimality of γ′. This means
that (pr, p

′
r+1) consists of a non-coherent merge which involves minB. Then

the possible values for the third entry of λ(pr, p
′
r+1) are {hr, hr+1, . . . , hk−1}.

The smallest one is hr, which is attained for p′r+1 = pr+1.

Case 3: y = (β̃′, z′), and all blocks of β̃′ are singletons. Suppose that
γ = (x = p0 ≺· p1 ≺· · · · ≺· pk = y) is an increasing maximal chain in [x, y]. By the
structure of y, the last edge (pk−1, y) of γ must be colored. Then the edges along γ
are coherent from x to pm for some m ∈ {0, . . . , k}, and colored from pm to y. Let

pm = ({Ã1, . . . , Ãs}, z). Since all the merges of γ are coherent, if two blocks Bi and
Bj of x are contained in the same block A of pm, then we have a(minBi) = a(minBj)
and therefore z′(minBi) = z′(minBj). In addition, z′(minAi) ̸= z′(minAj) for
all distinct blocks Ai, Aj of pm, because the colored edges have strictly increasing
(and thus distinct) colors. Putting everything together, two blocks Bi and Bj of x
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are contained in the same block of pm if and only if z′(minBi) = z′(minBj). This
determines pm uniquely.

The part of γ from x to pm is uniquely determine as in Case 1. Then there must
be a colored edge for each (non-zero) block of pm. Their colors are determined, so
their order is also determined, because the sequence of colors must be increasing.

Therefore the whole chain γ is uniquely determined by x and y, and once
again the previous argument explicitly yields one such chain. Suppose that a
lexicographically minimal chain γ′ in [x, y] first differs from γ at some edge (pr, p

′
r+1),

i.e. λ(pr, p
′
r+1) < λ(pr, pr+1).

• If r < m, the edge (pr, pr+1) is coherent, so the edge (pr, p
′
r+1) must also be

coherent. In order to remain in the interval [x, y], a coherent merge between
two blocks C1 and C2 of pi is possible only if z′(minC1) = z′(minC2). Then
λ(pr, p

′
r+1) is minimized for p′r+1 = pr+1.

• If r ≥ m, the chain γ′ coincides with γ at least up to pm = ({Ã1, . . . , Ãs}, z).
The edge (pr, p

′
r+1) cannot be coherent, because z′(minAi) ̸= z′(minAj)

for all i ̸= j. Then (pr, p
′
r+1) is colored. The possible colors are given by

the values of z′ on minA1, . . . ,minAs. The smallest color still available is
attained for p′r+1 = pr+1.

Case 4: y ̸= 1̂. Let y = (β̃′, z′) with underlying partition β̃′ = {B̃′
1, . . . , B̃

′
r}

and zero block Z ′. The interval [x, y] is isomorphic to a product of intervals
[xi, yi] ⊆ Dn(G,S) for 0 ≤ i ≤ r, where: y0 has the same zero block as y (with the
same S-coloring), and all other blocks are singletons; for 1 ≤ i ≤ r, yi has exactly

one non-singleton block which is equal to B̃i, and an empty zero block. For each
i ̸= j, the sets of labels used in the intervals [xi, yi] and [xj , yj ] are disjoint. By Case
2 and Case 3, λ|[xi,yi] is an EL-labeling for all i. Then also λ|[x,y] is an EL-labeling
by [BW97, Proposition 10.15]. □

Remark 3.6. The group structure of G and the G-action on S play a very little
role in our EL-labeling. A similar unexpected separation between combinatorics and
algebra was already observed in the characteristic polynomial of Dn(G,S) [BG18,
Remark 2.5.3].

4. Homotopy type of S-Dowling posets

As in the introduction, let

(1) ϵ =

{
0 if S ̸= ∅
1 if S = ∅.

In this section we assume not to be in the degenerate case S = ∅, G = {e} and

n = 1, because D1({e},∅) \ {0̂} is empty.

