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MANAGING SPATIAL LINKAGES AND GEOGRAPHIC
HETEROGENEITY IN DYNAMIC MODELS WITH

TRANSBOUNDARY POLLUTION

RAOUF BOUCEKKINEa, GIORGIO FABBRIb, SALVATORE FEDERICOc,

AND FAUSTO GOZZId

Abstract. We construct a spatiotemporal frame for the study of op-

timal growth under transboundary pollution. Space is continuous and

polluting emissions originate in the intensity of use of the production in-

put. Pollution flows across locations following a diffusion process. The

objective functional of the economy is to set the optimal production

policy over time and space to maximize welfare from consumption, tak-

ing into account a negative local pollution externality and the diffusive

nature of pollution. Our framework allows for space and time depen-

dent preferences and productivity, and does not restrict diffusion speed

to be space-independent. Accordingly, we develop a methodology to

investigate the environmental and economic implications of geographic

heterogeneity. We propose a method for an analytical characterization of

the optimal paths and the asymptotic spatial distributions. Our method

enables us to enucleate a deep economic concept of spatiotemporal wel-

fare effect of pollution, making it definitely useful for economic analysis.

An application to first nature causes of geographic externalities, namely

technological spillovers, is proposed for illustration.
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1. Introduction

It is readily recognized in the economic literature, and notably in the

economic geography and urban economics areas, that space matters in the

shape and mitigation of pollution damages (see for example, Arnott et al.,

2008). Several important theoretical contributions have been made within

full-fledged spatial frameworks to identify optimal spatial allocations when

pollution externalities are internalized and also the subsequent decentral-

ization policies; this includes, among others, the early works of Henderson

(1977) and Hochman and Ofek (1979), and more recently the above men-

tioned paper by Arnott et al. (2008). A large majority of papers in this

topic remains however empirical (see for example, Gibson and Carnovale,

2015, or Henderson, 1996).

Moreover, it should be observed that beside being based on static models,

the related theoretical work is usually based on simplifying ad hoc assump-

tions on the level of pollution at given location (this fact is for instance

totally transparent in Arnott et al., 20081). This is of course acceptable in

certain contexts, and it is even more acceptable if the alternative more ac-

curate specifications are intractable. This paper is a methodological contri-

bution to this important area of economics at the intersection of geographic

and environmental economics. Since admittedly spatial heterogeneity is key

in shaping (local) pollution and the induced spatial distribution of pollution,

we propose a methodology which closely incorporates a large set of spatial

heterogeneities as explained below while the diffusion process of pollution

over time and space is accurately modeled (through a diffusion partial dif-

ferential equation). With this focus and objective in mind, we are able to

build up a spatiotemporal framework for pollution control, which produces

closed-form solutions for any of these spatial heterogeneity traits, and an-

alytical characterizations of the induced long-term spatial distributions as

well. This is done at the cost of a simplification in the shape of the pro-

duction function (linearity assumption) but the economic insight from the

1See page 392, in particular.
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analytical exploration of spatial heterogeneity impact on economic decision

making and pollution outcomes well outweigh the latter cost.

As one can infer from above, we are firstly interested in transboundary

(diffusive) pollution like air or water pollution. The problem of pollution

control is deeply intricate in this case. It raises several key issues. One has

to do with the strategic ingredients of the problem either at the international

level (refer to the successive failures or at least questioning of internationals

agreements to control global warming, from the Kyoto protocol in 1991 to

the Paris agreement in 2016) or at the regional scale. We abstract away

from these considerations here. Several papers have been written in the

last decade on this topic from 2-country setting (Boucekkine et al., 2011) to

continuous space modelling (see in particular, de Frutos and Martin-Herran,

2019) through multi-country frameworks (for example, Dockner and Long,

1993). We rather concentrate on a second set of issues, those related to the

fact that the impact of air pollution is first of all local, and its magnitude and

persistence depend pretty much on the local conditions. If a central planner

at a country or international level has to set a pollution control policy for

the benefit of all the individuals concerned, then she should take as much as

possible into account the heterogeneity across locations, in addition to the

fact that air pollution, being transboundary, requires the internalization of

spatial externalities.

There are several spatial heterogeneity features to account for. Obvious

ones are technological heterogeneity and heterogeneity in preferences (which

covers cultural discrepancies with respect to the environment among oth-

ers). But there are also more geographic and ecological differences, which

matter a lot both in the diffusion of pollution across locations and in its

local impact. The self-cleaning capacity of Nature may vary from a region

to a close one, the local topography, land use and infrastructures may speed

up pollution diffusion or slow it down... etc. These issues are quite known

across disciplines (see Tiwari and Closs, 2010, for an excellent book on air

pollution), and, as indicated in the beginning of this introduction, they are
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also very much recognized in the literature for decades. Several recent pa-

pers have been devoted to transboundary pollution.2 None of these papers

however poses the latter problem in a full-fledged analytical spatiotem-

poral frame incorporating the above mentioned technological, preference,

geographic and ecological spatial discrepancies.

Clearly, taking up the challenge would involve plenty of technical prob-

lems, with a very likely lack of tractability and the forced use of numerical

solutions. Contrary to other disciplines (like quantitative geography, cli-

mate science or ecology) in which the use of black-box disaggregated models

is routine, the economists, being more interested in identifying mechanisms,

are more keen to develop parsimonious models. In this paper, we build up a

spatiotemporal optimal control framework allowing to encompass the het-

erogeneity traits outlined above in the presence of transboundary pollution,

and still producing a comprehensive analytical characterization. In partic-

ular, with respect to the aforementioned recent literature on transboundary

pollution, we considerably enrich the geography of the model. On the tech-

nological ground, we allow productivity both time and space-dependent:

any pattern of technology diffusion across time and space can be accom-

modated. As for preferences, we make them time and space-dependent as

well. Finally, to account for the local geographic and ecological conditions

discrepancy, we allow for a space dependent self-cleaning capacity and pol-

lution diffusion speed.

This generality has a methodological implication, since the hetero-

geneities in space and time make very difficult to use the dynamic program-

ming method (see e.g. Boucekkine et al., 2019a, 2019b) or the maximum

principle (e.g. Brito, 2004, or more recently, Ballestra, 2016) in order to

2For example, Camacho and Perez-Barahona (2015) studied the problem of atmospheric
transboundary pollution in the context of an optimal land use problem. Other authors
have also provided valuable contributions to the analysis of the spatiotemporal deep
nature of the transboundary pollution control problem; see for instance Augeraud-Véron
et al. (2017, 2019b), Boucekkine et al. (2019a) or Grass and Ueckner (2017), and the
recent survey in Augeraud-Véron et al., 2019a).



5

produce analytical solutions. Instead, we apply a functional transforma-

tion technique observing that the objective functional can be rewritten in

a way that allows for a direct maximization method, ultimately finding the

explicit form of the optimal control3. An extremely appealing feature of

this method is that it builds on a pivotal spatial function (denoted α(·) in

Section 3), which admits a neat economic interpretation: it corresponds at

any location x to the discounted sum of future disutility stream of a unit of

pollutant initially located at x. Indeed, in our spatiotemporal framework

with transboundary pollution, a unit of pollutant has a different effect on

social welfare depending on where it is initially located and how it is go-

ing to spread over space in the future. Our alternative method has the

virtue to put forward this deep economic concept, which makes it definitely

transparent and useful for economic analysis.

To provide with a first illustration of our method, we will use it to study,

following the terminology of Krugman (1993), a first nature cause of spatial

externalities: given geographic differences in terms of efficiency either at

production or at pollution abatement. We rely on the non-spatial technol-

ogy evolution model specified in Nocco (2005) and adapt it to our spatial

setting. A key feature of our adaptation is that technological spillovers tend

to decrease with distance to a given technological center. This is totally con-

sistent with empirical evidence. For instance, Deltas and Karkalakos (2013)

found that in increase in distance between the center and the recipient by

500 km reduces spillovers by 55-70%. It is important to note here that our

method can also in principle support the study of second nature causes. In

a companion paper, we show, in a simplified setting where we drop het-

erogeneity in diffusion and elasticity, how the introduction of an additional

control variable, that is abatement, does not at all break down the ana-

lytical solution scheme despite the nonlinearities conveyed by this addition

(Boucekkine et al., 2020). That speaks a lot about the flexibility of our

approach.

