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1. What is fear learning?

Fear is widely recognized as a defensive emotion that has developed as a consequence
of its adaptive function in protecting the entire animal kingdom from danger, ensuring
the survival (Bouton, 2002; Milad and Quirk, 2002). Although fear associated with specific
stimuli is an innate emotion (e.g., a loud noise triggering fear in infants, fear of potential
predators), it can also be acquired rapidly and permanently to enable an appropriate and
adaptive response to new or unpredictable environmental situations (LeDoux, 2000; Beckers
et al., 2013). In an experimental context, fear learning involves a type of learning where
a previously neutral stimulus is repeatedly paired with an aversive stimulus, eliciting a
fear response (Maren, 2001; Bouton, 2002; Milad and Quirk, 2002; Schiller et al., 2008;
Lonsdorf et al., 2017). Fear learning is recognized as the ideal experimental paradigm for
investigating the anatomical, cellular, molecular, and behavioral foundations of fear learning
and memory in mammals and their brains, as well as for understanding the neurobiological
model of fear-related disorders in humans (Craske et al., 2006; Hartley et al., 2011; Milad
and Quirk, 2012; Vervliet et al., 2013; Sevenster et al., 2015; Borgomaneri et al., 2021a; Di
Gregorio et al., 2022a; Ippolito et al., 2022; Battaglia et al., 2023a). Our understanding of
the fundamental neural circuitry and the cellular-molecular mechanisms underlying fear
learning has significantly advanced in recent decades. In fact, our knowledge of the key brain
areas involved in fear learning has greatly benefited from parallel lines of research, at least in
humans (Lonsdorf et al., 2014; Dunsmoor et al., 2019).

The investigation of the molecular mechanisms involved in fear learning and
in fear-related disorders, including stress-induced trauma disorders such as post-
traumatic stress disorder (PTSD), is crucial for understanding the pathophysiology
of these psychiatric diseases. Preclinical studies conducted on animal models have
revealed the involvement of neurohormones in cognitive and emotional functions,
contributing to a better understanding of important aspects of neuropsychiatric
symptoms through translational research (Tanaka and Telegdy, 2008; Tanaka
et al., 2011, 2012, 2022; Palotai et al., 2014; Tanaka and Vécsei, 2022). In this
context, the amino acid tryptophan (Trp) is considered one of the primary
contributors to stress-related diseases. The kynurenine (KYN) metabolic pathway,
as a crucial component of Trp catabolism, is primarily responsible for disrupting
Trp metabolism. Consequently, all processes associated with the metabolism of
Trp into the KYN pathway have been extensively investigated and documented
in both humans and animals (Chess et al., 2009; Balogh et al., 2021; Tanaka
et al., 2021b; Polyák et al., 2023; Tajti et al., 2023). Indeed, it has been widely
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described that stress-induced situations can activate the
hypothalamic-pituitary-adrenal (HPA) axis, leading to increased
levels of corticosterone (CORT) and inflammatory processes. This,
in turn, enhances the conversion of Trp to the key metabolite
KYN through the activation of tryptophan 2,3-dioxygenase
and indoleamine 2,3-dioxygenases (IDOs), respectively (Tanaka
et al., 2021a). This diversion of Trp metabolism away from the
methoxyindole metabolic pathway, which is responsible for
serotonin synthesis, establishes a close link between stress and
the pathophysiology of neurological and psychiatric disorders,
including depression (Iaccarino et al., 2013; Tanaka et al., 2021c).
Consequently, alterations in Trp metabolism may influence
the development of anxiety and abnormal fear responses, as
hyperfunction of KYN metabolism contributes to microglia
activation in the amygdala, hippocampus, and prefrontal cortex
(PFC) (Klausing et al., 2020). These regions play a crucial role in
the acquisition and extinction of fear-associated memories.

2. Neurobiological pathway of human
learned fear

A substantial body of evidence from lesion, pharmacological,
and neurophysiological studies supports the notion that the
amygdala plays a central role in regulating fear learning and
fear extinction in humans (LeDoux, 2000). Throughout the past
century, the amygdala has been recognized as “the locus of fear”
(Kim and Jung, 2006): anatomically, the central nucleus of the
amygdala receives sensory inputs from downstream brain areas,
such as the thalamus (LeDoux et al., 1988), and projects to various
autonomic, cortical, and subcortical regions involved in specific
fear responses, including the prefrontal cortex (PFC), insula, and
hippocampus (LeDoux, 1996; Maren and Quirk, 2004; Kim and
Jung, 2006; Lonsdorf et al., 2014).

