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m Hypodiploidy, defined as modal numbers (MNs) 45 or lower, has not been independently

S investigated in pediatric acute myeloid leukemia (AML) but is a well-described high-risk
) Hy podiploidy 'S. fo.und factor in pediatric acute lymphoblastic leukemia. We aimed to characterize and study the
in <2% of pediatric

AML. No patient had
modal number
below 43.

prognostic impact of hypodiploidy in pediatric AML. In this retrospective cohort study, we
included children below 18 years of age with de novo AML and a hypodiploid karyotype
diagnosed from 2000 to 2015 in 14 childhood AML groups from the International
Berlin-Frankfurt-Munster (I-BFM) framework. Exclusion criteria comprised constitutional
hypodiploidy, monosomy 7, composite karyotype, and t(8;21) with concurring sex
chromosome loss. Hypodiploidy occurred in 81 patients (1.3%) with MNSs, 45 (n = 66); 44

. . (n =10) and 43 (n = 5). The most frequently lost chromosomes were chromosome 9 and sex
aggravating prognosis ) . .
in patients with modal chromosomes. Five-year event-free survival (EFS) and overall survival (OS) were 34% and
number 43 to 44. 529%, respectively, for the hypodiploid cohort. Children with MN<44 (n = 15) had inferior
EFS (21%) and OS (33%) compared with children with MN = 45 (n = 66; EFS, 37%; OS, 56%).
Adjusted hazard ratios (HRs) were 4.9 (P = .001) and 6.1 (P = .003). Monosomal karyotype or
monosomy 9 had particular poor OS (43% and 15%, respectively). Allogeneic stem cell
transplantation (SCT) in first complete remission (CR1) (n = 18) did not mitigate the
unfavorable outcome of hypodiploidy (adjusted HR for OS was 1.5; P = .42). We identified
pediatric hypodiploid AML as a rare subgroup with an inferior prognosis even in the
patients treated with SCT in CR1.

» Poor survival is
observed in
hypodiploid AML with
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Introduction

Pediatric acute myeloid leukemia (AML), comprising 15% to 20% of
childhood leukemias,' is a rare and highly heterogenous disease
entity. A variety of morphological, immunological, and genetic features
have been incorporated within the World Health Organization (WHO)
classification of hematological disorders.** Although there is
general agreement on favorable prognostic factors of recurrent
genetic lesions such as (8;21)(q22;922), t(15;17)(q21;921), and
inv(16)(p13;922)/t(16;16)(p13;q22), data regarding high-risk features
for pediatric AML are conflicting.*® Cytogenetic aberrations provide a
robust prognostic parameter in risk-adapted treatment regimens, and
around 25% of children with AML harbor chromosomal abnormalities
considered as high-risk markers.>® Risk stratified treatment protocols
refined by international collaborations have prominently improved the
outcome in pediatric AML with 5-year event-free survival (EFS) and
overall survival (OS) reaching 55% and 75%, respectively.”'®

The International Berlin-Frankfurt-Miinster AML Study Group (I-BFM-
AML SG) has previously studied genetic subsets (eg, t(6;9)/
DEK::NUP214, t(16;21), monosomy 7/del7q, 11g23 rearrange-
ments).'®' Hypodiploid pediatric acute lymphoblastic leukemia (ALL)
occurring in ~5% of patients may be categorized in high hypodiploidy
(40-44 chromosomes), low hypodiploidy (30-39 chromosomes), and
near haploidy (24-29 chromosomes) with especially low hypodiploidy
and near haploidy portending inferior survival rates.>>>* However,
hypodiploidy in AML has not been independently investigated owing
to its rarity but may constitute a high-risk factor.”**°

Biological and clinical characteristics of hypodiploidy in pediatric
AML remain poorly defined but may add information for future
guidance of optimal treatment stratification.'* This study aimed to
elucidate the occurrence, genetic characteristics, and prognostic
impact of hypodiploidy in a large international cohort of pediatric
patients with AML.

