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STATE CONSTRAINED CONTROL PROBLEMS IN BANACH
LATTICES AND APPLICATIONS\ast 

ALESSANDRO CALVIA\dagger , SALVATORE FEDERICO\ddagger , AND FAUSTO GOZZI\dagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . This paper aims to study a family of deterministic optimal control problems in
infinite-dimensional spaces. The peculiar feature of such problems is the presence of a positivity
state constraint, which often arises in economic applications. To deal with such constraints, we
set up the problem in a Banach lattice, not necessarily reflexive: a typical example is the space of
continuous functions on a compact set. In this setting, which seems to be new in this context, we
are able to find explicit solutions to the Hamilton--Jacobi--Bellman (HJB) equation associated to
a suitable auxiliary problem and to write the corresponding optimal feedback control. Thanks to
a type of infinite-dimensional Perron--Frobenius theorem, we use these results to gain information
about the optimal paths of the original problem. This was not possible in the infinite-dimensional
setting used in earlier works on this subject, where the state space was an L2 space.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . optimal control in infinite dimension, dynamic programming, state constraints,
Hamilton--Jacobi--Bellman equation, Banach lattice, AK model of economic growth
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1. Introduction. A typical feature of optimal control problems arising in eco-
nomic applications---as well as in other fields---is the presence of positivity state
and/or control constraints. This feature is very common and makes the problem
nontrivial---even in the case where the state space has finite dimension. Indeed, on
the one hand, if one approaches the problem by the maximum principle, then jumps
of the co-state variables, which are associated to optimality conditions, may arise (see,
e.g., Hartl, Sethi, and Vickson [32] for the finite-dimensional case and Fattorini [25,
Chap. 11] for the infinite-dimensional case); on the other hand, if one employs dy-
namic programming techniques, then well-posedness and regularity results for the
associated HJB equation may be hard to obtain (see, e.g., Capuzzo-Dolcetta and Li-
ons [15] and Soner [38] for the finite-dimensional case; Cannarsa and Di Blasio [13],
Cannarsa, Gozzi, and Soner [14], Faggian [24], and Kocan and Soravia [34] for the
infinite-dimensional case; see also Katsoulakis [33], Calvia [11, 12], and Fabbri, Gozzi,
and Swiech [23, Chap. 3] for the stochastic case).

In the last decades, various papers in the economic literature considered optimal
control problems in which the state variable is infinite-dimensional. This typically
happens when one has to take into account heterogeneity: for instance, the evolution
of a key economic variable, such as capital, may depend not only on time but also
on its spatial position or its vintage (see, e.g., Bambi et al. [4, 3], Boucekkine et
al. [6, 7, 8, 9], Feichtinger et al. [29], and Fabbri and Gozzi [22]). The setting in which
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4482 A. CALVIA, S. FEDERICO, AND F. GOZZI

such optimal control problems are studied in this area of literature is the separable
Hilbert space L2. Also in this case, positivity state constraints represent an essential
feature of the problem. Handling such constraints in this infinite-dimensional setting
turns out to be even more problematic than in the finite dimension, as the positive
cone of L2 has an empty interior, and it is not obvious how to interpret the derivative
in the associated HJB equation. Consequently, it is not obvious how to make sense of
the optimal feedback map, which, as is well known, depends on the derivative of the
solution to the HJB equation.

A possible way to deal with this difficulty (cf., e.g., Bambi et al. [4, 3], Boucekkine
et al. [6, 7, 9], and Fabbri and Gozzi [22]) is to study an auxiliary problem under a
relaxed state constraint by allowing the state variable to evolve in a suitable half-
space, where the solution of the HJB equation can be found explicitly. If it is possible
to find the optimal paths for the auxiliary problem, one can try to show, at least
for some initial data (hopefully interesting for applications), that these paths satisfy
the positivity state constraint and hence are optimal for the initial problem, too.
This important property, i.e., the admissibility of the auxiliary optimal paths for the
original problem, has been rigorously established in Boucekkine et al. [6, 7] only for the
steady states of the problem that constitute a one-dimensional set of initial conditions.
To the best of our knowledge, only in [3] this point is successfully addressed for a
larger nontrivial set of initial conditions but at the price of a technical, involved, and
tailor-made argument. Thus, the main motivation of our paper is to rigorously prove
that admissibility of the auxiliary optimal paths for the original problem holds for a
sufficiently rich set of initial conditions in the context of economic growth problems
in time-space, such as the ones introduced by Boucekkine et al. [6, 7]: these results
are collected in section 5 (cf. Theorem 5.12 and Corollary 5.14).

To achieve this goal, we consider the problems in a state space different from
L2; since heterogeneity is usually modeled by a compact metric space D, the natural
candidate to use is the space of continuous functions onD, endowed with the sup-norm
and the standard pointwise partial order. This norm allows us to deal properly with
pointwise constraints, such as the positivity state constraint that characterizes our
optimization problems. However, we realized that, for the class of control problems
with the features described above, many results that hold in the setting of continuous
functions still hold in the more general setting of Banach lattices. Since we think that
this more general setting can be useful for future applications, we build our theory in
this abstract setup. More specifically, we consider the following:

-- as state space X, a general separable Banach lattice of real-valued functions
defined on a measure space (D,\mu ); the strictly positive orthant X++ is nat-
urally defined and provides the required positivity state constraint;

-- as state equation, the linear equation x\prime (t) = Lx(t)  - Nc(t), where x and c
are, respectively, the state and the control variable, and L and N are suitable
operators;

-- as objective functional, a type of discounted utility over an infinite horizon,
i.e., a functional of the form

\int \infty 
0

e - \rho t\scrU (c(t)) dt, where \scrU is concave.
In this general setup, we define an appropriate auxiliary problem in which the state
constraint is a suitable half-space of X that strictly contains the positive cone. For
this problem we prove a verification theorem (Theorem 3.1). Moreover, in the case
when X is either an Lp space or the space of continuous functions, and \scrU is homoge-
neous, we show that the HJB equation can be explicitly solved (Proposition 3.4) and,D
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CONSTRAINED CONTROL PROBLEMS IN BANACH LATTICES 4483

consequently, that the optimal feedback control can be found (Theorem 3.9).1

Once the auxiliary problem in the half-space is explicitly solved, we are in a po-
sition to achieve our main goal, i.e., to prove a stability result (Theorem 3.11) that
provides the basis to show admissibility of the auxiliary optimal paths for the original
problem, at least when the initial conditions are in a neighborhood of the correspond-
ing steady state (Theorem 5.12 and Corollary 5.14). To get these results, we need an
important assumption that concerns the spectrum of the operator L appearing in the
state equation above (cf. point (i) of Assumption 3.2). This assumption can be veri-
fied thanks to Perron--Frobenius-type results in Banach spaces, which are provided in
section 4.

The plan of the paper is the following:
-- section 2 is devoted to presenting the general setup mentioned above;
-- section 3 contains the main abstract results of the paper on the auxiliary
problem: the verification theorem (subsection 3.1), the explicit solution to the
auxiliary HJB equation (subsection 3.2), the stability result (subsection 3.3);

-- section 4 introduces the Perron--Frobenius-type results guaranteeing the afore-
mentioned key assumption needed in section 3;

-- section 5 shows how the general theory exposed in the first four sections of
the paper can be applied to a family of economic growth problems, including
the one studied in Boucekkine et al. [6, 7].

-- section 6 is devoted to discussing potential extensions of our approach to
optimal control problems with positivity state constraints and nonlinear state
equations.

2. The optimal control problem. Set \BbbR + := [0,+\infty ), let (D,\mu ) be a measure
space with a countably generated \sigma -algebra,2 and let (X, | \cdot | X ,\leq X) be a separable
Banach lattice of real-valued functions defined on D. The symbols | \cdot | X and \leq X

denote, respectively, the norm and the ordering on X.
Denote by X \star the topological dual of X, and let \langle \cdot , \cdot \rangle be the dual pairing of X,X \star .

We have that X \star is an order-complete Banach lattice with its usual norm, denoted
by | \cdot | X \star , and with the natural ordering \leq X \star defined as follows (see, e.g., [2, p. 239]):
given \varphi  \star , \psi  \star \in X \star ,

\varphi  \star \leq X \star \psi  \star \Leftarrow \Rightarrow \langle f, \varphi  \star \rangle \leq \langle f, \psi  \star \rangle \forall f \geq X 0.

We consider the positive orthants (or positive cones) of X,X \star , i.e., the sets

X+ := \{ f \in X : f \geq X 0\} , X \star 
+ := \{ \varphi  \star \in X \star : \varphi  \star \geq X \star 0\} ,

and the strictly positive orthants (or strictly positive cones) of X,X \star , i.e., the sets
(see, e.g., [2, p. 119])

X++ := \{ f \in X : \langle f, \varphi  \star \rangle > 0 \forall 0 \not = \varphi  \star \in X \star 
+\} ,

X \star 
++ := \{ \varphi  \star \in X \star : \langle f, \varphi  \star \rangle > 0 \forall 0 \not = f \in X+\} .

We write f >X 0 if f \in X++ and \varphi  \star >X \star 0 if \varphi  \star \in X \star 
++.

1It is worth noting that HJB equations in Banach spaces have been scarcely studied in the
literature (see, e.g., Addona, Bandini, and Masiero [1], Fuhrman, Masiero, and Tessitore [31], and
Masiero [36, 37] for mild solutions to second order semilinear HJB equations; see Crandall and
Lions [18, 19, 20] and Soner [39] for viscosity solutions to first order HJB equations).

2In most applied examples, D has a topological structure. However, at this abstract stage, this
is not needed.
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4484 A. CALVIA, S. FEDERICO, AND F. GOZZI

Remark 2.1. The following spaces of functions, typical in applications, fall within
the abstract setting above:

(i) X = Lp(D,\mu ), p \in [1,+\infty ), where \mu is \sigma -finite. In this case X is separable,
X \star = Lq(D,\mu ), where q satisfies p - 1 + q - 1 = 1, and intX+ = \emptyset .

(ii) X = \scrC (D), the space of real-valued continuous functions on a compact metric
space D, equipped with the sup-norm; \mu can be any Borel measure on D. In
this case, X is a Banach lattice with order unit, X \star is the space of regular
Borel measures on D, and intX+ = X++ \not = \emptyset .

(iii) X = \scrC 0(D), the space of real-valued continuous functions vanishing at infinity
on a locally compact metric space D, equipped with the sup-norm; \mu can be
any Borel measure on D. In this case, X \star is the space of regular Borel
measures on D, and intX+ = \emptyset .

(iv) Given a locally compact metric space D and a continuous function w : D \rightarrow 
(0,+\infty ), the space X = \scrC w(D) of real-valued continuous functions f on D
such that fw is bounded, equipped with the norm

| f | X := sup
x\in D

| f(x)w(x)| .

Also here \mu can be any Borel measure on D. A typical case is D = \BbbR n and
w(x) = 1

1+| x| k , which allows us to deal with continuous data with polynomial

growth at infinity.

We introduce the optimal control problem in the space X that we aim to study.
Let L : D(L) \subseteq X \rightarrow X be a (possibly) unbounded linear operator, and letN : X \rightarrow X
be a bounded linear operator. Given x0 \in X and a control function c \in L1

loc(\BbbR +;X),
we consider the following abstract state equation in X:

(2.1)

\Biggl\{ 
x\prime (t) = Lx(t) - Nc(t), t \geq 0,

x(0) = x0.

To stress the dependence of the solution to (2.1) on x0 \in X and c \in L1
loc(\BbbR +;X),

we will denote it by xx0,c. The following assumption will be in force throughout the
paper.

Assumption 2.2.
(i) The linear operator L : D(L) \subseteq X \rightarrow X is closed, densely defined, and

generates a C0-semigroup \{ etL\} t\geq 0 in X. Moreover, the semigroup \{ etL\} t\geq 0

preserves strict positivity, i.e., etL(X++) \subseteq X++, for all t \geq 0.
(ii) The linear operator N : X \rightarrow X is bounded and positive, i.e., N(X+) \subseteq X+.

Remark 2.3. It is worth noting that, by continuity, point (i) of Assumption 2.2
implies that \{ etL\} t\geq 0 is also a positive semigroup; that is, it satisfies etL(X+) \subseteq X+

for all t \geq 0. Sufficient conditions guaranteeing positivity of semigroups can be found,
e.g., in [2, Chap. B-II, Thm. 1.6, Thm. 1.13, Chap. C-II, Thm. 1.2, Thm. 1.8]) and
[16, Thm. 7.29 and Prop. 7.46].

According to [5, p. 129], for each x0 \in X and c \in L1
loc(\BbbR +;X), we call mild

solution to (2.1) the function

(2.2) xx0,c(t) := etLx0  - 
\int t

0

e(t - s)LNc(s) ds, t \geq 0.

D
ow

nl
oa

de
d 

02
/2

6/
24

 to
 1

37
.2

04
.1

35
.1

05
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONSTRAINED CONTROL PROBLEMS IN BANACH LATTICES 4485

By [5, p. 131], the mild solution defined in (2.2) is also a weak solution to (2.1), i.e.,
it satisfies, for all \varphi  \star \in D(L \star ),

(2.3) \langle xx0,c(t), \varphi  \star \rangle = \langle x0, \varphi  \star \rangle +
\int t

0

\langle xx0,c(s), L \star \varphi  \star \rangle ds - 
\int t

0

\langle Nc(s), \varphi  \star \rangle ds, t \geq 0,

where L \star : D(L \star ) \subseteq X \star \rightarrow X \star denotes the adjoint of L.
We are interested in analyzing an optimal control problem in which the state vari-

able, satisfying (2.1), remains in the strictly positive cone of X. This state constraint
is expressed introducing the following class of admissible controls, which depend on
x0 \in X:

(2.4) \scrA ++(x0) := \{ c \in L1
loc(\BbbR +;X+) : x

x0,c(t) \in X++ \forall t \geq 0\} .