The prefrontal cortex (PFC) has been widely recognized for
its critical and influential role in human fear learning, particularly
in modulating the expression of learned fear in both directions.
Neurophysiological studies have demonstrated the activation of
the dorsomedial PFC in the long-term storage and retrieval of old
fear memories (Dixsaut and Gräff, 2021), and recent research has
also suggested potentially distinct contributions of the anterior and
posterior subregions of the ventromedial PFC (vmPFC) to affective
processes (Fullana et al., 2016; Harrison et al., 2017; Battaglia
et al., 2020, 2021, 2023b). Although the prevailing understanding of
vmPFC function assumes its support for successful fear extinction,
it has been proposed that it may also play a significant role in fear
acquisition, particularly within its posterior subregion. Specifically,
the anterior vmPFC is believed to be involved in assessing the

Abbreviations: PTSD, post-traumatic stress disorder; HPA, hypothalamic-

pituitary-adrenal axis; CORT, corticosterone; Trp, Tryptophan; PFC, prefrontal

cortex; vmPFC, ventromedial PFC; KYN, Kynurenine; KP, Kynurenine pathway;

IDOs, indoleamine-2,3-dioxygenases; TDO, tryptophan-2,3-dioxygenase;

O2, superoxide; 3HK, 3-hydroxykynurenine; 3HAA, 3-hydroxy-anthranilic

acid; 3-HAO, 3-hydroxyanthranilate dioxygenase enzyme; QUIN, quinolinic

acid; QPRT, quinolinate phosphoribosyl transferase; NAD+, nicotinamide

adenine dinucleotide; KAT, kynurenine aminotransferases enzyme; KAT I,

kynurenine aminotransferase I; KAT II, kynurenine aminotransferase II.

value or significance of safety signals, as evidenced by increased
activity in response to safety stimuli (Phelps et al., 2004; Myers-
Schulz and Koenigs, 2012; Di Gregorio et al., 2019, 2022b; Dixsaut
and Gräff, 2021). On the other hand, increased activation in the
posterior vmPFC (BA11) has been observed during the late stages
of fear learning, highlighting the crucial role of the mid-posterior
vmPFC in fear acquisition (Fullana et al., 2016; Harrison et al., 2017;
Battaglia et al., 2020, 2021; Tashjian et al., 2021).

Multiple research studies and meta-analyses have consistently
identified the human insula as a central region where sensory input,
autonomic control, and afferents from brain regions involved in
emotion processing converge (Gogolla, 2017). Functional imaging
studies conducted on both rats and humans have demonstrated
that the insula exhibits co-activation with a group of brain regions
collectively referred to as the “fear network” (Sehlmeyer et al.,
2009), including the amygdala and hypothalamus. Laboratory
studies utilizing fear learning paradigms have revealed fear-induced
activation of the insular cortex in both rats and humans, indicating
the essential role of this region in the consolidation of learned fear
and the acquisition of safety cues that suppress the expression of
conditioned fear (Greco and Liberzon, 2016).

Finally, the hippocampus is believed to be involved in specific
types of conditioned fear memory, such as contextual fear
learning, as well as the acquisition and extinction of contextual
fear conditioning. Lesion studies have revealed direct projections
between the ventral hippocampus and both the infralimbic
cortex and the basolateral amygdala (Hugues and Garcia, 2007),
highlighting the crucial role of this region in modulating contextual
fear responses (Gewirtz et al., 2000). Studies that demonstrate
connections between the amygdala, the ventromedial prefrontal
cortex (vmPFC), and the hippocampus further support the idea
that the hippocampus plays a role in monitoring contextual fear
conditioning (for a review see Maren et al., 2013).