Methods
Patients

All study groups affiliated with the I-BFM-AML SG were invited to
participate in this retrospective cohort analysis. In addition to data
regarding patient characteristics, laboratory results (cytogenetic
and molecular tests including karyotype and fluorescence in situ
hybridization [FISH]), and outcome, the study groups were
requested to provide the number of patients with AML with full
karyotyping within the study period to assess the frequency of
hypodiploidy. Patients from study groups with no information on full
number of karyotyped patients were excluded from calculation of
hypodiploidy frequency (n = 7).

Children below the age of 18 years diagnosed with de novo AML
between January 2000 and December 2015 and a hypodiploid
karyotype were considered eligible for the study. Children with
either acute promyelocytic leukemia, Down syndrome, juvenile
myelomonocytic leukemia, AML secondary to bone marrow failure
syndromes or therapy-related AML were excluded.

Cytogenetics

Karyotyping was performed according to standard chromosome
banding techniques and at least 10 metaphases were analyzed per
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case.”® Karyotype strings were made according to International
System for Human Cytogenomic Nomenclature (ISCN).”” Hypo-
diploidy is defined as a modal number (MN) between 35 and
45 (both numbers included) when fulfilling criteria for clonality
(hypodiploidy present in minimum 3 metaphases). Ploidy was
assigned according to the lowest MN for karyotypes with multiple
clones. Hypodiploidy can result from 3 mechanisms: (1) pure
numerical, ie, whole chromosome loss; (2) unbalanced structural
rearrangements (derivatives/dicentric [Der/dic] chromosomes); or
(8) a combination of the 2 mechanisms. Hypodiploid karyotypes
irrespective of underlying mechanism were included. Monosomal
karyotype (MK) was defined as either at least 2 autosomal mono-
somies or 1 single autosomal monosomy in combination with at
least 1 structural abnormality and absence of core-binding factor
(CBF) abnormalities.”®”® For complex karyotype (CK), varying
definitions exists.”®°%%? We used a commonly agreed definition of
CK being characterized by the presence of at least 3 independent
chromosomal aberrations irrespective of being of structural or
numerical origin and absence of recurrent aberrations as defined
by the WHO.?3** The clone with the highest number of aberra-
tions defined the complexity status.

Composite karyotype and constitutional hypodiploidy including
Robertsonian translocations of constitutional origin were excluded.
Because sex chromosome loss along with t(8;21) does not affect
the superior prognosis of the CBF abnormality, t(8;21) with
sex chromosome loss was excluded (regardless of other mono-
somies).>*>*® Loss of chromosome 7 (regardless of other
aberrations) was also excluded as monosomy 7 is a well-
recognized high-risk marker with or without other aberrations."”

All karyotype reports were centrally reviewed according to ISCN
(2016) by a hematological cytogenetic specialist (E.K) and a
trained researcher (A.S.H). Results from FISH and molecular tests
were considered and included, when available, as the molecular
landscape of pediatric AML has previously been investigated
and molecular genetics is becoming increasingly important.®” All
clonal aberrations of included patients are listed in supplemental
Table 1.

Statistical analysis

Complete remission (CR) was defined as <56% blasts in the bone
marrow, with hematopoietic regeneration of normal hematopoiesis
and absence of extramedullary disease. Relapse was defined as
>5% bone marrow blasts, reappearance of blasts in peripheral
blood or development of extramedullary disease in patients who
had reached CR. For comparison of clinical characteristics, the
Wilcoxon rank sum test, x2 test, or Fisher exact tests were used.
EFS was calculated from either date of diagnosis to first occurring
event (ie, death in remission, relapse, evidence of refractory dis-
ease, or secondary malignancies) or date of last follow-up.
Refractory disease was considered an event at day 0. OS was
calculated from either the date of diagnosis to the date of death
because of any cause or date of last follow-up. Cumulative inci-
dence of relapse (CIR) was defined as the probability of a relapse
occurring within a given time after diagnosis and estimated using
pseudovalues with death as a competing risk.