For the reasons anticipated in the introduction and that will become clearer later, we
are led to consider a larger class of admissible controls. Precisely, given x0 \in X and
\varphi  \star \in X \star 

++, we define the set

\scrA \varphi  \star 

++(x0) := \{ c \in L1
loc(\BbbR +;X+) : \langle xx0,c(t), \varphi  \star \rangle > 0 \forall t \geq 0\} (2.5)

= \{ c \in L1
loc(\BbbR +;X+) : xx0,c(t) \in X\varphi  \star 

++ \forall t \geq 0\} ,

where X\varphi  \star 

++ is the open (infinite-dimensional) half-space of X generated by \varphi  \star \in X \star 
++,

i.e.,

X\varphi  \star 

++ := \{ f \in X : \langle f, \varphi  \star \rangle > 0\} .

Note that for any \varphi  \star \in X \star 
++, we have the set inclusion X++ \subseteq X\varphi  \star 

++. In turn,

this implies \scrA ++(x0) \subseteq \scrA \varphi  \star 

++(x0) for any x0 \in X. Thus, we are relaxing the state
constraint when passing from the former to the latter set of admissible controls. For
future reference, we observe the following:

-- both \scrA ++(x0) and \scrA \varphi  \star 

++(x0) are convex sets, due to linearity of the state
equation;

-- if x0 \in X++, then \scrA ++(x0) and \scrA \varphi  \star 

++(x0) are nonempty, as the null control
c(\cdot ) \equiv 0 belongs to them;

-- since N is a positive operator, we have the monotonicity property:

c1(t) \leq X c2(t) for almost all t \geq 0 =\Rightarrow xx0,c1(t) \geq X xx0,c2(t) \forall t \geq 0,

and hence if c1(t) \leq X c2(t) for a.e. t \geq 0 and c2 \in \scrA \varphi  \star 

++(x0), then c1 \in 
\scrA \varphi  \star 

++(x0).
We complete our setting by defining the functional to optimize. Let u : D\times \BbbR + \rightarrow 

\BbbR \cup \{  - \infty \} be a measurable function satisfying the following assumption, which will
hold throughout the paper.

Assumption 2.4. The function u : D \times \BbbR + \rightarrow \BbbR \cup \{  - \infty \} is such that u(\theta , \cdot ) is
increasing and concave3 for all \theta \in D. Moreover, u is bounded from either above or
below. Without loss of generality we assume that either u : D \times \BbbR + \rightarrow [ - \infty , 0] or
u : D \times \BbbR + \rightarrow \BbbR +.

3From an economic perspective, these two properties entail that u(\theta , \cdot ) is a utility function for
any \theta \in D.
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Next, we consider the functionals

\scrU (z) :=
\int 
D

u(\theta , z(\theta ))\mu (d\theta ), z \in X+,

and

(2.6) \scrJ (c) :=

\int \infty 

0

e - \rho t\scrU (c(t)) dt, c \in L1
loc(\BbbR +;X+),

where \rho > 0 is a given discount factor. Notice that \scrU and, consequently, \scrJ inherit
concavity from u.

The optimal control problem we are interested in is

(P ) maximize \scrJ (c) over the set \scrA ++(x0), x0 \in X++,

whose value function is

V (x0) := sup
c\in \scrA ++(x0)

\scrJ (c), x0 \in X++.

As anticipated, we relax the state constraint imposed by (2.4) introducing the family,
parameterized by \varphi  \star \in X \star 

++, of auxiliary optimal control problems

(P\varphi  \star 

) maximize \scrJ (c) over the set \scrA \varphi  \star 

++(x0), x0 \in X++,

whose value function is

V \varphi  \star 

(x0) := sup
c\in \scrA \varphi  \star 

++(x0)

\scrJ (c), x0 \in X++.

Remark 2.5. Since the state constraint imposed by (2.4) is stricter than the one
imposed by (2.5), we see that:

(i) V \varphi  \star 

(x0) \geq V (x0) for every x0 \in X++;

(ii) if \^c \in \scrA \varphi  \star 

++(x0) is optimal for (P\varphi  \star 

) and belongs to \scrA ++(x0), then it is
optimal for (P ).

The reason for relaxing the state constraint and considering the new family of
optimal control problems is that, as we will show in section 3, problem (P\varphi  \star 

) admits
an explicit solution and an optimal feedback control. If it is possible to prove that this
feedback control belongs to \scrA ++(x0), then the sufficient condition of Remark 2.5(ii)
holds, and, consequently, this feedback control will be optimal for problem (P ). In
the economic growth model studied in section 5 we will show that this is the case
(provided that suitable assumptions hold), thanks to the stability result provided by
Theorem 3.11.

It is worth noting that we cannot say ex ante that V \varphi  \star 

is finite. Even in simple
one-dimensional cases (see, e.g., [30]), it may be always +\infty or always  - \infty . Sufficient
conditions for finiteness will be provided later (see point (ii) of Assumption 3.2 and
point (iii) of Remark 3.3).

We conclude this section by introducing the Hamilton--Jacobi--Bellman equation
(HJB for short) associated to the optimal control problem (P\varphi  \star 

) indexed by \varphi  \star \in 
X \star 

++,

(2.7) \rho v(x) = \langle Lx,\nabla v(x)\rangle +\scrH (\nabla v(x)), x \in X\varphi  \star 

++,
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where the Hamiltonian function \scrH is defined by

\scrH (q \star ) := sup
z\in X+

\scrH CV (q
 \star ; z), q \star \in X \star ,

and \scrH CV is the Current Value Hamiltonian function

\scrH CV (q
 \star ; z) := \scrU (z) - \langle Nz, q \star \rangle , z \in X+, q

 \star \in X \star .

Notice that, without further assumptions, it may happen that \scrH (q \star ) = +\infty , for some
q \star \in X \star . Finiteness of \scrH (q \star ) is guaranteed at least in the following cases:

-- If \scrU is bounded above and q \star \in X \star 
+;

-- if \scrU is bounded below and there exist constants C > 0, \alpha \in (0, 1), and k > 0,
such that \scrU (z) \leq C| z| \alpha X and \langle Nz, q \star \rangle \geq k| z| X , q \star \in X \star .

In this paper we will consider classical solutions to HJB equation (2.7), according
to the following definition.

Definition 2.6. A function v \in \scrC 1(X\varphi  \star 

++;\BbbR ) such that \nabla v \in \scrC (X\varphi  \star 

++;D(L \star )) is

called a classical solution to (2.7) on X\varphi  \star 

++ if

\rho v(x) = \langle x, L \star \nabla v(x)\rangle +\scrH (\nabla v(x)) \forall x \in X\varphi  \star 

++.

We point out that this notion of solution for an HJB equation in infinite di-
mension is very demanding, because of the required regularity of the solution itself.
Nonetheless, we will see in section 3.2 that, under suitable assumptions, it is possible
to find explicit solutions that verify the definition above. In more general cases, one
can resort to other (weaker) notions, such as viscosity solutions (see section 6 for
comments and references on this point).

Remark 2.7. Note that, if v is a classical solution to HJB equation (2.7), then

\scrH (\nabla v(x)) must be finite for every x \in X\varphi  \star 

++.

3. Verification theorem, explicit solutions, and stability. In this section
we focus on the family of optimal control problems (P\varphi  \star 

). First, for each fixed
\varphi  \star \in X \star 

++, we will provide a verification theorem in the general setting presented
in section 2. Then, specializing our setting and suitably choosing \varphi  \star \in X \star 

++, we

will provide an explicit solution to problem (P\varphi  \star 

) and give a stability result for this
solution. These results will be crucial to studying our motivating economic application
in section 5.

3.1. Verification theorem. Typically, to prove a verification theorem for in-
finite horizon problems, a condition on the solution v computed on the admissible
trajectories when t \rightarrow +\infty is needed. Given x0 \in X and \varphi  \star \in X \star 

++, the (relaxed on
integer numbers) condition that we shall use is

(3.1) lim
k\in \BbbN , k\rightarrow +\infty 

e - \rho kv(xx0,c(k)) = 0 \forall c \in \scrA \varphi  \star 

++(x0) such that \scrJ (c) >  - \infty ,

Theorem 3.1 (verification). Let \varphi  \star \in X \star 
++ and x0 \in X\varphi  \star 

++. Let v be a classical
solution to (2.7), and assume that (3.1) holds. Then the following hold:

(i) v(x0) \geq V \varphi  \star 

(x0);

(ii) if, moreover, there exists \^c \in \scrA \varphi  \star 

++(x0) such that, for a.e. s \geq 0,
(3.2)
\scrH 
\bigl( 
\nabla v(xx0,\^c(s))

\bigr) 
=\scrH CV

\bigl( 
\nabla v(xx0,\^c(s)); \^c(s)

\bigr) 
\Leftarrow \Rightarrow N \star \nabla v(xx0,\^c(s))\in D+\scrU (\^c(s)),
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where D+\scrU denotes the superdifferential of \scrU , then v(x0) = V \varphi  \star 

(x0) and \^c
is optimal for (P\varphi  \star 

) starting at x0, i.e., \scrJ (\^c) = V \varphi  \star 

(x0).

Proof. (i) Let c \in \scrA \varphi  \star 

++(x0) be such that \scrJ (c) >  - \infty . By the chain rule in infinite
dimension (see [35]), we have, for every t \geq 0,

d

dt

\bigl[ 
e - \rho tv(xx0,c(t))

\bigr] 
= e - \rho t

\bigl( 
 - \rho v(xx0,c(t)) + \langle xx0,c(t), L \star \nabla v(xx0,c(t))\rangle  - \langle Nc(t),\nabla v(xx0,c(t))\rangle 

\bigr) 
.

Now we add and subtract e - \rho t\scrU (c(t)) to the right-hand side, use the fact that v solves
HJB, and integrate over [0, t]. We get, for every t \geq 0,

e - \rho tv(xx0,c(t)) +

\int t

0

e - \rho s\scrU (c(s)) ds

= v(x0) +

\int t

0

e - \rho s
\Bigl( 
 - \scrH (\nabla v(xx0,c(s))) +\scrH CV (\nabla v(xx0,c(s); c(s)))

\Bigr) 
ds.

Observe that, since \scrU is concave (hence, sublinear from above) and c(\cdot ) \in L1
loc(\BbbR +;X+),

both sides of the above inequality are finite for every t \geq 0. Rearranging the terms
and taking into account (3.2) and the definition of \scrH , we get, for every t \geq 0,

(3.3) v(x0) \geq e - \rho tv(xx0,c(t)) +

\int t

0

e - \rho s\scrU (c(s)) ds.

Since the sign of \scrU is constant (cf. Assumption 2.4), we have that

(3.4) lim
k\in \BbbN , k\rightarrow +\infty 

\int k

0

e - \rho s\scrU (c(s)) ds =
\int \infty 

0

e - \rho s\scrU (c(s)) ds = \scrJ (c).

Hence, passing to the limit in (3.3), as k \rightarrow \infty , k \in \BbbN , and using (3.1), we deduce
that

v(x0) \geq \scrJ (c).

Then, given the arbitrariness of c \in \scrA \varphi  \star 

++(x0) such that \scrJ (c) >  - \infty and by definition

of V \varphi  \star 

, we immediately get the claim.

(ii) Notice that, by concavity of \scrU , (3.2) is equivalent to

(3.5) \^c(s) \in argmax
z\in X\varphi  \star 

++

\bigl\{ 
\scrU (z) - 

\bigl\langle 
Nz,\nabla v(xx0,\^c(s))

\bigr\rangle \bigr\} 
for a.e. s \geq 0,

the usual closed loop condition for optimality. Hence, for c = \^c we have equality in
(3.3), and therefore, passing to the limit, as k \rightarrow \infty , k \in \BbbN , and using (3.1) and (3.4),
we get the equality

v(x0) = \scrJ (\^c).

Since \scrJ (\^c) \leq V \varphi  \star 

(x0), and since the reverse inequality holds by part (i) of the theo-
rem, the claim follows.

3.2. Explicit solutions to HJB equation and optimal feedback control.
In this section we are going to provide an explicit solution to the HJB equation (2.7)
for problem (P\varphi  \star 

), for a specific choice of \varphi  \star \in X \star 
++. To this end, we need to specialize

the setting of section 2 by introducing the following assumption that will be in force
throughout this section.
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Assumption 3.2. The set X is either the space Lp(D,\mu ), p \in [1,+\infty ), where \mu is a
\sigma -finite measure, or the space \scrC (D) of real-valued continuous functions on a compact
metric space D, equipped with the sup-norm and with a Borel measure \mu .

Moreover, the linear operator N in (2.1) and the function u of Assumption 2.4
are explicitly given by

[Nz](\theta ) = \eta (\theta )z(\theta ), z \in X, \theta \in D,(3.6)

u(\theta , \xi ) =
\xi 1 - \gamma 

1 - \gamma 
f(\theta ), \theta \in D, \xi \in \BbbR +,(3.7)

where \eta , f : D \rightarrow (0,+\infty ) are measurable functions and \gamma \in (0, 1)\cup (1,+\infty ) is a fixed
parameter.

Furthermore, the following hold:
(i) There exists an eigenvector b \star 0 \in X \star 

++ for L \star : D(L \star ) \subseteq X \star \rightarrow X \star with
eigenvalue \lambda  \star 0 \in \BbbR .

(ii) \rho > \lambda  \star 0(1 - \gamma ), where \rho is the discount factor appearing in (2.6).

(iii) If \gamma > 1, then
(b \star 0)

1 - \gamma 

f \in L\infty (D,\mu ;\BbbR +).

(iv) If X = \scrC (D), then the strictly positive measure b \star 0 is absolutely continuous
with respect to \mu , with density still denoted by b \star 0. In addition, b \star 0, \eta , f \in 
\scrC (D; (0,+\infty )).

(v) If X = Lp(D,\mu ), then \eta , f \in L\infty (D,\mu ; (0,+\infty )) and, moreover,
(3.8)\int 

D

f(\theta )
1
\gamma (\eta (\theta )b \star 0(\theta ))

\gamma  - 1
\gamma \mu (d\theta ) <\infty ,

\int 
D

\biggl( 
f(\theta )

\eta (\theta )b \star 0(\theta )

\biggr) p/\gamma 

\mu (d\theta ) <\infty .

Remark 3.3. Let us comment as follows on the specific setting described above:
(i) It is crucial to assume the existence of the strictly positive eigenvector b \star 0 \in 

X \star 
++, as required by point (i) of Assumption 3.2. Indeed, this enables us to

find an explicit solution to HJB (2.7) associated to the auxiliary problem

(P b \star 0 ) in the half-space X
b \star 0
++.