3. Neurochemistry of kynurenine in
the human brain

Kynurenine (KYN) is a metabolite of the amino acid
tryptophan (Trp) that is utilized in the synthesis of nicotinamide
adenine dinucleotide (NAD+). Physiologically, KYN is produced
by the enzyme tryptophan dioxygenase (TDO), primarily in
the liver, and indoleamine 2,3-dioxygenases (IDOs), which are
synthesized in various tissues including the brain in response to
immune-mediated activation (Opitz et al., 2011). KYN and its
breakdown products serve multiple biological functions, such as
blood vessel dilation during inflammation (Wang et al., 2010)
and regulation of the immune response (Nguyen et al., 2010).
KYN was initially identified in studies examining the chemical
composition of canine urine (Battaglia et al., 2021), while its
status as an intermediate metabolite of Trp was discovered half
a century later (Musajo and Benassi, 1964). Through a series
of endogenous reactions, a type of glial cell called astrocytes
convert Trp into NAD+, a coenzyme that plays a vital role in
cellular energy metabolism. Currently, the primary focus on Trp
lies in its bioactive product serotonin (5-HT), which represents
only 3% or less of Trp metabolism, while the KYN metabolic
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pathway accounts for approximately 90% (Stone and Darlington,
2002).

The metabolism of kynurenine (KYN) begins with the
oxidation of the indole ring of tryptophan (Trp) by heme-
containing enzymes, namely indoleamine 2,3-dioxygenases
(IDOs) and tryptophan dioxygenase (TDO). This process leads
to the production of N-formylkynurenine in the brain and other
peripheral tissues. The activity of IDOs relies on superoxide
(O2) and can be reduced from its inactive form (ferric) to its
active form (ferrous) using reducing agents in vitro. Hence, it
is suggested that IDOs could serve as antioxidant metabolites
(Sono, 1986). The KYN metabolic pathway continues with the
conversion of N-formylkynurenine to KYN by the enzyme
formamidase, acting as a substrate for several enzymes. Under
normal physiological conditions, kynureninase and kynurenine
3-hydroxylase convert KYN to anthranilic acid (AA) and 3-
hydroxykynurenine (3-HK), respectively. AA is further converted
to 3-hydroxyanthranilic acid (3-HAA) by the enzyme anthranilate
3-monooxygenase. Similarly, 3-HK is converted to 3-HAA by
kynureninase. The enzyme 3-hydroxyanthranilate 3,4-dioxygenase
(3-HAO) converts 3-HAA to 2-amino-3-carboxymuconate
semialdehyde (ACMS). ACMS undergoes further conversion
by the enzymes quinolinate phosphoribosyltransferase (QPRT)
and iminoquinolinate dehydratase (IQD) to form quinolinic
acid (QUIN). QUIN is then metabolized by a series of
enzymes, including quinolinate phosphoribosyl transferase
(QPRT), ultimately leading to the formation of NAD+.
Immunohistochemical studies have shown that 3-HAO and
QPRT are primarily present in the frontal neocortex, striatum,
and hippocampus (Pérez-De La Cruz et al., 2007). Additionally,
the remaining portion of KYN is irreversibly transaminated to
kynurenic acid (KYNA) by the enzymes known as kynurenine
aminotransferases (KATs).

Increasing attention has been given to kynurenine (KYN) not
only from a chemical standpoint but also in the field of neurology,
as it has implications in neuroinflammation and related immune
responses. Recent evidence suggests that elevated KYN production
may have significant implications in psychiatric conditions. For
example, KYN has been associated with depressive symptoms
in individuals undergoing interferon treatment for hepatitis C
(Capuron et al., 2003). Cognitive deficits observed in schizophrenia
have been attributed to enzymes involved in KYN breakdown
(Wonodi et al., 2011) and reduced KYN levels have been found in
the blood of patients with bipolar disorder (Bartoli et al., 2021).
Furthermore, KYN synthesis is increased in Alzheimer’s disease
(Guillemin et al., 2005) and cardiovascular disease (Wirleitner
et al., 2003), and its metabolites have been linked to cognitive
deficits and depressive symptoms in these conditions (Swardfager
et al., 2009; Gulaj et al., 2010); additionally, KYN appears to
be associated with tics (McCreary and Handley, 1995; Hoekstra
et al., 2007). Consequently, the KYNmetabolic pathway has gained
recognition for its association with inflammation, the immune
system, and neurological disorders (Peters, 1991). Dysregulation
or excessive activation of this pathway could lead to immune
system responses and the accumulation of potentially neurotoxic
compounds (Davis and Liu, 2015). Indeed, KYN deficiency has
been linked to liver diseases (Hirata et al., 1967; Hoekstra et al.,

2007; Holtze et al., 2012; Buness et al., 2014; Campbell et al., 2014)
and brain disorders, including major depressive disorder, bipolar
disorder, schizophrenia, and tic disorders (Marx et al., 2021).

