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Editorial on the Research Topic

Insights into structural and functional organization of the brain: evidence

from neuroimaging and non-invasive brain stimulation techniques

The brain is a complex and dynamic system that underlies our behavior, emotions,
and cognition (1–3). To better understand the structural and functional organization of
the brain, neuroimaging and brain stimulation techniques have emerged as powerful tools
(Nyatega et al.) (4–9). The development of non-invasive brain stimulation (NIBS) techniques
has substantially enriched our understanding of human brain function across the last
decades (10, 11). An increasing number of studies have used different NIBS protocols
in various research disciplines, spanning electrophysiological applications (12), studies of
human cognition (13, 14), physiological markers (15, 16) and the treatment of neurological
and psychiatric disorders (17). These techniques allow researchers to investigate the brain’s
underlying mechanisms and neural networks in real-time, enabling new insights into
the diagnosis and treatment of neuropsychiatric disorders: while neuroimaging provides
correlational evidence for structure–function relationships, NIBS provide causal relevance
of a given brain region for a function of interest, but also the interaction between several
nodes in larger brain networks (18). Recent advances in dynamic functional connectivity
have expanded our ability to probe and understand the interplay among brain regions and
their responses to TMS. By detecting and analyzing communication fluctuations across the
brain, this approach has been instrumental in studying complex neuropsychiatric disorders
such as Frontotemporal Dementia (FTD) (19, 20) and schizophrenia (SCZ), enhancing our
diagnostic capabilities and potential therapeutic interventions.

Therefore, in this Research Topic, we present a collection of articles that showcase
recent advances in neuroimaging and non-invasive brain stimulation techniques and their
application to the study of the brain’s structural and functional organization.
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Understanding the brain’s structure and function is vital
in the diagnosis and treatment of neuropsychiatric disorders.
Advances in neuroimaging and NIBS techniques have enabled
researchers to explore the underlying mechanisms of disorders
such as depression, SCZ, anxiety and post-traumatic stress
disorders (18, 21, 22). Identifying the neural circuits and
networks involved in these disorders can lead to targeted
interventions that aim to modulate brain activity and restore
normal function (23). This deeper understanding has the potential
to revolutionize the diagnosis and treatment of neuropsychiatric
disorders, significantly improving the lives of millions of
individuals worldwide.

These articles demonstrate the applications of neuroimaging
in studying drug abuse, bipolar disorder (BP), dysmenorrhea,
white matter lesions (WML), functional dyspepsia (FD), and SCZ.
The meta-analysis of cocaine addiction shows how drug abuse
affects the brain. The study on BP reveals the relationship between
cerebral WML and the incidence of BP. The investigation of
primary dysmenorrhea offers insights into the relationship between
pain and the brain, while the exploration of differential brain
responses to meal ingestion in FD patients provides a better
understanding of this meal-induced syndrome. Finally, structural
magnetic resonance imaging studies provide insights into the
pathophysiology of SCZ.

Cocaine addiction causes significant changes in brain structure
and function (24), affecting gray matter volume, white matter
integrity, and neural activity, according to a meta-analysis by Dang
et al. These findings suggest that drug addiction is a complex
neurobiological disorder and not solely a behavioral problem.
Identifying the specific brain regions and circuits impacted by
cocaine addiction can help develop new treatments targeting these
neural mechanisms (25). The study’s implications are vital for the
diagnosis and treatment of drug addiction.

Nyatega et al.’s study on BP found that individuals with
the condition have altered striatal functional connectivity
and structural dysconnectivity in the brain. These findings
could serve as biomarkers for early detection and personalized
treatment approaches for BP, advancing our understanding of
neuropsychiatric disorders. The research provides insights into
the structural and functional organization of the brain and has
significant implications for improving the diagnosis and treatment
of neuropsychiatric disorders (26, 27). In summary, this study’s
contributions could lead to more effective treatments and improve
our understanding of BP.