Survival estimates (EFS and OS) with 95% confidence intervals
(95% CI) and impact of prognostic factors were calculated by the
Kaplan-Meier method and compared by the log-rank test. The Cox
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Figure 1. Flowchart of included patients. Clinical and cytogenetic data from 112 children were provided. After cytogenetic review, 81 patients were included. The main

exclusion reason was composite karyotype followed by no hypodiploidy. Numbers in () denotes number of patients.

proportional hazard regression was used for multivariate analyses
with FLT3-ITD, sex, CK, and white blood cell (WBC) count as
covariates. To investigate the characteristics and outcome of
decreasing MN, we divided our cohort into 2 groups: children with
MN 45 and children with MNs 43 to 44. Missing data for FLT3-ITD
was not addressed by multiple imputation because all patients with
FLT3-ITD mutation had MN 45. Multivariate analyses were thus
performed on cases with available FLT3-ITD information only.

The effect of stem cell transplantation (SCT) on OS was estimated
by the Mantel-Byar method considering SCT in first remission a
time-dependent event.*® P-values were 2-sided and statistical
significance level was set at 0.05. All analyses were performed
using Stata/IC 15.1 for Mac (StataCorp, College Station, TX).

Results
Patient characteristics

Fourteen collaborative study groups (supplemental Table 2)
covering 20 countries (Austria, Czech Republic, Denmark, Finland,
France, Germany, Greece, Hong Kong, Hungary, Iceland, Israel,
Italy, Japan, Lithuania, The Netherlands, Norway, Poland, Slovenia,
Sweden, and the United States) participated. Clinical and cyto-
genetic data from 81 children fulfilled the inclusion criteria, shown
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in Figure 1. Seven patients were excluded from the frequency
analysis owing to missing information on total number of patients
from the study groups. Thus, 74 of 5586 pediatric patients with
AML harbored a hypodiploid karyotype defined according to our
inclusion criteria, yielding a frequency of 1.3%.

The clinical, morphological, cytogenetic, and genetic charac-
teristics for the cohort are presented in Table 1. The cohort had
an even sex distribution and a median age of 6 years (range,
0-17). The median WBC count at diagnosis was 16 x 10°/L
(range, 0.9-353).

Two MN groups were defined: children with MN 45 (66 patients,
81%) and children with MNs 43 to 44 (15 patients, 19%; of whom
10 patients had MNs 44 and 5 had MN 43). No patient had a MNs
of 42 or lower. Children with MN 45 predominantly displayed FAB
classification morphology M2 (n = 17, 26%), M4 (n = 11, 17%),
and M5 (n = 13, 20%), whereas children with MNs 43 to 44
showed preponderance of the minimally differentiated MO (n = 4,
27%) and M1 (n = 3, 20%) (Table 1). For further clinical charac-
teristics regarding MN groups, refer to Table 1.

Nine children (11%) had verified CNS involvement. Children with
MNs 43 to 44 were significantly more likely to have CNS involve-
ment (33% vs 6%; P = .01).
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Table 1. Baseline characteristics

Modal number < 44, (n = 15)

Modal number = 45, (n = 66)

Total (n = 81)

n (%)

n (%)

n (%)

Sex (male/female)

Median age (range)

Median WBC at diagnosis (10°/L) (range)
Median PB blast % at diagnosis, (range, n)
Median BM blast % at diagnosis, (range, n)

Median platelet count at diagnosis (10°/L) (range, n)

FAB type
Mo
M1
M2
M4
M5
Mé
M7
Other/missing
CNS involvement
Yes
No
No data
Extramedullary disease
Yes
No
No data
Stem cell transplantation
CR1
After relapse
No data (not CR1)
Cytogeneticst and genetics
1(8;21)
inv(16)/t(16;16)
1(6;9)
1(9;11)
Other 11q23+
Complex karyotype
Monosomal karyotype
FLT3-ITD (n %, 54 tested)
TP53 (n %, 29 tested)
Event status