3A somehow related method is used, in a different economic context, by Barucci and
Gozzi (2001) but the problem there did not include a diffusive process.
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The paper is organized as follows. Section 2 presents the basic economic

problem and defends its economic relevance. Section 3 develops the method

used to solve the generic spatiotemporal optimal growth model under trans-

boundary pollution. In particular, closed-form solutions of the optimal

strategies are identified. We show also further analytical results on tran-

sition dynamics and asymptotics (that’s the computation of asymptotic

spatial distributions). Section 4 gives an illustration of the method in the

presence of technological discrepancy across space using the spatiotempo-

ral spillover mechanism explained just above. Of course, our aim in this

ultimate section is not to exploit entirely the richness of our setting but

only to indicate how far the analytical study can go. Section 5 concludes.

Appendix A contains the formal proofs.

2. The basic economic problem

The basic problem incorporates some elements of the models by

Boucekkine et al. (2011), Camacho and Perez Barahona (2015), Boucekkine

et al. (2019a), and de Frutos and Martin-Herran (2019). The originality of

our contribution is to provide a full-fledged analytical spatiotemporal setting

yet incorporating, as described in detail below, space and time-dependence

of both preferences and production technology, as well as space-dependence

of the pollution diffusion coefficient and of the self-cleaning capacity.

Let us now describe the basic economic problem. Consider a continuum

of locations, say along the circle in R2. The choice of the circle is made for

simplicity.4 Call it S1:

(1) S1 :=
{
x ∈ R2 : |x|R2 = 1

}
.

4Our approach allows generalizations to compact finite dimensional manifolds without
boundary (see, e.g., Fabbri, 2016).
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Each location uses a linear (Leontief) production function: at any location

x in time t ≥ 0, production is

(2) y(t, x) = a(t, x) i(t, x),

where y(t, x) is the output, i(t, x) is the capital input, and a(t, x) is pro-

ductivity at location x in time t. A few comments are in order already at

this stage. First, we allow productivity per location to be both generically

space-dependent and time-dependent, so that our setting can include for ex-

ample the typical exponential exogenous technological progress in neoclassi-

cal growth theory. Actually, our modelling allows for much more: as argued

in the introduction section, a(t, x) can be specified to model possible tech-

nological spillovers across locations, uneven technological development over

space (that’s barriers to technological diffusion) and the like. Admittedly,

the latter are key features in regional development. Second, it’s worth notic-

ing that our production technology mimics the AK technology, which is a

basic ingredient in endogenous growth theory (see Barro and Sala-i-Martin,

2004, Chapter 4), but with full depreciation of capital. This is essential to

get our closed-form solutions, and actually this is a well known trick in opti-

mal growth theory either to generate analytical solutions and/or to simplify

the analysis (reduction of the dimension of the dynamic systems involved)

and focus on other state variables (see again Barro and Sala-i-Martin, 2004,

Chapter 6). In our case, both arguments hold: given the complexity of

our problem (infinite dimensional optimization) and the economic target

(economic performance in the heterogenous space with transboundary pol-

lution), we find it convenient to shut down capital accumulation to be able

to develop a comprehensive enough analytical spatiotemporal framework to

approach the latter economic objectives.

At any location, output is produced, consumed and locally invested (no

trade across locations), implying:

(3) c(t, x) + i(t, x) = y(t, x),
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where c(t, x) is consumption at location x at time t. The unique link among

locations is transboundary pollution. We target air pollution and consider a

broad specification incorporating ecological efficiency at any location x and

time t. Precisely, the accumulation of pollution spatial profile is assumed

to evolve according to the following parabolic partial differential equation

(PDE):

(4)
∂p

∂t
(t, x) =

∂

∂x

(
σ(x)

∂p

∂x
(t, x)

)
− δ(x)p(t, x) + η(t, x)i(t, x), (t, x) ∈ R+ × S1,

p(0, x) = p0(x), x ∈ S1,

where p(t, x) is the pollution stock at location x and time t.

First, notice the general shape of the pollutants’ emissions term

η(t, x)i(t, x) in the pollution spatiotemporal dynamics depicted above. In-

deed, the unusual function η(t, x) is meant to reflect that the pollution

impact of emissions arising from the use of one unit of input may not

be the same over time and space. It can be readily observed that: (i)

taking η(t, x) = 1 brings to consider the case where polluting emissions

at location x are exactly equal to input use intensity; (ii) if we specify

η(t, x) = a(t, x)φ(t, a), the term η(t, x)i(t, x) reads as a(t, x)φ(t, x)i(t, x) =

φ(t, x)y(t, x), and we are able to give a specification of the model where

emissions depend on output rather than on input used; (iii) the temporal

dependence allows us, in general, to incorporate exogenous technological

progresses in ecological efficiency (such as those conveyed by abatement ac-

tivities); (iv) finally, independent spatial heterogeneities can also be taken

into account with this more general specification.

Second, we underline the space-dependent form of the transboundary pol-

lution diffusion term, that is ∂
∂x

(σ(x) ∂p
∂x

(t, x)), where σ(x) is the pollution

diffusion speed at location x. Indeed, there is a large bunch of works doc-

umenting the role of local conditions in air pollution diffusion (see Tiwary

and Colls, 2010, Chapter 1). Therefore, this generalization significantly

increases the relevance of our analytical frame. Moreover, we notice that

the pollution diffusion also depends on nature local regeneration capacity



9

(the term δ(x)p(t, x)), and on current emissions (as captured by the term

η(t, x)i(t, x)).

Finally, since our setting is spatiotemporal, an initial spatial distribution

of pollution is needed, and it is given by function p0(x) defined on S1.

The whole state variable dynamics then follows the PDE (4). The infinite

dimensional nature of the involved optimization problem derives from the

latter characteristic of the state dynamics.

On the side of preferences, we choose the instantaneous per location util-

ity to be of CRRA type with respect to consumption and linear with respect

to pollution:

U (c(t, x), p(t, x)) =
c(t, x)1−γ(t,x)

1− γ(t, x)
− w(x)p(t, x),

where γ(t, x) ∈ (0, 1) ∪ (1,∞) measures the inverse of the elasticity of in-

tertemporal substitution in consumption at location x and time t, and w(x)

measures, for instance, local environmental awareness at location x. Ob-

serve that our negative pollution externality is local. Our framework is not

designed primarily to study global warming and therefore global pollution,

but the diffusion of air pollutants with local health impact like particles for

example (again a comprehensive account of air pollutants can be found in

Tiwari and Colls, 2010, Chapter 1). The local impact of pollution is also

captured via w(x), which can be indeed interpreted as local awareness and

sensitivity to environmental problems. It can also reflect specific priorities

of the planner to cope with particular local conditions. Notice also that our

frame allows for time and space varying preferences through the parameter

γ(t, x). We consider a planner problem who has to maximize the follow-

ing social welfare under the above specified technological constraints of the

economy and the transboundary pollution faced:

J
(
p0; i

)
:=

∫ ∞
0

e−ρt
(∫

S1

(
c(t, x)1−γ(t,x)

1− γ(t, x)
− w(x)p(t, x)

)
dx

)
dt,

where ρ is the parameter at which the planner discounts time. By using

equations (1) and (2), we can rewrite the functional in terms of the control
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variable i(t, x):

J
(
p0; i

)
=

∫ ∞
0

e−ρt

(∫
S1

((
(a(t, x)− 1)i(t, x)

)1−γ(t,x)

1− γ(t, x)
− w(x)p(t, x)

)
dx

)
dt.

(5)

Notice we do not incorporate population density in our analysis, and

notably in the functional, nor do we introduce mortality (possibly related

to pollution). We fundamentally focus on handling spatial heterogeneity

abstracting away from demography, which is an already daunting task. At

the minute, one could simply interpret the social welfare function above as

a Benthamite welfare function summing individual welfare over locations

and time with one infinite-lived individual at each location.