Since the poset D̂n(G,S) is (EL-)shellable and has rank n+1−ϵ, the order complex

of D̄n(G,S) = Dn(G,S) \ {0̂} is homotopy equivalent to a wedge of (n − 1 − ϵ)-
dimensional spheres. The homotopy type is therefore determined by the number of
these spheres. As recalled in Section 2.2, we have (at least) two ways to determine
this number: as an evaluation of the characteristic polynomial, and as the number
of decreasing maximal chains in an EL-labeling.
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The characteristic polynomial χ(t) of Dn(G,S) was computed in [BG18, Theorem
2.5.2]:

χ(t) =



n−1∏
i=0

(t− |S| − |G|i) if S ̸= ∅

n−1∏
i=1

(t− |G|i) if S = ∅.

Therefore the number of spheres is given by

(−1)rkDn(G,S)χ(1) = (−1)n−ϵ
n−1∏
i=0

(1− |S| − |G|i)

= (−1)ϵ
n−1∏
i=0

(|S| − 1 + |G|i).

Notice that the product vanishes for |S| = 1. This is correct, because in this case the
poset D̄n(G,S) is bounded from above, and thus its order complex is contractible.

In the rest of this section we are going to prove the previous formula for the
number of spheres by counting the decreasing maximal chains in D̂n(G,S), with
respect to the EL-labeling of Definition 3.3. Some of the arguments below are similar
to those of [DGP17, Section 5]. We first recall the notion of increasing ordered tree
[CN94, GSY95, Kla97, DGP17].

Definition 4.1. An increasing ordered tree is a rooted tree, with nodes in bijection
with a finite subset L ⊂ N of labels, such that:

• each path from the root to any leaf has increasing labels (in particular, the
root has label minL);

• for each node, a total order of its children is specified.

If L is not specified, it is assumed to be {0, 1, . . . , n} for some integer n ≥ 0.

0

1

2

0

1 2

0

2 1

Figure 1. All different increasing ordered trees on 3 nodes. The
second and the third tree differ in the total order of the children of the
root.

It is useful to introduce the following variant of increasing ordered trees, which
generalizes the q-blooming trees of [DGP17, Definition 9].

Definition 4.2. Let q, r ≥ 0 be integers. A (q, r)-blooming tree is an increasing
ordered tree with q extra indistinguishable unlabeled nodes appended to the root,
and r extra indistinguishable unlabeled nodes appended to each labeled node other
than the root. The extra unlabeled nodes are called blooms. The only thing that
matters about blooms is their position in the total order of the children of a node.
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0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

Figure 2. All different (2, 1)-blooming trees constructed from the
leftmost increasing ordered tree of Figure 1. These are 6 of the 18
different (2, 1)-blooming trees on 3 (labeled) nodes. Blooms are shown
as smaller black (unlabeled) nodes.

Blooms can be regarded as separators placed in the list of the children of a node.
See Figure 2 for a few examples.

Lemma 4.3. The number of (q, r)-blooming trees on n+ 1 (labeled) nodes is

n−1∏
i=0

(q + 1 + (r + 2)i).

Proof. The proof is by induction on n. For n = 0 there is only one (q, r)-blooming
tree, consisting of the root with q blooms attached to it. Let T be any (q, r)-blooming
tree on n nodes with n ≥ 1. The tree T has q+(n− 1)r blooms, so there are exactly
2n−1+q+(n−1)r positions where an additional node with label n can be attached
(together with its r new blooms) in order to obtain a (q, r)-blooming tree on n+ 1
nodes. Every (q, r)-blooming tree on n+ 1 nodes is obtained exactly once in this
way. □

For q = r = 0 one obtains the classical result [CN94, GSY95, Kla97] which states
that the number of increasing ordered trees on n+ 1 nodes is (2n− 1)!!.