(ii) In the case X = \scrC (D) with D compact space, it is important that b \star 0 is
represented as a continuous function to guarantee well-posedness of the
feedback operator \Phi defined in (3.14), whence point (iv) of Assumption 3.2.

(iii) Point (ii) of Assumption 3.2 is needed to ensure finiteness of the solution of
the HJB equation and hence of the value function.

(iv) Point (iii) of Assumption 3.2 is required to verify (3.1) in Lemma 3.8.
(v) Given the expression of u and since \eta and f , appearing in (3.6) and (3.7),

respectively, are positive, point (ii) of Assumptions 2.2 and 2.4 are verified.
(vi) In the case X = Lp(D,\mu ), the functions \eta and f do not need to be continu-

ous but only essentially bounded. However, additional integrability condi-
tions must hold: the first requirement of (3.8) allows us to make sense of the
explicit solution of HJB; the second condition of (3.8) is used to make sense
of the optimal feedback map. Both conditions are automatically verified
when X = \scrC (D) with D compact, due to the compactness of D.

We are now ready to provide the explicit solution to (2.7) for the auxiliary prob-
lem (P b \star 0 ).

Proposition 3.4. The function

(3.9) v(x) := \alpha 
\langle x, b \star 0\rangle 1 - \gamma 

1 - \gamma 
, x \in X

b \star 0
++,

D
ow

nl
oa

de
d 

02
/2

6/
24

 to
 1

37
.2

04
.1

35
.1

05
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

4490 A. CALVIA, S. FEDERICO, AND F. GOZZI

where

(3.10) \alpha := \gamma \gamma 

\Biggl( \int 
D
f(\theta )

1
\gamma (\eta (\theta )b \star 0(\theta ))

\gamma  - 1
\gamma \mu (d\theta )

\rho  - \lambda  \star 0(1 - \gamma )

\Biggr) \gamma 

,

is a classical solution to (2.7).

Proof. We point out, first, that the arguments provided here are the same regard-
less of the choice of X in Assumption 3.2.

We start by noting that v is differentiable, as a composition of a linear form with
a power function, and that

\nabla v(x) = \alpha \langle x, b \star 0\rangle  - \gamma b \star 0, x \in X
b \star 0
++.

Due to Assumption 3.2(i), and since \alpha > 0 by point (ii) and either point (iv) or
point (v), v enjoys the regularity required by Definition 2.6. Next, observe that
by (3.7) and Assumption 3.2---either point (iv) or (v)---, the functional \scrU is Fr\'echet
differentiable, and

(3.11) [\nabla \scrU (z)](\theta ) = f(\theta )z(\theta ) - \gamma , z \in X+, \theta \in D.

The adjoint of the operator N , given in (3.6), is

N \star q \star (\theta ) = \eta (\theta )q \star (\theta ), \theta \in D, when X = Lp(D,\mu ),

N \star q \star (d\theta ) = \eta (\theta )q \star (d\theta ), \theta \in D, when X = \scrC (D).

Therefore, taking into account point (iv) of Assumption 3.2, we get (regardless of the
choice of X)

(3.12) N \star \nabla v(x) = \alpha \langle x, b \star 0\rangle  - \gamma \eta (\cdot )b \star 0, x \in X
b \star 0
++.

Putting together (3.11) and (3.12), we have

\partial \scrH CV

\partial z
(\nabla v(x); z) = \nabla \scrU (z) - N \star \nabla v(x) = f(\cdot )z - \gamma  - \alpha \langle x, b \star 0\rangle  - \gamma \eta (\cdot )b \star 0(\cdot ),

x \in X
b \star 0
++, z \in X+.

Since z \mapsto \rightarrow \scrH CV (\nabla v(x); z) is strictly concave, for each fixed x \in X
b \star 0
++, the unique

maximum point \^z(x) of this function is provided by

(3.13) \^z(x) = argmax
z\in X+

\scrH CV (\nabla v(x); z) =
\biggl( 

f(\cdot )
\alpha \eta (\cdot )b \star 0(\cdot )

\biggr) 1
\gamma 

\langle x, b \star 0\rangle , x \in X
b \star 0
++,

whence

\scrH (\nabla v(x)) = \scrH CV (\nabla v(x); \^z(x))

=
\gamma \langle x, b \star 0\rangle 1 - \gamma 

1 - \gamma 

\int 
D

f(\theta )
1
\gamma (\alpha \eta (\theta )b \star 0(\theta ))

\gamma  - 1
\gamma \mu (d\theta ), x \in X

b \star 0
++.

Plugging the latter expression into (2.7), we get the algebraic equation in \alpha ,

\rho 

1 - \gamma 
\alpha = \lambda  \star 0\alpha +

\gamma 

(1 - \gamma )
\alpha 

\gamma  - 1
\gamma 

\int 
D

f(\theta )
1
\gamma (\eta (\theta )b \star 0(\theta ))

\gamma  - 1
\gamma \mu (d\theta ),

which has a unique positive solution provided by (3.10).
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Remark 3.5. It is easy to verify that the function v does not change if we multiply
b \star 0 by any strictly positive constant. This is consistent with the fact that, if k > 0 and

\varphi  \star = kb \star 0, then X
\varphi  \star 

++ = X
b \star 0
++; hence, \scrA 

\varphi  \star 

++(x0) = \scrA b \star 0
++(x0).

The following map provides the unique maximum point given in (3.13) as a func-
tion of the state:

(3.14) [\Phi x](\theta ) = \^z(x)(\theta ) =

\biggl( 
f(\theta )

\alpha \eta (\theta )b \star 0(\theta )

\biggr) 1
\gamma 

\langle x, b \star 0\rangle , x \in X, \theta \in D.

It is important to note that \Phi : X \rightarrow X is a bounded and positive linear operator.
This is the natural candidate for the optimal feedback map for problem (P b \star 0 ), i.e.,
the map that will provide (as we will show) the optimal feedback control for this
problem, given any initial condition x0 \in X++. Therefore, we introduce the closed
loop equation for problem (P b \star 0 ):

(3.15)

\Biggl\{ 
x\prime (t) = Lx(t) - N\Phi x(t), t \geq 0,

x(0) = x0 \in X.

This linear equation admits a unique mild solution, denoted by \^xx0(\cdot ), which is also a
weak solution (see [5, pp. 129--131]). Notice that the operatorN\Phi : X \rightarrow X, appearing
in (3.15), is explicitly given by

(3.16) [N\Phi x](\theta ) = \eta (\theta )

\biggl( 
f(\theta )

\alpha \eta (\theta )b \star 0(\theta )

\biggr) 1
\gamma 

\langle x, b \star 0\rangle , x \in X, \theta \in D.

To study (3.15), let us define the operator

(3.17) B := L - N\Phi .

Since B is a bounded perturbation of L, by [21, Chap. III, Thm. 1.3] we have that it
is a closed operator with domain D(B) = D(L) and that it generates a C0-semigroup
\{ etB\} t\geq 0 on X. The next lemma will be useful in what follows.

Lemma 3.6. We have the following:
(i) The adjoint operator (N\Phi ) \star : X \star \rightarrow X \star is explicitly given by

(N\Phi ) \star q = \alpha  - 1
\gamma 

\biggl( \int 
D

f(\theta )
1
\gamma \eta (\theta )1 - 

1
\gamma b \star 0(\theta )

 - 1
\gamma q(d\theta )

\biggr) 
b \star 0 when X = \scrC (D),

(3.18)

(N\Phi ) \star q = \alpha  - 1
\gamma 

\biggl( \int 
D

f(\theta )
1
\gamma \eta (\theta )1 - 

1
\gamma b \star 0(\theta )

 - 1
\gamma q(\theta )\mu (d\theta )

\biggr) 
b \star 0 when X = Lp(D,\mu ).

(3.19)

(ii) Define

(3.20) g :=
\lambda  \star 0  - \rho 

\gamma 
.

Then g is an eigenvalue of B \star , and b \star 0 is an eigenvector of B \star associated to
g.
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Proof. The proof of (i) follows from straightforward computations. For the proof
of (ii) we observe that, using (i), (3.10), and (3.20), we get

B \star b \star 0=L
 \star b \star 0 - (N\Phi ) \star b \star 0=\lambda 

 \star 
0b

 \star 
0 - 

\rho  - \lambda  \star 0(1 - \gamma )

\gamma 
b \star 0=

\biggl[ 
\lambda  \star 0  - 

\rho  - \lambda  \star 0(1 - \gamma )

\gamma 

\biggr] 
b \star 0=gb

 \star 
0.

Lemma 3.7. Let x0 \in X
b \star 0
++, and let \^xx0 be the unique mild (weak) solution to

(3.15). Then,

(3.21) \langle \^xx0(t), b \star 0\rangle = \langle x0, b \star 0\rangle egt \forall t \geq 0,

where g is as given by (3.20). Hence, in particular,

(3.22) \^xx0(t) \in X
b \star 0
++ \forall t \geq 0.

Proof. Testing the closed loop equation (3.15) against b \star 0 \in D(L \star ), by Lemma 3.6
we get

d

dt
\langle \^xx0(t), b \star 0\rangle =\langle \^xx0(t), L \star b \star 0\rangle  - \langle N\Phi \^xx0(t), b \star 0\rangle =\langle \^xx0(t), (L \star  - (N\Phi )\ast )b \star 0\rangle =g\langle \^xx0(t), b \star 0\rangle .

The result follows by integrating this equation over [0, t] and noting that \langle x0, b \star 0\rangle >0.

Lemma 3.8. Let x0 \in X
b \star 0
++, and let v, defined in (3.9), be the solution to (2.7)

associated to (P b \star 0 ). Then,

(3.23) lim
k\in \BbbN , k\rightarrow +\infty 

e - \rho kv(xx0,c(k)) = 0 \forall c \in \scrA b \star 0
++(x0) such that \scrJ (c) >  - \infty .

Proof. Case 1: \gamma \in (0, 1). In this case v is nonnegative, and this allows us to
prove a stronger result, namely,

(3.24) lim
t\rightarrow +\infty 

e - \rho tv(xx0,c(t)) = 0 \forall c \in \scrA b \star 0
++(x0).

Recalling that xx0,c is a weak solution to the state equation (2.1), we can rewrite (2.3)
with \varphi  \star = b \star 0 and obtain

d

dt
\langle xx0,c(t), b \star 0\rangle = \lambda  \star 0\langle xx0,c(t), b \star 0\rangle  - \langle Nc(t), b \star 0\rangle \forall c \in \scrA b \star 0

++(x0), \forall t \geq 0,

i.e.,

\langle xx0,c(t), b \star 0\rangle = \langle x0, b \star 0\rangle e\lambda 
 \star 
0t  - 

\int t

0

e\lambda 
 \star 
0(t - s)\langle Nc(s), b \star 0\rangle ds \forall c \in \scrA b \star 0

++(x0), \forall t \geq 0.

Since N is a positive operator and b \star 0 \in X \star 
++ (cf. point (ii) of Assumption 2.2 and

point (i) of Assumption 3.2), we have

0 \leq \langle xx0,c(t), b \star 0\rangle \leq \langle x0, b \star 0\rangle e\lambda 
 \star 
0t \forall c \in \scrA b \star 0

++(x0), \forall t \geq 0.

Hence, the following inequality holds for all t \geq 0:

0 \leq e - \rho tv(xx0,c(t)) = \alpha e - \rho t \langle xx0,c(t), b \star 0\rangle 1 - \gamma 

1 - \gamma 

\leq \alpha 

1 - \gamma 
\langle x0, b \star 0\rangle e - (\rho  - \lambda  \star 

0(1 - \gamma ))t \forall c \in \scrA b \star 0
++(x0).
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Noting that \langle x0, b \star 0\rangle > 0 and using point (ii) of Assumption 3.2, we get (3.24).

Case 2: \gamma > 1. In this case v is nonpositive. Hence, for every c \in \scrA b \star 0
++(x0), we

have that

lim inf
k\in \BbbN , k\rightarrow +\infty 

e - \rho kv(xx0,c(k)) \leq lim sup
k\in \BbbN , k\rightarrow +\infty 

e - \rho kv(xx0,c(k)) \leq 0.

Let k \in \BbbN . Then, by (2.3) with \varphi  \star = b \star 0 and since c \in \scrA b \star 0
++(x0),

0 \leq \langle xx0,c(k + 1), b \star 0\rangle = \langle xx0,c(k), b \star 0\rangle +
\int k+1

k

\lambda  \star 0\langle xx0,c(s), b \star 0\rangle ds - 
\int k+1

k

\langle c(s), b \star 0\rangle ds

= \langle xx0,c(k), b \star 0\rangle e\lambda 
 \star 
0  - 

\int k+1

k

e\lambda 
 \star 
0(k+1 - s)\langle c(s), b \star 0\rangle ds.

It follows that

e - | \lambda  \star 
0 | 
\int k+1

k

\langle c(s), b \star 0\rangle ds \leq \langle xx0,c(k), b \star 0\rangle e\lambda 
 \star 
0 ;

therefore, \int k+1

k

\langle c(s), b \star 0\rangle ds \leq \langle xx0,c(k), b \star 0\rangle e2| \lambda 
 \star 
0 | .

Hence, by Jensen's inequality, monotonicity, concavity, and nonpositivity of the map

\xi \mapsto \rightarrow \xi 1 - \gamma 

1 - \gamma ,\int k+1

k

\langle c(s), b \star 0\rangle 1 - \gamma 

1 - \gamma 
ds

\leq 1

1 - \gamma 

\Biggl( \int k+1

k

\langle c(s), b \star 0\rangle ds

\Biggr) 1 - \gamma 

\leq \langle xx0,c(k), b \star 0\rangle 1 - \gamma 

1 - \gamma 
e2| \lambda 

 \star 
0 | (1 - \gamma ) \leq 0.

Therefore, multiplying by e - \rho (k+1) and recalling that \rho > 0,

ck :=

\int k+1

k

e - \rho (k+1) \langle c(s), b \star 0\rangle 1 - \gamma 

1 - \gamma 
ds \leq e - \rho k \langle xx0,c(k), b \star 0\rangle 1 - \gamma 

1 - \gamma 
e2| \lambda 

 \star 
0 | (1 - \gamma ) - \rho \leq 0.

