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We explore higher-form symmetries of M- and F-theory compactified on elliptic fibrations, determined
by the topology of their asymptotic boundaries. The underlying geometric structures are shown to be
equivalent to known characterizations of the gauge group topology in F-theory via Mordell-Weil torsion
and string junctions. We further study dimensional reductions of the 11d Chern-Simons term in the
presence of torsional boundary G4-fluxes, which encode background gauge fields of center one-form
symmetries in the lower-dimensional effective gauge theory. We find contributions that can be interpreted
as ’t Hooft anomalies involving the one-form symmetry which originate from a fractionalization of the
instanton number of non-Abelian gauge theories in F-/M-theory compactifications to 8d=7d and 6d=5d.
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I. INTRODUCTION AND SUMMARY

Geometric engineering provides a powerful framework to
study quantum field theories and their nonperturbative
aspects. Exploiting known features of a higher-dimensional
theory on spacetime M, one can uncover details of lower
dimensional field and gravitational theories on M by
“engineering” a compactification M ¼ MD × Yd on an
internal space Yd. In this approach, physical data of the
D-dimensional theory on spacetimeMD are mapped, using a
“dictionary” specific to the theory onM, onto properties of
the internal space Yd.

1 Yd can then be studied using
geometric tools which are not necessarily bound by limi-
tations such as perturbative control. The success of this
process clearly hinges on the “completeness” of this dic-
tionary, i.e., our ability to identify the relevant geometric
structures associated to a particular physical aspect.
One such aspect is the set of generalized, or higher-form

symmetries [1] of a quantum field theory. Formulating their
corresponding “dictionary entries” in various compactifi-
cation scenarios in string theory has attracted a lot of recent

attention [2–15]. In this work, we extend the discussion to
compactifications of F- and M-theory on elliptically fibered
Calabi-Yau two- and threefolds Yd⟶

π Bd−2 [16].
We will focus on discrete one-form symmetries Γ that

arise as the center symmetry of non-Abelian gauge dynam-
ics, and whose gauging enforces the nontrivial gauge group
topology G ¼ Gsc=Γ, where Gsc is the simply connected
gauge group with center ZðGscÞ ⊃ Γ [1]. For B a compact
base (and hence with gravity dynamical), the latter has a
characterization in terms of the Mordell-Weil group of
π∶ Y → B [17–19], or string junctions onB [20,21]. Using
M-/F-duality, we will establish the explicit connection of
these descriptions to the asymptotic G4-fluxes that encode
the one-form symmetries in M-theory compactified on
Y [5,6].
We will approach this by inspecting the local geometry

defining a non-Abelian gauge algebra g associated to a
simply connected group Gsc. That is, Y → B is a non-
compact fibration, with singular fibers realizing g in F-theory.
Reducing the theory on an S1 yields M-theory compactified
on Y. The topology of the asymptotic boundary ∂Y—which
encodes the asymptotic fluxes, and thus the one-form
symmetry in M-theory on Y—is determined by the
SLð2;ZÞ monodromy around the singular fibers in the bulk
of Y, which in turn is related to the (local) Mordell-Weil
group as well as asymptotic string junctions. Physically,
this identifies the possible line operators charged under the
one-form symmetry from M2-branes wrapping noncompact
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1Throughout this work, we denote by d the dimension over R
of the internal space Yd.
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two-cycles in M-theory, with asymptotic ðp; qÞ-string states
in F-theory. A valid compact model can be understood as
“gluing together” several local patches along their bounda-
ries. In general, only a subgroup of the one-form symmetry in
each patch will survive, since new massive states break part
of the one-form symmetry explicitly. The “compatible”
boundary fluxes are then exactly captured by the global
sections of the glued geometry. Moreover, the cycles asso-
ciated to the global sections of the geometry become
compact, and one has to sum over the distinct flux configu-
rations representing the modified gauge backgrounds of
nonsimply connected gauge groups. At the same time, the
now dynamical magnetic states break the dual (D − 3)-form
symmetry explicitly.
An interesting aspect of one-form symmetries is their ’t

Hooft anomalies. Specifically, for center one-form sym-
metries of gauge theories in spacetime dimension D > 4,
there is a potential mixed anomaly involving the (D − 5)-
form instanton Uð1Þ symmetry [22–24]. This anomaly is a
consequence of the fractionalization of the instanton number
in the presence of a nontrivial background field for the one-
form center symmetry [1,25–27]. In N ¼ 1 compactifica-
tions of M-theory to D ¼ 7 and D ¼ 5, we show that this
anomaly arises from the reduction of the eleven-dimensional
(11d) Chern-Simons term in the presence of asymptotic
fluxes for G4: By expressing the boundary contributions as a
fractional linear combination of compactly supported fluxes,
we derive the fractional instanton shift on the Coulomb
branch of the effective gauge theory. We demonstrate that,
in case the compactification space Y is elliptically fibered,
this anomaly matches that of the six- or eight-dimensional
(6d=8d) F-theory compactification [22,23]. Intriguingly, the
M-theory computation reveals a mixed anomaly between two
one-form symmetries in 5d, which uplifts to a mixed anomaly
between the 6d center symmetry, and a discrete two-form
symmetry of instanton strings [2]. Moreover, we find for 5d
gauge theories with a genuine 5d UV fixed point, that the
geometrically determined instanton shift deviates from the
value naively expected from the effective gauge description.
This indicates a nonperturbative correction to the ’t Hooft
anomaly from the superconformal dynamics at the UV fixed
point, which would be interesting to scrutinize in the future. It
is important to point out that there can potentially be
counterterms, e.g., from topological sectors, canceling these
anomalies field theoretically, which in M-theory compacti-
fications are not arising from the 11d Chern-Simons term.We
refer to a recent work [14] where an example of such a
topological sector is discussed in the context of M-theory
engineering of 5d superconformal field theories (SCFTs).
The rest of the paper is organized as follows. In Sec. II, we

study the higher-form symmetries of M-theory on elliptically
fibered Calabi-Yaus in the framework put forward in [5,6]. In
Sec. III, we then compare the results with known character-
izations of the gauge group in F-theory via the Mordell-Weil
group [17,18] and string junctions [20,21]. For simplicity,

we focus mostly on F-/M-theory compactifications to 8d=7d,
where the correspondences between these different
approaches can be made concrete. In Sec. IV, we analyze
the dimensional reduction of the M-theory Chern-Simons
term with boundary fluxes that parametrize the center one-
form symmetry of gauge theories, and derive their ’t Hooft
anomalies associated with instanton fractionalization for M-/
F-theory compactifications to 7d=8d as well as 5d=6d. Some
computational details are collected in the Appendices.

II. CENTER SYMMETRIES OF M-THEORY ON
ELLIPTIC FIBRATIONS

Yang-Mills theories with a fixed non-Abelian gauge
algebra g can have different topologies for its gauge group
G, which generally takes the form

G ¼ Gsc

Z
: ð2:1Þ

Here, Z is a subgroup of the center ZðGscÞ of the simply
connected group Gsc associated to g. In the context of
generalized global symmetries [1], the nontrivial global
structure (2.1) arises from gauging the subgroup Z of the
global ZðGscÞ one-form symmetry, which act on electric
(Wilson) line charges of Gsc. The presence of dynamical
charged particles in representationsRi, which in general do
not need to be massless, explicitly breaks the center one-
form symmetry to the subgroup of ZðGscÞ that leaves allRi
invariant. This happens due to the fact that the objects
charged under the electric one-form symmetries, i.e.,
Wilson line operators, can end on these charged particle
states, and cease to define one-form charges.
In D spacetime dimensions, a g gauge algebra also has a

dual magnetic ZðGscÞ (D − 3)-form symmetry, which acts
on magnetically charged objects. There is a mixed ’t Hooft
anomaly between the electric and magnetic higher-form
symmetries, which form a so-called “defect group struc-
ture” [2,28,29], and which is a generalization of Dirac’s
quantization condition for electric and magnetic charges. In
terms of the defect group, the global form (2.1) can also be
understood as a choice of Z ¼ π1ðGÞ magnetic higher-
form symmetry, together with a “mutually local” electric
one-form symmetry. That is, the electric flux operators
present in the G ¼ Gsc=Z theory have integral pairing
under the defect group pairing with the magnetic flux
operators of the (D − 3)-form Z symmetry.
In string theory realizations of quantum field theories, the

charged objects of higher-form symmetries generally arise
from branes wrapping asymptotic cycles (more precisely,
relative cycles with respect to the asymptotic boundary) of
appropriate dimensions in the noncompact internal space Y
[2,3,5–14]. These wrapped branes generate flux quanta,
whose spacetime part represents the flux operators associ-
ated to the charged objects, and whose internal pieces are
characterized by cohomology classes on the asymptotic
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boundary ∂Y. In gauging the electric one-form Z symmetry,
the Gsc=Z theories include the magnetically charged objects
from branes wrapping the corresponding relative cycles,
which transform under the (D − 3)-form Z symmetry.
In gravitational theories, global symmetries, including

higher-form symmetries, are believed to be inconsistent
[30–33]. Since, in a theory with gauge group Gsc=Z, the
defect group structure forbids the simultaneous gauging of
both Z one-form and (D − 3)-form symmetries, the mag-
netic one has to be broken. Because the compactification
space Y is compact in gravitational models, this breaking
happens explicitly due to the magnetically charged objects
becoming dynamical (as the relative cycles become compact
themselves). As we will highlight below in the M-theory
framework (and, by duality, also in F-theory), one can think
of the compact model arising from gluing together local
(noncompact) patches along their boundaries.

A. Higher-form symmetries in M-theory

In M-theory compactifications on local (noncompact)
Calabi-Yau manifolds Yd, the information about the one-
form symmetries is encoded in terms of geometric data
[5,6]: The electrically charged objects (Wilson lines) Γel.
are associated to M2-branes that stretch from the asymp-
totic boundary to the interior of Yd, and are classified by
classes in the relative homology H2ðYd; ∂YdÞ.2 However,
by an analog of ’t Hooft’s screening argument, their one-
form symmetry charges are subject to an equivalence
relation induced by the addition of M2-branes wrapped
over compact two-cycles. Mathematically, this is encoded
in the quotient

Γel ≡ Γ ¼ H2ðYd; ∂YdÞ
imð|2Þ

≅
H2ðYd; ∂YdÞ

kerð∂2Þ
≅ imð∂2Þ ⊂ H1ð∂YdÞ; ð2:2Þ

extracted from the long exact sequence of relative
homology,3

���→Hnð∂YdÞ⟶
{n HnðYdÞ⟶

|n HnðYd;∂YdÞ
⟶
∂n Hn−1ð∂YdÞ→ �� �: ð2:3Þ

Similarly, by wrapping M5-branes over the relative
(d − 2)-cycles one obtains extended magnetically charged
objects in the effective theory:

Λmag ≡ Λ ¼ Hd−2ðYd; ∂YdÞ
imð|d−2Þ

≅
Hd−2ðYd; ∂YdÞ

kerð∂d−2Þ
≅ imð∂d−2Þ ⊂ Hd−3ð∂YdÞ: ð2:4Þ

The “defect group” pairing between the electric and
magnetic charges is then given by the torsion linking
pairing

L∶ TorsðH1ð∂YdÞÞ × TorsðHd−3ð∂YdÞÞ → Q=Z: ð2:5Þ

As a generalization of the requirement of mutual locality,
imposed by Dirac quantization condition, in 4d, a choice of
physical electric charges fΩg ⊂ Γ enforces the restriction
LðΩ; Ω̃Þ ¼ 0 for allowed magnetic charges fΩ̃g ⊂ Λ, and
vice versa.
To compute (2.2) and (2.4), we assume that HnðYdÞ is

torsion-free for any n (which holds for all cases relevant to
the present discussion). Then Poincaré-Lefschetz duality
and the universal coefficient theorem provide the identi-
fication

HnðYd; ∂YdÞ ≅ HomðHd−nðYdÞ;ZÞ: ð2:6Þ

Furthermore, Yd comes with an intersection pairing,

h·; ·in∶ HnðYdÞ ×Hd−nðYdÞ → Z: ð2:7Þ

Using the above isomorphism, the maps |n in (2.3) are then
given by

|nðυÞ ¼ hυ; ·in ¼ h·; υid−n ∈ HomðHd−nðYdÞ;ZÞ: ð2:8Þ

Picking a basis σa for Hd−2ðYdÞ and a basis γi for
H2ðYdÞ defines the rd−2 × r2 intersection matrix
Mai ¼ hσa; γiid−2 ≡ hσa; γii, where rk ¼ rankðHkðYdÞÞ,
with r2 − rd−2 ≡ f ≥ 0. Then |d−2ðσaÞ ¼

P
i Maiηi, where

ηi ∈ HomðH2ðYdÞ;ZÞ is the dual basis of γi, i.e.,
ηiðγjÞ ¼ δij. Similarly, |2ðγiÞ ¼

P
aðMTÞiaνa, with νa ∈

HomðHd−2ðYdÞ;ZÞ dual to σa. Through a Smith decom-
position,

Mai ¼
X
b;j

SabDbjTji; ð2:9Þ

with Sðrd−2 × rd−2Þ, Tðr2 × r2Þ invertible integer matrices,
and

Dbj ¼

0BBBBB@
N1 0 … 0 0 …

0 N2 … 0 0 …

..

