
P
o
S
(
I
C
H
E
P
2
0
2
2
)
2
4
3

Accelerating Machine Learning inference using FPGAs:
the PYNQ framework tested on an AWS EC2 F1

Marco Lorusso,𝑎,𝑏,∗ Daniele Bonacorsi,𝑎,𝑏 Davide Salomoni,𝑏,𝑐 Riccardo
Travaglini,𝑎,𝑏 Diego Michelotto,𝑐 Doina Cristina Duma𝑐 and Paolo Veronesi𝑎
𝑎INFN Bologna,
viale Berti Pichat 6/2, Bologna, Italy

𝑏Department of Physics and Astronomy, University of Bologna,
viale Berti Pichat 6/2, Bologna, Italy

𝑐INFN CNAF,
viale Berti Pichat 6/2, Bologna, Italy
E-mail: marco.lorusso11@unibo.it, daniele.bonacorsi@unibo.it,
d.salomoni@unibo.it, riccardo.travaglini@bo.infn.it,

diego.michelotto@cnaf.infn.it, doinacristina.duma@cnaf.infn.it,

paolo.veronesi@bo.infn.it

In the past few years, using Machine and Deep Learning techniques has become more and more
viable, thanks to the availability of tools which allow people without specific knowledge in the
realm of data science and complex networks to build AIs for a variety of research fields. This
process has encouraged the adoption of such techniques, e.g. in the context of High Energy
Physics. In order to facilitate the translation of Machine Learning (ML) models to fit in the usual
workflow for programming FPGAs, a variety of tools have been developed. One example is the
HLS4ML toolkit, which allows the translation of Neural Networks (NN) built using tools like
TensorFlow to a High-Level Synthesis description (e.g. C++) in order to implement this kind of
ML algorithms on FPGAs.
This paper presents the activity running at the University of Bologna and INFN-Bologna devoted
to preliminary studies for the trigger systems of the Compact Muon Solenoid experiment at
the CERN LHC accelerator. An open-source project from Xilinx called PYNQ is being tested
combined with the HLS4ML toolkit. The PYNQ purpose is to grant designers the possibility to
exploit the benefits of programmable logic and microprocessors using the Python language. The
use of cloud computing in this work allows us to test the capabilities of this workflow, from the
creation and training of a Neural Network and the creation of a HLS project using HLS4ML, to
managing NN inference with custom Python drivers.
The main application explored in this work lives in the context of the trigger system of the CMS,
where new reconstruction algorithms are being developed due to the advent of the High-Luminosity
phase of the LHC.

41st International Conference on High Energy physics - ICHEP2022
6-13 July, 2022
Bologna, Italy

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:marco.lorusso11@unibo.it
mailto:daniele.bonacorsi@unibo.it
mailto:d.salomoni@unibo.it
mailto:riccardo.travaglini@bo.infn.it
mailto:diego.michelotto@cnaf.infn.it
mailto:doinacristina.duma@cnaf.infn.it
mailto:paolo.veronesi@bo.infn.it
https://pos.sissa.it/


P
o
S
(
I
C
H
E
P
2
0
2
2
)
2
4
3

Accelerating ML inference using FPGAs: PYNQ tested on an AWS EC2 F1 Marco Lorusso

1. Field Programmable Gate Array

Field Programmable Gate Arrays (FPGAs) [1, 2] are devices that implement circuits just like
hardware, providing huge power, area and performance benefits over software, yet they can be
reprogrammed cheaply and easily to implement a wide range of tasks.

Because customizing an FPGA involves storing values to the memory bits that control every
routing choice, the creation of an FPGA based circuit is a process of creating a bitstream to load
into the device. This is usually done starting with an application written in a hardware description
language (HDL), such as VHDL or Verilog, however in this work a "higher-level" approach is
followed, using tools and libraries that make it possible to finalize a FPGA design starting from a
behavioural description written in C++ or, in the case of Neural Networks, in Python.