Theorem 4.4 (Homotopy type of D̄n(G,S)). The order complex of the poset
D̄n(G,S) is homotopy equivalent to a wedge of

(−1)ϵ
n−1∏
i=0

(|S| − 1 + |G|i)
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(n− 1− ϵ)-dimensional spheres (where ϵ is defined in eq. (1)), except for the empty
poset D̄1({e},∅).

Proof. We want to compute the cardinality of the set D of the decreasing maximal
chains from 0̂ to 1̂ in D̂n(G,S). A chain γ ∈ D consists of:

• a sequence of non-coherent edges, labeled (2, ∗, ∗);
• then, a sequence of colored edges, labeled (1, ∗) with ∗ ≥ 2;
• finally, one edge labeled (1, 2).

Case 1: |G| = 1. In this case, non-coherent edges do not exist. Then a decreasing
chain γ ∈ D is determined by a permutation of [n] (which encodes the order in
which the elements of [n] are colored) and a decreasing sequence of n labels

(1, |S|) ≥ (1, h1) ≥ (1, h2) ≥ · · · ≥ (1, hn) ≥ (1, 2)

(which are to be assigned to the colored edges of γ). The number of decreasing
chains in Dn({e}, S) is therefore

n! ·
(
n+ |S| − 2

n

)
=

(n+ |S| − 2)!

(|S| − 2)!

if |S| ≥ 2, and 0 if |S| ≤ 1. From now on, assume |G| ≥ 2.

Case 2: |S| = 1. Every chain contains at least one colored edge which is labeled
(1, 1). Thus there are no decreasing chains.

Case 3: |G| ≥ 2 and |S| ≥ 2. We are going to construct a bijection ψ
between D and the set T of (|S| − 2, |G| − 2)-blooming trees on n+ 1 nodes. Let
S = {s1 < s2 < · · · < sm} and G \ {e} = {g1 < g2 < · · · < gk}. The idea is: for
every non-coherent merge of blocks A and B, there is an edge between minA and
minB; for every S-coloring of a block B, there is an edge between 0 and minB;
the blooms indicate when to stop using a certain si (or gi) and start using si−1 (or
gi−1).

The bijection ψ : D → T is defined as follows. Let γ ∈ D be a decreasing chain.
In order to construct the tree ψ(γ) ∈ T , start with a disconnected graph on n+ 1
vertices labeled 0, 1, . . . , n. Every time we say “attach the node u to the node v” we
mean “create an edge between v and u, so that u becomes the last child of v in the
total order of the children of v.”

First examine the colored edges along γ, in order. For each colored edge (x, y),
which colors a block B and has label λ(x, y) = (1, i), do the following.

(1) If the root (i.e. the node 0) has less than m− i blooms, attach a new bloom
to it; repeat this step until the root has exactly m− i blooms.

(2) Attach the node minB to the root.

Notice that, by monotonicity of the labels along γ, the number of blooms required
in step (1) is weakly increasing and it varies between 0 and m− 2.

Then examine the non-coherent edges along γ, in order. For each non-coherent
edge (x, y), which merges blocks A and B with minA < minB and has label
λ(x, y) = (2,minA, gi), do the following.

(1) If the node minA has less than k − i blooms, attach a new bloom to it;
repeat this step until the node minA has exactly k − i blooms.

(2) Attach the node minB to the node minA.

Again, by monotonicity of the labels along γ, the number of blooms required in step
(1) is weakly increasing and it varies between 0 and k − 1 = |G| − 2.



SHELLABILITY OF GENERALIZED DOWLING POSETS 11

1̂

[∅ ∥ 1s22g2·s23s34g1·s2 ]

[1e2g24g1 ∥ 3s3 ]

[1e2g24g1 | 3e ∥ ∅]

[1e2g2 | 3e | 4e ∥ ∅]

[1e | 2e | 3e | 4e ∥ ∅]

0

3 1

2 4

Figure 3. A decreasing chain (for n = 4, |G| = 3, and |S| = 5), and
the corresponding (3, 1)-blooming tree.