. ..
. . .

. ..
. ..

.

0 0 … Nrd−2 0 …

1CCCCCA
bj

; ð2:10Þ

we have

2Note that unless otherwise specified, all (co)homology groups
HnðY;RÞ≡HnðYÞ have coefficients R ¼ Z, which is suppressed
in the notation.

3The map { is induced by the inclusion ∂Y ↪ Y, and |n is
induced by the quotient map onto relative n-chains. As usual ∂n
denotes the boundary map.
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Γ¼H2ðYd;∂YdÞ
imð|2Þ

¼HomðHd−2ðYdÞ;ZÞ
imðDTÞ ≅⨁

rd−2

k¼1

ZNk
;

Λ¼Hd−2ðYd;∂YdÞ
imð|d−2Þ

¼HomðH2ðYdÞ;ZÞ
imðDÞ ≅Γ⊕Zf: ð2:11Þ

More precisely, the Smith decomposition tells us that we
can define new bases ξa ¼

P
bðS−1Þabσb for Hd−2ðYdÞ and

ϵi ¼
P

j Tijηj for HomðH2ðYdÞ;ZÞ such that |d−2ðξaÞ ¼
Naϵa (no sum over a ¼ 1;…; rd−2), and similarly for
H2ðYdÞ and HomðHd−2ðYdÞ;ZÞ. For an Nt-torsional gen-
erator T ∈ Λmag., we thus have a representative
σ̃t ∈ Hd−2ðYd; ∂YdÞ, satisfying

Ntσ̃t ¼
X
a

λa|d−2ðσaÞ; ð2:12Þ

with λa ¼ ðS−1Þta: ð2:13Þ

There is a dual description of the higher-form sym-
metries in terms of boundary conditions for background
fluxes. In this framework, the defect group structure arises
from the noncommutativity of general flux operators at the
asymptotic boundary of the compactification space, mea-
sured precisely by (the cohomological version of) the
linking pairing (2.5) [2,3,28,29]. In the effective field
theory, the boundary conditions for background fluxes in
the higher-dimensional theory parametrize allowed back-
ground gauge fields B of higher-form symmetries. These
restrict the possibilities to wrap M2- and M5-branes over
elements in relative homology and in turn constrain the
spectrum of extended operators, see [5]. In Sec. IV, we will
discuss how the background gauge fields enter the dimen-
sional reduction of the M-theory Chern-Simons term.

B. Higher-form symmetries on elliptic fibrations

F-theory describes nonperturbative vacua of type IIB
string theory, whose spacetime-dependent axio-dilaton
field is captured by the complex structure of an auxiliary
torus (see [34–36] for reviews). Therefore, F-theory geom-
etries are described by elliptically fibered Yd, whose base
Bd−2 is part of the physical type IIB spacetime:

T2 ↪ Yd

↓

Bd−2: ð2:14Þ

By duality, F-theory compactified on Yd × S1 is equivalent
to M-theory compactified on Yd, whose higher-form
symmetries we now examine.
For noncompact backgrounds, i.e., where Bd−2 is non-

compact, this induces a fibration structure on the asymp-
totic boundary as well:

T2 ↪ ∂Yd

↓

∂Bd−2: ð2:15Þ

In general, the fibration on Bd−2 has singular fibers over
(complex) codimension-one loci, which themselves extend
to the asymptotic boundary ∂Bd−2. Their effect on the
boundary homology depends very much on the precise type
of singular fibers. It would be important to study such
examples in more detail, e.g., in the context of F-/M-theory
realizations of 6d=5d SCFTs.
Aiming for a more intuitive understanding in this work,

we avoid these complications, and instead focus on
dimRðYdÞ≡ d ¼ 4, i.e., F-/M-theory compactified to
8d=7d. In this case, the base part of the asymptotic boundary
is a circle ∂B2 ≃ S1. Moreover, for situations relevant for
supersymmetric F-theory backgrounds,4 B2 itself can be
identified with a disk D2. We further demand that there is
nontrivial gauge dynamics in the effective theory. This
requires the presence of a singularity in Y4 that can be
interpreted as a singular fiber of the elliptic fibration. It is the
topology of the asymptotic boundary to this fiber singularity
that will determine the allowed flux backgrounds and,
consequently, the gauge group in the M-theory setup. The
internal fiber singularity induces a nontrivial fibration on the
boundary circle which is associated to a nontrivial SLð2;ZÞ
monodromy, see Fig. 1.5

1. Boundary geometry

The boundary6 ∂Y has the structure of a mapping torus

∂Y ¼ T2 × ½0; 1�=∼; with identification ðx; 0Þ
∼ ðKðxÞ; 1Þ; ð2:16Þ

FIG. 1. Singular geometry with fiber singularity in the interior
that induces an SLð2;ZÞmonodromy around the boundary circle.

4That is, backgrounds leading to a local Calabi-Yau twofold,
i.e., a local patch of an elliptically fibered K3, for which the base
is P1.

5The monodromy is not affected by local modifications in the
interior such as a resolution of the fiber singularity that corre-
sponds to a Coulomb branch deformation of the effective action
derived from M-theory on Y4.6In the remainder of this section we restrict to the case d ¼ 4
and will not denote the dimension of the various spaces explicitly.
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where K∶ T2 → T2 is the overall SLð2;ZÞ monodromy
around all singular fibers in the interior of B2. This
description allows for an application of a generalized
Mayer-Vietoris sequence (see, e.g., [37]), which yields a
long exact sequence for the homology groups of ∂Y. For
our interest the relevant section of this long exact sequence
is given by

0→H3ð∂YÞ→H2ðT2Þ|fflfflffl{zfflfflffl}
≅Z

⟶
α

H2ðT2Þ|fflfflffl{zfflfflffl}
≅Z

→H2ð∂YÞ

→H1ðT2Þ|fflfflffl{zfflfflffl}
≅Z⊕Z

⟶
κ

H1ðT2Þ|fflfflffl{zfflfflffl}
≅Z⊕Z

→H1ð∂YÞ→H0ðT2Þ|fflfflffl{zfflfflffl}
≅Z

⟶
β

H0ðT2Þ|fflfflffl{zfflfflffl}
≅Z

→H0ð∂YÞ→0: ð2:17Þ

The maps from HnðT2Þ (regarded as a Z-module) to itself,
denoted by α, β, and κ, are given by (1 − K�), where K� is
the action on HnðT2Þ induced by the SLð2;ZÞ monodromy
K. Since any SLð2;ZÞ monodromy induces the identify
action on H2ðT2Þ and H0ðT2Þ (it maps the full T2, the
generator ofH2, onto itself, and one point onto another, both
being homologous, i.e., identical in H0), the maps α and β
are 0. This fixes H3ð∂YÞ ≅ Z, H0ð∂YÞ ≅ Z, and leaves

0 → Z → H2ð∂YÞ → Z ⊕ Z⟶
κ
Z ⊕ Z → H1ð∂YÞ

→ Z → 0: ð2:18Þ

The remaining homology groups are determined by the
monodromy induced map κ on H1ðT2Þ ≅ Z ⊕ Z, whose
generators (1,0) and (0,1) are the usual A- and B-cycle,
respectively. The (co)kernel of κ splits (2.18) to

0 → Z → H2ð∂YÞ → kerðκÞ → 0; and

0 → cokerðκÞ → H1ð∂YÞ → Z → 0: ð2:19Þ

The last term in both of these sequences is free [Z is trivially
free, and kerðκÞ is a subgroup of a free group Z ⊕ Z], so
both sequences split:

H2ð∂YÞ¼Z⊕kerðκÞ; H1ð∂YÞ¼ cokerðκÞ⊕Z: ð2:20Þ

From (2.17), we see that the Z factor in H2ð∂YÞ originates
from H2ðT2Þ, i.e., is generated by the class f of the torus
fiber. Meanwhile, the Z factor in H1ð∂YÞ comes from
H0ðT2Þ, hence corresponds to a marked point on the fiber,
i.e., a section of the torus bundle which is a copy of the base
circle. We will identify this class with the restriction of the
zero section to the boundary S0j∂Y.
With a list of fiber singularities provided by the Kodaira

classification, see e.g. [20], and their induced SLð2;ZÞ
monodromy up to an overall conjugation, we can determine
the respective torsion groups, cf. Table I. This coincides with
the table given in [3,6] for M-theory on lens spaces, which
realizes all simply-laced algebras g, albeit not in an elliptic
fibration (and thus have no F-theory uplift). Moreover, we

TABLE I. Simple algebras g realized via Kodaira fibers=½p; q�-7-branes, and the corresponding homology map κ,
as well as cokerðκÞtors ≅ H1ð∂Y;ZÞtors.
Fiber type Brane content g κ H1ð∂Y;ZÞtors ¼ cokerðκÞtors
IN AN suðNÞ �

0 N
0 0

�
ZN

II AC � � � �
0 1

−1 1

� � � �

III A2C suð2Þ �
1 1

−1 1

�
Z2

IV A3C suð3Þ �
2 1

−1 1

�
Z3

I�2n A4þ2nBC soð4nþ 8Þ �
2 −2n
0 2

�
Z2 ⊕ Z2

I�2nþ1 A5þ2nBC soð4nþ 10Þ �
2 −ð2nþ 1Þ
0 2

�
Z4

IV� A5BC2 e6
�
2 −1
1 1

�
Z3

III� A6BC2 e7
�
1 −1
1 1

�
Z2

II� A7BC2 e8
�
0 −1
1 1

� � � �
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also find agreement between the linking pairing on boundary
torsion cycles, and the defect group of 7d gauge theories
with gauge algebra g, see Appendix A. This shows that the
7d theories that descend from an 8d F-theory compactifi-
cation with simple gauge algebra g has the expected electric
and magnetic higher-form symmetries. The only difference
is that these 7d theories further contain Uð1Þ global
symmetry, the Kaluza-Klein Uð1Þ, whose background
fluxes/asymptotic charges are captured by Z ⊂ H1ð∂YÞ.