No event

Induction death, death in CR

Refractory disease

Relapse

Secondary malignancy
Qutcome, n (%) (95% CI)

5-year EFS

5-year OS

10/5 (67/33)

9 (1-17)
13.8 (2.4-315)
46.5 (0-90, 13)

80 (38-99, 13)

73 (34-121, 14)

4 (27)
3 (20)
2 (13)
1(7)
2 (13)
0 (0)
1(7)
1/1 (7/7)

4 (27)
11 (73)

0 (0)

1(7)
13 (87)
14 (93)

0 (0, 10 tested)

0 (0, 5 tested)

4 (27)
2 (13)
1(7)
8 (563)
0 (0)

21 (4-46)

33 (10-569)

32/34 (48/52)
6 (0-17)
16.6 (0.9-353)
45 (0-100, 59)
74 (3-100, 57)
74 (5-359, 60)

1(2)
5 (8)
35 (563)
44 (67)
4 (9, 44 tested)

1 (4, 24 tested)

37 (24-49)

56 (42-68)

42/39 (52/48)
6 (0-17)
16.13 (0.9-353)
46 (0-100, 73)
75.5 (3-100, 70)
74 (5-369, 74)

9 (11)

1(1)
5 (6)
5/6 (6/7)

11(14)
67 (83)
3(4)

18 (22)
15 (19)
4 (5)

7 (8)
48 (59)
58 (72)
4 (7, 54 tested)

1 (3, 29 tested)

Baseline characteristics have been listed for entire cohort and by modal number.
BM, bone marrow; CNS, central nervous system; CR1, first complete remission; inv, inversion; PB, peripheral blood; FAB, French-American-British.

*P < .05.

1Only occurring WHO aberrations listed.

#Not all FISH verified.
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Cytogenetics

Hypodiploidy resulted from whole chromosome losses in 57 (70%)
patients, of whom 8 (10%) had a chromosome loss as the sole
abnormality. Figure 2 presents the frequency of specific chromo-
some losses. Of patients with hypodiploidy purely because of
whole chromosome loss, 49 of 57 (86%) had additional structural
abnormalities and 15 of 57 (26%) had >1 chromosome loss. In
total, 17 of 81 (21%) patients were hypodiploid because of
derivative or dicentric chromosomes and 7 of 81 (8%) patients had
hypodiploidy caused by both whole chromosome loss and deriva-
tive/dicentric rearrangements. Twelve patients (15%) had gain of
chromosomal material, Figure 2B.

Of the 15 children with MNs 43 to 44, 8 (563%) was hypodiploid solely
because of whole chromosome loss, 3 (20%) because of derivative/
dicentric rearrangements, and the remaining 4 (27%) harbored both
whole chromosome loss and derivative/dicentric rearrangements.

Numerical and structural aberrations

Chromosome Y was the most frequently lost chromosome (n =
12), and 3 patients had a missing chromosome Y as the only
abnormality. Other frequently lost chromosomes were chromo-
some 9 (n = 11) and chromosome X (n = 8, all females) (Figure 2).
Loss of chromosome 9 was significantly associated with MNs 43 to
44 (P = .01). No patients showed a loss of chromosome 1 or 2.
Loss of chromosomes X, Y, 8, 19, and 21 occurred unaccompa-
nied by structural aberrations. Of structural aberrations, del7q and
del9q were each found in 4 patients (5%). With the exception of 1
patient with MN 44 and t(9;11)(p12;923), all WHO recurrent
aberrations (listed in Table 1) occurred in children with MN 45.
One karyotype (45, XY, -10, -11, +mar) was observed in 2 patients.
In addition, 1 other patient had concurring loss of chromosome 10
and 11. Notably, no FISH was available for such cases to rule out a
KMT2A rearrangement.