3. Theoretical analysis

In this section we give a precise description of our results, specifying

hypotheses and formalizing the statements. To increase the readability of

the text we postpone the proof in Appendix A and we divide the section in

four parts.

To apply the functional transformation technique that we exploit to solve

the optimal control problem (Theorem 3.6), we start by rewriting the prob-

lem in a suitable Hilbert space formalism (Subsection 3.1), then we identify

a spatial function α that will be essential in the transformed expression of

the functional (Subsection 3.2), and finally we will characterize the optimal

control and the corresponding social welfare (Subsection 3.3). Subsection

3.4 contains transitional and long-run analysis of the dynamics via series

expansions.

3.1. Infinite dimensional formulation and preliminary results. On

the space support S1 introduced in (1) we consider the metrics induced by

the Euclidean metrics of R2. In this way S1 can be isometrically identified

with 2πR/Z and the (class of) functions S1 → R with 2π-periodic function
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R → R; differentiation of functions S1 → R is defined according to this

identification. Consequently, the initial pollution distribution and the space

dependent parameters δ, σ and w are measurable functions

p0, δ, σ, w : S1 → R+;

similarly the time and space dependent parameters γ, a, η are measurable

functions

γ : R+×S1 → (0, 1)∪(1,+∞), a : R+×S1 → (1,+∞), η : R+×S1 → (0,+∞).

We proceed now to our infinite dimensional reformulation of the problem.

We will use the framework of Lebesgue and Sobolev spaces, for more details

we refer to Brezis (2011). The infinite dimensional space H, where we will

reformulate our maximization, is the Lebesgue space L2(S1;R), i.e.5

H := L2(S1;R) :=

{
f : S1 → R measurable :

∫
S1

|f(x)|2dx <∞
}
,

endowed with the usual inner product 〈f, g〉 =
∫
S1 f(x)g(x)dx, which makes

it a Hilbert space. We denote by ‖ · ‖ the associated norm, by H+ the

nonnegative cone of H, i.e.

H+ := {f ∈ H : f ≥ 0},

and by 1 the constant function equal to 1 on S1. Moreover, we introduce

the Sobolev space6

(6) W 2,2(S1;R) :=
{
f ∈ L2(S1;R) : f is twice weakly

differentiable and f ′, f ′′ ∈ L2(S1;R)
}
.

Some degree of regularity of the parameters will be necessary in the anal-

ysis. We will work with the following assumptions.

5Actually, rather than a space of functions, L2(S1;R) is a space of equivalence classes
of functions, with the equivalence relation identifying functions which are equal almost
everywhere, i.e. out of a null Lebesgue measure set. For details we refer again to Brezis
(2011).
6We refer to Brezis (2011) for the notion of weak differentiability.
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Assumption 3.1.

(i) p0 ∈ L2(S1;R+), δ ∈ C(S1;R+), σ ∈ C1(S1; (0,+∞)), w ∈
C(S1; (0,+∞));

(ii) the function γ : R+ × S1 → (0, 1) ∪ (1,+∞) is measurable and there

exists κ ∈ (0, 1) such that, for every (t, x) ∈ R+ × S1,

either (Case (A)) κ ≤ γ(t, x) ≤ 1− κ

or (Case (B)) 1 + κ ≤ γ(t, x) ≤ 1

κ
.

(iii) There exist L > 0, and g ≥ 0 such that, for every (t, x) ∈ R+ × S1,(
a(t, x)− 1

η(t, x)

) 1
γ(t,x)

−1

≤ Legt;

(iv) ρ > g.

Notice that the above Assumption 3.1 (iii) and (iv), which may seem

quite technical, are indeed the translation, in this case, of the standard

assumptions needed to guarantee “well posedness” (i.e. finiteness of the

value function and existence/uniqueness of the optimal strategy) exactly as

in the standard Ramsey-type AK model, see e.g. Freni et al (2006) on this.

Hereafter, our arguments will make use of the theory of unbounded linear

operators and semigroups of linear operators, for which we refer to Engel

and Nagel (1995). Denote by L(H) the space of bounded linear operators

on H. We consider the differential operator L : D(L) ⊂ H → H, where

D(L) = W 2,2(S1;R); (Lϕ)(x) = (σϕ′)
′
(x)− δ(x)ϕ(x), ϕ ∈ D(L).

Proposition 3.2. Let Assumption 3.1 hold. Then L generates a strongly

continuous contraction semigroup (etL)t≥0 ⊂ L(H). Moreover, ρ belongs to

the resolvent set of L, i.e. ρ − L : D(L) → H is invertible with bounded

inverse (ρ− L)−1 : H → D(L) and

(7) (ρ− L)−1h =

∫ ∞
0

e−(ρ−L)th dt ∀h ∈ H.

Proof. See Appendix A �
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Given i : R+ × S1 → R+, define

I : R+ → H+, I(t) := i(t, ·).

Morever, define

Ψ : R+ → H+, Ψ(t) := η(t, ·).

Finally, given h, k ∈ H, define (hk)(x) := h(x)k(x). Then, with the

identification P (t) = p(t, ·), we reformulate (4) in H as

(8)

P ′(t) = LP (t) + Ψ(t)I(t), t ≥ 0,

P (0) = p0 ∈ H,

According to Definition 3.1(v), Chapter 1, Part II, of Bensoussan et al.

(2007), given I ∈ L1
loc(R+;H+), we define the mild solution to (8) as

(9) P (t) = etLp0 +

∫ t

0

e(t−s)LΨ(s)I(s)ds, t ≥ 0.

Setting A(t) := a(t, ·), Γ(t) := γ(t, ·), and[(
(A(t)− 1)I(t)

)1−Γ(t)

1− Γ(t)

]
(x) :=

(
(a(t, x)− 1)i(t, x)

)1−γ(t,x)

1− γ(t, x)
, x ∈ S1,

the functional (5) is rewritten in this formalism as

(10) J(p0, I) =

∫ ∞
0

e−ρt

[〈(
(A(t)− 1)I(t)

)1−Γ(t)

1− Γ(t)
,1

〉
− 〈w,P (t)〉

]
dt.

We introduce the following set of admissible controls

A :=

{
I ∈ L1

loc(R+;H+) :

∫ ∞
0

e−ρt‖Ψ(t)I(t)‖ dt <∞
}
.

The following result shows that the functional is well defined on A.

Proposition 3.3. Let Assumption 3.1 hold. The functional J(p0, I) is well

defined for all p0 ∈ H and I ∈ A.

Proof. See Appendix A. �
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Finally, we define the value function as the optimal value of J over A,

i.e.

v(p0) := sup
I∈A

J(p0; I).

Note that this function may possibly be infinite. The function

(11) α := (ρ− L)−1w ∈ H.

will play a key role in the transformation of the functional J that we will

perform: it represents the core of the solution. Moreover, as recalled in the

introduction, it admits a clear economic interpretation: it corresponds at

any location x to the discounted sum of future disutility stream of a unit

of pollutant initially located at x. Hence in the next subsection we will

investigate some properties of it and clarify its economic interpretation.

3.2. The function α and its properties.

3.2.1. The equation for α and its mathematical properties. By definition α

is the unique solution in W 2,2(S1;R) of the abstract ODE

(12) (ρ− L)α = w.

More explicitly, α, as defined in (11), is the unique solution in W 2,2(S1;R)

to

(13) ρα(x)− d

dx

(
σ(x)

d

dx
α(x)

)
+ δ(x)α(x) = w(x), x ∈ S1,

meaning that it verifies (13) pointwise almost everywhere in S1. The latter

ODE can be viewed as on ODE on the interval (0, 2π) with zero-order and

first-order periodic boundary conditions7, that is
ρα(x)− d

dx

(
σ(x)

dα

dx
(x)

)
+ δ(x)α(x) = w(x), x ∈ (0, 2π),

α(0) = α(2π), α′(0) = α′(2π),

7Falling into the Sturm-Liouville theory with periodic boundary conditions (see Cod-
dington and Levinson, 1955).
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where α′(0) and α′(2π) are, respectively, the right derivative at 0 and the

left derivative at 2π of α.