2. Bulk geometry

Equipped with the boundary homology groups Hnð∂YÞ,
we can now examine the long exact sequence (2.3), which
encodes the extended charged objects under the higher-
form symmetries. For our investigation the relevant part of
the long exact sequence above is given by

� ��→H2ð∂YÞ⟶{2 H2ðYÞ⟶
|2 H2ðY;∂YÞ

⟶
∂2 H1ð∂YÞ⟶{1 H1ðYÞ→ � �� : ð2:21Þ

Let us focus on the casewith a single fiber in the interior ofY,
corresponding to a simple gauge algebra g. Then the
resolution of this singularity introduces rankðgÞ compact
two-cycles (divisors in Y) σa, which intersect according to
the Dynkin diagram of g. Together with the generic fiber f,
these form a basis for H2ðYÞ. Since f is homologous also to
the torus fiber on the boundary, i.e., the factorZ in (2.20), we
see that f ∈ imð{2Þ ¼ kerð|2Þ. This agrees with (2.8): the
generic fiber f on elliptic surfaces satisfies the intersection
properties hf; fi ¼ hf; σai ¼ 0. On the other hand, two
different resolution divisors cannot have the same intersec-
tion numbers with all two-cycles, so |2ðσaÞ ¼ |2ðσbÞ if and
only if a ¼ b. Therefore, the long exact sequence splits into
the piece

0→ hσai⟶
|2 H2ðY;∂YÞ⟶∂2 Z⊕ cokerðκÞtors⊕ cokerðκÞfree|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

H1ð∂YÞ

⟶
{1 H1ðYÞ→ �� �: ð2:22Þ

We have already explained above that the factor Z≡
ZKK ⊂ H1ð∂YÞ is in kerð{1Þ, as it encodes the background
data for the KK Uð1Þ that is universal in M-theory on
elliptic fibrations. Since H1ðYÞ is torsion-free,7 the
torsion part cokerðκÞtors cannot be mapped nontrivially
into it. Hence, cokerðκÞtors ⊂ kerð{1Þ ¼ imð∂2Þ ⊂ Γ in
(2.2). Therefore, for any Nt-torsional element T ∈
cokerðκÞtors there is a σ̃ ∈ H2ðY; ∂YÞ with ∂2ðσ̃Þ ¼ T.
Then, Ntσ̃ ∈ kerð∂2Þ ¼ imð|2Þ. Since H2ðY; ∂YÞ ≅

HomðH2ðYÞ;ZÞ is also torsion-free, this means there
are nonzero integers λa such that

σ̃ ¼ 1

Nt

X
a

λa|2ðσaÞ ∈ H2ðY; ∂YÞ; ð2:23Þ

where the coefficients λa can be understood modulo Nt
since one can always add an integer linear combination of
|ðσaÞ which is in kerð∂2Þ. Of course, these are the same
coefficients as in (2.13), determined via Smith decom-
position of the intersection pairing on Y. For example, as
we will compute in Sec. IV B, the generator of N-torsional
boundary one-cycles for Y containing an IN fiber is
represented by

σ̃ ¼ 1

N

XN−1

a¼1

a|2ðσaÞ

¼ 1

N

XN−1

a¼1

a − N
N|fflffl{zfflffl}

ð−C−1Þ1;a

|2ðσaÞ mod kerð∂2Þ; ð2:24Þ

where C is the Cartan matrix of SUðNÞ. In Appendix A,
where we compute cokerðκÞ for all Kodaira singularities, we
see that only IN fibers have nontrivial cokerðκÞfree ≅ Z, and
that it further maps nontrivially under {1. Therefore,
cokerðκÞfree never contributes to the higher-form symmetries.
In summary, we have seen that the higher-form sym-

metries (2.11) of M-theory compactified on a local
elliptically fibered four-manifold Y4 ≡ Y are entirely
encoded in terms of the monodromy K ≡ 1þ κ around
the singular fiber in Y4:

Γ ≅ cokerðκÞtors ⊕ ZKK: ð2:25Þ

In Sec. III, we will connect this result with “established”
methods to describe gauge groups with different center
symmetries, namely via Mordell-Weil torsion, and string
junctions, and show that cokerðκÞtors indeed describes the
higher-form symmetries of the F-theory model in one
higher dimension.

C. Semisimple algebras, adjoint Higgsing,
and compact models

So far, we have only discussed explicit examples with a
single Kodaira fiber in Y with monodromy K, correspond-
ing to a simple simply-laced Lie algebra g. In these cases,
the boundary homology cokerðκÞ ⊂ H1ð∂YÞ perfectly cap-
tures the higher-form symmetry expected from field theory.
However, since κ ¼ 1 − K is an endomorphism on
H1ðT2Þ ≅ Z2, coker(κ) can have at most two torsion
factors. This begs the question how this can capture the
center symmetries of a semisimple algebra like, e.g.,
g ¼ suðNÞ3, which can be realized by three IN fibers in Y.

7This assumption holds also for the elliptically fibered geom-
etries we consider in this work. It would be interesting to study
the physics of higher-form symmetries in models with nontrivial
torsion in H1ðYÞ.
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The key missing component is dynamical uð1Þ factors
which generically arise in the presence of multiple
singular fibers. To see their importance, consider a model
Ỹ with one IN−1 and one I1 fiber which are mutually
local. That is, in an SLð2;ZÞ frame where the
monodromy of the IN−1 fiber is KN−1 ¼ ð1

1
1−N
1
Þ, the I1

fiber induces K1 ¼ ð1
0

−1
1
Þ. Therefore, the overall mono-

dromy is K ¼ KN−1K1 ¼ ð1
0

−N
1
Þ, with cokerðκÞtors ¼

cokerð1 − KÞtors ¼ ZN . But F-theory on Ỹ naively has
only an suðN − 1Þ algebra, whose center cannot possibly
accommodate a ZN one-form symmetry. Moreover, ZN
does not have a ZN−1 subgroup, so the boundary
homology seems to not capture the higher-form sym-
metries of suðN − 1Þ at all.
However, there is also the additional I1 fiber. Because it is

mutually local with the IN−1 fiber, they share the same
vanishing cycle, in this case the A-cycle. By fibering this
one-cycle between the two singular fibers (see left of Fig. 2),
we obtain a compact two-cycle σN , in addition to the N − 1
resolution divisors of the IN fiber, which gives rise to a
dynamical uð1Þ. This uð1Þ can be viewed as the one arising
in the adjoint Higgsing suðNÞ → suðN − 1Þ × uð1Þ, which
geometrically precisely corresponds to the deformation of an
IN fiber into an IN−1 and a mutually local I1 fiber.
In this Higgsing transition, the fundamental and adjoint

representations of the original suðNÞ decompose as

N → ðN − 1Þ1 ⊕ 11−N; adjðNÞ → adjðN − 1Þ0
þ ðN − 1ÞN þ ðN − 1Þ−N þ 10; ð2:26Þ

where the subscripts denote the uð1Þ charge, normalized
such that every state has integer charge. Therefore, the
Wilson lines in the fundamental representation of suðNÞ,
which are the charged objects under the ZN one-form
symmetry in the theory prior to Higgsing, gives rise to
line operators with uð1Þ charges 1 mod N. However, the
bifundamental states from the decomposition of the
adjoint representation, which correspond to M2-branes
wrapping the red two-cycle in the left of Fig. 2, carry uð1Þ
charge N. These screen the uð1Þ charges of line operators

in the Higgsed phase, and therefore break the Uð1Þ one-
form symmetry of the uð1Þ gauge factor to ZN . It is this
ZN one-form symmetry (and its magnetically dual three-
form symmetry) which is captured by the boundary
homology. The bifundamental states ðN − 1ÞN also break
the ZN−1 one-form symmetry of the suðN − 1Þ factor
explicitly. Their presence further forbids the charged
objects of the ZN−1 magnetic symmetry, but does allow
for a linear combination between the suðN − 1Þ and the
uð1Þ magnetic charges which correspond to M5-branes
wrapping the two-cycle σN . These have charge N with
respect to the magnetic Uð1Þ three-form symmetry of the
uð1Þ gauge factor, so that this is also broken to a ZN . All
this agrees with the fact that the simply connected group
SUðNÞ actually has ½SUðN − 1Þ ×Uð1Þ�=ZN−1 as a sub-
group, which can be interpreted as the Uð1Þ gauging the
center of SUðN − 1Þ.
The logic applies to any deformation of Kodaira fibers of

simply-laced type g into multiple fibers of type gi,
corresponding to an adjoint Higgsing which also produces
additional uð1Þ gauge factors. The boundary homology is
not affected by such a deformation, and thus the higher-
form symmetries of the full system are still those of an g
gauge theory, albeit embedded as a subgroup of the Uð1Þ
higher-form symmetry of the Abelian factors.
To recover the higher-form symmetries of the individ-

ual gi factors, one has to decouple the uð1Þs.
Geometrically, this can be easily achieved by pushing
all other singular fibers to infinity, or, equivalently,
restricting to the local neighborhood of the gi fiber with
its monodromy at the boundary. As an example, consider
again the model with an IN−1 and an I1 fiber. As depicted
schematically in the right panel of Fig. 2, decoupling the
uð1Þ sends the I1 fiber to infinity, which turns the
previously compact two-cycle into a relative cycle.
Physically, this turns the dynamical bifundamental states
into infinitely massive probe particles in the fundamental
representation of suðN − 1Þ, whose worldlines then
constitute the correct charged objects of the ZN−1 one-
form symmetry.
Note that not every configuration with multiple fibers

allows for an interpretation in terms of a deformation/
Higgsing of a single fiber/simple simply-laced algebra. In
such cases, one has to study more carefully the set of
compact two-cycles stretched between different singular
fibers. For example, if we add an I1 fiber to a mutually
nonlocal IN−1 fiber, there is no compact two-cycle that one
can form by fibering a one-cycle between them, because
they have linearly independent vanishing cycles. Such a
configuration would not have an additional uð1Þ factor,
and consequently, no way to modify the center symmetries
as above. This can also be seen from the boundary
homology. For concreteness, consider, in an SLð2;ZÞ
frame with KN−1 ¼ ð1

0
N−1
1
Þ, an I1 fiber with monodromy

K1 ¼ ð1
1

0
1
Þ, such that the overall monodromy is

FIG. 2. Cartoon of a Higgsing transition, where one of the
singular fibers is moved outside of the disk, thereby changing the
monodromy.
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K ¼ KN−1K1 ¼ ðN
1

N−1
1
Þ.8 Then, it is straightforward to

compute cokerðκÞ ¼ cokerððN−1
1

N−1
0
ÞÞ ¼ ZN−1.

If we have three or more singular fibers, then there can be
at most two linearly independent vanishing cycles, simply
because any vanishing cycle can be represented as a vector in
Z2. That is, given, e.g., k IN fibers, each of which has one
vanishing cycle Ci, i ¼ 1;…; k, there are (k − 2) linear

relations
P

k
i¼1 n

ðlÞ
i Ci ¼ 0, l ¼ 1;…; k − 2. If we fiber from

the ith singular fiber the vanishing cycle nðlÞi Ci to a marked

smooth fiber fp, we have a two-chain with boundary n
ðlÞ
i Ci in

fp, which cancels out the boundaries of the corresponding
two-chains from the other singular fibers due to the lth
relation. This gives rise to (k − 2) compact two-cycles. The
resulting uð1Þ gauge factors then gauge parts of the overall
ðZNÞk center symmetry, leaving a subgroup with at most two
discrete factors.

1. Gluing patches to compact models

We can use the above insights to describe the process of
passing from local to global models. Effectively, this is done
by “gluing” the local patches Yi of individual singular fibers
along the boundaries. In each pairwise gluing, relative two-
cycles in Yi1 , whose boundary one-cycle is a vanishing cycle
in Yi2 , can be screened by additional compact two-cycles that
are formed between the singular fibers; this corresponds to
the situation in Fig. 2, read from right to left. This modifies
the higher-form symmetry charges, as seen from the boun-
dary homology in terms of (torsional) one-cycles on ∂Y.
To obtain a compact geometry, we must demand that any

one-cycle in the torus fiber can shrink (possibly after
decomposing) on singular fibers, in accordance with the fact
that there is no (nontrivial) boundary. Equivalently, this
means that the overall monodromy around all singular fibers
must be trivial. Additionally, for a valid F-theory geometry,
Y4 must be a K3-surface, which further limits the possible
combination of singular fibers. A more subtle effect that
becomes relevant in compact models is that there might be
certain linear relations between two-cycles, such that the
physically distinct number of uð1Þs can be reduced.
Regardless, compact two-cycles stretched between several
singular fibers gauges a diagonal subgroup of the corre-
sponding center one-form symmetry, as in the suðN − 1Þ ×
uð1Þ example above. Phrased in the language of string
junctions, whose local picture we will discuss momentarily,
these phenomena have been discussed in [21].
For example, a valid K3 can be obtained by gluing together

four local patches with an I�0 fiber, each with monodromy
K ¼ ð−1

0
0
−1Þ. Since each I�0 fiber has two independent

vanishing cycles, which also generate the two Z2 factors
of ZðSpinð8ÞÞ, one would find 8 − 2 ¼ 6 linear relations

between them, corresponding to six compact two-cycles
stretching between the four singular fibers. However, from
the compactness condition there are two additional relations
among these, such that there are only four independent uð1Þ
gauge factors, which in total gives a rank 20 gauge group.9

Nevertheless the six compact two-cycles lead to the gauging
of six independent Z2 subgroups of the full ðZ2Þ8 one-
form symmetry [21]. Two are orthogonal to the uð1Þs, so
that the non-Abelian part of the gauge group is G ¼
Spinð8Þ4=½Z2 × Z2�, where the denominator is the “diago-
nal” Z2 × Z2 subgroup of ðZ2Þ8. As for the Abelian factors,
one can choose an appropriate basis for them, such that the
Zdiagonal

2 ⊂ Z2 × Z2 subgroup of each Spin(8) factor is
embedded into one of the Uð1Þs. The full gauge group is
therefore

ðSpinð8Þ4=½Z2×Z2�Þ×Uð1Þ4
ðZ2Þ4

≅
Spinð8Þ4×Uð1Þ4

ðZ2Þ6
: ð2:27Þ

III. CENTER SYMMETRIES IN M-/F-THEORY
DUALITY

In global, compact F-theory models, there are two
equivalent ways to characterize the gauge group topology:
either via the Mordell-Weil group of rational sections
[17–19] (see also [38]), or through so-called (fractional)
null junctions [20,21]. The purpose of this section is to relate
these ideas to the characterization of the gauge group via
higher-form symmetries presented above. We begin with the
string junctions, since these have direct visualizations in
terms of relative cycles in the local setting.