1.1 AWS EC2 F1 Instance

In order to test the capabilities of the implementation workflow presented in this work, cloud
computing resources, more specifically Amazon Web Services’ EC2 F1 instances, equipped with
Xilinx FPGA acceleration cards, have been used. F1 instances are equipped with tools to develop,
simulate, debug, and compile a hardware acceleration code, including an FPGA Developer Amazon
Machine Image (AMI) which supports a range of development environments suited for low-level
hardware developers, as well as software developers who are more comfortable with C/C++ and
OpenCL environments. Once an FPGA design is complete, it can be registered as an Amazon
FPGA Image (AFI), and deployed to every F1 instance needed.

2. The Implementation of a NN on FPGA

Improving the transverse momentum measurement performed by the Compact Muon Solenoid
(CMS) muon Level-1 trigger, namely the momentum resolution, is very important to achieve a
reduction of trigger rates. In fact, due to the rapidly decreasing shape of the inclusive muon 𝑝𝑇

spectrum, even a relatively small reduction of the resolution can provide a significant decrease of
the trigger rate at a given 𝑝𝑇 threshold, by reducing the number of low momentum muon candidate
misidentified as high momentum ones. This becomes particularly pressing in the context of future
upgrades of CMS, in view of the High Luminosity LHC upgrade, to avoid using higher momentum
thresholds as luminosity increases, with the consequence of losing physics acceptance.

By implementing an Artificial Neural Network (NN), a class of Machine Learning (ML)
algorithms, on an FPGA, this work places itself in the search for ways to make the 𝑝𝑇 prediction
faster, other than more accurate.

2.1 The Model

The model built for this research is the next iteration of the Fully Connected Multilayer
Perceptron regressor designed for my previous work in [2, 3]. Its purpose was to find an alternative
algorithm to perform transverse momentum (𝑝𝑇 ) assignment to muons in the context of the Level-
1 trigger at the CMS experiment at CERN. This NN has been implemented with the following
structure: the first hidden layer has 35 neurons and receives the information directly from the
input layer of 27 different features with the ReLU (Rectified Linear Unit) selected as activation

2



P
o
S
(
I
C
H
E
P
2
0
2
2
)
2
4
3

Accelerating ML inference using FPGAs: PYNQ tested on an AWS EC2 F1 Marco Lorusso

function. The second layer is identical to the first one but contains 20 neurons and this is repeated
for other 4 additional hidden layers with 25, 40, 20 and 15 neurons, respectively. In the end, the
output layer (with only one node) closes the network. The model has been optimized for hardware
implementation with pre-training quantization [4] and weight pruning.

2.2 The Implementation

The first step required for the implementation of a Neural Network on an FPGA is the conversion
of the high-level code used for the creation of the model (Python + Tensorflow & QKeras) into High
Level Synthesis (HLS) code. HLS describes the process of automatic generation of HDL code from
behavioural description contained in a C/C++ script. To accomplish this task, the hls4ml package
[5] has been used. This tool has been developed by members of the High Energy Physics (HEP)
community to translate ML algorithm, built using frameworks like TensorFlow2, into HLS code.

Once the target hardware has been defined, and the trained model converted into HLS code
using hls4ml (more details are available in [2, 3]), the project has to be imported in Vitis, a tool part
of the Xilinx Design Suite, dedicated to developing applications for data center acceleration cards.
Here the C++ code must be tweaked in order to expose the interface of the Neural Network and
make it compatible with the Application Acceleration development flow, offered by Vitis.

Then, we can instruct Vitis to build the entire project targeting the desired hardware. This will
produce a bitstream file used to flash our design onto the FPGA. Together with the firmware design,
an OpenCL application can be written that can be launched on the machine that houses the FPGA
to program it, start the inference and retrieve the results (as shown in the next section).

Moreover, to deploy a design on Amazon’s F1 instances, the bitstream must be uploaded to
an Amazon S3 Bucket and request the creation of an Amazon FPGA Image (AMI) using a script
included in the official github repository of the AWS EC2 FPGA Hardware Development Kit [6].
This will produce a awsxclbin file that can be used to program Amazon’s FPGAs.