As better argued below the value of α at a certain spatial point x has the

meaning of the sum of all future (discounted) disutility of a unit of pollutant

initially located at x. By Sobolev embedding W 2,2(S1;R) ⊂ C1(S1;R), so

α ∈ C1(S1;R). With a little more subtle analysis something more can be

said about the properties of α as shown in next proposition.

Proposition 3.4. Let Assumption 3.1 hold. Then α ∈ C2(S1;R) and

0 < min
S1

w

ρ+ δ
≤ α(x) ≤ max

S1

w

ρ+ δ
∀x ∈ S1.

Proof. See Appendix A. �

We have the following interesting result on the dependence of α on the

diffusion coefficient σ when the latter is constant over space.

Proposition 3.5. Let Assumption 3.1 hold. Denote by ασo the solution to

(13) when σ(·) ≡ σo > 0. We have

(14)

lim
σo→0+

ασo(x) =
w(x)

ρ+ δ(x)
, lim

σo→+∞
ασo(x) =

∫
S1 w(x)dx∫

S1(ρ+ δ(x))dx
, ∀x ∈ S1.

Proof. See Appendix A. �

As will be clearer shortly (Subsection 3.3), the function α has a key role

both in expressing the functional in its transformed form and in describing

the optimal behavior of the planner. For this reason, understanding its

behavior is interesting to describe the behavior of the model.

3.2.2. The economic interpretation of α. We now exploit the equation for

α and the Propositions 3.4-3.5 to describe the economic intuition about the

function α. We said that α(x) has the meaning of the sum of all future

(discounted) disutilities of a unit of pollutant initially located at x. First of

all observe that, if we take the non-spatial version of the model or, equiva-

lently, a specification of the model where all the parameters are constant in

space, the value of such disutility is w
ρ+δ

. Indeed in this case the sum of all
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future (discounted) disutilities of a unit of pollutant would simply be (we

take the integral since we are in the continuous time case)

(15)

∫ +∞

0

e−ρte−δtw dt,

where we recall that δ is the natural decay of the pollution.

This result, not surprisingly, would be the same if we consider a specifi-

cation of the model where w and δ are not anymore are constant in space,

but no diffusion is present (i.e. σ ≡ 0). Indeed this corresponds to the

case where the pollution does not move among the locations and accumu-

lates in the production site. As recalled above, in the model the only link

among the locations is the transboundary pollution. Letting the diffusivity

to zero means to reset this channel of interdependence and therefore the

model reduces to an independent (uni-dimensional) optimization problem

to each point of the space. Since the pollutant which is produced at the

location x remains there forever then, similarly to (15), the sum of all future

(discounted) disutilities of a unit of pollutant would be∫ +∞

0

e−ρte−δ(x)tw(x) dt =
w(x)

ρ+ δ(x)

The above, as expected, is also the pointwise expression appearing in Propo-

sition 3.5, equation (14), when σo → 0+.

When we add the space to the model a second order term, depending

on σ, appears in the equation which defines α, see (13). This comes of

course from the spatial diffusion process of the pollution. The solution of

that equation (except when both w and δ do not depend on time) is given

by a space-heterogeneous function α. This heterogeneity is due to the fact

that, in the model, a unit of pollutant has different effect on the social

utility depending on where it is located and how it is going to spread in

the future. In terms of pollution-disutility, locations are indeed different for

two reasons: the different decay δ(x) of pollutions and the different unitary

instantaneous disutilities w(x). In the general spatial case, the function

α at a point x is the (total/social) future discounted disutility of a unit of

pollutant initially located at point x. To explain this fact we denote by ∆{x}
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the Dirac delta in a certain spatial point x, and observe that (see equation

(37) in the Appendix where we substitute p0 with ∆{x}) we formally have:

α(x) =
〈
α,∆{x}

〉
=

∫ ∞
0

e−ρt
〈
w, eLt∆{x}

〉
dt

i.e.

(16) α(x) =

∫ ∞
0

e−ρt
(∫

S1

w(ξ)ϕ(t, ξ;x) dξ

)
dt

where ϕ(t, ξ;x) =
(
eLt∆{x}

)
(ξ) is the solution of the parabolic equation

∂ϕ
∂t

(t, ξ) = ∂
∂ξ

(
σ(ξ)∂ϕ

∂ξ
(t, ξ)

)
− δ(ξ)ϕ(t, ξ),

ϕ(0, ξ) = ∆{x}(ξ)
,

i.e. the spatial density (with respect to the variable x) at time t of a

pollutant initially concentrated at point x, once one takes into account the

diffusion process and the natural decay. Thus, the term
∫
S1 w(ξ)ϕ(t, ξ;x) dξ

measures the instantaneous disutility all over the space and the whole ex-

pression in the right hand side of (16) is the total spatial (temporally dis-

counted) future social disutility of a unit of pollutant initially concentrated

at x.

Finally the second limit of Proposition 3.5, equation (14), correspond to

the infinite diffusivity benchmark that is the case where, at each moment,

the speed of the diffusion process is so fast that the pollution is instan-

taneously redistributed uniformly throughout the space. For this reason,

whatever the specific value of δ or of w in the precise point of the emission

is not relevant but only global averages of the parameters matters.

3.3. Characterization of the optimal control. We describe now how

previous results can be used: first to rewrite the functional in a transformed

form; second to explicitly find the optimal solution of the problem, the re-

lated optimal trajectory and the welfare function. The main results are de-

scribed first (Theorem 3.6) in the Hilbert space formalism introduced above

and then restated (Corollary 3.7) using a more readable PDE notation.

Theorem 3.6. Let Assumption 3.1 hold.
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(i) The functional (10) can be rewritten as

(17)

J
(
p0; I

)
= −〈α, p0〉+

∫ ∞
0

e−ρt

[〈(
(A(t)− 1)I(t)

)1−Γ(t)

1− Γ(t)
,1

〉
− 〈α,Ψ(t)I(t)〉

]
dt.

(ii) The control I∗ given by

I∗(t)(x) := (η(t, x)α(x))−
1

γ(t,x) (a(t, x)− 1)
1

γ(t,x)
−1(18)

belongs to A and is the unique optimal control of the problem.

(iii) The optimal state at time t ≥ 0, that is P ∗(t), is given by

(19) P ∗(t) := etLp0 +

∫ t

0

e(t−s)LΨ(s)I∗(s)ds.

(iv) The value function is finite and affine in p0; more precisely,

v(p0) = J
(
p0; I∗

)
= −〈α, p0〉+ q,

where

q :=

∫ ∞
0

e−ρt

[〈(
(A(t)− 1)I∗(t)

)1−Γ(t)

1− Γ(t)
,1

〉
− 〈α,Ψ(t)I∗(t)〉

]
dt.

Proof. See Appendix A. �

In the following corollary we summarize the results we have obtained so

far rephrasing them in the PDE setting, where we use the identification of

S1 with the real interval [0, 2π] with the identification of the extremes 0 and

2π.

Corollary 3.7. Let Assumption 3.1 hold.

(i) The optimal investment production input is given by

i∗(t, x) = (η(t, x)α(x))−
1

γ(t,x) (a(t, x)− 1)
1

γ(t,x)
−1.(20)

where α is the unique solution to the following ODE
ρα(x)− d

dx

(
σ(x)

dα

dx
(x)

)
+ δ(x)α(x) = w(x), x ∈ (0, 2π),

α(0) = α(2π), α′(0) = α′(2π).
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(ii) The dynamics of the pollution profile p∗ along the optimal path is the

unique solution to the following parabolic PDE

(21)

∂p∗

∂t
(t, x) =

∂

∂x

(
σ(x)

∂p∗

∂x
(t, x)

)
− δ(x)p∗(t, x) + α(x)

− 1
γ(t,x)

(
a(t, x)− 1

η(t, x)

) 1
γ(t,x)

−1

,

p∗(t, 0) = p∗(t, 2π),
∂p∗

∂x
(t, 0) =

∂p∗

∂x
(t, 2π), t ≥ 0,

p∗(0, x) = p0(x), x ∈ [0, 2π].