Complex and monosomal karyotype

Fifty-eight patients (71%) were classified as MK and 48 (59%) as
CK, of which 46 patients (57%) qualified for both MK and CK (CK/
MK). Figure 3 shows the distribution of patients according to CK/
MK status as well as the extensive overlap between the groups.
Twenty-one patients (26%) displayed neither CK nor MK (non-CK/
non-MK), 12 patients showed MK without CK (non-CK/MK) and 2
patients (2%) had CK without MK (CK/non-MK). Of the 15 children
with MNs 43 to 44, 13 (85%) harbored CK.

Molecular genetics

We investigated available molecular data (NRAS, KRAS, KIT,
FLT3-TD, and TP53) and correlation to MN. Data regarding
NRAS, KRAS, and KIT were sparse (supplemental Table 3). Fifty-
four patients (67%) had available FLT3-ITD information. Four of
these patients (7%) harbored a FLT3-ITD mutation, all with MN 45.
Regarding TP53, 29 patients (36%) had available information. The
only TP53 mutation was found in a child with MN 45. Unfortunately,
it was not possible to establish a germline status.

Prognosis

Median follow-up time for patients alive was 4.5 years (range,
0.2-15.3). Seventy-four children (91%) achieved CR after induction
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therapy. Thirty-eight children relapsed, yielding a CIR of 50% with a
median of 9.2 months from diagnosis to relapse. Twenty-seven of
the relapses (71%) occurred within the first year of diagnosis.
Twelve children (32%) experiencing leukemia relapse were alive at
the end of follow-up. The 5-year EFS and OS for the entire cohort
(n = 81) were 34% (95% ClI, 23-45) and 52% (95% ClI, 40-63),
respectively. The 5-year EFS and OS for patients with available
FLT3-ITD status (n = 54) were 35% (95% CI, 22-49) and 52%
(95% Cl, 37-67), respectively.

Children with MNs 43 to 44 showed inferior EFS (21% [95% ClI, 4-
46] vs 37% [95% CI, 24-49]; P=.07) and OS (33% [95 % CI, 10-
59] vs 56% [95 % CI, 42-68]; P=.1) compared with children with
MN 45, though the differences did not reach statistical significance
(Figure 4). Fifty-four patients with FLT3-ITD data were included in
the multivariate analysis (44 with MN 45, 5 with MN 44, and 5
with MN 43). All 5 children with MN 43 experienced relapse,
subsequently leading to death of 4 children. MNs 43 to 44 were
independent predictor of an inferior EFS (crude HRgrs for patients
with information on FLT3-ITD, 3.1 [95% Cl, 1.4-6.8], P=.005; and
adjusted HRgrs, 4.9 [95% CI, 1.8-13.0], P=.001) and OS (crude
HRos for patients with information on FLT3-ITD, 3.2 [95% ClI,
1.3-7.8], P = .01; and adjusted HRgps, 6.1; 95% CI, 1.8-20.2;
P = .003). Crude HRgrs and HRgg for the entire cohort were 1.8
(95% CI, 0.9-3.6) and 1.9 (95% CI, 0.9-4.0), respectively.

Patients with loss of chromosome Y (n = 12) tended to have a
better prognosis compared with other male patients (supplemental
Figure 1). Loss of chromosome X (n = 8, all female) showed inferior
EFS compared with other female patients (supplemental Figure 2),
however not reaching statistical significance. Poor survival rates
were observed in patients with monosomy 9, monosomy 10, and
monosomy 16. Survival estimates for the most common chromo-
some losses are shown in Table 2.

Children with CNS involvement had significantly worse EFS (11%
[95% CI, 1-39] vs 40% [95% ClI, 28-52]; P = .04), primarily
because of relapse (n = 7).