(3.25)

By point (iii) of Assumption 3.2, it follows that

 - \infty <

\bigm| \bigm| \bigm| \bigm| (b \star 0)1 - \gamma 

f

\bigm| \bigm| \bigm| \bigm| 
\infty 

\scrJ (c) =

\bigm| \bigm| \bigm| \bigm| (b \star 0)1 - \gamma 

f

\bigm| \bigm| \bigm| \bigm| 
\infty 

\int \infty 

0

e - \rho s

\biggl( \int 
D

c(s, \theta )1 - \gamma 

1 - \gamma 
f(\theta )d\theta 

\biggr) 
ds

\leq 
\int \infty 

0

e - \rho s

\biggl( \int 
D

c(s, \theta )1 - \gamma 

1 - \gamma 

b \star 0(\theta )
1 - \gamma 

f(\theta )
f(\theta )d\theta 

\biggr) 
ds

=

\int \infty 

0

e - \rho s

\biggl( \int 
D

c(s, \theta )1 - \gamma b \star 0(\theta )
1 - \gamma 

1 - \gamma 
d\theta 

\biggr) 
ds

=

\int \infty 

0

e - \rho s \langle c(s), b \star 0\rangle 1 - \gamma 

1 - \gamma 
ds =

\infty \sum 
k=0

\int k+1

k

e - \rho s \langle c(s), b \star 0\rangle 1 - \gamma 

1 - \gamma 
ds \leq 

\infty \sum 
k=0

ck \leq 0.

Hence, ck \rightarrow 0. Combining this fact with (3.25), we get

0 \geq lim inf
k\in \BbbN , k\rightarrow \infty 

e - \rho kv(xx0,c(k)) = lim inf
k\in \BbbN , k\rightarrow \infty 

e - \rho k \langle xx0,c(k), b \star 0\rangle 1 - \gamma 

1 - \gamma 
= 0.
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Theorem 3.9. Let x0 \in X++, and define the control

\^c(t, \theta ) := (\Phi \^xx0(t))(\theta ) =

\biggl( 
f(\theta )

\alpha \eta (\theta )b \star 0(\theta )

\biggr) 1
\gamma 

\langle x0, b \star 0\rangle egt, t \geq 0, \theta \in D,

where \^xx0 is the unique mild solution to the closed loop equation (3.15). Then, \^c \in 
\scrA b \star 0

++(x0), and it is optimal for problem (P b \star 0 ) starting at x0. Moreover, the value

function V b \star 0 of problem (P b \star 0 ) satisfies V b \star 0 (x0) = v(x0), where v is the function
defined in (3.9).

Proof. Recalling (3.21), xx0,\^c = \^xx0 by construction. Hence, by (3.22), \^c \in 
\scrA b \star 0

++(x0). Moreover, again by construction, \^c verifies the optimality condition (3.5).
So, thanks to Lemma 3.8, the assumptions of Theorem 3.1 are verified, whence we
obtain V b \star 0 (x0) = v(x0).

3.3. Steady states and stability of solutions. Let us begin by stating an
important result concerning the operator B, defined in (3.17), that will motivate
what follows.

Lemma 3.10 (see [21, Chap. V, Cor. 3.2]). If B generates an eventually compact
C0-semigroup on X, then the following properties hold:

1. The spectrum \sigma (B) is either empty, finite, or countable and consists of poles
of the resolvent of finite algebraic multiplicity only.

2. The set \{ \nu \in \sigma (B) : Re \nu \geq r\} is finite, for any r \in \BbbR .
As a consequence of Lemma 3.10, if \{ etB\} t\geq 0 is eventually compact, and if \sigma (B) \not =

\emptyset , we have that \sigma (B) = \{ \nu 0, \nu 1, . . . \} , where Re \nu k \geq Re \nu k+1, for any k \in \BbbN and
limk\rightarrow \infty Re \nu k =  - \infty , provided that \sigma (B) is infinite. Moreover, by [21, Chap. IV,
Prop. 2.18(i)] we have that \sigma (B) = \sigma (B \star ), and hence Lemma 3.6 entails that g \in \sigma (B).

Note that g is the exponential growth rate of the map t \mapsto \rightarrow \langle \^xx0(t), b \star 0\rangle (cf. (3.21)),
where \^xx0 is the mild solution to the closed loop equation (3.15). This suggests
studying convergence and stability of the detrended optimal paths \{ e - gt\^xx0(t)\} t\geq 0

exploiting the spectral properties of operator B. In particular, we aim at using a
Perron--Frobenius-type argument. To do so, we need that g is the highest eigenvalue
of B, i.e., that g = \nu 0. However, we cannot say, ex ante, for which k \in \BbbN we have
g = \nu k. In section 5, we will see that, under appropriate assumptions, g = \nu 0.

Motivated by this argument, we are going to provide a stability property of the
detrended optimal paths \^xx0

\nu 0
for problem (P b \star 0 ), where

\^xx0
\nu 0
(t) := e - \nu 0t\^xx0(t) = et(B - \nu 0)x0, t \geq 0.

It is worth noting that \^xx0
\nu 0

is the unique (mild) solution to the detrended closed loop
equation

(3.26)

\Biggl\{ 
x\prime (t) = (L - \nu 0)x(t) - N\Phi x(t), t \geq 0,

x(0) = x0 \in X.

An element \=x \in X is called a steady state for the dynamical system (3.26) if

(3.27) \^x\=x
\nu 0
(t) = et(B - \nu 0)\=x = \=x \forall t \geq 0,

From [21, Chap. IV, Cor. 3.8] we deduce that

(3.28) \=x \in X is a steady state for (3.26) \Leftarrow \Rightarrow \=x \in ker(B  - \nu 0).

The next theorem provides a stability result under appropriate assumptions.
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Theorem 3.11. Let B generate an eventually compact C0-semigroup on X, and
assume that \nu 0 is a first order pole of the resolvent, that is, its algebraic multiplicity
is 1. Then, for any x0 \in X, there exist M \geq 1, \epsilon > 0 such that

| \^xx0
\nu 0
(t) - Px0| X \leq Me - \epsilon t| (1 - P )x0| X \forall t \geq 0,

where P is the spectral projection corresponding to the spectral set \{ \nu 0\} \subset \sigma (B).
Moreover, Range(P ) = ker(B  - \nu 0), i.e., P is a projection on ker(B  - \nu 0), and Px0
is a steady state for (3.26).

Proof. By [21, Chap. V, Cor. 3.3], there exist constants \epsilon > 0 and M \geq 1 such
that

(3.29) | et(B - \nu 0)  - P | \scrL (X) \leq Me - \epsilon t \forall t \geq 0,

where | \cdot | \scrL (X) denotes the operator norm on the space of linear continuous operators
\scrL (X) and where P \in \scrL (X) is the residue of the resolvent at \nu 0.

From standard theory (see, e.g., [2, Chap. A-III, sect. 3] or [21, Chap. IV, sect. 1]),
P is the spectral projection corresponding to the spectral set \{ \nu 0\} \subset \sigma (B). Moreover,
being \nu 0 a simple pole, we have that Range(P ) = ker(B  - \nu 0) (see, e.g., [2, Chap.
A-III, sect. 3, p. 73] or [21, Chap. IV, sect. 1, p. 247]). By (3.28), this implies that
Px0 is a steady state for (3.26). Finally, using (3.28)--(3.29) and taking into account
that P 2x0 = Px0, we have that, for all t \geq 0,

| \^xx0
\nu 0
(t) - Px0| X = | et(B - \nu 0)x0  - et(B - \nu 0)Px0| X

= | et(B - \nu 0)(x0  - Px0) - P (x0  - Px0)| X \leq Me - \epsilon t| (1 - P )x0| X .

Remark 3.12. For the reader's convenience, we recall that under the assumptions
of Theorem 3.11 the spectral projection P corresponding to the spectral set \{ \nu 0\} \subset 
\sigma (B) is (see [21, Chap. IV, eq. (1.12)])

(3.30) P :=  - 1

2\pi i

\int 
\gamma 

(B  - \mu ) - 1 d\mu ,

where \gamma can be taken as the simple curve given by the positively oriented boundary of
a disk centered at \nu 0, with radius small enough so that it does not enclose any other
points of \sigma (B).

4. Existence of a strictly positive eigenvector of \bfitL \star . In this section we
state some results guaranteeing that the particularly relevant point (i) of Assump-
tion 3.2 is satisfied. This fact is tightly linked to some properties of operator L,
appearing in the state equation (2.1), that will be discussed. In the following, recall
that we are working under Assumption 2.2.

We start our discussion with the general case where X is any Banach lattice. Let
\sigma (L) be the spectrum of the operator L, and define the spectral bound of L,

sL := sup\{ Re\lambda : \lambda \in \sigma (L)\} ,

with the convention sup \emptyset =  - \infty . Due to Assumption 2.2, sL = sup\{ \lambda \in \BbbR : \lambda \in \sigma (L)\} 
(see [16, Thms. 7.4 and 8.7]) and, if \sigma (L) \not = \emptyset , then sL \in \sigma (L). The peripheral or
boundary spectrum of L is the subset of \BbbC given by

\sigma b(L) := \{ \lambda \in \sigma (L) : Re\lambda = sL\} .

We introduce the following definitions (the first one can be generalized, as in [2,
Chap. C-III, Def. 3.1] or [16, Prop. 7.6]).
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Definition 4.1. The positive C0-semigroup \{ etL\} t\geq 0 is said to be irreducible if
for all f \in X+ \setminus \{ 0\} and \varphi  \star \in X \star 

+ \setminus \{ 0\} , there exists t0 \geq 0 such that \langle et0Lf, \varphi  \star \rangle > 0.

Definition 4.2. A point f \in X+ is said to be a quasi-interior point (of X+) if
\langle f, \varphi  \star \rangle > 0 for each \varphi  \star \in X \star 

+ \setminus \{ 0\} .
Remark 4.3. If intX+ \not = \emptyset , the concepts of interior and quasi-interior points

coincide; this is the case, for instance, when X is the space of real-valued continuous
functions on a compact set. Instead, in the case X = Lp(D,\mu ), with \mu a \sigma -finite
measure and p \in [1,+\infty ), we have that intX+ = \emptyset , while the set of quasi-interior
points of X+ coincides with the set of \mu -a.e. strictly positive functions (see [2, p. 238]).

Theorem 4.4. Let \{ etL\} t\geq 0 be irreducible, and assume that sL >  - \infty is a pole
of the resolvent of L. Then we have the following:

(i) There exists \varphi  \star 
0 \in D(L \star ) \cap X \star 

++ such that

(4.1) L \star \varphi  \star 
0 = sL\varphi 

 \star 
0;

(ii) sL \in \sigma (L) has algebraic and geometric multiplicity 1, and there exists a
unique (up to a multiplicative constant) quasi-interior point f0 \in D(L)\cap X+

such that

(4.2) Lf0 = sLf0;

(iii) \sigma b(L) = sL + i\nu \BbbZ , for some \nu \geq 0;
(iv) sL is the only eigenvalue of L admitting a positive eigenvector;
(v) sL is the only eigenvalue of L \star admitting a strictly positive eigenvector.

Proof. Items (i)--(iii) are proved, for instance, in [16, Thm. 8.17] (see also [2,
Chap. C-III, Prop. 3.5]).

To prove item (iv), suppose that \lambda \in \BbbC is such that Lf = \lambda f , where f \in X+ \cap 
D(L) \setminus \{ 0\} . Then,

\lambda \langle f, \varphi  \star 
0\rangle = \langle Lf, \varphi  \star 

0\rangle = \langle f, L \star \varphi  \star 
0\rangle = sL\langle f, \varphi  \star 

0\rangle .

By [2, Chap. C-III, Prop. 3.5(a)], every positive eigenvector of L must be a quasi-
interior point of X, and hence \langle f, \varphi  \star 

0\rangle > 0; therefore, from the chain of equalities
above we get \lambda = sL.

Finally, to prove item (v), suppose that \lambda  \star \in \BbbC is such that L \star \varphi  \star = \lambda  \star \varphi  \star , where
\varphi  \star \in X \star 

++ \cap D(L \star ) \setminus \{ 0\} . Then,

\lambda  \star \langle f0, \varphi  \star \rangle = \langle f0, \lambda  \star \varphi  \star \rangle = \langle f0, L \star \varphi  \star \rangle = \langle Lf0, \varphi  \star \rangle = sL\langle f0, \varphi  \star \rangle .

Since f0 \not = 0 and \varphi  \star is strictly positive, we have \langle f0, \varphi  \star \rangle > 0; therefore the chain of
equalities above provides \lambda  \star = sL.

Remark 4.5. Item (iii) of Theorem 4.4 entails that either \sigma b(L) = \{ sL\} or \sigma b(L)
is an infinite unbounded set. If one is able to exclude the second case or to prove, at
the least, that the intersection of \sigma b(L) with the point spectrum of L is the singleton
\{ sL\} , then, on the one hand, (4.2) implies that sL is the dominant eigenvalue of L;
on the other hand, (4.1) implies that point (i) of Assumption 3.2 is satisfied.

Remark 4.6. The assumption that sL >  - \infty , i.e., that \sigma (L) \not = \emptyset , in Theorem 4.4
is essential, since there are examples of positive irreducible C0-semigroups on Banach
lattices such that \sigma (L) = \emptyset (see, e.g. [2, Chap. C-III, Example 3.6]). Some conditions
that, together with irreducibility, imply that this is not the case are stated in [2, Chap.
C-III, Thm. 3.7].
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Remark 4.7. Theorem 4.4 does not guarantee uniqueness (up to normalization)
of a strictly positive eigenvector of L \star associated to sL, since we do not know whether
sL is a geometrically simple eigenvalue of L \star .

We conclude our discussion by looking at the specific case where X = \scrC (D), the
space of real-valued continuous functions on a set D, that we suppose is a compact
separable topological space. In this case, X \star is the space of bounded regular Borel
measures on D. The following result is particularly useful in checking that point (i)
of Assumption 2.2 is satisfied.