(iii) The social welfare is

(22) v(p0) = −
∫ 2π

0

α(x)p0(x)dx

+

∫ ∞
0

e−ρt
(∫ 2π

0

γ(t, x)

1− γ(t, x)

(
a(t, x)− 1

η(t, x)α(x)

) 1
γ(t,x)

−1

dx

)
dt,

In the previous statements we have seen the explicit solution of the op-

timal problem of the planner. A first, eminently technical, observation

concerns the transformation of the functional. In fact, the first result of

Theorem 3.6 is that the functional (10) can be rewritten in the form (17).

The new form is particularly useful as, in this expression, the state P no

longer appears and it is only given in terms of the control I; this fact greatly

simplifies the analysis. Thanks to this transformation, it is indeed much

easier to find the expression of the optimal investment and the subsequent

results.

Looking at the expressions that appear in Corollary 3.7, it is immediately

evident that all the heterogeneities of the problem enter directly and in a

non-trivial way in the solution. Partly, they appear explicitly in the ex-

pressions of the optimal spatial profile of the investment or of the parabolic

equation describing the evolution of the spatial distribution of pollution and

partly they contribute to these expressions through the expression of the

function α. In this way the model delivers optimal outcomes that are sen-

sitive to heterogeneities of different nature: environmental heterogeneities

(the ability to regenerate of the ecological context measured in each place
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by δ), productive heterogeneities (the productivity which depends exoge-

nously on both the location and the time) and preferences heterogeneities

(both through the spatial heterogeneity of the disutility of pollution w and

through the spatial heterogeneity of the elasticity of intertemporal substi-

tution).

This is clear for example in the optimal spatiotemporal path of investment

given in the corollary above: it depends directly on technological efficiency

both at production and at depollution (a(t, x) and η(t, x) respectively), and

it depends also indirectly through the α function (and equation (13)) on

other local conditions like self-cleaning capacity of Nature (δ(x)), proen-

vironmental awarness (w(x)) and pollution diffusion (σ(x)). Last but not

least, as any optimal outcome of an intertemporal problem, investment also

depends on the typical inherent parameters, the time discount parameter

(ρ) and the elasticity of intertemporal substitution (through γ(t, x)), which

happens to be time and space-dependent in our framework.

Another remarkable implication of our setting shows up in the optimal

dynamics of pollution, equation (20). As one can see, the technological de-

terminants of the latter entirely play through a single “sufficient” statistic,

the ratio a(t,x)−1
η(t,x)

. Of course, the larger productivity at production, the larger

pollution accumulation, while depollution efficiency works in the opposite

direction. In our model, the two technological channels interact directly in

the expression of optimal pollution stock dynamics. A technological evo-

lution in which the dynamics of productivity at production (here captured

by the dynamics of a(t, x) − 1) are one-to-one offset by those of depollu-

tion will leave the law of motion of pollution stock unaffected, and therefore

entirely determined by non-technological factors, which are far from innocu-

ous. One of the virtues of our framework is precisely to highlight the role of

these non-technological factors. In particular, all the factors affecting pol-

lution absorption capacity (that is, δ(x)) are increasingly important over

time: they point at the crucial importance of land use policies over the

world (not only at the Amazon).
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As in study in sustainable development under pollution, we should not

only look at short-term effect but also at the large. We show here be-

low that our setting also allows for extracting some interesting asymptotic

convergence results in the same analytical manner.

3.4. Transitional and long-run analysis of P ∗. In this section we an-

alyze both the transitional dynamics of P ∗(t) and its limit behavior as

t→∞.

3.4.1. Transitional dynamics through series expansion. Recall that a non

identically zero function φ ∈ D(L) is called eigenfunction of L if there

exists a real number (called eigenvalue) λ such that Lφ = λφ.

Proposition 3.8. Let Assumption 3.1 hold. There exists a decreasing se-

quence {λn}n∈N ⊂ (−∞, 0] such that λn → −∞ and an orthonormal basis

{en}n∈N ⊂ H such that

en ∈ D(L) and Len = λnen ∀n ∈ N.

Then the pollution profile along the optimal trajectory can then be expressed

as a convergent series in H:

(23) P ∗(t) =
∑
n∈N

p∗n(t)en, where p∗n(t) := 〈P ∗(t), en〉

and the expressions of the coefficients p∗n(t) can be explicitly given in the

following form

(24) p∗n(t) := 〈p0, en〉eλnt +

∫ t

0

eλn(t−s)ξ∗n(s)ds, ∀t ≥ 0, ∀n ∈ N,

where

(25) ξ∗n(t) := 〈Ψ(t)I∗(t), en〉, ∀t ≥ 0, ∀n ∈ N.

Proof. See Appendix A. �

The previous result allows to express the solution of the equation (21)

along the optimal path in terms of a series of space functions not dependent

on time multiplied by time-dependent coefficients. This expression, which



22

can be used in general to simulate the model, takes a particularly familiar

form in some specific cases. For example, if the diffusivity σ and the natural

decay of pollution δ are constant in the space variable, a standard Fourier

series is obtained, and the functions en are sins and cosines.

Observe also that (23) can also be used to express the total pollution∫
S1 p

∗(t, x)dx as a function of time, namely,∫
S1

p∗(t, x)dx =
∑
n∈N

〈en,1〉 p∗n(t), t ≥ 0.

where p∗n(t) is given in (24). Indeed, again using this result, an even more

precise description of the total pollution at time t can be given whenever the

following when δ is constant in space as shown by the following proposition.

Proposition 3.9. Let Assumption 3.1 hold and assume that the function δ

is constant, i.e. δ(·) ≡ δ0≥ 0. Then

(26)

∫
S1

p∗(t, x)dx =

(∫
S1

p0(x)dx

)
e−δ0t

+

∫ t

0

e−δ0(t−s)
(∫

S1

η(s, x)i∗(s, x)dx

)
ds.

Proof. See Appendix A. �

3.4.2. Limit behaviour in the time-homogeneous case. We consider now the

special case when the productivity coefficients and the ecological efficiency

of the production process are time-independent: a(t, x) = a(x), η(t, x) =

η(x); similarly for the inverse of the elasticity of intertemporal substitution,

i.e. γ(t, x) = γ(x). In this case, the expressions of the optimal control are

time independent

I∗(t)(x) ≡ Ī∗(x) = (η(x)α(x))−
1

γ(x) (a(x)− 1)
1−γ(x)
γ(x) ,(27)

and we have a direct characterization of the long-run profile of the pollution

stock along the optimal path as described in the following proposition.
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Proposition 3.10. Let Assumption 3.1 hold. Assume that the coefficients

a, γ, η are time-independent and that δ 6≡ 0. Then we have

lim
t→∞

P ∗(t) = p∗∞ in H,

where p∗∞ is the unique solution to the ODE

(28)


d

dx

(
σ(x)

dp∗∞
dx

(x)

)
− δ(x)p∗∞(x) + α(x)

− 1
γ(x)

(
a(x)− 1

η(x)

) 1
γ(x)
−1

= 0,

p∗∞(0) = p∗∞(2π),
dp∗∞
dx

(0) =
dp∗∞
dx

(2π).

Proof. See Appendix A. �

4. An illustration: Technology evolution over space and

time

We now propose an application of our method to technology diffusion

across space and time. In our setting, two technological exogenous vari-

ables are considered: one represents the typical efficiency of the production

process in the final good sector, that is a(t, x), and the second reflects es-

sentially the advances in the depollution activity, as reflected by η(t, x).

We will concentrate on the former for simplicity, given the illustrative pur-

pose of this section. We could have performed similar work on the latter.

More precisely, we look at the economic and environmental implications

of spatiotemporal diffusion of technology using the North-South diffusion

advocated by Nocco (2005).8

Consider an economy with a technological core (say the “North”) at x =

π, which is therefore the technological center. Concretely, we assume an

initial distribution for productivity in the final sector, a(0, x), with a peak

at x = π.9 As argued above, we suppose that knowledge spillovers from the

8Again, we could have chosen alternative specifications for technology diffusion. See a
short survey in the 2005 Nocco’s paper. The important common point to these specifi-
cations is that distance to the technological center matters in the strength of spillovers,
which is an empirically established feature, as outlined in the introduction.
9These initial distributions are represented in the second graphics of Figures 1, 2, 3. To
make the point we keep the same initial distribution in all our simulations.