A. String junctions

We begin with a brief review of F-theory/type IIB in terms
of string junctions. In this picture, the gauge dynamics are
associated to the world volume of nonperturbative 7-branes,
which are classified by their ½p; q�-type. The gauge degrees
of freedom on such branes are described by ðp; qÞ-strings,
i.e., bound states of p fundamental strings and q D1-strings,
which can end on a 7-brane of type ½p; q� [39,40]. Much like
the geometrization of the axio-dilaton in terms of an auxiliary
torus, the ðp; qÞ-labels encode the transformation properties,
or charges, under the SLð2;ZÞ duality group of 7-branes and
strings in type IIB string theory. The induced SLð2;ZÞ
monodromy around a general ½p; q� 7-brane is given by

K½p;q� ¼
�
1þ pq −p2

q2 1 − pq

�
: ð3:1Þ

8The reversed ordering is related to this one by an SLð2;ZÞ
conjugation, so it is equivalent.

9Note that two of these uð1Þs come from the 8dN ¼ 1 gravity
multiplet. These are always present, though the embedding of the
center from the non-Abelian gauge symmetry into them is model
specific.
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This monodromy transformation is implemented by a branch
cut that emanates from the brane stack and stretches to
infinity. When an ðr; sÞ-string stretches across this branch cut
its charges change as indicated in Fig. 3. This configuration
can be deformed across the brane. As in Hanany-Witten
transitions, a new string connected to the brane stack appears,
see Fig. 3.
In F-theory a single ½p; q�-brane corresponds to an I1 fiber

singularity. More general fiber degenerations can then be
understood by stacking several 7-branes on top of each other.
In the process some of the strings stretching between the
individual branes become massless and constitute the gauge
theory degrees of freedom on the eight-dimensional brane
world volume. The overall SLð2;ZÞ monodromy is given by
the product of the constituents. In this way one can
reconstruct the full list of Kodaira singularities [39,41].
This determines the gauge algebra of the system, but is
not enough to provide information about the gauge group. In
the following we will focus on the analysis of compactifi-
cations to eight dimensions, where 7-branes are parallel, and
in which case global tadpole cancellation requires 24
7-branes with overall trivial monodromy, whose transverse
positions is parametrized by a P1 ≅ B2 that is the base of an
elliptically fibered K3-surface.
To gain access to the information of the gauge group one

has to analyze the full lattice of string junctions. Since Gauss’
law forbids the presence of asymptotic charges on compact
spaces, all junctions are either closed, or have prongs ending
on 7-brane stacks. In other words, no junction can be allowed
to have a free prong, whose ðp; qÞ label would be so-called
asymptotic charges of the junction. In determining the gauge
group, a special role is played by the so-called null junctions.
They are constructed by encircling all singularities of the
compact model, and thus experience no net monodromy.
These junctions have vanishing pairing10 with all other
junctions, and can be viewed as a “trivial” physical state.
More precisely, since the null junction encircles all 7-branes,

one can close the loop “on the other side” of the P1, thus
removing the string completely. On the other hand, using the
Hanany-Witten transition discussed above, one can pull the
string through all of the 7-brane stacks, leading to a
configuration of a multipronged string of vanishing asymp-
totic charge that ends on the individual stacks. It is obvious
that a global null junction can be thought of as the sum of
local null junctions, i.e., junctions that encircle one brane
stack, and have a prong that emanates from the circle to
connect with other local null junctions. See Fig. 4 for a
schematic depiction of local null junctions.
Zooming onto the local patch around a single brane

stack, realizing the algebra g with simply connected cover
Gsc, such local null junctions generally carry asymptotic
ðp; qÞasymp charge, represented by the prong going off to
infinity on the left of Fig. 4. If the stack is encircled by a
ðr; sÞ-string, this charge is�

p

q

�
asymp

¼ ðK − 1Þ
�
r

s

�
≡ −κ

�
r

s

�
; ð3:2Þ

where K is the monodromy of the stack. It turns out to be
useful to consider all possible charges ðr; sÞ such that the
asymptotic charges ðp; qÞasymp are integers. For integral
ðr; sÞ, the resulting null junction is called a proper, or
integer null junction,11 whose asymptotic charges are

integer null junctions ¼
�
κ

�
r

s

�����r; s ∈ Z

�
¼ imðκ∶ Z2 → Z2Þ: ð3:3Þ

However, with suitably fractional ðr; sÞ, one can generate
all integer asymptotic charges ðp; qÞasymp, if g ≠ suðNÞ; if
g ¼ suðNÞ, then (3.2) generates all integer charges of the
form ðp; 0Þasymp, up to SLð2;ZÞ conjugacy. If one performs

FIG. 3. Transformation properties of a general ðr; sÞ-string passing through the branch cut of a ½p; q�-brane.

10A precise definition of the junction pairing is given in [41].
For the present discussion, it suffices to note that this pairing can
be identified with the intersection pairing in homology in the dual
M-theory frame.

11Such a junction can be represented by the left panel of Fig. 4;
by making the circle infinitely large, it is obvious that integral null
junctions decouple from the local gauge dynamics of the brane
stack.
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a Hanany-Witten transition for these so-called fractional
null junctions, then the individual prongs on the constituent
branes of the stack (as depicted schematically on the right
in Fig. 4) are in general fractional as well. Clearly, there is
always an integer which multiplies a fractional null
junction into an integer null junction. Then, considering
the quotient, we find (fractional null junctions)/(integer null
junctions) ≅ cokerðκÞtors.
For the various brane configurations that realize Kodaira

fibers, we list the generators of local fractional null junctions
(also known as extended weight junctions [41]), as well as
their fractional prongs ending on the brane constituents of
the central brane stack, in (3.4) [21,41].12 As is evident from

this table, we can identify (fractional null junctions)/(integer
null junctions) ≅ ZðGscÞ.
In a global model, the requirement of vanishing asymp-

totic charge “selects” a subgroup of the center ZðGðiÞ
sc Þ of

the ith brane stack, represented by a local fractional null
junction, which is then combined with the fractional
junctions of other stacks into a global fractional null
junction (cf. right panel of Fig. 4). The gauge group
Gglobal of the full theory then satisfies π1ðGglobalÞ ≅
(global fractional null junctions) / global integer null
junctions) [21]..
It is important to point out that the null junctions are not

actually physical junctions [41],

Kodaira=g Branes Generating fractional junctionðp;qÞasymp

IN=suðNÞ AN f1
N ;…; 1Ngð1;0Þ

II=− AC −

III=suð2Þ A2C f1
2
; 1
2
; 0gð1;0Þ; f12 ; 12 ;−1gð0;1Þ

IV=suð3Þ A3C f1
3
; 1
3
; 1
3
; 0gð1;0Þ; f13 ; 13 ; 13 ;−1gð0;1Þ

I�n−4=soð2nÞ A4þ2nBC f0;…; 0; 1
2
; 1
2
gð1;0Þ

f1
2
;…; 1

2
; −n−1

2
; 1−n

2
gð0;1Þ

IV�=e6 A5BC2 f− 1
3
;…;− 1

3
; 4
3
; 2
3
; 2
3
gð1;0Þ

f1;…; 1;−3;−1;−1gð0;1Þ
III�=e7 A6BC2 f− 1

2
;…;− 1

2
; 2; 1; 1gð1;0Þ

f3
2
;…; 3

2
;−5;−2;−2gð0;1Þ

II�=e8 A7BC2 f−1;…;−1; 4; 2; 2gð1;0Þ
f3;…; 3 − 11;−5;−5gð0;1Þ

ð3:4Þ

FIG. 4. A local null junction (left) obtained from encircling a brane stack with a string. In general, it carries an asymptotic charge. Via a
Hanany-Witten transition, the null junction can also be presented as joining prongs from the constituent branes of the stack (middle).
One can connect local null junctions via their asymptotic charges; the global null junctions on a compact P1 have no net asymptotic
charge (schematically on the right).

12We denote the fractional prongs ending on the individual constituents according to their ordering in the second column.
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as, by construction, they have vanishing pairing with all
other junctions.13 On the other hand, the asymptotic charge
(3.2) is a physical quantity. Hence, the triviality of the
fractional null junction implies that this asymptotic charge,
which is carried by the prong stretching to infinity in Fig. 4,
must be generated by the prongs emanating from the
individual branes. The latter can be expressed in terms
of a fractional linear combination of the root junctions, as
we will demonstrate now.
Let us consider a concrete example of a model with

suðNÞ gauge algebra. This is realized by a stack of N
mutually local branes, whose N − 1 simple roots σa are
single-prong strings which stretch between two consecutive
branes. In the notation of (3.4), these are

σa ¼ f0;…; 0; 1|{z}
a-th

;−1; 0;…; 0g: ð3:5Þ

Then, the fractional junction with asymptotic charge
ðp; qÞasymp ¼ ð1; 0Þ is�
1

N
;…;

1

N

�
¼ f1; 0;…; 0g þ 1 − N

N
f1;−1; 0;…g

þ 2 − N
N

f0; 1;−1; 0;…g

þ � � � þ 1

N
f0;…; 1;−1g

¼ f1; 0;…; 0g þ
XN−1

a¼1

a − N
N

σa

¼ f1; 0;…; 0g þ
XN−1

a¼1

ð−C−1Þ1;aσa; ð3:6Þ

where C is the Cartan matrix of SUðNÞ. This shows the
equivalence between different presentations of the asymp-
totic junction f1

N ;…; 1Ng, as depicted in Fig. 5 for N ¼ 4.
Because the null junction itself is trivial, we see that the

integral prongs stretching to infinity, and which carry the
asymptotic charge, are a fractional linear combination of
the root junctions:

f1; 0;…; 0g ≃
XN−1

a¼1

ðC−1Þ1;aσa; ð3:7Þ

which, up to a sign, takes the same form as the representation
(2.24) in terms of the relative homology of the elliptic
fibration. Moreover, we claimed that the fractional null
junctions, modulo integer null junctions, represent the center

ZN . That is, k ∈ ZN is represented by the fractional null
junction fk

N ;…; kNg. To rewrite this in a nontrivial manner,
note that the inverse Cartan matrix of SUðNÞ is [42]

ðC−1Þab ¼ minða; bÞ − ab
N

; ð3:8Þ

which satisfies

kðC−1Þ1;b ¼ k
b
N

mod Z

¼ ðC−1Þkb mod Z: ð3:9Þ

Then, we have

fk; 0;…; 0g ≃
XN−1

a¼1

kðC−1Þ1;aσa

¼
XN−1

a¼1

ðC−1Þkaσa þ ðroot junctionsÞ: ð3:10Þ

1. One-form symmetry charges from string junctions

The correspondence between the junction picture and the
M-theory description of Sec. II is on the nose, if we identify
string junctions with wrapped M2-branes [43]: a ðp; qÞ-
prong of a string junction corresponds, in the dual M-theory
frame, to M2-branes wrapping a two-cycle that is the
fibration of the one-cycle,

C ¼ pAþ qB; ð3:11Þ

in the torus fiber over a curve in the baseB. The splitting of
this prong into other prongs ðpi; qiÞ corresponds to a linear
relation C ¼Pi piAþ qiB in H1ðT2Þ. The prong can also
end on a 7-brane, in which case the cycle C is a vanishing
cycle in the singular fiber corresponding to the 7-brane.