Proposition 4.8. If X = \scrC (D), with D a compact separable topological space,
and if \{ etL\} t\geq 0 is a positive C0-semigroup, then \{ etL\} t\geq 0 preserves strict positivity,
i.e., etL(X++) \subseteq X++ for all t \geq 0. Moreover, the spectrum of L is not empty, and
 - \infty < sL \in \sigma (L).

Proof. For the first part of the statement, see [2, Chap. B-II, Cor. 1.17]. A proof
of the last assertion is given in [2, Chap. B-III, Thm. 1.1].

The following theorem provides a sufficient condition for ensuring that point (i)
of Assumption 3.2 is verified.

Theorem 4.9. If X = \scrC (D), with D a compact separable topological space, and
if \{ etL\} t\geq 0 is a positive C0-semigroup, the spectral and growth bounds of L coincide,
and there exists a positive probability measure 0 \not = \varphi  \star \in D(L \star ) \cap X \star 

+ such that

(4.3) L \star \varphi  \star = sL\varphi 
 \star .

Moreover, if \{ etL\} t\geq 0 is irreducible, and if sL is a pole of the resolvent of L, then
\varphi  \star \in D(L \star ) \cap X \star 

++, i.e., \varphi 
 \star is strictly positive.

Proof. The proof of the first statement of the theorem can be found in [2, Chap.
B-III, Thm. 1.6] (see also the discussion that follows). The last statement follows
from Theorem 4.4, item (i) (see, also, [2, Chap. B-III, Prop. 3.5]).

5. Application to an economic growth problem with space heterogene-
ity. We apply the results of the previous sections to a family of economic growth
problems in which the state variable, representing capital, is space heterogeneous, in
the sense that it depends not only on time but also on the space location. Problems
of this kind have been recently studied in the economic literature (see [6, 7, 8] for
more details), embedding them in an infinite-dimensional state space of L2 type. As
mentioned in the introduction, this did not allow us to treat satisfactorily the pres-
ence of positivity constraints. Here, instead, we embed the problem in the space of
continuous functions.

To introduce this family of economic growth problems, we specialize the abstract
setting of section 2 with the following assumption that will be in force throughout
this section.

Assumption 5.1.
(a) D = S1 := \{ \xi \in \BbbR 2 : | \xi | \BbbR 2 = 1\} \sim = 2\pi \BbbR /\BbbZ . The space S1 is topologically

equivalent to [0, 2\pi ] \subset \BbbR , whenever the endpoints of the latter interval are
identified. Similarly, functions on S1 are identified with 2\pi -periodic functions
on \BbbR .

(b) \mu is the Hausdorff measure on S1. Through the identification S1 \sim = 2\pi \BbbR /\BbbZ ,
we will understand that \mu is the Lebesgue measure on [0, 2\pi ]. Accordingly,
we will write d\theta instead of \mu (d\theta ), when integrating functions with respect to
\mu .
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(c) X = \scrC (S1), endowed with the sup-norm---i.e., | x| X = | x| \infty := sup\theta \in D | x(\theta )| ---
and with the pointwise ordering---i.e., x \leq X y \Leftarrow \Rightarrow x(\theta ) \leq y(\theta ) for all \theta \in S1.

(d) The operators L and N that define the state equation (2.1) and the function
u of Assumption 2.4 are explicitly given by

[Lz](\theta ) = \sigma 
d2

d\theta 2
z(\theta ) +A(\theta )z(\theta ), z \in X, \theta \in D,(5.1)

with domain D(L) = \scrC 2(S1),

[Nz](\theta ) = \eta (\theta )z(\theta ), z \in X, \theta \in D,(5.2)

u(\theta , \xi ) =
\xi 1 - \gamma 

1 - \gamma 
\eta (\theta )q, \theta \in D, \xi \in \BbbR +,(5.3)

where A, \eta \in \scrC (S1; (0,+\infty )) are given functions,and \sigma > 0, q \geq 0, \gamma \in 
(0, 1) \cup (1,+\infty ) are fixed constants.

Remark 5.2. Between the two possible choices of X in Assumption 3.2, we are
considering the set of real-valued continuous functions on a compact set. Note that
the operator N has the same expression given in (3.6), while u is of the same type as
in (3.7), with f = \eta q. As already observed in point (v) of Remark 3.3, this implies that
Assumption 2.2(ii) and Assumption 2.4 are verified. In the following, we will prove
that point (i) of Assumption 2.2 and points (i)--(iv) of Assumption 3.2 are satisfied.

This specific setting corresponds to economic growth models, where the output of
the economy is described by an AK production function, a one-dimensional geography
is explicitly taken into account through a variable \theta \in S1, and capital diffusion over
the geographical space is considered. Let us briefly summarize these problems (we
refer the reader to [6, 7, 8] for further details).

The state variable is the capital level K(t, \theta ) at time t \geq 0 and at location \theta \in S1.
Its evolution depends on the consumption policy C(t, \theta ) that has to be determined
by a social planner at each time t \geq 0 and at each location \theta \in S1 with the aim of
maximizing a reward functional. More precisely, for any initial capital endowment
K0 \in \scrC (S1; (0,+\infty )), the time-space evolution of the capital level obeys the following
PDE:

(5.4)

\left\{       
\partial K

\partial t
(t, \theta ) = \sigma 

\partial 2K

\partial \theta 2
(t, \theta ) +A(\theta )K(t, \theta ) - \eta (\theta )C(t, \theta ), (t, \theta ) \in \BbbR + \times S1,

K(0, \theta ) = K0(\theta ), \theta \in S1.

The data appearing in this PDE are the functions \eta ,A, where \eta (\theta ) represents the
population density at location \theta \in S1, while A(\theta ) represents the technological level of
the economy at location \theta \in S1, and a diffusion coefficient \sigma that measures how fast
the capital spreads over the geographical space. The optimization problem that the
social planner aims to solve is

(5.5) V++(K0) := sup
\scrA ++(K0)

\int \infty 

0

e - \rho t

\biggl( \int 
\bfS 1

C(t, \theta )1 - \gamma 

1 - \gamma 
\eta (\theta )qd\theta 

\biggr) 
dt,

where \rho > 0 is a fixed discount factor, the parameters q \geq 0 and \gamma \in (0, 1) \cup (1,+\infty )
describe the preferences of the social planner, and

(5.6) \scrA ++(K0) :=
\bigl\{ 
C \in L1

loc([0,+\infty ); \scrC (S1;\BbbR +)) : K(t, \theta ) > 0 \forall (t, \theta ) \in \BbbR + \times S1
\bigr\} 
.
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It is clear that under Assumption 5.1 this problem can be reformulated in the abstract
setting introduced in section 2. More specifically, with the identifications x0 := K0,
x(t) := K(t, \cdot ), c(t) := C(t, \cdot ), PDE (5.4) corresponds to the state equation (2.1), the
optimization problem (5.5) coincides with problem (P ), and the class of admissible
consumption plans (5.6) is precisely the class of admissible controls (2.4).

As in section 3, we can relax the state constraint (5.6) and consider the optimiza-
tion problem

(5.7) V b \star 0 (K0) := sup

\scrA 
b \star 0
++(K0)

\int \infty 

0

e - \rho t

\biggl( \int 
\bfS 1

C(t, \theta )1 - \gamma 

1 - \gamma 
\eta (\theta )qd\theta 

\biggr) 
dt,

where b \star 0 is the eigenvector of point (i) of Assumption 3.2, and

\scrA b \star 0
++(K0) :=

\bigl\{ 
C \in L1

loc(\BbbR +; \scrC (S1;\BbbR +)) : \langle K(t, \cdot ), b \star 0\rangle > 0 \forall t \in \BbbR + \times S1
\bigr\} 
.

Exploiting the results proved in the previous sections, we are able to find an ex-
plicit solution to problem (5.7) and a feedback optimal control. Finally, studying
the corresponding closed loop equation, we will prove optimality of this control for
problem (5.5), at least for a suitable set of initial conditions K0.

Let us consider the Hilbert space L2(S1) of square integrable functions x : S1 \rightarrow \BbbR 
endowed with inner product and induced norm

(x, y)L2(\bfS 1) :=

\int 
\bfS 1

x(\theta )y(\theta ) d\theta , x, y \in L2(S1);

| x| L2(\bfS 1) :=

\biggl( \int 
\bfS 1

x(\theta )2 d\theta 

\biggr) 1
2

, x \in L2(S1).

Each element f \in L2(S1) can be seen as an element of \scrC (S1) \star through \langle x, f\rangle :=
(x, f)L2(\bfS 1), and we have the continuous embeddings \scrC (S1) \lhook \rightarrow L2(S1) \lhook \rightarrow \scrC (S1) \star . The
next proposition ensures that also point (i) of Assumption 2.2 is satisfied (for point (ii)
of the same assumption; cf. Remark 5.2).

Proposition 5.3. By [2, Chap. B-III, Examples 2.14(a) and 3.4(e)] and [2,
Chap. B-II, Cor. 1.17], we have the following results:

(i) The operator L : D(L) = \scrC 2(S1) \subset \scrC (S1) \rightarrow \scrC (S1), defined in (5.1), is a
closed operator generating a positive irreducible C0-semigroup in the space
\scrC (S1).

(ii) Assumption 2.2 is satisfied.

Our first aim is to use Theorem 3.9 to provide an explicit solution to problem (5.7).
To do so, we first need to ensure that Assumption 3.2 is verified.

By standard results from the Sturm--Liouville theory with periodic boundary
conditions (see, e.g., [17, Chap. 7, Thms. 2.1 and 4.1; Chap. 8, Thm. 3.1]; cf. also [10]),
we have the following results.

Proposition 5.4.
(i) The eigenvalues of L are real and form a countable discrete set \{ \lambda k\} k\in \BbbN 

such that \lambda 0 > \lambda 1 > \cdot \cdot \cdot , and limk\rightarrow \infty \lambda k =  - \infty .
(ii) The eigenvalues \lambda k, for k \geq 1, have geometric multiplicity 2, while the high-

est eigenvalue, \lambda 0, is simple. The corresponding (normalized) eigenvectors
\{ bk\} k\in \BbbN form an orthonormal basis of L2(S1).
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(iii) Each bk has exactly k zeros in S1; without loss of generality, we take b0 > 0;
this is, up to a positive multiplicative constant, the unique strictly positive
eigenvector of L.

(iv) For all x \in \scrC (S1),

(5.8) x =

\infty \sum 
k=0

(x, bk)L2(\bfS 1) bk := lim
n\rightarrow \infty 

n\sum 
k=0

(x, bk)L2(\bfS 1) bk in | \cdot | \infty .

(v) For all \mu \in \BbbC \setminus \{ \lambda k\} k\in \BbbN , the operator L - \mu : \scrC 2(S1) \rightarrow \scrC (S1) is invertible,
and the inverse (L  - \mu ) - 1 : \scrC (S1) \rightarrow \scrC 2(S1) is bounded and admits the
representation
(5.9)

(L - \mu ) - 1x =

\infty \sum 
k=0

(bk, x)L2(\bfS 1)

\lambda k  - \mu 
bk := lim

n\rightarrow \infty 

n\sum 
k=0

(bk, x)L2(\bfS 1)

\lambda k  - \mu 
bk in | \cdot | \infty .

In particular the resolvent set of L is \varrho (L) = \BbbC \setminus \{ \lambda k\} k\geq 0.

Remark 5.5. The last assertion of Proposition 5.4 entails that the spectrum of
operator L is \sigma (L) = \{ \lambda k\} k\geq 0. Moreover, using (5.8) and the fact that L is closed,
we have that

(5.10) Lx =
\sum 
k\in \BbbN 

(x, bk)L2(\bfS 1)\lambda kbk in | \cdot | \infty , x \in \scrC 2(S1).

From the facts above, we have that sL = \lambda 0 is the dominant eigenvalue of the op-
erator L, and Theorem 4.9 guarantees that there exists a strictly positive eigenvector
b \star 0 \in D(L \star ) \cap \scrC (S1) \star ++ of L \star associated to the eigenvalue \lambda  \star 0 = \lambda 0. Moreover, thanks
to point (v) of Theorem 4.4, \lambda 0 is the only eigenvalue of L \star admitting a strictly posi-
tive eigenvector. Hence, point (i) of Assumption 3.2 is satisfied. The next proposition
characterizes b \star 0.

Proposition 5.6. Every strictly positive eigenvector of L \star associated to \lambda 0 is in
the form b \star 0 = \kappa b0 for some \kappa > 0.

Proof. Take x \in \scrC (S1). Using (5.10) and by uniform convergence, we get

\langle Lx, b0\rangle =
\infty \sum 
k=0

(x, bk)L2(\bfS 1)\lambda k\langle bk, b0\rangle = \lambda 0(x, b0)L2(\bfS 1)| b0| 2L2(\bfS 1) = \langle x, \lambda 0b0\rangle .

Since x \in \scrC (S1) is arbitrary, we obtain that b0 \in D(L \star ) and L \star b0 = \lambda 0b0.

In the following, we set \kappa := 1, i.e., we take b \star 0 := b0. The result above, together
with continuity and positivity of the function \eta (recall also that f = \eta q in this sec-
tion), shows that point (iv) of Assumption 3.2 is satisfied. Moreover, thanks to the
compactness of D = S1, we also get that point (iii) of Assumption 3.2 is verified.
Finally, assuming that point (ii) of Assumption 3.2 holds, i.e., that

(5.11) \rho > \lambda 0(1 - \gamma ),

all the hypotheses of Theorem 3.9 are verified, and hence, by making explicit the
latter for the economic problem introduced above, we get the following.