Comparable EFS was observed in patients with CK (31%; 95% ClI,
17-46) and patients with non-CK (38%; 95% ClI, 21-565; P = .28).
OS was lower for patients with CK (39%, 95% Cl, 23-55)
compared with patients with non-CK (68%; 95% CI, 49-81;
P =.058). MK showed nonsignificantly worse EFS (27%; 95% Cl,
14-40; P=.052) compared with patients with non-MK (50%; 95%
Cl, 28-69; P = .052). OS was significantly worse in patients with
MK (43%; 95% ClI, 28-56) compared with patients with non-MK
(75%; 95% ClI, 50-87; P = .03). Outcomes for non-CK/non-MK,
CK/MK, and MK/non-CK were dichotomously compared, and
survival curves are presented in Figure 3B,3C. Only 2 patients
displayed CK/non-MK and were not independently evaluated.
Children with non-CK/non-MK (n = 21) had better EFS (51%
[95% CI, 28-70] vs 27% [95% CI, 15-41]; P = .06). OS for
patients with non-CK/non-MK was significantly superior to that of
the remaining patients (76% [95% CI, 51-89] vs 43% [95% CI,
29-56]; P=.02). Children with MK/CK (n = 46) had EFS similar to
the rest of the cohort (30% [95% CI, 16-45] vs 38% [95% CI,
22-55]; P=.25) but displayed a dismal OS (39% [95% CI, 23-55]
vs 67% [95% CI, 48-80]; P = .07). Children with MK/non-CK
(n = 12) displayed poor EFS compared with the remaining
cohort (14% [95% CI, 1-43] vs 37% [95% CI, 25-49]; P = .31).
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This did not translate into inferior OS (565% [95% CI, 23-78] vs
51% [95% CI, 38-63]; P =.73).

Three of 4 patients with FLT3-ITD did not survive, 2 experienced
relapse and subsequently died, and 1 died of SCT-related causes.
The patient with TP53 mutation experienced relapse and died of
SCT-related causes.

Thirty-seven children (46%) were treated with SCT, either in CR1
(n=18) or after relapse (n =19). SCT in CR1 did not translate into
superior survival with HR 1.4, (95% ClI, 0.65-3.02; P=.39) and 1.5
(95% ClI, 0.54-4.33; P = .42) in crude and adjusted analyses,
respectively. Exclusion of children never reaching CR1 (n = 7) did
not significantly change HR (HR, 1.8; 95% CI, 0.62-5.47; P=.27).
Children with MNs 43 to 44 and MN 45 were equally likely to
receive SCT in CR1 (P=.4). A total of 9 children died after SCT in
CR1, 3 died of SCT-related toxicities, and 6 suffered from relapse
and subsequently died of disease progression.

Discussion

In this large I-BFM based series of pediatric patients with AML with
complete karyotyping, hypodiploidy defined as an MN between 35
and 45 and absence of monosomy 7 and t(8;21) with sex chro-
mosome loss occurred infrequently (1.3%) but was associated
with an inferior outcome, especially with MNs 43 to 44.

Patients with MNs of 45 or lower had inferior survival rates and a
higher CIR as compared with the same outcome measures
reported from pediatric AML cohorts within the last 2 decades.® In
particular, children with MNs 43 to 44 had a poor prognosis, which
remained inferior compared with MN 45 in multivariate analyses.
The proportion of excluded patients because of missing FLT3-ITD
information was comparable between the 2 MN groups. In the
cohort with complete mutation status, the HR of an inferior
outcome in patients with MNs 43 to 44 was increased and
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remained statistically significant after adjustment for relevant
covariates and was thus independently associated with an inferior
outcome. Consolidation with SCT in CR1 did not improve the
outcome. However, because we did not have detailed information
on SCT indication, there might be a selection of poor responders
or poor genetics among patients treated with SCT, and the study is
small. Reduced EFS and OS were also observed in hypodiploid
ALL with decreasing survival with lower MN?° and similar to AML
SCT, did not improve survival.***'