FIG. 5. Schematic depiction of a local contribution to a frac-
tional null junction in terms of a physical asymptotic junction and
a fractional combination of root junctions for A4 stack (which we
depicted as separated for convenience).

13Note that the local fractional null junctions have vanishing
intersection with all root junctions fσag in the interior, hence,
they can be thought of as trivial linear maps, fσag → Z, induced
by the junction pairing.
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If a junction has only prongs ending on 7-branes, then
these correspond to M2-branes wrapping compact two-
cycles that stretch between fiber singularities in Y, i.e.,
these define elements in H2ðYÞ. In a local model, we have
the additional option for a prong to extend to infinity, and
thus leaving behind an asymptotic charge ðp; qÞasymp.
In the geometry, this then corresponds to a relative
cycle in H2ðY; ∂YÞ whose boundary is given by
C ¼ pAþ qB ⊂ ∂Y. Similarly, σa ∈ H2ðYÞ would have
vanishing asymptotic ðp; qÞ charge, and correspond to the
root junctions. See Fig. 6 for a schematic depiction of
both types in case of an I4 singularity.14

We can now easily identify the geometric counterpart of
the local null junctions. The key is that the asymptotic
charges (3.2) of null junction are defined by the same
monodromy-induced map κ that determines the boundary
homology via (2.18). Since the set of possible asymptotic
ðp; qÞ charges corresponds to one-cycles C ¼ pAþ qB
on the boundary torus fiber, we immediately see that
cokerðκÞtors ≅ (fractional null junctions ) / ( integer null
junctions). These boundary one-cycles are represented in
the bulk by the relative two-cycles (2.23), which mirrors the
representation of the asymptotic junctions in terms of
fractional root junctions in (3.7) and (3.10).
Without specifying the exact brane content that is encircled

by the null junctions, imposing the existence of specific
fractional null junctions can restrict the possible SLð2;ZÞ
monodromy induced by the stack. Suppose that one demands
the existence of fractional null junctions of the form�

r

s

�
¼
� 1

N

0

�
: ð3:12Þ

The requirement of integer asymptotic charge around a stack
with monodromy K ¼ ðac b

dÞ ∈ SLð2;ZÞ then reads

ðK − 1Þ
� 1

N

0

�
¼ 1

N

�
a − 1

c

�
; ð3:13Þ

leading to the constraints a ¼ 1 mod N, c ¼ 0 mod N.
Similarly, one can consider the fractional null junction with
(3.12), which encircles the brane stack, and passes its branch
cut in the opposite direction. This corresponds to turning the
arrow on the left-hand side of Fig. 4 around. The associated
monodromy is generated by K−1 and one has

ðK−1 − 1Þ
� 1

N

0

�
¼ 1

N

�
d − 1

−c

�
; ð3:14Þ

which yields d ¼ 1 mod N. Together with the constraints
above this can be summarized as�

a b

c d

�
¼
�
1 �
0 1

�
mod N: ð3:15Þ

This means that the allowed monodromies K are in the
congruence subgroup Γ1ðNÞ of SLð2;ZÞ.15 An elliptic
fibration Y⟶π B with such a restricted monodromy is
known to preserve N-torsional points in the fiber [47], which
form torsional sections of π that are also known to character-
ize the gauge group topology in F-theory.

B. F-theory and torsional sections

Sections of an elliptic fibration π∶ Yd → B form the so-
called Mordell-Weil group, with the zero section S0 being
the neutral element. It is a finitely generated Abelian group,

MWðπÞ ¼ Zs × ZN1
× ZN2

; ð3:16Þ

whose torsional part can only contain up to two independent
generators, whose orders Nt are bounded by eight on
compact elliptic fibrations suitable for F-theory models
[48] (see [49–51] for discussions on bounds for s in this
context). In compact models, the gauge group is shown to be
[17–19]

G ¼
�Y

i

Gsc;i ×Uð1Þs
�
=ðZn1 × � � �×Zns ×ZN1

×ZN2
Þ;

ð3:17Þ

where Gsc;i are the simply connected non-Abelian groups
associated with the gauge algebras gi from 7-branes/singular
fibers over (complex) codimension-one loci in B. The
factors Zni , associated to one of the s free generators of
the Mordell-Weil group, are always embedded in one of the

FIG. 6. The schematic relation, for an I4 singularity, between
string junctions and M2-brane states that corresponds to roots
(red) and asymptotic charges (blue).

14Note that we are making use here of the equivalence on
elliptic surfaces between blowup resolution, where one introdu-
ces two-cycles into the fiber over a point, and deformation
smoothing, where the new two-cycles arise as fibrations of one-
cycles between the I1 fibers into which a general Kodaira
singularity has been deformed into.

15In compact models, there are interesting implications for the
allowed congruence subgroups [44] imposed by the cobordism
conjecture [45,46].
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Uð1Þ factors [19]. We will ignore these factors, and focus on
the finite factors ZNt

generated by the torsional sections,
which are embedded entirely in the non-Abelian factors
Gsc;i [17,18].
The divisors ŜðNÞ ∈ Hd−2ðYdÞ associated to an

N-torsional section SðNÞ satisfy

NðŜðNÞ − Ŝ0 − π−1ðδÞÞ ¼
X
a

λaσa ≡
X
i

XrankðgiÞ
b¼1

λi;bσi;b;

with λi;b ∈ Z; ð3:18Þ

where we have regrouped the resolution divisors σa on the
right-hand side into their corresponding simple non-
Abelian algebra gi. The term π−1ðδÞ denotes a vertical
divisor (i.e., pull-back of a base divisor δ) that depends on
the intersection properties between ŜðNÞ and Ŝ0, which will
not affect the discussion below. This shows that the
elements (ŜðNÞ − Ŝ0 − π−1ðδÞ) are torsional up to the
contribution of the resolution divisors σi;b, which in general
dimensions are P1-fibered, with fiber class γi;b, over a
divisor inB. The coefficients λi;b are determined by the so-
called Shioda map [52–55] as follows. The section ŜðNÞ

intersects at most one of the rational fibers γi;b of the
divisors σi;b, say, γi;k, once, i.e., hŜðNÞ; γi;bi ¼ δk;b. Then,
we have

λi;b
N

¼
XrankðgiÞ
c¼1

hŜðNÞ; γi;ciðCðiÞÞ−1cb ¼ ðCðiÞÞ−1kb ;

where ðCðiÞÞbc ¼ −hσi;b; γi;ci: ð3:19Þ

It is the existence of the element ðŜðNÞ − Ŝ0 − π−1ðδÞÞ ∈
Hd−2ðYdÞ that restricts the global realization of the gauge
group and accordingly the allowed spectrum of charged
dynamical fields. By M-/F-theory duality, matter states in
F-theory descend to M2-branes wrapping two-cycles,
which must have integer intersection pairing with elements
in Hd−2ðYdÞ, the existence of the divisor

ðŜðNÞ − Ŝ0 − π−1ðδÞÞ ¼ 1

N

X
a

λaσa; ð3:20Þ

imposes, due to the fractional prefactors λa
N , nontrivial

constraints on the intersection numbers of two-cycles with
the divisors σa, which in turn determine the g-representa-
tion in which the matter transforms in. Hence, (3.20) can
be interpreted as an element in the cocharacter lattice,
which enforces the nontrivial global structure π1ðGÞ ≅
cocharacters=coroots [18].
While the above results are derived in compact models,

the relationship between the monodromy reduction and
the invariant torsion points on the generic fiber exist also
in local models Y. If every singular fiber induces a

monodromy in a congruence subgroup of SLð2;ZÞ, then,
as explained above, Y has some torsional sections. In a
local geometry, sections are noncompact divisors, i.e., sit
in Hd−2ðY; ∂YÞ. A relationship of the form (3.20) then
implies that ŜðNÞ − Ŝ0 represents a torsional element in
Hd−2ðY; ∂YÞ=f|d−2ðσaÞg ⊂ Λ in (2.4).16

This can be most easily seen for d ¼ 4, i.e., F-theory
compactifications to eight dimensions. Consider, for
concreteness, a single IN fiber, corresponding to
g ¼ suðNÞ. In this case, σa ¼ γa, and the generic
fiber f, which satisfies hf; fi ¼ hf; σai ¼ 0, form a basis
of H2ðY4Þ. The monodromy around the fiber preserves
N-torsional points, which in the (resolved) IN fiber are
situated on one of the N fiber components (σa and the
affine component, σ0 ≔ f −

P
N−1
a¼1 σa) each. By “fibering”

each point over the noncompact base B, we obtain a

noncompact two-cycle ŜðNÞ
k . That is, they each define a

class in H2ðY4; ∂Y4Þ ≅ HomðH2ðY4Þ;ZÞ, characterized

by the “intersection” with σa, ŜðNÞ
k ∶ σa ↦ δa;k for

0 ≤ a, k ≤ n − 1, which also implies ŜðNÞ
k ðfÞ ¼ 1 for

any k. Note that the zero section is the one meeting the

affine node, i.e., Ŝ0 ¼ ŜðNÞ
0 . With hσa; σbi ¼ −Cab, it is

straightforward to check that, for k ≠ 0,

XN−1

b¼1

ðC−1Þkbhσb; σai ¼ δk;a ¼ ðŜðNÞ
k − Ŝ0ÞðσaÞ;

a ¼ 1;…; N − 1;XN−1

b¼1

ðC−1Þkbhσb; fi ¼ 0 ¼ ðŜðNÞ
k − Ŝ0ÞðfÞ; ð3:21Þ

showing that

ŜðNÞ
k − Ŝ0 ¼

XN−1

b¼1

ðC−1Þkb|fflfflfflffl{zfflfflfflffl}
≡λb=n

hσb; ·i ∈ HomðH2ðY4Þ;ZÞ

≅ H2ðY4; ∂Y4Þ: ð3:22Þ

The coefficients λb are precisely as defined in (3.19); since
ð−CÞ−1 is the inverse Cartan matrix of SUðNÞ, N-times
any of its entries is integral, thus showing (3.18).17 Since
hσc; ·i ¼ |d−2ðσcÞ in (2.8), relations of the sort (3.18)
directly identify the torsional section (more precisely, the

linear combination ŜðNÞ
k − Ŝ0) as a representative higher-

form symmetry charges (2.24). Note that this expression

16We have suppressed the vertical part π−1ðδÞ here to reduce
cluttering. In general, this can be also decomposed into a compact
π−1ðδcÞ and noncompact piece π−1ðδncÞ. The torsional generator
for Hd−2ðY; ∂YÞ=imð|d−2Þ is then ŜðNÞ − Ŝ0 − π−1ðδncÞ.

17For noncompact elliptic surfaces, the vertical part π−1ðδÞ ≅
m × f for some m ∈ Z always defines a trivial map,
hf; ·i ¼ 0 ∈ HomðH2ðY4Þ;ZÞ.
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also agrees with the relationship between the asymptotic
and root junctions (3.10), serving as further proof that the
two concepts are equivalent.

1. Torsional sections in the boundary homology

A relationship of the form (3.22) implies that the two-

cycle ŜðNÞ
k − Ŝ0 maps to a torsion element in

H2ðY4; ∂Y4Þ=imð|2Þ ≅ imð∂2Þ ⊂ H1ð∂YÞ. To see this
explicitly, consider the points, ztors and z0, marked by

the two sections SðNÞ
k and S0, respectively, on a reference

T2 fiber fp of the boundary fibration ∂Y → ∂B ≅ S1.