Theorem 5.7. We have the following facts.
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(i) The value function of problem (5.7) is

(5.12) V b \star 0 (K0) =
\alpha 

1 - \gamma 

\biggl( \int 
\bfS 1

K0(\theta ) b0(\theta ) d\theta 

\biggr) 1 - \gamma 

,

where

(5.13) \alpha :=

\biggl[ 
\gamma 

\rho  - \lambda 0(1 - \gamma )

\int 
\bfS 1

\eta (\theta )
q+\gamma  - 1

\gamma b0(\theta )
\gamma  - 1
\gamma d\theta 

\biggr] \gamma 
;

(ii) the control

(5.14) \^C(t, \theta ) :=

\biggl( \int 
\bfS 1

K0(\xi ) b0(\xi ) d\xi 

\biggr) \bigl( 
\alpha b0(\theta )

\bigr)  - 1
\gamma \eta (\theta )

q - 1
\gamma egt,

where g := \lambda 0 - \rho 
\gamma , is optimal for problem (5.7), and the corresponding optimal

capital \^K solves, for (t, \theta ) \in \BbbR + \times S1, the linear integro-PDE

(5.15)

\left\{               

\partial K

\partial t
(t, \theta ) = \sigma 

\partial 2K

\partial \theta 2
(t, \theta ) +A(\theta )K(t, \theta )

 - 
\bigl( 
\alpha b0(\theta )

\bigr)  - 1
\gamma 

\biggl( \int 
\bfS 1

K(t, \xi ) b0(\xi ) d\xi 

\biggr) 
\eta (\theta )

q+\gamma  - 1
\gamma ,

K(0, \theta ) = K0(\theta ).

Remark 5.8. The value g := \lambda 0 - \rho 
\gamma is the optimal growth rate of the economy.

Our second aim is to use the stability result provided by Theorem 3.11 to show
that the optimal control \^C for problem (5.7), defined in (5.14), is optimal also for
problem (5.5), at least for a suitable set of initial conditions K0. To achieve this, we
need to analyze the semigroup generated by the operator B = L - N\Phi . By (5.15), its
explicit expression is, for all x \in \scrC 2(S1),
(5.16)

(Bx)(\theta ) = \sigma 
d2x

d\theta 2
(\theta ) +A(\theta )x(\theta ) - 

\bigl( 
\alpha b0(\theta )

\bigr)  - 1
\gamma 

\biggl( \int 
\bfS 1

x(\xi ) b0(\xi ) d\xi 

\biggr) 
\eta (\theta )

q+\gamma  - 1
\gamma , \theta \in S1.

Lemma 5.9. \{ etB\} t\geq 0 is (immediately) compact.

Proof. We start by showing that the semigroup generated by the operator L on X
is (immediately) compact. In fact, L generates an analytic semigroup (see, e.g., [21,
Chap.VI, sect. 4]), and the resolvent of L is nonempty; indeed, it is the complement
set of the spectrum of L, which is a pure point spectrum \sigma (L) = \{ \lambda 0, \lambda 1, . . . \} by
point (i) of Proposition 5.4.

From [21, Chap. II, eq. (4.26)] we deduce that \{ etL\} t\geq 0 is (immediately) norm
continuous. Then, since the canonical injection \iota : (\scrC 2(S1), | \cdot | \scrC 2(\bfS 1)) \rightarrow (\scrC (S1), | \cdot | \infty )
is compact by the Ascoli--Arzel\`a theorem, we can apply [21, Chap. II, Prop. 4.25]
and deduce that L has a compact resolvent. Finally, we learn from [21, Chap. II,
Thm. 4.29] that \{ etL\} t\geq 0 is (immediately) compact.

Next, notice that B is an additive perturbation of L, obtained by subtracting from
it the operator N\Phi , which is bounded. Therefore, from [21, Chap. III, Prop. 1.16(i)],
we deduce that \{ etB\} t\geq 0 is (immediately) compact.
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Next, we prove that, under suitable assumptions, g is a simple eigenvalue of B,
and we characterize its associated eigenvector. To ease notation, let us define the
constant

(5.17) \alpha 0 := \alpha 
1

1 - \gamma =

\biggl[ 
\gamma 

\rho  - \lambda 0(1 - \gamma )

\int 
\bfS 1

\eta (\theta )
q+\gamma  - 1

\gamma b0(\theta )
\gamma  - 1
\gamma d\theta 

\biggr] \gamma 
1 - \gamma 

and the function

(5.18) \beta (\theta ) := \alpha 0b0(\theta ), \theta \in S1.

Using (5.17) and (5.18), we can rewrite the expression for operator N\Phi , appearing
in (5.16) and defined in (3.16), as follows:
(5.19)

(N\Phi )x =
\bigl( 
\alpha b0
\bigr)  - 1

\gamma 

\biggl( \int 
\bfS 1

x(\xi ) b0(\xi ) d\xi 

\biggr) 
\eta 

q+\gamma  - 1
\gamma = \beta  - 1

\gamma \eta 
q+\gamma  - 1

\gamma \langle x, \beta \rangle , x \in \scrC (S1).

Notice that, under our assumptions, \beta  - 1
\gamma \eta 

q+\gamma  - 1
\gamma \in \scrC (S1), and hence it admits a

Fourier series expansion with uniform convergence with respect to \{ bk\} k\in \BbbN , with co-
efficients:

\beta 0 := (b0, \beta 
 - 1

\gamma \eta 
q+\gamma  - 1

\gamma )L2(\bfS 1) =
\mu 0

\alpha 0
, where \mu 0 := (\beta , \beta  - 1

\gamma \eta 
q+\gamma  - 1

\gamma )L2(\bfS 1),(5.20)

\beta k := (bk, \beta 
 - 1

\gamma \eta 
q+\gamma  - 1

\gamma )L2(\bfS 1), k \geq 1.(5.21)

Using (5.17), it is immediate to see that \mu 0 = \lambda 0  - g. Hence,

\beta  - 1
\gamma \eta 

q+\gamma  - 1
\gamma =

\lambda 0  - g

\alpha 0
b0 +

\infty \sum 
k=1

\beta kbk,

with convergence in \scrC (S1). Consider the formal series

(5.22)
b0
\alpha 0

+

\infty \sum 
k=1

\beta k
\lambda k  - g

bk.

Proposition 5.10. Let (5.11) hold. The series (5.22) converges in \scrC (S1) and
defines a function of \scrC 2(S1).

Proof. By (5.11), g is not an eigenvalue of L; moreover, \beta  - 1
\gamma \eta 

q+\gamma  - 1
\gamma \in \scrC (S1).

Using (5.9), (5.20) and (5.21) and recalling that \mu 0 = \lambda 0  - g, we get

(5.23) (L - g) - 1
\Bigl( 
\beta  - 1

\gamma \eta 
q+\gamma  - 1

\gamma 

\Bigr) 
=

\infty \sum 
k=0

(bk, \beta 
 - 1

\gamma \eta 
q+\gamma  - 1

\gamma )L2(\bfS 1)

\lambda k  - g
bk=

b0
\alpha 0

+

\infty \sum 
k=1

\beta k
\lambda k  - g

bk.

Given the proposition above, we set

(5.24) w :=
b0
\alpha 0

+

\infty \sum 
k=1

\beta k
\lambda k  - g

bk \in \scrC 2(S1).

We are ready to state the following result on the spectrum of operator B.

Proposition 5.11. Let (5.11) hold, and assume that g > \lambda 1. Then, we have the
following facts:
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(i) The spectrum of the operator B is given by \sigma (B) = \{ g\} \cup \{ \lambda k\} k\in \BbbN \setminus \{ 0\} , and
hence g is the dominant eigenvalue of B;

(ii) g is a simple eigenvalue of B;
(iii) ker(B  - g) = Span \{ w\} , where w is given as in (5.24).
(iv) The spectral projection P corresponding to the spectral set \{ g\} \subset \sigma (B) is the

bounded and linear operator:

(5.25) Px = \langle x, \beta \rangle w, x \in \scrC (S1).

Proof. (i) We start by showing that g \in \sigma (B). By (5.11), g is not an eigenvalue
of L. Thus, [21, Chap. IV, Prop. 4.2] entails that g is an eigenvalue of B = L - N\Phi if
and only if 1 is an eigenvalue of (L - g) - 1N\Phi , i.e., if and only if the equation

(5.26) (L - g) - 1N\Phi x = x

admits a nontrivial solution x \in \scrC (S1). By (5.19) and (5.23), (L  - g) - 1N\Phi x =
\langle x, \beta \rangle w, for all x \in \scrC (S1), and hence (5.26) becomes \langle x, \beta \rangle w = x. By (5.24) we have
\langle w, \beta \rangle = (w, \beta )L2(\bfS 1) = (b0, b0)L2(\bfS 1) = 1. Therefore, we obtain that w is a nontrivial
solution to (5.26), and thus g is an eigenvalue of B.

Next, we prove that \lambda 0 /\in \sigma (B). Suppose, by contradiction, that \lambda 0 is an eigen-
value of B and that x is an associated eigenfunction. Let xk := (x, bk)L2(\bfS 1). By

(5.10), recalling (5.19) and that \beta  - 1
\gamma \eta 

q+\gamma  - 1
\gamma admits a Fourier series expansion whose

coefficients are given in (5.20)--(5.21), we get

0 = Bx - \lambda 0x =

\infty \sum 
k=0

xk\lambda kbk  - 

\Biggl( 
\mu 0

\alpha 0
b0 +

\infty \sum 
k=1

\beta kbk

\Biggr) 
x0\alpha 0  - 

\infty \sum 
k=0

\lambda 0xkbk.

This equation is satisfied if and only if\Biggl\{ 
\lambda 0x0  - \mu 0x0 = \lambda 0x0,

\lambda kxk  - x0\alpha 0\beta k = \lambda 0xk, k \in \BbbN \setminus \{ 0\} .

Since \mu 0 = \lambda 0  - g, which entails \mu 0 \not = 0 by (5.11), the first equation implies x0 = 0.
Substituting into the second equation, we get xk(\lambda k  - \lambda 0) = 0 for all k \geq 1. Since
x \not = 0, there must be an index k \geq 1 such that \lambda k = \lambda 0, a contradiction.

Finally, to show that \lambda k, k \geq 1, are the only other eigenvalues of B, it is enough
to prove that \mu \in \BbbC \setminus \{ g, \lambda 0\} is an eigenvalue of B if and only if \mu is an eigenvalue of
L. This is readily verified with computations similar to those above.

(ii) We start by recalling that, since \{ etB\} t\geq 0 is a compact semigroup (Lemma 5.9),
we know from Lemma 3.10 that g is a pole of the resolvent of B of finite algebraic
multiplicity. Let h \in \scrC (S1) and \mu \in \BbbC \setminus \sigma (B), and set hk := (h, bk)L2(\bfS 1) for k \in \BbbN .
We claim that

(5.27) (B  - \mu ) - 1h = (L - \mu ) - 1

\biggl( 
h+

h0\alpha 0

g  - \mu 
\beta  - 1

\gamma \eta 
q+\gamma  - 1

\gamma 

\biggr) 
.

First, note that, since \mu \not = g, we have h+ h0\alpha 0

g - \mu \beta 
 - 1

\gamma \eta 
q+\gamma  - 1

\gamma \in \scrC (S1), so the right-hand

side above is well defined and belongs to \scrC 2(S1). Next, recalling (5.9) and given that
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N\Phi is a bounded linear operator, we get

N\Phi (L - \mu ) - 1

\biggl( 
h+

h0\alpha 0

g  - \mu 
\beta  - 1

\gamma \eta 
q+\gamma  - 1

\gamma 

\biggr) (5.28)

= \beta  - 1
\gamma \eta 

q+\gamma  - 1
\gamma 

\Biggl\langle \infty \sum 
k=0

hk
\lambda k  - \mu 

bk, \beta 

\Biggr\rangle 
+
h0\alpha 0

g  - \mu 
\beta  - 1

\gamma \eta 
q+\gamma  - 1

\gamma 

\Biggl\langle 
\mu 0

\alpha 0(\lambda 0  - \mu )
b0 +

\infty \sum 
k=1

\beta k
\lambda k  - \mu 

bk, \beta 

\Biggr\rangle 

=
h0\alpha 0(g  - \mu + \mu 0)

(g  - \mu )(\lambda 0  - \mu )
\beta  - 1

\gamma \eta 
q+\gamma  - 1

\gamma .

Therefore, recalling that \mu 0 = \lambda 0  - g, we obtain

(B  - \mu )(L - \mu ) - 1

\biggl( 
h+

h0\alpha 0

g  - \mu 
\beta  - 1

\gamma \eta 
q+\gamma  - 1

\gamma 

\biggr) 
= (L - \mu )(L - \mu ) - 1

\biggl( 
h+

h0\alpha 0

g  - \mu 
\beta  - 1

\gamma \eta 
q+\gamma  - 1

\gamma 

\biggr) 
 - N\Phi (L - \mu ) - 1

\biggl( 
h+

h0\alpha 0

g  - \mu 
\beta  - 1

\gamma \eta 
q+\gamma  - 1

\gamma 

\biggr) 
= h.

This shows (5.27), i.e., it provides an explicit expression of the resolvent of B. Finally,
recalling that the operator (L  - \mu ) - 1 is well defined for \mu = g, since g is not an
eigenvalue of L under (5.11) and under the assumption g > \lambda 1, we deduce from (5.27)
that g is a simple pole of the resolvent of B.

(iii) Using (5.19) and (5.23)--(5.24), it can be immediately proved that w is an
eigenfunction of B associated to g.

(iv) We use the explicit formula for P given in Remark 3.12. By (3.30) and (5.27)
we have that for any x \in \scrC (S1), and setting xk := (x, bk)L2(\bfS 1),
(5.29)

Px =  - 1

2\pi i

\int 
\gamma 

(B  - \mu ) - 1xd\mu =  - 1

2\pi i

\int 
\gamma 

(L - \mu ) - 1

\biggl( 
x+

x0\alpha 0

g  - \mu 
\beta  - 1

\gamma \eta 
q+\gamma  - 1

\gamma 

\biggr) 
d\mu ,

where we take \gamma to be the simple curve given by the positively oriented boundary of
the disk centered at g, with radius small enough so that it does not encircle any of
the eigenvalues \{ \lambda k\} k\in \BbbN of L, which are poles of the resolvent (L - \mu ) - 1. Substituting
(5.9) into (5.29), and recalling (5.20) and (5.21), we get

Px =  - 1

2\pi i

\int 
\gamma 

\sum 
k\in \BbbN 

xk
\lambda k  - \mu 

bk d\mu  - x0\alpha 0

2\pi i

\int 
\gamma 

\sum 
k\in \BbbN 

(bk, \beta 
 - 1

\gamma \eta 
q+\gamma  - 1

\gamma )L2(\bfS 1)

(\lambda k  - \mu )(g  - \mu )
bk d\mu 

=  - 
\sum 
k\in \BbbN 

xkbk
1

2\pi i

\int 
\gamma 

1

\lambda k  - \mu 
d\mu  - x0\mu 0b0

1

2\pi i

\int 
\gamma 

1

(\lambda 0  - \mu )(g  - \mu )
d\mu (5.30)

 - x0\alpha 0

2\pi i

\sum 
k\in \BbbN \setminus \{ 0\} 

\beta kbk

\int 
\gamma 

1

(\lambda k  - \mu )(g  - \mu )
d\mu .