24

technological center are more difficult for peripheral locations. We capture

this fact by defining a learning capabilities function ψ with the following

linear form

(29) ψ(x) =

{
a− b|x− π| if |x− π| < a/b

0 if |x− π| ≥ a/b

where a and b are two non-negative constants and |x − π| is the distance

between x and π on S1.

We normalize, at all times, the level of the technology in the center π to

a certain fixed level aπ > 1,10 and following Nocco (2005), we suppose that

the dynamics of the technology at any point x has the form11

(30) ȧx(t) = (ax(t)− aπ)3 + ψ(x)(aπ − ax(t))

with the initial value ax(0) such that 1 < ax(0) < aπ. This equation is

made of two parts. The first part (ax(t) − aπ)3 describes the fact that,

in absence of knowledge spillovers, the differences in technology between

the center and the periphery tends to increase due to the accumulation

process. The second part ψ(x)(aπ − ax(t)) represents knowledge spillovers

which are higher when technological differences are larger and depends on

the distance with the center through the learning capabilities function ψ

introduced above.

We represent three possible dynamics of the system depending on the

strength and on the form of the learning capability function and then on

the knowledge spillovers intensity. The choice of other parameters is the

same in all the figures. We keep the value of various parameters constant

constant in space to emphasize the (possible) endogenous divergence dy-

namics driven by technological accumulation process. Their values are the

following: the time discount ρ is 0.03, the diffusion coefficient σ is 0.5, the

10It is aπ = 1.2 in the numerical simulations.
11The solution to (30) might become smaller than 1 depending on the value of ψ(x); to
be consistent with our results, we bound the Nocco’s construction in order to remain in
the range allowed by our hypotheses, in the illustrations which follow, we actually choose
a to be the maximum among a given constant belonging to the interval (1, aπ) and the
solution of (30).
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nature local regeneration capacity δ is 0.2, the pollution impact of emissions

η is constant in time (and space) and equal to 1 as the local environmental

awareness w. Finally the inverse of the elasticity of intertemporal substi-

tution in consumption γ is time and space independent and equal to 0.5.

The values of these parameters do of course matter in the shape of the

optimal spatiotemporal dynamics calculated, but our here aim is to com-

pare the outcomes of three different learning capabilities schemes, and this

comparison is unaffected by the latter parameters’ choices.

Figure 1. The no knowledge spillover case. Evolution of techno-
logical level, investment and output (with respect to the technological
center) and pollution stock in time and space.

In Figure 1 we study the no-learning benchmark. In this case we take

a (and b) equal to 0 in (29) so that no knowledge spillovers is at work.

This specific form of ψ is represented in the first image of Figure 1. As

already said, the second graphic represents the initial spatial distribution of

the technology. The third graphic displays the evolution of the technolog-

ical level with respect to the center’s, that is for any location x, the ratio

ax(t)/aπ where ax(t) follows the dynamics described by (30). In the absence

of spillover effects a strong divergence dynamics arises and the relative dis-

tance among technologies in the core and in the periphery increases over
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time. This kind of behavior is reproduced in the investment and output dy-

namics (fourth and fifth graphics of Figure 1). The sixth graphic of Figure

1 gives the dynamics of the stock of pollution12. Not surprisingly the re-

gions where input and then emissions are higher are the more polluted and

differences accentuate over time due to the divergence process in input (and

then emission) among locations over time. Observe that since pollution is

transboundary, the relative difference between core and periphery in terms

of pollution stock is milder than the relative difference of emissions.

Figure 2. The low knowledge spillover case. Evolution of techno-
logical level, investment and output (with respect to the technological
center) and pollution stock in time and space.

In Figure 2 we have a low-spillover scenario, a situation where the learn-

ing/spillover dynamics is active but it is not very strong. In particular,

for regions which are too far from the core the learning function ψ turns

to be zero. More precisely in the definition of ψ given in (29) we fix now

a = 0.371 and b equal to 0.15. The corresponding learning function is rep-

resented in the first graphic of Figure 2. We observe that the dynamics is

now qualitatively different compared to the benchmark. In some locations,

12The initial datum for the pollution stock profile is found by considering an history of
past emissions always equal to the initial emission profile appearing in the fifth graphic.
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the magnitude of learning capabilities, ψ, and the initial technological level

are high enough to give rise to a convergence dynamics. Other regions, in

particular the more peripheral ones with zero learning capabilities, remain

far from the frontier, ultimately experiencing divergence from the center.

So differently from the benchmark, we have a different picture: some of the

non-core locations converge to the center, others no.

In Figure 3 we consider the high-spillover scenario: knowledge spillover

are strong in all locations.13 Now the knowledge spillovers are strong enough

to offset the divergent forces at work in all locations. We see this fact in the

spatial dynamics of all the variables: relative level of technology, input and

production and also in the dynamics of the spatial profile of the pollution

stock which, in the long run converges toward the same value in all the

regions. The same set-up is replicated in Figure 4 where we look at the

dynamics for a longer time interval.

Figure 3. The high knowledge spillover case. Evolution of techno-
logical level, investment and output (with respect to the technological
center) and pollution stock in time and space.

13We set a = 0.571 and b equal to 0.15, the corresponding learning function is represented
in the first graphic of Figure 3) as before.
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Figure 4. The high knowledge spillover case with a longer time evolution.

5. Conclusion

In this paper, we have provided with a generic spatiotemporal non-linear-

quadratic framework for transboundary pollution control. The objective

functional to be maximized is a Benthamite social welfare function depend-

ing on the intertemporal stream of consumption at any location, and in-

ternalizing the spatial externalities resulting from pollution diffusion. The

essential contribution of this work is to identify optimal pollution control

policies with a very large account of geographic heterogeneity: (i) hetero-

geneity in productivity and in ecological efficiency of the production process,

which also includes the broad spatio-temporal characteristics of the exoge-

nous technological process; (ii) heterogeneity in preferences, notably in the

intertemporal elasticity of substitution and in the disutility from the pol-

lution, and finally: (iii) the heterogeneity in the environmental/ecological

context, in particular in terms of speed of diffusion of pollutants and local

regeneration capacity.

Despite the complexity of the problem, we have been able to produce a

solution method which has two unexpected virtues (given the complexity of

the task). First, it allows for closed-form solutions, and second, the solutions
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produced are based on a neatly singled out spatial function with a clear eco-

nomic interpretation. We do believe that such a framework can be used in

a large set of applications given the generality of most of the specifications.

Clearly, one can still visualize a number of possible future extensions (for

example the incorporation of demographic dynamics with space-dependent

mortality depending on local pollution) but we firstly believe that the next

step should be the exploitation of the variety of applications allowed by this

framework.
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30

Boucekkine R., Fabbri G., Federico S. and Gozzi F. (2020). From firm to global-level

pollution control: the case of transboundary pollution. Working Paper n. 818,

Universita di Siena.

Boucekkine, R., Fabbri, G., Federico, S. and Gozzi, F. (2019a). Geographic environ-

mental Kuznets curves: The optimal growth linear-quadratic case. Mathematical

Modelling of Natural Phenomena, 14(1), 105.

Boucekkine R., Fabbri G., Federico S. and Gozzi F. (2019b). Growth and agglomera-

tion in the heterogeneous space: a generalized AK approach. Journal of Economic

Geography, 19, 1287-1318.

Boucekkine R., Krawczyk J. and Vallée T. (2011). Environmental quality versus eco-

nomic performance: A dynamic game approach. Optimal Control Applications and

Methods, 32, 29-46.

Brezis H. (2011). Functional Analysis, Sobolev Spaces and Partial Differential Equa-

tions. New York: Springer.

Brito, P. (2004). The dynamics of growth and distribution in a spatially heterogeneous

world. Working Papers Department of Economics 2004/14. ISEG, University of

Lisbon

Camacho C. and Perez Barahona A. (2015). Land use dynamics and the environment.

Journal of Economic Dynamics and Control, 52, 96-118.

Crandall, M. G., Ishii, H. and Lions, P. L. (1992). User’s guide to viscosity solutions of

second order partial differential equations. Bulletin of the American mathematical

society, 27(1), 1-67.