Liu et al. studied the relationship between primary
dysmenorrhea and brain activity changes, finding that patients
with the condition have altered activity in the mesocorticolimbic
pathway. This pathway is involved in pain processing and
emotional regulation (28), suggesting that chronic pain conditions
may be linked to changes in brain activity (29). The study’s
relevance to neuropsychiatric disorders is significant, as it
highlights the importance of considering structural and functional
changes in the brain when developing treatment plans for patients

Abbreviations: BP, bipolar disorder; FD, functional dyspepsia; NIBS,

non-invasive brain stimulation; FTD, Frontotemporal Dementia; SCZ,

schizophrenia; WML, white matter lesions.

with chronic pain conditions (30). These findings provide valuable
insights into the underlying mechanisms of chronic pain and may
lead to more effective treatments (31).

Du et al. present a secondary analysis of data from a cross-
sectional study investigating the non-linear correlation between
the volume of cerebral WML and the incidence of BD. The
study found that there is a positive and non-linear correlation
between WML volume and BD risk, with the correlation being
stronger when WML volume was <6,200 mm3 (Du et al.).
These findings provide valuable insights into the structural and
functional organization of the brain in individuals with BD (32).
The study’s results may have important implications for the
diagnosis and treatment of neuropsychiatric disorders, as they
suggest that WML volume could be used as a biomarker for BD
risk assessment.

Chen et al. used resting-state fMRI to investigate brain
responses to meal ingestion in FD patients. They found abnormal
connectivity in areas related to pain processing and emotional
response networks, including the left postcentral gyrus, right
precuneus, right middle frontal gyrus, anterior cingulate cortex,
and right inferior frontal gyrus (Chen et al.). These findings provide
insights into the structural and functional organization of the
brain in FD patients and may have implications for the diagnosis
and treatment of neuropsychiatric disorders involving visceral
hypersensitivity and emotional dysregulation (33, 34). Overall, this
study’s contributions could lead to more effective treatments for
patients with FD and related disorders.

Adamu et al.’s structural MRI study sheds light on the
pathophysiology of SCZ, showing that individuals with the
disorder have structural brain abnormalities linked to specific
symptom clusters and cognitive impairments. The study also
highlights the use of machine learning to identify patterns of brain
structure associated with symptoms and impairments. The findings
contribute to our understanding of the structural and functional
organization of the brain in neuropsychiatric disorders and could
improve diagnosis and treatment (35, 36). By identifying specific
brain structure patterns associated with symptoms, clinicians may
develop more targeted interventions for individuals with SCZ.

The articles in this Research Topic highlight the importance of
continued research on the structural and functional organization
of the brain and its potential impact on the diagnosis and
treatment of neuropsychiatric disorders (37–41). The studies
presented provide valuable insights into the complex relationship
between drug abuse, BP, dysmenorrhea, WML, FD, and SCZ.
These findings contribute to our understanding of the structural
and functional organization of the brain in neuropsychiatric
disorders and offer potential biomarkers for early detection and
personalized treatment approaches (42–45). Additionally, the use
of machine learning to identify brain structure patterns associated
with symptoms and impairments could lead to more targeted
interventions for individuals with psychiatric disorders (46–48).
While the introduction of machine learning techniques, including
deep learning, to the clinical field has significantly enhanced our
understanding of diseases, the use of these techniques in diagnostics
is often overlooked due to the “black box” phenomenon (49).
This issue is especially conspicuous in the medical and psychiatric
fields, where decisions regarding diagnoses and treatments bear
direct and significant consequences for patients’ lives. The “black
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box” problem refers to the obscurity of the inner workings of
machine learning models. Despite their impressive predictive or
analytical abilities, the lack of transparency in how these models
arrive at their outputs often poses a significant challenge. This
has led to the emergence of a specialized subfield known as
explainable machine learning (50). This branch prioritizes creating
models that, alongside delivering predictions or classifications, also
provide clear explanations of how they reach these conclusions.
By doing so, explainable machine learning attempts to solve
the “black box” problem, promoting transparency and fostering
greater trust in machine learning applications within the medical
and psychiatric domains (49). Overall, these studies highlight
the importance of considering both structural and functional
changes in the brain when developing treatment plans for
patients with neuropsychiatric disorders. In conclusion, continued
research in this field could ultimately lead to more effective
treatments and improved outcomes for individuals with these
challenging conditions.
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