Then, ztors traces out the one-cycle ∂2ðŜðNÞ
k Þ ¼ ŜðNÞ

k j∂Y on
∂Y, as we move it through the family of fibers over the
base S1; the same applies to z0 tracing out ∂2ðŜ0Þ ¼ Ŝ0j∂Y .
In any individual fiber, the two points are homologous.
But, by encircling the base S1 once, the monodromy K

“twists” the section SðNÞ
k around the zero section. This

twist corresponds to the one-cycle ðŜðNÞ
k − Ŝ0Þj∂Y ¼

C ∈ H1ð∂YÞ.
To quantify this twist, we can use the standard

presentation of the torus as C=ðmτp þ nÞ, with z0 ↦ 0,
where τp is the complex structure of the torus fp. Then,
every point on the torus can be represented as ðxyÞ≡ xτp þ
yþ ðmτp þ nÞwith 0 ≤ x, y < 1. The monodromy map K
acts via matrix multiplication, ð xy Þ ↦ Kð xy Þ, which
fixes z0 ¼ ð0

0
Þ. In the covering space C of the torus, this

defines a translation by ðK − 1ÞðxyÞ, which on the quotient
C=ðmτp þ nÞ corresponds to a one-chain C.
Being preserved under the monodromy now precisely

means that ztors ≡ ðxtytÞ maps onto itself in C=ðmτp þ nÞ.
That is, the chain C ¼ aAþ bB is a one-cycle on fp,
expressed in terms of the A and B cycles, with
coefficients given by ðK − 1ÞðxtytÞ ¼ ðabÞ with a; b ∈ Z.
Finally, the fact that ztors is an N-torsional point means
that ðxt; ytÞ ¼ ðχ=N; υ=NÞ for some χ; υ ∈ f0;…; N − 1g
(see, e.g., [47]).18 Therefore, we see from NðabÞ ¼ ðK −
1ÞðNxt

Nyt
Þ ¼ ðK − 1ÞðχυÞ that NC ∈ imðK − 1Þ ¼ imðκÞ. From

(2.20), we see that C ¼ ðŜðNÞ
k − Ŝ0Þj∂Y indeed represents

an N-torsional element in cokerðκÞ ⊂ H1ð∂YÞ.

IV. ANOMALIES OF ONE-FORM CENTER
SYMMETRIES IN M-THEORY

The defect group structure represents an ’t Hooft
anomaly between the electric one-form and magnetic
(D − 3)-form symmetry [6,28,29]. Another such potential

anomaly involving the one-form center symmetry arises
in spacetime dimension D ≥ 5 [22–24], as a generaliza-
tion of the “anomaly in the coupling space” [27,56] in
D ¼ 4, where a nontrivial background field for the one-
form center symmetry affects the periodicity of the theta
angle [57]. In D ≥ 5 dimensions, this turns into a genuine
mixed ’t Hooft anomaly between one-form center sym-
metries and (D − 5)-form Uð1ÞI instanton symmetries.19

In this section, we discuss the origin of the anomaly in
gauge theories from M-theory compactifications on
Calabi-Yau spaces Yd (dimR Yd ≡ d ¼ 4, 6). As we will
see, one way to derive the anomaly is to reduce the 11d
Chern-Simons term in the presence of boundary fluxes
that parametrize the one-form symmetry background.
Similar to the discussion in Sec. II, the computation is
performed in the Abelian phase, i.e., on the Coulomb
branch of the N ¼ 1 gauge theory in 7d or 5d, which
corresponds to a desingularized internal space Yd.
We then interpret the result in the singular/non-Abelian
limit, as well as in cases that admit an 8d=6d F-theory
description. Note that there could be counterterms/
topological sectors which (partly) cancel this anomaly
field theoretically. These will not be captured by our
analysis of the Chern-Simons term in the presence of
boundary fluxes, but could manifest in other aspects of
theM-theory geometry, see [14] for a recent discussion.

A. Background fields for one-form
symmetries in M-theory

Consider M-theory on a spacetime M ¼ M11−d × Yd,
where the d-dimensional “internal” space Yd is noncom-
pact with asymptotic boundary ∂Yd. Assuming that M11−d
has a topologically trivial boundary, boundary fluxes of the
M-theory three-form potential C3 are then encoded in
fluxes on ∂Yd. More precisely, dual to (2.3), there is a
long exact sequence,

� � � → HnðM; ∂MÞ⟶|̂
�
n HnðMÞ⟶{̂

�
n Hnð∂MÞ

→ Hnþ1ðM; ∂MÞ → � � � ; ð4:1Þ

involving the relative cohomology HnðM; ∂MÞ. A non-
trivial boundary flux of C3 corresponds to an element in
imð{̂�4Þ ⊂ H4ð∂MÞ, where {̂�n is the map on n-forms
induced by the natural inclusion {̂∶ ∂M → M, and is
the cohomological version of {n in (2.3). With M ¼
M11−d × Yd and the assumption that M11−d is closed, i.e.,
∂M ¼ M11−d × ∂Yd, the boundary fluxes are encoded in
the map18By definition, the Mordell-Weil group law for sections in

elliptic fibration is just the fiberwise addition of points, the latter
of which can be represented as the “usual” addition in
C=ðmτp þ nÞ. This makes the given presentation of the torsion
points apparent.

19The anomaly restricts possible gaugings of center sym-
metries—i.e., it affects physically allowed global gauge
groups—wheneverUð1ÞI must be gauged for consistency [22,23].
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H4ðMÞ≅ ⨁
pþq¼4

HpðM11−dÞ⊗HqðYdÞ⟶
{�
4 ⨁

pþq¼4

HpðM11−dÞ

⊗Hqð∂YdÞ≅H4ð∂MÞ;
F⊗ω↦F⊗ {�qðωÞ; ð4:2Þ

with {�q∶ HqðYdÞ → Hqð∂YdÞ the analogous map in the
long exact sequence (4.1) associated to the relative
cohomology for ∂Yd ⊂ Yd.
In the following, we focus on p ¼ q ¼ 2, as gauge fields

Aa in M11−d arise from the Kaluza-Klein decomposition of
the M-theory three-form potential,

C3 ¼ CðMÞ
3 þ

X
wa∈H2ðYdÞ

Aa ∧ wa; ð4:3Þ

where CðMÞ
3 is a three-form in M11−d. If we only include

wa¼|�2ðωaÞ∈H2
cptðYdÞ≡imð|�2Þ¼kerð{�2Þ with compact

support, the associated Aa’s correspond to the Cartan
Uð1Þs of dynamical gauge symmetries. The flux, or the
field strength, of such a configuration is then

G4 ¼ GðMÞ
4 þ

X
ωa∈H2ðYd;∂YdÞ

Fa ⊗ |�2ðωaÞ; ð4:4Þ

where Fa represents the first Chern class of a line bundle in
H2ðM11−dÞ, and corresponds to the field strength of the

gauge field Aa. In the following, we will assume GðMÞ
4 ¼ 0,

as we are only interested in contributions to two-form
backgrounds in M11−d.
Nontrivial “boundary”fluxes are labeled by elements in

H2ðYdÞ=imð|�2Þ ¼ H2ðYdÞ= kerð{�2Þ ≅ imð{�2Þ ⊂ H2ð∂YdÞ
[5]. They can be represented by classes ω̃k ∈ H2ðYdÞ with
{�2ðω̃kÞ ≠ 0. “Turning on” these boundary fluxes means that
we include additional terms:

G4 ¼
X
a

Fa ⊗ |�2ðωaÞ þ
X
k

Bk ⊗ ω̃k: ð4:5Þ

These additional terms can be related to the electrically and
magnetically charged objects, (2.2) and (2.4), of the higher-
form symmetry. By virtue of the commutative diagram via
Poincaré-Lefschetz duality (see, e.g., [37]),

ð4:6Þ

we have H2ðYdÞ=imð|�2Þ ≅ Hd−2ðYd; ∂YdÞ=imð|d−2Þ ¼
Λmag ≅ Zf ⊕ Γ from (2.11).
Thus, the additional terms Bk ⊗ fωk in G4 arrange into

H2ðM11−dÞ⊗ ðZf ⊕ ΓÞ ≅H2ðM11−dÞ⊗f ⊕H2ðM11−d;ΓÞ:
ð4:7Þ

Contributions in H2ðM11−dÞ⊗f correspond to background
gauge fields of flavor symmetries in M11−d. As they are in
the free part of H2ð∂YdÞ ≅ Hd−3ð∂YdÞ, they have trivial
linking pairing20 with any other boundary flux, and hence
commutes with any other flux background. We will return
to these backgrounds later, and first focus on the torsional
part H2ðM11−d;ΓÞ, which physically correspond to back-
ground fields for global one-form Γ symmetries in M11−d.
Turning on a background flux in H2ðM11−d;ΓÞ ∋ b≡

B ⊗ ω̃ corresponds to a torsional internal flux ω̃t ∈ Γ ⊂
H2ðYdÞ= kerð{�2Þ, i.e., {�2ðω̃tÞ ≠ 0 ∈ H2ð∂YdÞ, but Nω̃t ∈
kerð{�2Þ ¼ imð|�2Þ for some N ∈ N0. This means that there
is an integer linear combination,

Nω̃t ¼
X
a

ðS−1Þta|�2ðωaÞ≡
X
a

λa|�2ðωaÞ; ð4:8Þ

which is Poincaré dual to the homology relation (2.12).
Since ω̃t is only defined modulo kerð{�2Þ ¼ imð|�2Þ, we
can restrict λa ∈ f0;…; N − 1g. Thus, we can formally
write

G4 ¼
X
a

Fa ⊗ |�2ðωaÞ þ B ⊗ ω̃t

¼
X
a

�
Fa þ

λa
N
B

�
⊗ |�2ðωaÞ; ð4:9Þ

which can be interpreted as a N-fractional shift of the Cartan
fluxes by the one-form symmetry. This interpretation agrees
with the field theoretic description of one-form symmetry
transformation in the Abelian phase of the gauge theory
[27,58]. Note that only theN-fractional part of the shift to the
Cartan fluxes in (4.9) is well defined, since the boundary flux
ω̃t is only defined modulo H2

cptðYdÞ.20This is dual to the pairing (2.5) in the boundary homology.
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The presentation (4.9) has the advantage that we can
“straightforwardly” perform the usual KK reduction of the
M-theory Chern-Simons term:

1

6

Z
M

C3 ∧ G4 ∧ G4: ð4:10Þ

By that, we mean that the integral is strictly speaking only
defined for compactly supported cohomology forms on
noncompact spaces. Presumably, a mathematically more
rigorous definition of this coupling in terms of differential
cohomology classes [59–64], which we will not attempt
to utilize here, can encompass contributions from both
compactly supported and boundary fluxes. For the
N-torsional fluxes that parametrize the one-form sym-
metry backgrounds, (4.9) allows us to circumvent this
process and evaluate the integrals of products of the
compactly supported two-forms |�2ðωaÞ, albeit with the
fractional coefficients. As we will see, this approach is
sufficient to derive the fractionalization, i.e., a fractional
shift of the instanton density of gauge theories in the
presence of a one-form symmetry background that
matches field theory results.

B. Compactification to 7d

Let us apply the above results to dimYd ≡ d ¼ 4, i.e.,
M-theory compactified to seven dimensions. In the case the
ansatz (4.3) for C3 includes only compactly supported
fluxes in Y4, the reduction of the 11d Chern-Simons term
(4.10) produces the term

1

6

Z
M11

C3 ∧ G4 ∧ G4 ¼
1

2

X
a;b

Z
M7

CðMÞ
3 ∧ Fa ∧ Fb

×
Z
Y4

|�2ðωaÞ ∧ |�2ðωbÞ; ð4:11Þ

where the factor of 3 comes from the assumption that the
boundary of the 7d spacetime M7 is trivial, allowing for

Stoke’s theorem on GðMÞ
4 ¼ dCðMÞ

3 . If Fa are the Cartan
uð1Þs of a non-Abelian gauge symmetry g in M7, thenR
Y4
|�2ðωaÞ ∧ |�2ðωbÞ≡ −Cab is the (negative) Cartan

matrix of G. Moreover, it coincides with the matrix Mai
in (2.9), where the basis σa ∈ Hd−2ðY4Þ ¼ H2ðY4Þ and
γi ∈ H2ðY4Þ is formed by the two-cycles dual to ωa ∈
H2ðY4Þ in both cases. In the non-Abelian limit (i.e., when
we blow-down the compact curves dual to ωa in Y4), this
term produces the 7d-coupling

X
a;b

Z
M7

ð−CabÞ
2

CðMÞ
3 ∧ Fa ∧ Fb →

Z
M7

CðMÞ
3 ∧ TrðF2Þ

ð4:12Þ

between the instanton density TrðF2Þ21 of G and the three-

form CðMÞ
3 .