Finally, within the human brain, various compositions of
kynurenine aminotransferase (KAT) enzymes can be found, with
KAT I and KAT II being the most significant ones. KAT II,
in particular, is the primary enzyme involved in kynurenic acid
(KYNA) synthesis. Both quinolinic acid (QUIN) and KYNA have
been demonstrated to act as negative allosteric modulators of
α7 nicotinic cholinergic receptors (α7nAChR), as antagonists at
glutamate ionotropic receptors, and as antagonists of glutamate
receptors such as NMDA receptors (NMDAR), amino-3-hydroxyl-
5-methyl-4-isoxazole-propionate (AMPA) receptors, and kainite
receptors, which play crucial roles in learning and memory
processes (Robbins and Murphy, 2006). However, the specific in

vivo actions of KYNA on α7nAChR are still being determined,
and the effects of KYNA on aversive associative memory and
antidepressant-like effects are influenced by factors such as
concentration, microenvironments, and interactions with other
neural circuits (Prescott et al., 2006; Rózsa et al., 2008; Tanaka
et al., 2020a; Martos et al., 2022). Moreover, studies have shown
that pharmacological inhibition of KAT II leads to a reduction in
brain KYNA levels, effectively inhibiting de novo KYNA synthesis
(Pocivavsek et al., 2019). This inhibition also prevents the stress-
induced increase in KYNA observed in the prefrontal cortex
(PFC) (Klausing et al., 2020), which appears to improve cognitive
functions. Therefore, the modulation of kynurenine metabolism
could be a targeted strategy for enhancing cognitive deficits and
associated impairments in fear learning.

4. Kynurenine associated to learned
fear

Fear learning experimental research has extensively
investigated the crucial role of the essential amino acid tryptophan
(Trp) in human fear-related phenomena. The kynurenine (KYN)
metabolic route is a major candidate in the stress-activated
inflammation pathway, particularly involved in the triggering
of hyper-fearfulness. Increased expression of IDO1 and TDO2
enzymes, produced by immune cells and other cell types in
different tissues, promotes Trp catabolism toward KYN in both the
periphery and the brain (Mándi and Vécsei, 2012; Gibney et al.,
2014; Nold et al., 2019; Tanaka and Vécsei, 2021; Tanaka et al.,
2021a; Martos et al., 2022).

Although acute stress has been found to increase cerebral
kynurenic acid (KYNA) levels in the fetus (Notarangelo and
Pocivavsek, 2017) and in adulthood (Pawlak et al., 2000), research
on human fear learning has primarily focused on the role of KYNA.
KYNA is a metabolite derived from astrocytes that bi-directionally
influences cognitive functions. Therefore, experimental increases
in brain KYNA levels induced by systemic administration of
KYN contribute to impairments in PFC-mediated set-shifting
(Alexander et al., 2012), spatial contextual memory (Pocivavsek
et al., 2011), fear learning (Chess et al., 2009), contextual fear
learning (Akagbosu et al., 2012), and workingmemory (Chess et al.,
2007).
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FIGURE 1

Schematic overview of the activated Tryptophan-Kynurenine metabolic system in the human brain and its association with learned fear. Tryptophan

(Trp) is converted into kynurenine (KYN) by the enzymes indoleamine 2,3-dioxygenases (IDOs) and tryptophan dioxygenase (TDO). IDO-1 is

expressed in various immune cells in the body, such as dendritic cells, monocytes, and macrophages, while IDO-2 is more selectively expressed in

dendritic cells, liver, and kidney. KYN can be further metabolized into kynurenic acid (KYNA), which is typically considered to have neuroprotective

properties, by the enzyme kynurenine aminotransferase (KAT). Alternatively, KYN can be converted into anthranilic acid by the enzyme kynureninase

or into 3-hydroxykynurenine (3HK) by kynurenine mono-oxygenase (KMO). Consequently, elevated levels of brain KYNA have detrimental e�ects on

various aspects of learning and memory, including fear learning. In fear learning paradigms, conditioned fear responses develop when a neutral

stimulus is paired with an inherently aversive stimulus, and subsequent presentation of the conditioned stimulus alone elicits fear responses.

Increased concentrations of the KYN metabolite kynurenic acid in specific regions of the brain involved in human fear learning, such as the amygdala

and hippocampus, have been associated with altered and pathological fear states, influencing physiological and behavioral responses.