2.3 The PYNQ Project

PYNQ [7] is an open-source project from Xilinx®, a prominent FPGA producer. It provides a
Jupyter-based framework with Python APIs for using Xilinx platforms and AWS-F1 instances.

FPGA designs are presented as Python objects called overlays that can be accessed through
a Python API. Creating a new overlay still requires developers with expertise in designing pro-
grammable logic circuits. Overlays, like software libraries, are designed to be configurable and
re-used as often as possible in many different applications.

To date, C or C++ are the most common embedded programming languages. In contrast, Python
raises the level of programming abstraction and programmer productivity. These are not mutually
exclusive choices, however. PYNQ uses CPython which is written in C, and integrates thousands
of C libraries and can be extended with optimized code written in C. Wherever practical, the more
productive Python environment should be used, and whenever efficiency dictates, lower-level C
code can be used.

PYNQ aims to work on any computing platform and operating system. This goal is achieved by
adopting a web-based architecture, which is also browser agnostic. It incorporates the open-source
Jupyter notebook infrastructure to run an Interactive Python (IPython) kernel and a web server
directly on the ARM processor of a MPSoC or host’s CPU of an acceleration card.

3



P
o
S
(
I
C
H
E
P
2
0
2
2
)
2
4
3

Accelerating ML inference using FPGAs: PYNQ tested on an AWS EC2 F1 Marco Lorusso

3. Neural Network model performance on FPGA

(a) PYNQ (b) OpenCL

Figure 1: Distribution of the times needed to inject data in the FPGA, perform NN inference and extract the
output using the PYNQ package in Python (left) and an OpenCL application (right).

Two main aspects have been considered to study the performance of using the PYNQ package
to carry out Neural Network inference on an FPGA: latency and inference accuracy.

Figure 2: Total inference time distribution (input injection + inference + output extraction) using PYNQ
(pink) and an OpenCL application (blue).

For the first metric, the wall time has been measured for the three main tasks that are executed
by the host-FPGA pair for each inference that is requested. In Figure 3 the time distribution for the
input injection on the FPGA card (blue), the actual inference (red) and output extraction (black) is
shown for the entire validation dataset using PYNQ on the left and the OpenCL application on the
right. In the PYNQ case, a degree of consistency can be seen between the different tasks. This can
be explained by a common overhead caused by Python’s nature as an interpreted language, which
can also be considered as the main cause for the overall larger total processing time, shown in Figure
2, with respect to the application compiled in C++.

Nonetheless, the main objective of using PYNQ is offering an easier interface and less steep
learning curve in dealing with accelerating algorithms using FPGAs. This means that, to achieve

4



P
o
S
(
I
C
H
E
P
2
0
2
2
)
2
4
3

Accelerating ML inference using FPGAs: PYNQ tested on an AWS EC2 F1 Marco Lorusso

the full potential of this type of hardware, the traditional approach using C/C++ application is still
the way to follow.

3.1 𝑝𝑇 resolution histogram

To study the accuracy of the NN model implemented on the F1 instance 𝑝𝑇 resolution his-
tograms were used. For each entry of the dataset, the histograms were built using Δ𝑝𝑇

𝑝𝑇
=

𝑝𝑇𝑒𝑠𝑡 −𝑝𝑇𝑠𝑖𝑚
𝑝𝑇𝑠𝑖𝑚

where 𝑝𝑇𝑒𝑠𝑡 is the estimation of the transverse momentum, given by the model prediction or the
actual algorithm used in the Level-1 trigger at CMS to perform this task, and 𝑝𝑇𝑠𝑖𝑚 is the "true"
transverse momentum associated to each entry of the validation set.

Firstly, the resolution of the model before the implementation on the FPGA must be checked
(Figure 3a). The red histogram describes the resolution distribution of the Level-1 trigger system
while the blue one shows the resolution of the predictions made by the network model running on
a consumer CPU.