Attach new blooms to the tree, so that the root has m − 2 blooms and every
other labeled node has k − 1 blooms. Define ψ(γ) as the tree resulting from this
construction. See Figure 3 for an example.

To prove that ψ is a bijection, we explicitly define its inverse ψ−1 : T → D. Let
T ∈ T be a tree. Start with γ = (0̂) (a chain with one element). Consider the set of
couples

{(u, v) | u, v are labeled nodes of T , and v is a child of u},
totally ordered by: (u1, v1) < (u2, v2) if u1 > u2, or u1 = u2 and v1 comes before v2
in the total order of the children of u1 = u2. Each of the nodes 1, . . . , n appears
exactly once as the second entry of a couple (u, v). With (u, v) running through
this ordered set of couples, do the following.

• Let i be the number of blooms attached to u which come before v in the
total order of the children of u.

• If x ∈ Dn(G,S) is the last element of γ, construct y ·≻ x as follows.
– Case u > 0. Merge the block containing u and the block containing v

so that λ(x, y) = (2, u, gk−i).
– Case u = 0. Color the block containing v so that λ(x, y) = (1,m− i).

In both cases, the element y ·≻ x is uniquely determined by the given
conditions.

• Extend γ by adding y after x.

Extend γ once more, by adding 1̂ as the last element. Then ψ−1(T ) = γ.
By Lemma 4.3, the number of (|S| − 2, |G| − 2)-blooming trees on n+ 1 nodes is

n−1∏
i=0

(|S| − 1 + |G|i).

This is also the cardinality of D.

Case 4: S = ∅. Differently from before, in this case there are no colored
edges, and the zero blocks are always empty. Then D is in bijection with the set of
(|G| − 2, |G| − 2)-blooming trees on n vertices labeled 1, 2, . . . , n. The bijection is
constructed as in the case |S| ≥ 2, except that there is no special “node 0” anymore.
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[1e | 2e ∥ ∅]

[1e2e ∥ ∅] [1e2g ∥ ∅]

[∅ ∥ 1−2−][∅ ∥ 1+2+] [∅ ∥ 1+2−] [∅ ∥ 1−2+]

Figure 4. The Hasse diagram of P2(Z2, {+,−},∅) where Z2 acts
non-trivially on {+,−} (see Example 5.1).

By Lemma 4.3, the number of such trees is

n−2∏
i=0

(|G| − 1 + |G|i) =
n−1∏
i=1

(−1 + |G|i) = −
n−1∏
i=0

(−1 + |G|i).

This is also the cardinality of D. □

In the case of Dowling lattices Dn(G), obtained by setting |S| = 1, Theorem

4.4 is trivial because Dn(G) contains a top element (∅, ẑ). The subposet D̃n(G) =

Dn(G) \ {0̂, (∅, ẑ)} is shellable, and its order complex is homotopy equivalent to a

wedge of spheres in bijection with the decreasing chains from 0̂ to (∅, ẑ). By an
argument similar to that of Theorem 4.4, these decreasing chains are counted by
(0, |G| − 2)-blooming trees on n+ 1 vertices. By Lemma 4.3, their number is

n−1∏
i=0

(1 + |G|i).

A similar description of the generators of the homology of Dowling lattices was
given in [GW00, Section 4], in terms of labeled forests. The formula for the number
of generators was first found in [Dow73].

5. Shellability of subposets

We now turn our attention to the subposet Pn(G,S, T ) of Dn(G,S) introduced in
Section 2.1, where T is a G-invariant subset of S. Throughout this section, assume
n ≥ 2 (because P1(G,S, T ) = D1(G,T )) and |S| ≥ 1. Then rkPn(G,S, T ) = n.

Also, let P̄n(G,S, T ) = Pn(G,S, T ) \ {0̂}.
We are going to prove that Pn(G,S, T ) is shellable if G acts trivially on S \ T .