Coddington, E. A. and Levinson, N. (1955). Theory of ordinary differential equations.

New York: McGraw-Hill.

Deltas, G., Karkalakos S. (2013). Similarity of R&D activities, physical proximity and

R&D spillovers. Regional Science and Urban Economics, 43, 124-131.

Dockner, E. J. and Van Long, N. (1993). International pollution control: cooperative

versus noncooperative strategies. Journal of Environmental Economics and Man-

agement, 25(1), 13-29.

Engel K.J., Nagel R. (1995). One-parameter Semigroups for Linear Evolution Equa-

tions., Graduate Texts in Mathematics 194, Berlin: Springer.



31

de Frutos F., Martin-Herran G. (2019). Spatial vs. non-spatial transboundary pollution

control in a class of cooperative and non-cooperative dynamic games. European

Journal of Operational Research, 276(1), 379-394

Fabbri, G. (2016). Geographical structure and convergence: A note on geometry in

spatial growth models. Journal of Economic Theory, 162(1), 114-136.

Freni G., Gozzi F., Salvadori N., (2006). Existence of optimal strategies in linear mul-

tisector models. Economic Theory, 29, 25–48.

Gibson M., Carnovale, M. (2015). The effects of road pricing on driver behavior and

air pollution. Journal of Urban Economics, 89, 62-73.

Grass, D. and Uecker, H. (2015). Optimal management and spatial patterns in a dis-

tributed shallow lake model. Electronic Journal of Differential Equations, 2017(01),

1-21.

Henderson, V. (1977). Externalities in a spatial context. Journal of Public Economics,

7, 89-110.

Henderson, V. (1996). Effects of air quality regulation. American Economic Review,

86, 789-813.

Hochman, O., Ofek, H. (1979). A theory on the behavior of municipal governments:

The case of internalizing pollution externalities. Journal of Urban Economics, 6,

416-431.

Krugman, P. (1993). First nature, second nature, and the metropolitan location. Jour-

nal of Regional Science, 33(2), 129-144.

Lunardi A. (1995). Analytic Semigroups and Optimal Regularity in Parabolic Problems.

Basel: Birkhäuser.
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Appendix A. Proofs

Proof of Proposition 3.2. Due to Assumption 3.1, L is a closed, densely defined,

unbounded linear operator on the space H (see, e.g. Lunardi, 1995, p. 71-75,
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Sections 3.1 and 3.1.1). A core for it is the space C∞(S1;R) (see, e.g., Engel and

Nagel, 1995, pages 69-70). Let ϕ ∈ C∞(S1;R). Integration by parts yields

〈Lϕ,ϕ〉 =

∫
S1

(Lϕ)(x)ϕ(x)dx

= −
∫
S1

σ(x)|ϕ′(x)|2dx−
∫
S1

δ(x))|ϕ(x)|2dx ≤ 0(31)

Since C∞(S1;R) is a core for L, (32) extends to all functions ϕ ∈ D(L), showing

that the operator L is dissipative. Similarly, a double integration by parts shows

that

(32) 〈Lϕ, η〉 = 〈ϕ,Lη〉, ∀ϕ, η ∈ C∞(S1;R).

Again, since C∞(S1;R) is a core for L, (32) extends to all couples of functions

in D(L), showing that L is self-adjoint, i.e. L = L?, where L? denotes the

adjoint of L. Therefore, by Engel and Nagel (1995) (in particular, Chapter II),

L generates a strongly continuous contraction semigroup (etL)t≥0 ⊂ L(H); in

particular, since ρ > 0, by standard theory of strongly continuous semigroup in

Banach spaces (see, e.g. pages 82-83, Chapter II and Theorem 1.10, Chapter II

of Engel and Nagel 1995), it follows that ρ belongs to the resolvent set of L and

that (7) holds. �

Proof of Proposition 3.3. First of all we observe that, by Assumption 3.1(ii), the

first term in the functional is always positive (Case (A)) or always negative (Case

(B)), possibly infinite. Hence to prove the claim it is enough to show that, given

any p0 ∈ H, the term
∫∞

0 e−ρt〈w,P (t)〉dt is well defined and finite for every

I ∈ A. We have∫ ∞
0

e−ρt
〈
w,P (t)

〉
dt =

∫ ∞
0

e−ρt
〈
w, etLp0 +

∫ t

0
e(t−s)LΨ(s)I(s)ds

〉
dt(33)

Now, since w is bounded and etL is a contraction, the integral
∫∞

0 e−ρt〈w, etLp0〉dt
is finite. Moreover, for all T > 0 we get, by Fubini-Tonelli’s Theorem∫ T

0

(∫ t

0
e−ρt

〈
w, e(t−s)LΨ(s)I(s)

〉
ds

)
dt

=

∫ T

0

(∫ t

0
e−ρs

〈
w, e−(ρ−L)(t−s)Ψ(s)I(s)

〉
ds

)
dt

=

∫ T

0
e−ρs

〈
w,

∫ T

s
e−(ρ−L)(t−s)Ψ(s)I(s)dt

〉
ds

Using again the fact that e(t−s)L is a contraction and Assumption 3.1, we have,

for each s ≥ 0, T ≥ 0∥∥∥∥∫ T

s
e−(ρ−L)(t−s)Ψ(s)I(s)dt

∥∥∥∥ ≤ ∫ ∞
s

e−ρ(t−s)‖Ψ(s)I(s)‖dt ≤ 1

ρ
‖Ψ(s)I(s)‖.

Hence, by definition of A, the claim follows sending T to +∞. �
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Proof of Proposition 3.4. The fact that α solves (13) and the fact that, by As-

sumption 3.1, we have σ(·) > 0 yield

α′′(x) =
1

σ(x)

[
(ρ+ δ(x))α(x)− σ′(x)α′(x)− w(x)

]
, for a.e. x ∈ S1.

Since α ∈ C1(S1;R), it follows, by Assumption 3.1, that α ∈ C2(S1;R).

Now, let x∗ ∈ S1 be a minimum point of α over S1. Then α′′(x∗) ≥ 0. Plugging

this into (13) we get

(ρ+ δ(x∗))α(x∗) = σ(x∗)α
′′(x∗) + w(x∗) ≥ w(x∗),

and the estimate from below follows. The estimate from above can be obtaind

symmetrically. �

Proof of Proposition 3.5. Case σ → 0+. First, notice that under the above as-

sumptions (13) reads as

(34) ρασo(x)− σoα′′σo(x) + δ(x)ασo(x) = ŵ(x), x ∈ S1,

By Proposition 3.4 we have

α∗(x) := lim inf
σo→0+

{
ασo(ζ) : σo ≤ σo, ζ ∈ S1, |ζ − x| ≤ 1/σo

}
≥ min

S1

w

ρ+ δ
,

α∗(x) := lim sup
σo→0+

{
ασo(ζ) : σo ≤ σo, ζ ∈ S1, |ζ − x| ≤ 1/σo

}
≤ max

S1

w

ρ+ δ
.

Clearly α∗ ≥ α∗. By stability of viscosity solutions (see e.g. Crandall et al.,

1992), the latter functions are, respectively, (viscosity) super- and sub-solution

to the limit equation

ρα0(x) + δ(x)α0(x) = w(x),

whose unique solution is

α0(x) =
w(x)

ρ+ δ(x)
.

By standard comparison of viscosity solutions one has α∗ ≥ α0 ≥ α∗. It follows

that

∃ lim
σo→0+

ασo(x) = α∗(x) = α∗(x) = α0(x) ∀x ∈ S1.

Case σ → +∞. First, we rewrite (34) as

(35) α′′σo(x) =
1

σo
[ρασo(x) + δ(x)ασo(x)− w(x)] , x ∈ S1,

From this and from Proposition 3.4, we see that ασo is equi-bounded and equi-

uniformly continuous with respect to σo ≥ 1. Hence, by Ascoli-Arzelà Theorem

we have that, from each sequence σn → +∞, we can extract a subsequence σnk
such that

lim
k→+∞

ασnk = α∞ uniformly on x ∈ S1,



34

for some α∞ ∈ C(S1;R). Again by stability viscosity solutions, α∞ must solve,

in the viscosity sense, the limit equation

α′′∞(x) = 0, x ∈ S1.