Including an N-torsional boundary flux ω̃t, and its
fractional shift (4.9) it induces on the Cartan uð1Þs, the
coupling becomes22X
a;b

ð−CabÞ
2

Z
M7

CðMÞ
3 ∧

�
Fa þ

λa
N
B

�
∧
�
Fb þ

λb
N
B

�
¼
X
a;b

Z
M7

CabC
ðMÞ
3 ∧

�
1

2
Fa ∧ Fb þ

λa
N
Fb ∧ B

þ λaλb
2N2

B ∧ B

�
: ð4:13Þ

With −Cab ≡Mab in (2.9), we see from (2.13) thatX
a

Cab
λa
N

¼
X
a;c;j

SacDcjTjb
ðS−1Þta

N
¼
X
j

DtjTjb

N

¼ nt
N
Ttb ¼ Ttb ∈ Z; ð4:14Þ

because N ≡ nt is the torsion order of the boundary flux ω̃t

that we turned on. This means that the cross terms CðMÞ
3 ∧

Fb ∧ B in (4.13) actually have an integer coefficient.
Since Fa and B are all integer two-forms (more precisely,

two-cocycles) in M7, we see that a nontrivial one-form
symmetry background corresponding to ω̃t leads to a shift

X
a;b

−Cab

2
Fa ∧ Fb þ

X
a;b

ð−CabÞ
λaλb
2N2

B ∧ B

þ integer contributions: ð4:15Þ

In the non-Abelian limit, the instanton coupling (4.12) thus
becomesZ
M7

CðMÞ
3 ∧TrðF2Þ→

Z
M7

CðMÞ
3 ∧�

TrðF2Þþ 1

2N

X
a;b

ð−CabÞ
λaλb
N|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

¼−
P
b

TtbðS−1Þtb∈Z

B∧Bþ integer four-form

�
:

ð4:16Þ

This fractional shift leads to an ’t Hooft anomaly between
the one-form center symmetry, and the large gauge

21The trace is normalized such that a one-instanton configu-
ration integrates to an integer over any integer four-cycle in M7.

22We have implicitly used the “continuum description”
[1,25,26] for the one-form background gauge field B as an
ordinary differential form, for which the wedge product makes
sense. Regarding B ∈ H2ðMD;ΓÞ as a differential cohomology
class, one should replace B ∧ B by the Pontryagin square
operation PðBÞ.
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transformations of the Uð1Þ symmetry CðMÞ
3 → CðMÞ

3 þ
ΛðMÞ
3 , where ΛðMÞ

3 is a closed three-form [22–24]. While

CðMÞ
3 is a background field in 7d when gravity is decoupled,

in supergravity, it becomes the dynamical field dual of the
antisymmetric two-tensor in the gravity multiplet, and as
such must enjoy an unbroken Uð1Þ symmetry. A mixed
anomaly with a one-form symmetry thus prevents the
gauging of this one-form symmetry, and thus restricts
possible π1ðGÞ, if the one-form symmetry corresponds to
a center symmetry. It is straightforward to uplift this to term

and the anomaly to 8d, where CðMÞ
3 now becomes a four-

form gauge potential B4 coupling to the instanton density,
with analogous implications for global gauge group struc-
tures in 8d supergravity [23].
Example.—Consider M-theory on Y4 ¼ C2=ZN ,

which gives rise to a 7d theory with G ¼ SUðNÞ.
The corresponding exact sequence in relative homology
(4.6) collapses in this case to a short exact sequence (see,
e.g., [3]),

0 → H2ðYÞ⟶
|2 H2ðY; ∂YÞ⟶∂2 H1ð∂YÞ → 0;

with H2ðY; ∂YÞ ≅ HomðH2ðYÞ;ZÞ;
H1ð∂YÞ ≅ ZN: ð4:17Þ

For Y4 ¼ C2=ZN, it is well known that H2ðYÞ is spanned
by N − 1 P1’s (P1

a, a ¼ 1;…; N − 1), which intersect each
other in the form of an SUðNÞ Dynkin diagram, that is,

Cab ¼ hP1
a;P1

bi ¼

0BBBBBBBB@

−2 1 0 … 0

1 −2 1 . .
.

0

0 1 −2 . .
. ..

.

..

. . .
. . .

. . .
.

0 0 � � � 1 −2

1CCCCCCCCA
: ð4:18Þ

A Smith decomposition C ¼ SDT yields

S ¼

0BBBBBBBBBBBB@

1 � � � 1 � � � � � � 1

..

.
2 2 � � � � � � 2

1 2 3 � � � … 3

..

. ..
.

3 . .
. ..

.

..

. ..
. ..

.
N − 2 N − 2

1 2 3 � � � N − 2 N − 1

1CCCCCCCCCCCCA

−1

; T ¼

0BBBBBBBBBBBB@

1 0 � � � 0 1

0 1 . .
. ..

.
2

..

. . .
. . .

. ..
.

0 0 � � � 1 N − 2

0 0 � � � 1

1CCCCCCCCCCCCA
;

D ¼ diag½−1;−1;…;−1;−N|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
N−1

�; ð4:19Þ

confirming TorðH2ðY; ∂YÞ=imð|2ÞÞ ≅ ZN ¼ H1ð∂YÞ in (4.17), corresponding to the (N − 1)th entry in the diagonal matrix
D. Hence, the coefficients in (4.16) are

λa ¼ ðS−1ÞN−1;a ¼ a: ð4:20Þ

As a cross-check, we find the standard identity for SUðNÞ Cartan matrices,

XN−1

a¼1

ð−CabÞ
λa
N

¼
XN−1

a¼1

ð−CabÞ
a
N

¼
�
0 ∈ Z; b ¼ 1;…; N − 2;

1 ∈ Z; b ¼ N − 1:
ð4:21Þ

Thus, a background flux B for the ZN one-form
symmetry induces shift (4.9) of the Cartan fluxes given by

Fa → Fa þ
a
N
B ð4:22Þ

which agrees with the action of the one-form symmetry in
the maximally Abelian phase of the gauge theory [27,58].
Moreover, it also leads to the fractional shift,

1

2N

XN−1

a;b¼1

ð−CabÞ
λaλb
N

B ∧ B ¼ N − 1

2N
B ∧ B; ð4:23Þ

to the instanton density (4.16). This agrees with the field
theoretic results about the fractionality of SUðNÞ instantons
in the presence of a one-form center background field
[1,25–27,58].
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Models with F-theory uplift.—The result (4.16) applies,
mutatis mutandis, to M-theory on elliptically fibered Y4.
These models can be interpreted as an S1-reduction of
F-theory compactified on Y4. If this 8d theory has gauge
symmetry g, then, in 7d, there are rankðgÞ þ 1 compact
two-cycles σa ∈ H2ðY4Þ. The additional two-cycle is the
generic fiber f of π∶ Y4 → B2, and gives rise to the vector
multiplet in 7d obtained by integrating the Ramond-Ramond
two-form field in 8d23 over the S1. Because f has intersection

number 0 with any compact two-cycle in Y4, it does not
contribute to the Chern-Simons term (4.11). In the presence
of a boundary flux, the shifted 7d Chern-Simons terms (4.16)
thus are equivalent to a fractional shift of the G-instantons
inherited from an 8d one-form background field.
As a concrete example, consider Y4 the neighborhood of

an IN fiber, which realizes an suðNÞ gauge symmetry in 8d
F-theory. The set of compact curves, fσag, a ¼ 1;…; N,
intersect in the affine SUðNÞ Dynkin diagram:

hσa; σbi ¼

0BBBBBBBBBBBBB@

1

0

C ..
.

0

1

1 0 � � � 0 1 −2

1CCCCCCCCCCCCCA
¼

0BBBBB@
0

S−1 ..
.

0

−1 � � � −1

1CCCCCA
 
D 0

0 0

!
0BBBBBBBBBBBBB@

−2

−3

T ..
.

1 − N

−1

0 � � � 0 1

1CCCCCCCCCCCCCA
; ð4:24Þ

with the ðN − 1Þ × ðN − 1Þ matrices ðS;D; TÞ given in
(4.19). As expected, |2ððS−1ÞN;bσbÞ ¼ −

P
N
a¼1 σa ¼ −f

has trivial intersection with any compact two-cycle σc.
The remaining N − 1 two-cycles give rise to the same
structure as the suðNÞ example from Y4 ¼ C2=ZN above,
with the N-torsional boundary flux given by
σ̃t ¼ 1

N ðS−1ÞN−1;cσc ¼
P

N−1
c¼1

c
N σc. Analogously, the frac-

tional shift of the instanton density of the SUðNÞ
symmetry is (4.23), which is the same as the shift in
8d [23].

C. Compactification to 5d

In compactifications on Y6 to five dimensions, a reduc-
tion analogous to (4.13) of the M-theory Chern-Simons
term with the ansatz (4.3) gives rise to the 5d Chern-Simons
terms [65–67]

1

6

X
α;β;γ

Z
M5

KαβγAα ∧ Fβ ∧ Fγ: ð4:25Þ

When we only consider dynamical gauge fields in 5d
spacetime (for which we use Latin indices ðα; β; γÞ →
ða; b; cÞ), the internal pieces wα;β;γ in (4.3) are all compactly
supported two-forms |�2ðωaÞ. In this case, the coefficients
Kabc ¼

R
Y6
|�2ðωaÞ ∧ |�2ðωbÞ ∧ |�2ðωcÞ have a natural inter-

pretation as the integral of products of compactly supported
two-forms, or, dually, as intersection number of four-cycles

σa ∈ H4ðY6Þ. Physically, Kabc encode the Coulomb branch
dynamics of the effective 5d gauge theory [68,69].
In the following, we are interested in the terms with

ωα ≡ ω̃I ∈ H2ðY6Þ fixed, such that {�2ðω̃IÞ ∈ Zf ⊂
H2ð∂Y6Þ [cf. formula (4.7)], and let the indices ðβ; γÞ →
ðb; cÞ run over compactly supported two-forms that span
the Cartan subgroup of the gauge group G. As stated
above, F̃I ⊗ ω̃I corresponds to a background Cartan
Uð1ÞI flux of the global zero-form symmetries. Since
the Poincaré-Lefschetz-dual four-cycle is a relative
homology class, PDðω̃IÞ ¼ ϵI ∈ H4ðY6; ∂Y6Þ, that is not
in the image of |4, it may be regarded as a noncompact
four-cycle in Y6. In general, the corresponding Chern-
Simons coefficients KIbc encode mass parameters of the G
gauge theory [70]. Crucially, the global zero-form sym-
metry includes Uð1Þ factors that charge the instanton
particles of the G gauge theory, which can enhance the
flavor symmetry (the part of the global symmetry charging
hypermultiplets of the effective gauge theory) at the UV
fixed point [71]. For our discussion, we focus on the
effective gauge theory phase, in which ω̃I corresponds to
an instantonic Uð1ÞI global symmetry, rather than a
Cartan Uð1Þ of the (classical) flavor symmetry.
Passing, for convenience, to the Poincaré-Lefschetz-dual

homology description, we have PDðωb;cÞ ¼ σb;c ∈ H4ðY6Þ,
and we can form the intersection product σb · σc ≡ γbc
∈ H2ðY6Þ, which yields a two-cycle in Y6. On the other
hand, ω̃I ∈ H2ðY6Þ=imð|�2Þ is represented by an element
in H2ðY6Þ, which we abusively also denote by ω̃I. Then
PDðω̃IÞ¼ϵI∈H4ðY6;∂Y6Þ≅HomðH2ðY6Þ;ZÞ. This now
gives a straightforward way to “define” KIbc ¼ ϵIðγbcÞ.

23In a type IIB description, this two-form field is the reduction
of the 10d RR-field C4 on the base B2.
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In the 5d Chern-Simons terms (4.25), turning on the one-form symmetry background (4.9) leads to

1

6

X
α;β;γ

Z
M5

KαβγAα ∧ Fβ ∧ Fγ ⊃
1

2

X
b;c

Z
M5

KIbcAI ∧ Fb ∧ Fc

⟶
1

2

X
b;c

Z
M5

KIbcAI ∧
�
Fb ∧ Fc þ

2λb
N

Fc ∧ Bþ λbλc
N2

B ∧ B

�
: ð4:26Þ

To match this with the field theory results, one needs to
show that the cross terms Fc ∧ B again have integer
coefficients. Arguing for the integrality analogously to
the 7d case requires the intersection pairing between the
basis of (d − 2)- and two-cycles. However, the spaces
H4ðY6Þ and H2ðY6Þ are in general very different, and
the intersection product H4ðY6Þ ×H4ðY6Þ → H2ðY6Þ de-
pends on details of Y6. As such, it is difficult to make a
general argument that applies to all geometries. Instead, we
will look at concrete examples, where we can calculate
(4.26) explicitly.