On the other hand, reduced levels of kynurenic acid (KYNA)
achieved through pharmacological inhibition or genetic deletion
of kynurenine aminotransferase II (KAT II), the main enzyme
responsible for the synthesis of readily mobilizable KYNA in the

mammalian brain, improve cognitive function (Kozak et al., 2014;
Pocivavsek et al., 2019). These modulatory effects of endogenous
KYNA are specifically associated with its interference with the
function of α7 nicotinic cholinergic receptors (α7nAChR) and
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N-methyl-D-aspartate receptors (NMDARs), both of which play
crucial roles in learning and memory (Hilmas et al., 2001; Robbins
and Murphy, 2006). Therefore, the elevated levels of KYNA
observed in fear learning and memory are believed to primarily
affect NMDA receptors in critical regions for human fear learning,
such as the amygdala and hippocampus (Chess et al., 2007, 2009).
This supports the notion that a physiologically relevant increase in
KYNA concentration has a significant impact on NMDA receptors.
Evidence suggests a general deficit in contextual learning and
discrimination when KYNA levels are elevated, indicating that it
slows down contextual discrimination rather than preventing it.
This effect may be related to dysfunctional cue-based behaviors and
sensory processing (Wu et al., 2000; Figure 1).

Moreover, individuals with schizophrenia (SCZ) and bipolar
disorder exhibit elevated concentrations of kynurenic acid (KYNA)
in their cerebrospinal fluid (CSF) and cortex (Akagbosu et al., 2012;
Iaccarino et al., 2013; Fuertig et al., 2016; Pershing et al., 2016).
Schizophrenic patients have approximately 1.5 times higher levels
of kynurenine and KYNA in the brain, while the concentrations
of kynurenine and KYNA in the CSF are approximately 2 and
1.5 times higher, respectively, in SCZ patients compared to
healthy controls. Similarly, patients with bipolar disorder show
a 1.5 times increase in KYNA levels in their CSF (Holtze et al.,
2012; Linderholm et al., 2012). Haplotype analysis has revealed
that gene polymorphisms in the kynurenine 3-monooxygenase
(KMO) gene are associated with KYNA concentration in the CSF
of SCZ patients. KMO is responsible for the initial breakdown
of kynurenine, and importantly, patients with SCZ and bipolar
disorder demonstrate lower levels of KMOmRNA (Lavebratt et al.,
2014).

5. Conclusion and future perspective

Higher levels of the KYN metabolite kynurenic acid (KYNA)
in the human brain have been associated with altered fear
states resulting from trauma, stress, and anxiety (Erhardt et al.,
2017a,b; Borgomaneri et al., 2021a,b; Di Gregorio et al., 2021;
Tanaka and Vécsei, 2021; Battaglia, 2022; Di Gregorio and
Battaglia, 2023). These elevated KYNA levels may contribute to
the cognitive and sensory deficits observed in these disorders
(Erhardt et al., 2007; Amori et al., 2009; Athnaiel et al., 2022;
Battaglia et al., 2022a,b; Tanaka et al., 2023). KYNA concentrations
are found to be increased in areas such as the prefrontal
cortex (PFC) and cerebrospinal fluid (CSF) of patients with
psychiatric disorders (Erhardt et al., 2001; Nilsson et al., 2005, 2007;
Linderholm et al., 2012; Tanaka et al., 2020b, 2021a). Moreover,
experimental manipulation of brain KYNA levels through systemic
administration of KYN has been shown to result in impairments
in PFC-mediated set-shifting (Alexander et al., 2012), spatial
contextual memory, fear learning (Chess et al., 2009), and working

memory capacities (Chess et al., 2007). In contrast, reducing
cerebral KYNA levels through pharmacological inhibition or
genetic deletion of KAT II, the primary enzyme responsible for
KYNA production in the human brain, has been found to improve
cognitive functions (Kozak et al., 2014; Pocivavsek et al., 2019).

Finally, this work enhances our understanding of the
metabolic substrates that establish a causal connection between
increased KYNA levels and alterations in PFC-dependent fear
behavior. While current research has mostly focused on the
neuroprotective aspects of KYN production, our focus has been
on the targeted regulation of this downstream metabolism and
its implications for neuropathology and ehavioural disorders.
Therefore, future perspectives aim to test the hypothesis that PFC-
dependent behaviors may be particularly susceptible to neurotoxic
dysregulation of KYN metabolism, which, in turn, could have
significant implications for the diagnosis and potential treatment
of neuropsychiatric and neurodegenerative disorders.
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