In general, however, Pn(G,S, T ) is not shellable. In the first part of this section we
construct a wide family of non-shellable examples (Proposition 5.6), whereas in the
second part we prove shellability if the G-action on S \ T is trivial (Theorem 5.8).
Let us start with two simple examples.

Example 5.1. Let G = Z2 = {e, g} act non-trivially on S = {+,−}, as in [BG18,
Example 2.2.3]. The Hasse diagram of P2(G,S,∅) is shown in Figure 4. The
order complex of P̄2(G,S,∅) is 1-dimensional and disconnected, therefore it is not
shellable. This example is a special case of Proposition 5.6 below. In view of
Theorem 5.8, this is the smallest non-shellable example.
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[1e | 2e ∥ ∅]

[1e2g ∥ ∅][1e2g2 ∥ ∅][1e2e ∥ ∅] [1e2g3 ∥ ∅]

[∅ ∥ 1−2−][∅ ∥ 1+2+] [∅ ∥ 1+2−] [∅ ∥ 1−2+]

Figure 5. The Hasse diagram of P2(Z4, {+,−},∅) where Z4 acts
non-trivially on {+,−} (see Example 5.2).

Example 5.2. Let G = Z4 = {e, g, g2, g3} act non-trivially on S = {+,−}. The
Hasse diagram of P2(G,S,∅) is shown in Figure 5. As in Example 5.1, the order
complex ∆ of P̄2(G,S,∅) is 1-dimensional and disconnected, therefore it is not
shellable. In this example, ∆ ≃ S1 ⊔ S1 is not even a wedge of spheres.

We are going to prove a “reduction lemma” that allows to construct a wide
family of non-shellable examples. At the same time, it gives interesting homotopy
equivalences between subposets of different S-Dowling posets.

Lemma 5.3 (Orbit reduction). Suppose that O ⊆ S \ T is a G-orbit with a trivial
stabilizer (i.e. |O| = |G|). Then there is a homotopy equivalence P̄n(G,S, T ) ≃
P̄n(G,S \O, T ).

Proof. Fix an element s̄ ∈ O. Since O has a trivial stabilizer, this choice induces a
bijection φ : G

∼=−→ O given by g 7→ g · s̄. We are going to construct a (descending)
closure operator f : Pn(G,S, T ) → Pn(G,S \ O, T ) ⊆ Pn(G,S, T ), i.e. an order-
preserving map satisfying f(x) ≤ x for all x ∈ Pn(G,S, T ).

Let x = (β̃, z) ∈ Pn(G,S, T ), and let Z be the zero block of x. Consider the
subset ZO = {i ∈ Z | z(i) ∈ O} of Z consisting of the elements colored by the orbit
O. To define f(x), remove ZO from the zero block and add B = ZO as a non-zero
block with G-coloring b = φ−1 ◦ z|ZO

:

f(x) = (β̃ ∪ {B̃}, z|Z\ZO
).

Notice that f does not depend on the initial choice of s̄ ∈ O. Indeed, different
choices of s̄ yield ∼ -equivalent G-colorings of B.

Clearly f(x) ≤ x, because either f(x) = x (if ZO = ∅) or x can be obtained from
f(x) by coloring the block B. Also, f is order-preserving:

• if (x, y) ∈ E(Pn(G,S, T )) is an edge of type “merge”, or is an edge of type
“color” which uses colors in S \O, then (f(x), f(y)) is an edge of the same
type;

• if (x, y) ∈ E(Pn(G,S, T )) is an edge of type “color” which uses colors in O,
then either x = f(x) = f(y) (if ZO = ∅ in x) or (f(x), f(y)) is an edge of
type “merge”.