Despite being the largest study of hypodiploidy in pediatric AML to
date, the cohort may be too small to demonstrate significant dif-
ferences in outcome. The size of the study limits the number of
covariates applicable for multivariate analyses, and hence the
dataset neither allowed adjustment for all high-risk features nor did
it allow us to stratify the patients based on all established
co-occurring translocations. Furthermore, the patients were treated
with 12 different protocols over a 16-years timespan and were
subjected to various risk stratification and treatments that may
influence the prognosis. However, in addition to our findings of
hypodiploidy, this study also demonstrates the importance of suc-
cessful international collaboration while investigating rare entities in
pediatric AML.

Although being a standardized method to investigate aberrant
clonality, the use of standard G-band karyotyping may have missed
relevant rearrangements. Molecular aberrations detectable by
next-generation sequencing or copy number aberrations detected
by aCGH/SNP analyses with possible influence on prognosis were
not included in this study because of lack of information but may be
associated with chromosome loss.””> Cytogenetic investigation
does, however, remain relevant in risk stratification.*> Furthermore,
it was not always possible to distinguish partial chromosome loss
from complete chromosome loss without elaborate array data.
Especially for derivative or dicentric rearrangements this presented
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Table 2. Survival estimates for specific chromosome losses

Group (n) EFS, % (95% CI) 0S, % (95% CI)
Loss of chromosome Y (12) 58 (27-80; P=.19) 75 (41-91; P=.23)
Loss of chromosome X (8) 19 (1-54; P=.87) 31 (2-72; P=.89)
Loss of chromosome 9 (11) 14 (1-48; P=.12) 15 (1-47; P=.12)
Loss of chromosome 10 (5) 20 (1-58; P=.24) 20 (1-58; P=.054)
Loss of chromosome 16 (5) 25 (1-67; P=.36) 25 (1-67; P=.16)

a challenge. Thus, some monosomies may only represent partial
chromosome loss.

Hypodiploidy has previously been observed in ~10% of pediatric
patients with AML®?*°° limited to MN 45 and less frequently 44
and 43°%% though lower MNs have been reported (MN, 41 and
387*%). We excluded hypodiploidy caused by the most frequent
chromosome losses, namely monosomy 7 and sex chromosome
loss with t(8;21) because both are well described'”*® and would
dominate the present series if included. Furthermore, we excluded
composite karyotypes (n = 21) because the karyotype does not
allow identification of the precise MN. We observed no cases with
MNs below 43, a finding contrasting hypodiploid ALL, in which
patients may harbor near-haploid karyotypes.”®*’

Previous studies showed that chromosome 7 is the most frequently
lost autosome and is associated with a poor prognosis in both
children and adults.>'”**3® Monosomy 5 is considered a high-risk
marker in adult AML*® but has only been reported in a limited
number of pediatric patients.*® We found only 2 patients with
monosomy 5, supporting previous reports of its rarity among chil-
dren.®*® A study comprising 24 patients with monosomies
(monosomy 7, favorable cytogenetics and KMT2A rearrangements
not investigated) reported no difference in outcome compared with
the rest of their cohort® but did not account for MN. We show that
loss of the chromosomes 9 (n = 11), 10 (h =5), and 16 (n = 5)
may be associated with a poor prognosis. Two patients with
monosomy 16 had additional t(16;21)(p11;922) (FUS:ERG),
which is associated to poor outcome.'® Loss of chromosome 9
was significantly associated to MNs below 45, suggesting that loss
of this specific chromosome may indicate distinct genetic instability
and a poor prognosis. Monosomy 9 is also observed in bladder
cancer and in high—grade renal clear cell carcinomas in which it
correlates to an inferior prognosis and disease recurrence.*”*® In
our cohort 8 of 11 patients with monosomy 9 experienced disease
relapse.