Since any \lambda k, k \in \BbbN , lies outside of the curve \gamma , we have
\int 
\gamma 

1
\lambda k - \mu d\mu = 0. Moreover,

since the residues at g of the functions 1
(\lambda k - \mu )(g - \mu ) , for k \in \BbbN , are equal to  - 1

\lambda k - g ,

and recalling that \gamma is a simple curve, we get\int 
\gamma 

1

(\lambda k  - \mu )(g  - \mu )
d\mu =  - 2\pi i

\lambda k  - g
, k \in \BbbN .
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Therefore, since \lambda 0  - g = \mu 0, (5.30) becomes

Px =
x0\mu 0

\lambda 0  - g
b0 +

\sum 
k\in \BbbN \setminus \{ 0\} 

x0\alpha 0\beta k
\lambda k  - g

bk = x0\alpha 0

\left(  b0
\alpha 0

+
\sum 

k\in \BbbN \setminus \{ 0\} 

\beta k
\lambda k  - g

bk

\right)  = \langle x, \beta \rangle w.

By the previous results, we are ready to apply Theorem 3.11 to the economic
problem studied here and obtain the following.

Theorem 5.12. Let (5.11) hold, and assume that g > \lambda 1. Let K0 \in \scrC (S1)++,
and denote by \^KK0 the solution to the linear integro-PDE (5.15). Then,

(5.31)
\bigm| \bigm| \bigm| \^KK0

g (t, \cdot ) - \langle K0, \beta \rangle w
\bigm| \bigm| \bigm| 
\infty 

\leq M e - (g - \lambda 1)t| K0  - \langle K0, \beta \rangle w| \infty \forall t \geq 0,

where \beta is defined by (5.18), \^KK0
g (t, \cdot ) := e - gt \^KK0(t, \cdot ), and

M := 1 + | w| \infty 
\int 2\pi 

0

\beta (\theta ) d\theta .

In particular,
\^KK0
g (t, \cdot ) t\rightarrow +\infty  - \rightarrow \langle K0, \beta \rangle w in \scrC (S1).

Proof. By Proposition 5.11 and Theorem 3.11, we get

(5.32)
\bigm| \bigm| \bigm| \^KK0

g (t, \cdot ) - \langle K0, \beta \rangle w
\bigm| \bigm| \bigm| 
\infty 

\leq M e - \varepsilon t| K0  - \langle K0, \beta \rangle w| \infty \forall t \geq 0.

We now compute explicitly the constants M and \varepsilon appearing in (5.32). From
the proof of Theorem 3.11 we know that these two constants come from the estimate
provided in (3.29), which we can now refine.

For the sake of clarity, define S(t) := etB , t \geq 0. Since w is an eigenvector of
B with eigenvalue g, it follows from [21, Thm. 3.6, Chap. IV, p. 276] that egt is an
eigenvalue of S(t) with eigenvector w. Using the fact that RangeP = Span\{ w\} , we
have S(t)P = egtP for all t \geq 0. Moreover, since Range(1  - P ) = kerP , we have
S(t)(1 - P ) = S(t)| kerP (1 - P ), for all t \geq 0, where S(t)| kerP indicates the restriction
of the operator S(t) to kerP . Hence, denoting by | \cdot | \scrL (\scrC (\bfS 1)) the operator norm on
the space of linear continuous operators \scrL (\scrC (S1)), we get

| e - gtS(t) - P | \scrL (\scrC (\bfS 1)) = | e - gt(S(t) - S(t)P )| \scrL (\scrC (\bfS 1)) = e - gt| S(t) - S(t)P | \scrL (\scrC (\bfS 1))

(5.33)

= e - gt| S(t)(1 - P )| \scrL (\scrC (\bfS 1)) \leq e - gt| S(t)| kerP | \scrL (\scrC (\bfS 1)) | (1 - P )| \scrL (\scrC (\bfS 1)), t \geq 0.

We now estimate | S(t)| kerP | \scrL (\scrC (\bfS 1)) and | (1 - P )| \scrL (\scrC (\bfS 1)).
We begin with the first quantity. We aim to prove, with the aid of the Hille--Yosida

theorem, that | S(t)| kerP | satisfies

(5.34) | S(t)| kerP | \scrL (\scrC (\bfS 1)) \leq e\lambda 1t, t \geq 0.

From the discussion on subspace semigroups given in [21, paragraph II.2.3], we de-
duce that the infinitesimal generator of the semigroup \{ S(t)| kerP \} t\geq 0 is the operator
B| kerP \equiv L| kerP , whose domain is D(B| kerP ) = D(L| kerP ) = D(L)\cap kerP . Spectra of
B| kerP and L| kerP must coincide, and clearly \sigma (L| kerP ) \subset \sigma (L). In particular, recall-
ing that kerP is the closed subspace of \scrC (S1) of functions x such that \langle x, \beta \rangle = 0, we
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have that \sigma (L| kerP ) = \{ \lambda k\} k\in \BbbN \setminus \{ 0\} . Indeed, on the one hand, \lambda 0 cannot be an eigen-
value of L| kerP , since the associated eigenvector b0 does not satisfy \langle b0, \beta \rangle = 0; on the
other hand, the remaining eigenvalues of L are also eigenvalues of L| kerP , since the
corresponding eigenvectors belong to ker P and hence are in D(L| kerP ) = D(B| kerP ).
This shows that the resolvent set of B| kerP satisfies \rho (B| kerP ) \supset (\lambda 1,+\infty ). Then, in
order to apply the Hille--Yosida theorem, it suffices to verify that

(5.35) | (\mu  - \lambda 1)(B| kerP  - \mu ) - 1| \scrL (\scrC (\bfS 1)) \leq 1 for \mu > \lambda 1.

From [17, Chap. 7, sect. 3], we see that either | (B| kerP  - \mu ) - 1| \scrL (\scrC (\bfS 1)) or  - | (B| kerP  - 
\mu ) - 1| \scrL (\scrC (\bfS 1)) must be an eigenvalue of (B| kerP  - \mu ) - 1 and that

\sigma 
\bigl( 
(B| kerP  - \mu ) - 1

\bigr) 
=

\biggl\{ 
1

\lambda k  - \mu 

\biggr\} 
k\in \BbbN \setminus \{ 0\} 

.

Therefore, recalling that \{ \lambda k\} k\in \BbbN \setminus \{ 0\} is a decreasing sequence and that \mu > \lambda 1, we

obtain | (B| kerP - \mu ) - 1| \scrL (\scrC (\bfS 1)) \leq 1
\mu  - \lambda 1

, and hence | (\mu  - \lambda 1)(B| kerP - \mu ) - 1| \scrL (\scrC (\bfS 1)) \leq 1.

Since we have \rho (B| kerP ) \supset (\lambda 1,+\infty ) and (5.35), the assumptions of the Hille--
Yosida theorem are verified, and we get (5.34).

Finally, an estimate for the quantity | (1 - P )| \scrL (\scrC (\bfS 1)) can be obtained as follows.
Let x \in \scrC (S1) with | x| \scrC (\bfS 1) = 1 and recall that, under the standing assumptions,
\beta \in \scrC (S1)++; then,

| (1 - P )x| \infty \leq 1 + | \langle x, \beta \rangle | | w| \infty \leq 1 + | w| \infty 
\int 2\pi 

0

\beta (\theta ) d\theta .

Plugging this estimate into (5.33), together with (5.34), we obtain the claim.

Remark 5.13. Theorem 5.12 deserves some comments. The claim could be proved
in the setting X = L2(S1)---the setting of [7, 8]---but it would not have useful conse-
quences from the point of view of the application. Indeed, the norm of L2(S1) cannot
control pointwise constraints such as the one prescribed by (5.6). Therefore, this result
cannot be used to prove that, at least for a suitable set of initial data K0, the optimal
control \^C for problem (5.7), defined in (5.14), is also optimal for problem (5.5). In the
aforementioned references, it is just assumed that \^K, the solution to (5.15), verifies
the state constraint (5.6). In this way, the authors of [7, 8] automatically have that
\^C is optimal for problem (5.5). In other words, this important issue is skipped from
the theoretical point of view and verified only in numerical exercises. In a different
context (delay equations), this issue is approached from the theoretical point of view
in [4] (although the proof has a gap) and in [3], where the argument used to get the
result is very involved.

Instead, Theorem 5.12 has an important consequence in our X = \scrC (S1) setting:
indeed, if
(5.36)

w := inf
\bfS 1
w > 0 and

\biggl( 
1 + | w| \infty 

\int 2\pi 

0

\beta (\theta ) d\theta 

\biggr) 
| K0  - \langle K0, \beta \rangle w| \infty \leq | \langle K0, \beta \rangle | w,

then we deduce that \^KK0
g (t, \cdot ) > 0 for all t \in \BbbR +, and the optimal control \^C given

in (5.14) is such that \^C \in \scrA ++(K0); hence, by Remark 2.5, it is optimal for prob-
lem (5.5).

D
ow

nl
oa

de
d 

02
/2

6/
24

 to
 1

37
.2

04
.1

35
.1

05
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONSTRAINED CONTROL PROBLEMS IN BANACH LATTICES 4507

We conclude this work by specializing the result above to the case of homogeneous
data, i.e., A(\cdot ) \equiv A > 0 and \eta (\cdot ) \equiv 1. This corresponds to the setting presented in [6],
where, as repeatedly said, the problem is embedded in X = L2(S1). In this case the
sequence of eigenvalues and eigenvectors of L is fully explicit. In particular, we have
that \lambda 0 = A, \lambda 1 = A  - \sigma , b0 = 1\surd 

2\pi 
1\bfS 1 . Rewriting the statement of Theorem 5.12

using \lambda 0, \lambda 1, and b0 from above, we get the following corollary.

Corollary 5.14. Let K0 \in X++, and let \^KK0 be the solution to the linear
integro-PDE (5.15). Assume that A(1 - \gamma ) < \rho < A(1 - \gamma ) + \sigma \gamma . Then,
(5.37)\bigm| \bigm| \bigm| \^KK0

g (t) - 1

2\pi 

\int 
\bfS 1

K0(\theta ) d\theta 
\bigm| \bigm| \bigm| 
\scrC (\bfS 1)

\leq 2 e - (g - A+\sigma )t
\bigm| \bigm| \bigm| K0 - 

1

2\pi 

\int 
\bfS 1

K0(\theta ) d\theta 
\bigm| \bigm| \bigm| 
\scrC (\bfS 1)

\forall t \geq 0,

where \^KK0
g (t) := e - gt \^KK0(t). In particular,

\^KK0
g (t)

t\rightarrow +\infty  - \rightarrow 1

2\pi 

\int 
\bfS 1

K0(\theta ) d\theta in \scrC (S1),

and if

(5.38) 2
\bigm| \bigm| \bigm| K0  - 

1

2\pi 

\int 
\bfS 1

K0(\theta ) d\theta 
\bigm| \bigm| \bigm| 
\scrC (\bfS 1)

\leq 1

2\pi 

\int 
\bfS 1

K0(\theta ) d\theta ,

we have \^Kg(t) \in X++ for all t \in \BbbR +. Hence, the optimal control for problem

(P
1\surd 
2\pi 

\bfone \bfS 1 ), i.e.,

(5.39) \^C(t, \theta ) = egt
A - g

2\pi 

\int 
\bfS 1

K0(\xi ) d\xi ,

belongs to \scrA ++(K0), and therefore by Remark 2.5 it is optimal for problem (P ).

Proof. We need only rewrite (5.31) in the present setting to get (5.37). The
remaining statements follow immediately (see also Remark 5.13). Note that, in the
present setting, the coefficients \beta k defined in (5.21) vanish for all k \geq 1; hence,

w =
b0
\alpha 0
.

Therefore, since b0 = 1\surd 
2\pi 

1\bfS 1 , we get

\langle K0, \beta \rangle w = \alpha 0\langle K0, b0\rangle 
b0
\alpha 0

=
1

2\pi 

\int 
\bfS 1

K0(\theta ) d\theta .

Moreover, the constant M appearing in (5.31) satisfies

M = 1 + | w| \infty 
\int 2\pi 

0

\beta (\theta ) d\theta = 1 +

\bigm| \bigm| \bigm| \bigm| b0\alpha 0

\bigm| \bigm| \bigm| \bigm| 
\infty 

\int 2\pi 

0

\alpha 0b0(\theta ) d\theta = 2.

Finally, recalling that \lambda 1 = A - \sigma , we rewrite (5.31) to get (5.37).

6. Conclusions and potential extensions. In this paper we studied a class
of optimal control problems in infinite dimension with a positivity state constraint,
motivated by economic applications. With respect to the area of literature dealing
with the L2 setting, we provided a more general abstract framework that includes the

D
ow

nl
oa

de
d 

02
/2

6/
24

 to
 1

37
.2

04
.1

35
.1

05
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

4508 A. CALVIA, S. FEDERICO, AND F. GOZZI

space of continuous functions. This allows us to treat rigorously the positivity state
constraint by introducing a suitable auxiliary optimal control problem and verifying
the admissibility of its optimal path for the original problem. As explained in the
introduction, this was an issue that in previous works was left out at the theoretical
level and checked only numerically (see Remark 5.13). In section 5 we showed, instead,
that by formulating the problem in the space of continuous functions it is possible to
deal successfully with the positivity state constraint, thanks to the stability results
given in section 3.3.

Our approach is based on the particular structure of the problem that allows us
to find explicit solutions to the HJB equation of the auxiliary problem, as shown in
section 3.2. Indeed, the state equation (2.1) is linear, in (3.6) we choose the bounded
and positive linear operator N appearing in (2.1) to be of multiplicative type, and
the function u in (3.7) is a power utility function.