(a) Machine learning model (blue) v. Level-1 trigger (red)
based momentum assignment. (b) Machine learning model inference on FPGA v. a con-

sumer CPU.

Figure 3: Transverse momentum resolution histograms.

In particular, it is possible to notice a less broad distribution for the ML resolution, resulting in
an overall improvement, yet small, with respect to the Level-1 trigger system. Another noticeable
detail is the small peak corresponding to the value -1: this happens when the 𝑝𝑇 assigned by the
trigger is significantly underestimated with respect to the true 𝑝𝑇 . The Machine Learning based
momentum assignment is therefore less prone to large 𝑝𝑇 underestimation.

Having verified the accuracy of the NN model, its implementation on the FPGA available in
the F1 instance can be analyzed. In Figure 3b the 𝑝𝑇 resolution histogram obtained by performing
the inference using the PYNQ environment is shown over the model resolution described before.
When the assignment is performed on an FPGA, slightly worse results are produced, with a small
bias towards higher values of Δ𝑝𝑇/𝑝𝑇 . This could be the effect of the loss in precision the input
features have to go through due to the conversion to fixed-point representation needed to perform
computations efficiently in an FPGA [2, 3]. Nevertheless, the hardware approach still appears

5



P
o
S
(
I
C
H
E
P
2
0
2
2
)
2
4
3

Accelerating ML inference using FPGAs: PYNQ tested on an AWS EC2 F1 Marco Lorusso

compatible, or in case of higher momenta, even better than the Level-1 trigger based momentum
assignment.

4. Conclusions

An open-source project from Xilinx (a major FPGA producer) called PYNQ has been tested,
combined with the HLS4ML toolkit, in order to program a Neural Network on an FPGA and use it
to perform inference. The PYNQ purpose is to grant designers the possibility to exploit the benefits
of programmable logic and microprocessors using the Python language. Cloud computing was
used in this work to test the capabilities of this workflow, from the creation and training of a Neural
Network and the creation of a HLS project using HLS4ML, to testing the predictions of the NN
using PYNQ APIs and functions written in Python.

Hardware and software set-up, together with performance, were tested. An increase in latency
of the algorithm was discovered when using PYNQ with respect to a more traditional way of
interacting with an FPGA via an application written in OpenCL. This can be explained by an
overhead caused by Python’s nature as an interpreted language. Consistency between the predictions
of a NN before and after its implementation on the FPGA was verified.

References

[1] André DeHon Scott Hauck, Reconfigurable computing: the theory and practice of FPGA-
based computation, Systems on Silicon, Morgan Kaufmann, 2007.

[2] M. Lorusso, FPGA implementation of Muon Momentum assignment with Machine Learning
at the CMS Level-1 Trigger, University of Bologna master thesis (unpublished).

[3] T. Diotalevi, M. Lorusso, R. Travaglini, C. Battilana and D. Bonacorsi, Deep Learning fast
inference on FPGA for CMS Muon Level-1 Trigger studies, PoS ISGC2021, 2021, DOI:
10.22323/1.378.0005.

[4] C.N. Coelho, A. Kuusela, S. Li, et al. Automatic heterogeneous quantization of deep neural
networks for low-latency inference on the edge for particle detectors, Nat Mach Intell 3,
675–686 (2021), DOI: 10.1038/s42256-021-00356-5

[5] J. Duarte et al. Fast inference of deep neural networks in FPGAs for particle physics, In Journal
of instrumentation 13.07, July 2008.

[6] https://github.com/aws/aws-fpga

[7] http://pynq.readthedocs.io/

6

https://doi.org/10.22323/1.378.0005
https://doi.org/10.1038/s42256-021-00356-5
https://github.com/aws/aws-fpga
http://pynq.readthedocs.io/

	Field Programmable Gate Array
	AWS EC2 F1 Instance

	The Implementation of a NN on FPGA
	The Model
	The Implementation
	The PYNQ Project

	Neural Network model performance on FPGA
	pt resolution histogram

	Conclusions