In addition, f is the identity on Pn(G,S \O, T ), and so f is surjective.
In the definition of f(x), either f(x) = x (if ZO = ∅) or f(x) contains the block

B which has at least 2 elements (because O ⊆ S \ T ; see the definition of the

subposet Pn(G,S, T )). Therefore f−1(0̂) = {0̂}. Then f restricts to a surjective
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closure operator f̄ : P̄n(G,S, T ) → P̄n(G,S \O, T ). By [Bjö95, Corollary 10.12], f̄
induces a homotopy equivalence between the associated order complexes. □

Remark 5.4. The closure operator f of the previous proof also satisfies f2 =
f . Then, by [Koz06, Theorem 2.1], we actually have that the order complex of
P̄n(G,S, T ) collapses onto the order complex of P̄n(G,S \O, T ).

Remark 5.5. The combinatorics of P̄n(G,S, T ) is related to the topology of the
complement of an arrangement An(G,X) of singular subspaces in Xn. In this
sense an orbit O as in the statement of Lemma 5.3 is “redundant”, as it consists of
non-singular points. This provides a topological interpretation of Lemma 5.3.

Proposition 5.6. Let n ≥ 2 and |S| ≥ 1. Suppose that all the G-orbits in S \ T
have a trivial stabilizer. Then P̄n(G,S, T ) is homotopy equivalent to a wedge of
d-dimensional spheres with

d =

{
n− 1 if T ̸= ∅
n− 2 if T = ∅.

In particular, if |G| ≥ 2 and all the G-orbits in S have a trivial stabilizer, the poset
Pn(G,S,∅) is not shellable.

Proof. For the first part, a repeated application of Lemma 5.3 yields P̄n(G,S, T ) ≃
P̄n(G,T, T ) = D̄n(G,T ). Then the homotopy type of D̄n(G,T ) is given by Theorem
4.4. In particular, the dimension d of the spheres equals rkDn(G,T )− 1, which is
n− 1 for T ̸= ∅ and n− 2 for T = ∅.

For the second part, P̄n(G,S,∅) ≃ D̄n(G,∅). Since |S| ≥ 1, the poset Pn(G,S,∅)
has rank n. For Pn(G,S,∅) to be shellable, the order complex of P̄n(G,S,∅) must
be homotopy equivalent to a wedge of (n− 1)-dimensional spheres. The hypothesis
|G| ≥ 2 ensures that P̄n(G,S,∅) ≃ D̄n(G,∅) is a wedge of a positive number of
(n−2)-dimensional spheres (by Theorem 4.4). Then Pn(G,S,∅) is not shellable. □

The second part of this proposition yields a large family of examples of non-
shellable subposets of S-Dowling posets, generalizing Example 5.1. At the same
time it shows that this family is still well-behaved, as P̄n(G,S,∅) is homotopy
equivalent to a wedge of spheres.

We now prove that Pn(G,S, T ) is shellable if the G-action on S \T is trivial. This

generalizes [DGP17, Theorem 6]. Let P̂n(G,S, T ) = Pn(G,S, T ) ∪ {1̂} ⊆ D̂n(G,S).

For an element x = (β̃, z) ∈ Pn(G,S, T ), define S(x) ⊆ S as the image of the
coloring map z : Z → S. Consider the following edge labeling, which is a slightly
modified version of the edge labeling of Definition 3.3 (cf. [DGP17, Definition 6]).

Definition 5.7 (Edge labeling of P̂n(G,S, T )). Fix arbitrary total orders on S and
on G \ {e}. For a subset R ⊆ S, let R≤s = {r ∈ R | r ≤ s}. Let µ be the edge

labeling of P̂n(G,S, T ) defined as follows (A, B and C are as in Definition 3.1).

µ(x, y) =



(0, max(minA,minB)) if (x, y) is coherent

(2, minC, α(x, y)) if (x, y) is non-coherent

(1, |S(x)≤s|) if (x, y) is colored of a color s ∈ S(x)

(1, |S≤s ∪ S(x)|) if (x, y) is colored of a color s ̸∈ S(x)

(1, 2) if y = 1̂.
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The difference with the edge labeling λ of Definition 3.3 is in the labels of colored
edges: λ only depends on the color s, whereas µ favors colors which already belong
to S(x).