Nonetheless, it may be possible to adapt our approach to treat optimal control
problems with a positivity state constraint, where nonlinear state equations and/or
nonhomogeneous utility functions appear, as in various economic models. To this
end, we suggest a possible scheme for future work in the case where a semilinear state
equation is considered, i.e., where an additional term F (x(t)), depending only on the
state variable x, appears in the state equation (2.1).
(i) A nonlinear semigroup can be associated to semilinear abstract equations, and

it is necessary to impose the fact that it preserves strict positivity, similarly to
the requirement of point (i) of Assumption 2.2.

(ii) The pointwise positivity state constraint still makes the HJB equation associated
to the optimal control problem very difficult to study. Therefore, we can consider
an auxiliary problem in a half-space containing the positive cone of the state
space X.

(iii) It is now necessary to prove existence, uniqueness, and regularity of the solutions
to the HJB equation of the auxiliary optimal control problem: this may be very
hard, but there are results of this type in some cases; see, e.g., [28, 26, 27], where
the concept of viscosity solutions is used.

(iv) After the previous point is settled, a verification theorem should be established,
as we did in Theorem 3.1: its proof does not require finding explicit solutions to
the HJB equation of the auxiliary optimal control problem; see again [28, 26, 27].

(v) Finally, one should prove that under suitable assumptions the solution to the
auxiliary optimal control problem remains in the positive cone of the state space
X, as happens in our setting if the a priori estimate (5.36) holds, by virtue of
Theorem 5.12. This could be achieved by extending the stability results given
in section 3.3 to the case of nonlinear semigroups.

Acknowledgments. The authors wish to thank the anonymous referees and the
associate editor for their kind comments and suggestions that helped to improve the
paper.

REFERENCES

[1] D. Addona, E. Bandini, and F. Masiero, A nonlinear Bismut--Elworthy formula for HJB
equations with quadratic Hamiltonian in Banach spaces, Nonlinear Differ. Equ. Appl., 27
(2020), 37, https://doi.org/10.1007/s00030-020-00639-7.

[2] W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel,
F. Neubrander, and U. Schlotterbeck, One-Parameter Semigroups of Positive Oper-
ators, Lecture Notes in Math. 1184, Springer-Verlag, Berlin, 1986.

D
ow

nl
oa

de
d 

02
/2

6/
24

 to
 1

37
.2

04
.1

35
.1

05
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1007/s00030-020-00639-7


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONSTRAINED CONTROL PROBLEMS IN BANACH LATTICES 4509

[3] M. Bambi, C. Di Girolami, S. Federico, and F. Gozzi, Generically distributed investments
on flexible projects and endogenous growth, Econom. Theory, 63 (2017), pp. 521--558, https:
//doi.org/10.1007/s00199-015-0946-z.

[4] M. Bambi, G. Fabbri, and F. Gozzi, Optimal policy and consumption smoothing effects in
the time-to-build AK model, Econom. Theory, 50 (2012), pp. 635--669, https://doi.org/10.
1007/s00199-010-0577-3.

[5] A. Bensoussan, G. Da Prato, M. C. Delfour, and S. K. Mitter, Representation and
Control of Infinite Dimensional Systems, 2nd ed., Syst. Control Found. Appl., Birkh\"auser
Boston, Inc., Boston, MA, 2007.

[6] R. Boucekkine, C. Camacho, and G. Fabbri, Spatial dynamics and convergence: The spatial
AK model, J. Econom. Theory, 148 (2013), pp. 2719--2736, https://doi.org/10.1016/j.jet.
2013.09.013.

[7] R. Boucekkine, G. Fabbri, S. Federico, and F. Gozzi, Growth and agglomeration in the
heterogeneous space: A generalized AK approach, J. Economic Geography, 19 (2019),
pp. 1287--1318, https://doi.org/10.1093/jeg/lby041.

[8] R. Boucekkine, G. Fabbri, S. Federico, and F. Gozzi, Control theory in infinite dimension
for the optimal location of economic activity: The role of the social welfare function, Pure
Appl. Funct. Anal., 6 (2021), pp. 87--888 http://yokohamapublishers.jp/online2/oppafa/
vol6/p871.html.

[9] R. Boucekkine, O. Licandro, L. A. Puch, and F. del Rio, Vintage capital and the dynamics
of the AK model, J. Econom. Theory, 120 (2005), pp. 39--72, https://doi.org/10.1016/j.jet.
2004.02.006.

[10] B. M. Brown, M. S. P. Eastham, and K. M. Schmidt, Periodic Differential Operators, Oper.
Theory Adv. Appl. 230, Birkh\"auser/Springer Basel AG, Basel, 2013, https://doi.org/10.
1007/978-3-0348-0528-5.

[11] A. Calvia, Optimal control of continuous-time Markov chains with noise-free observation,
SIAM J. Control Optim., 56 (2018), pp. 2000--2035, https://doi.org/10.1137/17M1139989.

[12] A. Calvia, Stochastic filtering and optimal control of pure jump Markov processes with noise-
free partial observation, ESAIM Control Optim. Calc. Var., 26 (2020), 25, https://doi.org/
10.1051/cocv/2019020.

[13] P. Cannarsa and G. Di Blasio, A direct approach to infinite-dimensional Hamilton-Jacobi
equations and applications to convex control with state constraints, Differential Integral
Equations, 8 (1995), pp. 225--246.

[14] P. Cannarsa, F. Gozzi, and H. M. Soner, A boundary-value problem for Hamilton-Jacobi
equations in Hilbert spaces, Appl. Math. Optim., 24 (1991), pp. 197--220, https://doi.org/
10.1007/BF01447742.

[15] I. Capuzzo-Dolcetta and P.-L. Lions, Hamilton-Jacobi equations with state constraints,
Trans. Amer. Math. Soc., 318 (1990), pp. 643--683, https://doi.org/10.2307/2001324.

[16] P. Cl\'ement, H. J. A. M. Heijmans, S. Angenent, C. J. van Duijn, and B. de Pagter, One-
Parameter Semigroups, CWI Monographs 5, North-Holland Publishing Co., Amsterdam,
1987.

[17] E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill
Book Company, Inc., New York, 1955.

[18] M. G. Crandall and P.-L. Lions, Hamilton-Jacobi equations in infinite dimensions I: Unique-
ness of viscosity solutions, J. Funct. Anal., 62 (1985), pp. 379--396, https://doi.org/10.
1016/0022-1236(85)90011-4.

[19] M. G. Crandall and P.-L. Lions, Hamilton-Jacobi equations in infinite dimensions II: Ex-
istence of viscosity solutions, J. Funct. Anal., 65 (1986), pp. 368--405, https://doi.org/10.
1016/0022-1236(86)90026-1.

[20] M. G. Crandall and P.-L. Lions, Hamilton-Jacobi equations in infinite dimensions III, J.
Funct. Anal., 68 (1986), pp. 214--247, https://doi.org/10.1016/0022-1236(86)90005-4.

[21] K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations,
Grad. Texts Math. 194, Springer-Verlag, New York, 2000.

[22] G. Fabbri and F. Gozzi, Solving optimal growth models with vintage capital: The dynamic
programming approach, J. Econom. Theory, 143 (2008), pp. 331--373, https://doi.org/10.
1016/j.jet.2008.03.008.

[23] G. Fabbri, F. Gozzi, and A. Swiech, Stochastic Optimal Control in Infinite Dimension:
Dynamic Programming and HJB Equations, Probab. Theory Stochast. Model. 82, Springer,
Cham, 2017.

[24] S. Faggian, Hamilton--Jacobi equations arising from boundary control problems with state
constraints, SIAM J. Control Optim., 47 (2008), pp. 2157--2178, https://doi.org/10.1137/
070683738.

D
ow

nl
oa

de
d 

02
/2

6/
24

 to
 1

37
.2

04
.1

35
.1

05
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1007/s00199-015-0946-z
https://doi.org/10.1007/s00199-015-0946-z
https://doi.org/10.1007/s00199-010-0577-3
https://doi.org/10.1007/s00199-010-0577-3
https://doi.org/10.1016/j.jet.2013.09.013
https://doi.org/10.1016/j.jet.2013.09.013
https://doi.org/10.1093/jeg/lby041
http://yokohamapublishers.jp/online2/oppafa/vol6/p871.html
http://yokohamapublishers.jp/online2/oppafa/vol6/p871.html
https://doi.org/10.1016/j.jet.2004.02.006
https://doi.org/10.1016/j.jet.2004.02.006
https://doi.org/10.1007/978-3-0348-0528-5
https://doi.org/10.1007/978-3-0348-0528-5
https://doi.org/10.1137/17M1139989
https://doi.org/10.1051/cocv/2019020
https://doi.org/10.1051/cocv/2019020
https://doi.org/10.1007/BF01447742
https://doi.org/10.1007/BF01447742
https://doi.org/10.2307/2001324
https://doi.org/10.1016/0022-1236(85)90011-4
https://doi.org/10.1016/0022-1236(85)90011-4
https://doi.org/10.1016/0022-1236(86)90026-1
https://doi.org/10.1016/0022-1236(86)90026-1
https://doi.org/10.1016/0022-1236(86)90005-4
https://doi.org/10.1016/j.jet.2008.03.008
https://doi.org/10.1016/j.jet.2008.03.008
https://doi.org/10.1137/070683738
https://doi.org/10.1137/070683738


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

4510 A. CALVIA, S. FEDERICO, AND F. GOZZI

[25] H. O. Fattorini, Infinite-Dimensional Optimization and Control Theory, Encyclopedia
Math. Appl. 62, Cambridge University Press, Cambridge, 1999, https://doi.org/10.1017/
CBO9780511574795.

[26] S. Federico, B. Goldys, and F. Gozzi, HJB equations for the optimal control of differential
equations with delays and state constraints, I: Regularity of viscosity solutions, SIAM J.
Control Optim., 48 (2010), pp. 4910--4937, https://doi.org/10.1137/09076742X.

[27] S. Federico, B. Goldys, and F. Gozzi, HJB equations for the optimal control of differential
equations with delays and state constraints, II: Verification and optimal feedbacks, SIAM
J. Control Optim., 49 (2011), pp. 2378--2414, https://doi.org/10.1137/100804292.

[28] S. Federico and E. Tacconi, Dynamic programming for optimal control problems with delays
in the control variable, SIAM J. Control Optim., 52 (2014), pp. 1203--1236, https://doi.
org/10.1137/110840649.

[29] G. Feichtinger, R. F. Hartl, P. M. Kort, and V. M. Veliov, Anticipation effects of
technological progress on capital accumulation: A vintage capital approach, J. Econom.
Theory, 126 (2006), pp. 143--164.

[30] G. Freni, F. Gozzi, and N. Salvadori, Existence of optimal strategies in linear multisector
models, Econom. Theory, 29 (2006), pp. 25--48.

[31] M. Fuhrman, F. Masiero, and G. Tessitore, Stochastic equations with delay: Optimal
control via BSDEs and regular solutions of Hamilton--Jacobi--Bellman equations, SIAM J.
Control Optim., 48 (2010), pp. 4624--4651, https://doi.org/10.1137/080730354.

[32] R. F. Hartl, S. P. Sethi, and R. G. Vickson, A survey of the maximum principles for
optimal control problems with state constraints, SIAM Rev., 37 (1995), pp. 181--218, https:
//doi.org/10.1137/1037043.

[33] M. A. Katsoulakis, Viscosity solutions of second order fully nonlinear elliptic equations with
state constraints, Indiana Univ. Math. J., 43 (1994), pp. 493--519, https://doi.org/10.1512/
iumj.1994.43.43020.

[34] M. Kocan and P. Soravia, A viscosity approach to infinite-dimensional Hamilton--Jacobi
equations arising in optimal control with state constraints, SIAM J. Control Optim., 36
(1998), pp. 1348--1375, https://doi.org/10.1137/S0363012996301622.

[35] X. J. Li and J. Yong, Optimal Control Theory for Infinite-Dimensional Systems, Syst. Con-
trol Found. Appl., Birkh\"auser Boston, Inc., Boston, MA, 1995, https://doi.org/10.1007/
978-1-4612-4260-4.

[36] F. Masiero, Stochastic optimal control problems and parabolic equations in Banach spaces,
SIAM J. Control Optim., 47 (2008), pp. 251--300, https://doi.org/10.1137/050632725.

[37] F. Masiero, HJB equations in infinite dimensions under weak regularizing properties, J. Evol.
Equ., 16 (2016), pp. 789--824, https://doi.org/10.1007/s00028-015-0320-4.

[38] H. M. Soner, Optimal control with state-space constraint I, SIAM J. Control Optim., 24 (1986),
pp. 552--561, https://doi.org/10.1137/0324032.

[39] H. M. Soner, On the Hamilton-Jacobi-Bellman equations in Banach spaces, J. Optim. Theory
Appl., 57 (1988), pp. 429--437, https://doi.org/10.1007/BF02346162.

D
ow

nl
oa

de
d 

02
/2

6/
24

 to
 1

37
.2

04
.1

35
.1

05
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1017/CBO9780511574795
https://doi.org/10.1017/CBO9780511574795
https://doi.org/10.1137/09076742X
https://doi.org/10.1137/100804292
https://doi.org/10.1137/110840649
https://doi.org/10.1137/110840649
https://doi.org/10.1137/080730354
https://doi.org/10.1137/1037043
https://doi.org/10.1137/1037043
https://doi.org/10.1512/iumj.1994.43.43020
https://doi.org/10.1512/iumj.1994.43.43020
https://doi.org/10.1137/S0363012996301622
https://doi.org/10.1007/978-1-4612-4260-4
https://doi.org/10.1007/978-1-4612-4260-4
https://doi.org/10.1137/050632725
https://doi.org/10.1007/s00028-015-0320-4
https://doi.org/10.1137/0324032
https://doi.org/10.1007/BF02346162

	Introduction
	The optimal control problem
	Verification theorem, explicit solutions, and stability
	Verification theorem
	Explicit solutions to HJB equation and optimal feedback control
	Steady states and stability of solutions

	Existence of a strictly positive eigenvector of L^star
	Application to an economic growth problem with space heterogeneity
	Conclusions and potential extensions
	References