Hence, it must be α∞ ≡ c0 for some c0 ≥ 0. To find the value of c0 we may

integrate (34) over S1 getting∫
S1

(ρ+ δ(x))ασo(x)dx =

∫
S1

w(x)dx.

Letting σo → +∞ above, we get

c0 =

∫
S1 w(x)dx∫

S1(ρ+ δ(x))dx
.

As this value does not depend on the sequence σn chosen, the claim follows. �

Proof of Theorem 3.6. (i) Using (9) it is possible to rewrite the second part of

(10). We first set

e−(ρ−L)t := e−ρtetL, t ≥ 0,

and we write∫ ∞
0

e−ρt
〈
w,P (t)

〉
dt =

∫ ∞
0

e−ρt
〈
w, etLp0 +

∫ t

0
e(t−s)LΨ(s)I(s)ds

〉
dt

=

〈
w,

∫ ∞
0

e−(ρ−L)tp0 dt

〉
+

∫ ∞
0

e−ρt
〈
w,

∫ t

0
e(t−s)LΨ(s)I(s))ds

〉
dt

(36)

Note that the first term of the right hand side is the only one which depends on

the initial datum and, by (7), it can be rewritten as

(37)

〈
w,

∫ ∞
0

e−(ρ−L)tp0 dt

〉
=
〈
w, (ρ− L)−1p0

〉
=
〈
(ρ− L)−1w, p0

〉
= 〈α, p0〉 ,

where α is defined in (11).

We look now at the last term of the last line of (36). It can be rewritten by

exchanging the integrals as follows:∫ ∞
0

(∫ t

0
e−ρt

〈
w, e(t−s)LΨ(s)I(s)

〉
ds

)
dt

=

∫ ∞
0

(∫ t

0
e−ρs

〈
w, e−(ρ−L)(t−s)Ψ(s)I(s)

〉
ds

)
dt

=

∫ ∞
0

e−ρs
〈
w,

∫ ∞
s

e−(ρ−L)(t−s)Ψ(s)I(s)dt

〉
ds

=

∫ ∞
0

e−ρs
〈
w, (ρ− L)−1Ψ(s)I(s)

〉
ds

=

∫ ∞
0

e−ρs
〈
(ρ− L)−1w,Ψ(s)I(s)

〉
ds

Hence, we can finally rewrite (10) as (17).
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(ii) After writing explicitely the inner products in (10), the integral can be op-

timized pointwisely. We end up, for (t, x) ∈ R+×S1 fixed, with the optimization

sup
ι≥0

{(
(a(t, x)− 1)ι

)1−γ(t,x)

1− γ(t, x)
− α(x)η(t, x)ι

}
;

so, we easily get the claimed expression (18) of the candidate unique optimal

control I∗. On the other hand, we need to verify that I∗ ∈ A. Indeed, by

Assumption 3.1, we have

Ψ(t)(x)I∗(t)(x) = α(x)
− 1
γ(t,x) η(t, x)

1− 1
γ(t,x) (a(t, x)− 1)

1
γ(t,x)

−1

= α(x)
− 1
γ(t,x)

(
a(t, x)− 1

η(t, x)

) 1
γ(t,x)

−1

.

Since α is bounded from above and from below by positive constants, then so is

α(x)
− 1
γ(t,x) by Assumption 3.1(ii). Consequently, by Assumption 3.1(iii), we get,

for some C0 > 0

0 ≤ Ψ(t)(x)I∗(t)(x) ≤ C0e
gt, ∀x ∈ S1.

Since ρ > g by Assumption 3.1(iv), we get I∗ ∈ A.

(iii)-(iv) These claims immediately follow by straightforward computations.

�

Proof of Proposition 3.8. Consider the operator (1−L)−1 ∈ L(H). The range of

this operator is the space D(L) = W 2,2(S1;R), which by Kondrachov’s Theorem

is embedded in H = L2(S1;R) with compact embedding. It follows that (1−L)−1

is compact; being also self-adjoint, by standard spectral theory in Hilbert spaces,

there exists an orthonormal basis of eigenvectors for it, hence also for L. Hence,

considering also that L is dissipative and unbounded, there exists a decreasing

sequence {λn}n∈N ⊂ (−∞, 0] such that λn → −∞ and an orthonormal basis

{en}n∈N ⊂ H such that

(38) en ∈ D(L) and Len = λnen ∀n ∈ N.

Consider the Fourier series expansion

P ∗(t) =
∑
n∈N

p∗n(t)en, where p∗n(t) := 〈P ∗(t), en〉.

We can write explicitly the Fourier coefficients p∗n(t) by the following argument.

By Proposition 3.2, Chapter 1, Part II of Bensoussan et al. (2007), the function

P ∗ defined in (19) is also a weak solution to (8) with I = I∗, i.e., taking into

account that L is self-adjoint, i.e. L = L?, it holds

〈P ∗(t), ϕ〉 = 〈p0, ϕ〉+
∫ t

0

(
〈P ∗(s),Lϕ〉+〈Ψ(s)I∗(s), ϕ〉

)
ds ∀t ≥ 0, ∀ϕ ∈ D(L).
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In particular, taking into account (38), we have

p∗n(t) = 〈P ∗(t), en〉 = 〈p0, en〉+

∫ t

0

(
λn〈P ∗(s), en〉+ 〈Ψ(s)I∗(s), en〉

)
ds

= 〈p0, en〉+

∫ t

0

(
λnp

∗
n(s) + ξ∗n(s)

)
ds ∀t ≥ 0, ∀n ∈ N.

Then∫
S1

p∗(t, x)dx = 〈P ∗(t),1〉 =

〈∑
n∈N

p∗n(t)en,1

〉
=
∑
n∈N
〈en,1〉 p∗n(t), t ≥ 0,

as claimed. �

Proof of Proposition 3.9. First we observe that, in this case, e0(·) ≡ 1√
2π

, λ0 =

−δ0. Hence ∫
S1

p∗(t, x)dx = 〈P ∗(t),1〉 =
√

2π〈P ∗(t), e0〉.

From the mild form of P given in (9) we now get, for t ≥ 0,

〈P ∗(t), e0〉 = 〈etLp0, e0〉+

∫ t

0
〈e(t−s)LΨ(s)I∗(s), e0〉ds

= 〈p0, e
tLe0〉+

∫ t

0
〈Ψ(s)I∗(s), e(t−s)Le0〉ds

= 〈p0, e
−δ0te0〉+

∫ t

0
〈Ψ(s)I∗(s), e−δ0(t−s)e0〉ds,

where we used that e−δ0t is the eigenvalue of etL associated to e0. The claim

immediately follows. �

Proof of Proposition 3.10. In this case I∗(·) ≡ Ī∗ ∈ H is time independent too.

Since δ 6≡ 0, we have λ0 < 0. Let us write

L = L0 − λ0, where L0 := L+ λ0,

and note that L0 is dissipative by definition, hence esL0 is a contraction. Then,

setting Ψ̄ := η(·) ∈ H, we can rewrite

P ∗(t) = eλ0tetL0p0 +

∫ t

0
eλ0(t−s)e(t−s)L0Ψ̄Ī∗ds = eλ0tetL0p0 +

∫ t

0
eλ0tetL0Ψ̄Ī∗ds,

and take the limit above when t→∞. Since esL0 is a contraction, the first term

of the right hand side converges to 0, whereas the second one converges to

P ∗∞ :=

∫ ∞
0

e−λ0sesL0Ψ̄Ī∗ds ∈ H.

Then, the limit state P ∗∞ ∈ H can be expressed using again Proposition 3.14,

page 82 and Theorem 1.10, Chapter II of Engel and Nagel (1995) as

P ∗∞ = (λ0 − L0)−1Ψ̄Ī∗,
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i.e. P ∗∞ is the solution to

(λ0 − L0)P ∗∞ = Ψ̄Ī∗,

equivalently

LP ∗∞ + Ψ̄Ī∗ = 0,

i.e., in the PDE formalism, p∗∞(·) := P ∗∞ solves (28). �
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