Theorem 5.8 (EL-shellability of subposets). Let n ≥ 2, and suppose that the G-
action on S \T is trivial. Then the edge labeling µ of Definition 5.7 is an EL-labeling

of P̂n(G,S, T ).

Proof. Since the edge labelings λ and µ almost coincide, most of the proof of
Theorem 3.5 also applies here. We refer to that proof (with its notations), and we

only highlight the differences. Let [x, y] be an interval in P̂n(G,S, T ).

Case 1: y = 1̂. The only difference is that, if k = ℓ and Z ̸= ∅, the edge
(pk−1, pk) is colored with color minS(x) (and not with color s1). This modification
assures that pk belongs to the subposet Pn(G,S, T ): if |Z| ≠ ∅, the color of the
edge (pk−1, pk) was already used in x; if |Z| = ∅, the edge (pk−1, pk) colors n ≥ 2
elements at the same time.

Case 2: y = (β̃′,∅), and β̃′ has only one non-singleton block B̃. In this
case the edge labelings λ and µ coincide, and [x, y] is also an interval of Dn(G,S).
Therefore the proof works without changes.

Case 3: y = (β̃′, z′), and all blocks of β̃′ are singletons. Here we only
have to show that the increasing chain γ = (x = p0 ≺· p1 ≺· · · · ≺· pk = y) is
contained in the subposet Pn(G,S, T ). Until the element pm ∈ γ, only coherent
edges are used, so pi ∈ Pn(G,S, T ) for i ≤ m. Suppose that pi ∈ Pn(G,S, T )

for some i ∈ {m,m + 1, . . . , k − 1}. We want to prove that pi+1 = (β̃′′, z′′) also
belongs to Pn(G,S, T ). The edge (pi, pi+1) is colored of some color s. If s ∈ T
then pi+1 ∈ Pn(G,S, T ) because no color of S \ T is added. If s ̸∈ T , the G-action
is trivial on s. Also, (pi, pi+1) is the only edge of γ with color s. Therefore every
other colored edge of γ has a color s′ ̸= s, and cannot create elements colored
by s (because s and s′ are in different orbits). Then z′ −1(s) = z′′ −1(s), and so
|z′′ −1(s)| = |z′ −1(s)| ≠ 1 because y ∈ Pn(G,S, T ). Therefore pi+1 ∈ Pn(G,S, T ).
By induction, the entire chain γ is contained in Pn(G,S, T ).

Case 4: y ̸= 1̂. The proof works without changes in this case. □

Remark 5.9. For T = S, Theorem 5.8 says that µ is an EL-labeling of D̂n(G,S).

Remark 5.10. Let G = Z2 act on S = {+,−, 0} by exchanging + and −. A

computer check shows that the order complex of the poset P̂3(G,S,∅) is shellable.

However, the edge labeling of Definition 2.1 is not an EL-labeling of P̂3(G,S,∅).

It seems difficult in general to derive an explicit formula for the number of
decreasing maximal chains in P̂n(G,S, T ). This was done in [DGP17, Section 5] for
posets of layers of arrangements defined by root systems (i.e. with G = Z2 acting
trivially on S, and |T | = 0, 1).

Lemma 5.3 and Theorem 5.8 yield the following strengthening of Proposition 5.6.

Theorem 5.11. Let n ≥ 2 and |S| ≥ 1. Suppose that all the G-orbits in S \ T
either have cardinality 1, or have a trivial stabilizer. Then P̄n(G,S, T ) is homotopy
equivalent to a wedge of d-dimensional spheres with

d =

{
n− 1 if T ̸= ∅ or at least one G-orbit is trivial

n− 2 otherwise.
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Proof. Remove all orbits of S \ T with a trivial stabilizer, by a repeated application
of Lemma 5.3. The remaining poset is shellable by Theorem 5.8, and thus it is
homotopy equivalent to a wedge of spheres. □
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