Only 3 patients with CBF aberrations [(1(8;21), t(16;16), inv(16)]
and a hypodiploid karyotype were observed, indicating that hypo-
diploidy because of autosomal chromosome loss or derivative
rearrangements in CBF leukemia is rare. All patients with CBF
leukemia survived and only 1 experienced relapse. All patients with
CBF had MN 45, but exclusion of the patients had minimal effect
on the multivariate analyses.

Loss of a sex chromosome is associated with CBF aberration
1(8;21)(q22;922.1)7%® and is a frequent finding not aggravating the
favorable outcome among these patients.®° It is remarkable that
loss of sex chromosome has been reported to occur in 45% of
1(8;21)%° whereas it is almost completely absent in inv(16) AML
with none identified in the present study. In our cohort, loss of a sex
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chromosome influenced prognosis in diverging directions with loss
of chromosome Y displaying good outcome, whereas loss of
chromosome X presenting inferior survival. Loss of chromosome Y
in AML with t(8;21) may tend to have a better outcome than loss of
chromosome X with t(8;21),%° supporting our findings of distinct
consequences of loss of a sex chromosome in patients without
CBF abnormalities.

MK has adverse effect on EFS in pediatric AML,?>*? and CK may
have adverse outcome.®®2%*? |n this study, we found MK to be a
significant predictor of poor outcome for OS in patients with
hypodiploidy Similarly, MK is associated with adverse prognosis in
adult AML.?®?° Other studies have examined MK in pediatric AML
and found low EFS and high CIR, but minimal impact on 0S%°%2
and hypodiploidy did not have an adverse prognosis independent
of MK.?®> However, none of these studies focused exclusively on
MN and also included t(8;21) with sex chromosome loss, mono-
somy 7, and composite karyotypes. CK was common (48 patients,
59%) among hypodiploid pediatric patients, consistent with
observations among adults®' and displayed inferior survival. In
agreement with previous observations,>> we found that MK without
CK did not affect OS, suggesting that karyotype complexity may
aggravate the adverse impact of chromosome loss.

FLT3-ITD is associated with a poor outcome*®®® and is an infre-

quent finding in patients with chromosome loss.?**? Our findings
with only 4 of 54 patients harboring the mutation support the rare
occurrence of FLT3-ITD in patients with chromosome loss.

Germline TP53 alterations have been observed in the most chil-
dren with low-hypodiploid ALL.**°"°2 In adult AML, TP53 muta-
tions occur regularly as acquired mutations but may be
germline®*®* and have been associated with CK and monosomy
5,455556 TP53 alterations in pediatric AML are rarely observed.®’
Only 1 of our 29 patients with available information harbored a
TP53 mutation, indicating that the association found between low
hypodiploid pediatric ALL and TP53 mutations is not mirrored in
hypodiploid pediatric AML.

Measurable residual disease (MRD) is valuable for evaluation of
treatment response and is a strong indicator of prognosis useful for
risk group assignment.'’®”®® An investigation of correlation
between hypodiploidy and MRD could be of interest, because
MRD has been proven a strong prognostic indicator in hypodiploid
ALL.°° The MRD response for this cohort was, however, not
available.

In conclusion, this successful international collaborative study
demonstrates that hypodiploid pediatric AML, albeit rare, is a
clinically relevant aberration with a dismal outcome. Patients with
hypodiploidy, especially children with MNs 43 to 44, may benefit
from more accurate risk stratification, ie MRD treatment response
evaluation and novel therapy is needed as not all patients with
hypodiploidy benefit from SCT in CR1. Loss of chromosome Y
should not independently determine allocation to high-risk regi-
mens. The strong association found between TP53 mutations and
low-hypodiploid ALL was not reflected in this cohort of pediatric
patients with AML. Evaluation of pediatric patients with AML with
hypodiploid karyotypes in an international, prospective study sup-
ported by extended molecular analyses, and MRD techniques may
provide further insights into this rare disease entity and optimal
treatment schedules.
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