1. Examples with 5d UV fixed point

Let us illustrate this first in a simple example, namely, for
the rank one 5d N ¼ 1 theory with gauge symmetry
G ¼ SUð2Þ, theta angle θ ¼ 0, and no matter. The latter
two conditions ensure that the one-form Z2 center symmetry
is not explicitly broken by any matter or instanton particles
[5,6]. This gauge theory has as (continuous) global zero-
formUð1Þ instanton symmetry, which enhances to an SUð2Þ
at the UV fixed point [68,69,71]. The (noncompact) Calabi-
Yau threefold Y6 that describes this theory via M-theory is
local neighborhood of an F0 ≅ P1 × P1 ≡ σ surface, which

generates H4ðY6Þ ≅ Z. Furthermore, H2ðY6Þ ≅ Z2 is gen-
erated by two P1 s, γ1 and γ2, inside σ, with intersection
pairing hσ; γ1i ¼ hσ; γ2i ¼ −2. The corresponding Smith
decomposition (2.9) is simple,

ð−2;−2Þ ¼ ð1Þð−2; 0Þ
�
1 1

0 1

�
; ð4:27Þ

implying that ϵ1 ¼ η1 þ η2 ¼ 1
2
|�2ðσÞ is the generator of the

Γ ≅ Z2 one-form symmetry backgrounds [and so λb ≡ λσ ¼
1 and N ¼ 2 in (4.26)] Meanwhile, the “noncompact
divisor” ϵI ∈ H4ðY6; ∂Y6Þ ≅ HomðH2ðY6Þ;ZÞ correspond-
ing to the Uð1ÞI global symmetry is given by

ϵI ¼ η2∶ H2ðY6Þ → Z; a1γ1 þ a2γ2 ↦ a2: ð4:28Þ

Additionally, we need σ · σ ¼ −2ðγ1 þ γ2Þ. This means
that KIbc ≡ KI;σ;σ ¼ ϵIðσ · σÞ ¼ −2.
In the presence of the Z2 one-form symmetry back-

ground, the shifted Chern-Simons term (4.26) then
becomes

1

2

Z
M5

X
b;c

KIbcAI ∧
�
Fb ∧ Fc þ

2λb
N

Fc ∧ Bþ λbλc
N2

B ∧ B

�
¼ −

Z
M5

AI ∧
�
Fσ ∧ Fσ þ Fσ ∧ Bþ 1

4
B ∧ B

�
⟶

non-ab limit −
Z
M5

AI ∧
�
TrðF2

SUð2ÞÞ þ
1

4
B ∧ Bþ integer terms

�
: ð4:29Þ

The mixed ’t Hooft anomaly between Uð1ÞI and the center
one-form symmetry of SUð2Þ resulting from this fractional
shift of the instanton density indeed agrees with expect-
ations from field theory [24].
Note that this geometric computation is strictly speaking

only valid on the Coulomb branch of the 5d theory. While
the extrapolation to the sublocus, where we have an
effective non-Abelian gauge theory, agrees with previous
work, our approach cannot preclude a cancellation of this
anomaly through a topological sector which is hidden on
the Coulomb branch. Indeed, recent work [14] suggests the
existence of such sectors on the Higgs branch, which
geometricly can only be accessed by passing through the

strongly coupled SCFT point via deformation. Because of
this, we do not make any claims about how anomaly lifts to
the UV theory.
In general, there is no reason to expect that modifications

from the effective field theory expectations can only arise
from the Higgs branch. Indeed, certain UVeffects can also be
found on the Coulomb branch, which indicates a more
subtle effect of turning on one-form symmetry backgrounds
in the SCFT. For that, we consider setups realizing pure
SUðN ≥ 3Þk gauge theories with Chern-Simons level
2 − N < k < N − 2. These theories have a ZgcdðN;kÞ one-
form symmetry, and rank f ¼ 1 global symmetry given by
the instantonicUð1ÞI [5,6]. A possible M-theory geometry is
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a local Calabi-Yau neighborhood Y6 of N − 1 Hirzebruch surfaces σa ≅ Fna that intersect transversely in a chain. Leaving the
detailed computation to Appendix B, we present here the shift of the Chern-Simons terms by the ZgcdðN;kÞ-torsional
boundary flux:

1

2

X
a;b

Z
M5

KIabAI ∧
�
Fa ∧Fbþ

λaλb
gcdðN;kÞ2B∧B

�
¼
Z
M5

�X
a;b

Q22

2
ð−CabÞAI ∧Fa ∧Fb−

Q21ðNþkÞ
2

AI ∧FN−1 ∧FN−1

�
þ
Z
M5

N−1

2N
l2

�
Q22−Q21ðNþ kÞN−1

N

�
AI ∧B∧B; ð4:30Þ

where l ¼ N= gcdðN; kÞ mod N is the generator of the
ZgcdðN;kÞ ⊂ ZN subgroup of the center of SUðNÞ. The
coefficients Q22 and Q21 are integers fixed by a Euclidean
algorithm on ðN; k − NÞ:

gcdðN;k−NÞ¼ gcdðN;kÞ¼Q22N−Q21ðk−NÞ: ð4:31Þ

This result does not immediately agree with the expect-
ations from the effective SUðNÞk gauge description.
Neglecting the contribution proportional to Q21AI ∧
FN−1 ∧ FN−1 above, one would interpret the first term,P

a;b
Q22

2
ð−CabÞAI ∧ Fa ∧ Fb, as the Coulomb branch

expression of AI ∧ ðQ22TrðF2ÞÞ. That is, instanton den-
sity of SUðNÞ is coupled to Uð1ÞI with charge Q22. Then
—again neglecting the term proportional to Q21—the last
line in (4.26) would precisely correspond to the fractional
shift of SUðNÞ=ZgcdðN;kÞ instantons. Thus, the Q21-terms
are expected to be nonperturbative corrections to the
effective SUðNÞk gauge description. Furthermore, we
have not fully explored the invariance of (4.31) under
ðQ12; Q22Þ → ðQ21 þm N

gcdðN;kÞ ; Q22 þm k−N
gcdðN;kÞÞ, though

this seems to be related to a redefinition of the generator
for Uð1ÞI, cf. (B11). To gain a better understanding of
these terms, it would be instructive to find a field theoretic
description of such nonperturbative corrections, and/or
verify the geometric result from another construction of
the 5d SCFT that is the UV completion of the SUðNÞk
gauge theory.

2. 5d KK theories and 6d anomalies

If Y6 is elliptically fibered (over a Kähler manifold B4),
then M-theory on Y6 gives rise to a so-called 5d KK theory.

The UV completion of such a gauge theory is not a genuine
5d SCFT, but rather a 6d SCFT on an S1 (hence the name).
In this reduction, the 5d one-form symmetry receives
contributions from both one-form and two-form sym-
metries in 6d [5]. Moreover, the instanton density of the
6d gauge symmetry couples via a Green-Schwarz mecha-
nism to dynamical tensor fields, which on an S1 reduce to
vector multiplets associated to additional Uð1Þ (0-form)
gauge symmetries in 5d. Therefore, in the 5d KK theory,
the 6d mixed anomaly between the one-form symmetry and
the large gauge transformations of tensor fields [22] are
encoded in the Chern-Simons terms Kabc involving three
compact divisors.
For an example, consider the 6d non-Higgsable SUð3Þ

theory. The corresponding 5d KK theory is M-theory
compactified on an elliptically fibered π∶ Y6 → B4, given
by the Calabi-Yau neighborhood of three intersecting F1

surfaces [72]24:

ð4:32Þ

The intersection σ1 · σ2 ¼ σ2 · σ3 ¼ σ1 · σ3 ¼ e is the (−1)-
curve in each σa, which is the section of the P1-fibration on
σa with fiber fa. The generic elliptic fiber is f ¼ f1 þ f2 þ
f3 in homology. Thus, all σa are fibered over the same
genus-0 curve C ⊂ B4, which has self-intersection number
−3 inside B4. Furthermore, σa · σa ¼ −2ðeþ 3faÞ.
A basis of H2ðY6Þ is given by γi ∈ ff1; f2; f3; eg. From

the intersection matrix,

Mai ¼ hσa; γji ¼

0BB@
−2 1 1 −1
1 −2 1 −1
1 1 −2 −1

1CCA ¼

0BB@
1 1 0

1 2 0

1 1 1

1CCA
−1

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
S−1

0BB@
−1 0 0 0

0 −3 0 0

0 0 −3 0

1CCA
0BBBBB@

1 1 −2 2

0 1 −1 1

0 0 0 1

0 0 1 −1

1CCCCCA
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

T

; ð4:33Þ

24The basis of two-cycles on each F1 surface is ff; eg, which on F1 intersect as e · e ¼ −1, e · f ¼ 1, f · f ¼ 0.
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we see that the surfaces σ1;2 form the Cartan Uð1Þs of the
SUð3Þ gauge symmetry, whose Z3 one-form center sym-
metry is encoded in the boundary flux [cf. (2.12)]

σ̃t ¼
1

3

X
a

λa|4ðσaÞ≡ 1

3

X
a

ðS−1Þ2;a|4ðσaÞ

¼ 1

3
ð|4ðσ1Þ þ 2|4ðσ2ÞÞ: ð4:34Þ

The additional dynamical Uð1Þd gauge field is dual to
ξ3 ¼ ðS−1Þ3;aσa ¼ σ1 þ σ2 þ σ3 ¼ π−1ðCÞ, which is a ver-
tical divisor in Y6, and hence corresponds to the S1-reduction
of the 6d tensor field.
Thus, the coefficients of the relevant Chern-Simons

terms,

1

2

X2
a;b¼1

Z
M5

KdabAd ∧ FðSUð3ÞÞ
a ∧ FðSUð3ÞÞ

b ; ð4:35Þ

areKdab ¼ hξ3; σa · σbi ¼ 3ð−CðSUð3ÞÞÞab, with ð−CðSUð3ÞÞÞ
the Cartan matrix of SUð3Þ. In the limit where we collapse
the fibers f1;2 in Y6, and thereby enhancing the gauge
symmetry to SUð3Þ ×Uð1Þd, these Chern-Simons terms
become

−3
Z
M5

Ad ∧ TrðFðSUð3ÞÞ ∧ FðSUð3ÞÞÞ; ð4:36Þ

indicating that Uð1Þd gauges the instanton symmetry of
SUð3Þ “with charge 3” [5]. This also agrees with the
reduction of the corresponding 6d Green-Schwarz cou-
pling with tensor charge 3. Furthermore, this charge
prefactor also ensures that the one-form center symmetry
has no mixed anomaly with the large gauge transforma-
tions of Uð1Þd, since the fractional shift induced by the
boundary flux (4.34) is

X2
a;b¼1

Kdab
λaλb
2 · 32

B ∧ B ¼ 1

6

X2
a;b¼1

abð−CðSUð3ÞÞÞabB ∧ B

¼ B ∧ B: ð4:37Þ

This matches the absence of the corresponding one-form
anomaly in 6d [22].
Let us further consider ρ̃ ≔ η4 ∈ HomðH2ðY6Þ;ZÞ ≅

H4ðY6; ∂Y6Þ, which from (2.9) satisfies −|4ðξ3Þ ¼ 3η4,
i.e., is the generator of the second Z3 factor in the 5d one-
form symmetry. Since ρ̃ðfaÞ ¼ 0, ρ̃ðeÞ ¼ 1, ρ̃ can be
interpreted as a noncompact vertical divisor in Y6, whose
projection πðρ̃Þ onto B4 intersects the compact (−3)-curve
C once. In the 6d F-theory setting, wrapping D3-branes on
πðρ̃Þ gives rise to stringlike surface defects that are charged
under the 6d Z3 two-form symmetry [2,5].

In 5d, we can now study the effects of turning on
background fields B for the Z3 one-form center symmetry
of SUð3Þ, as well as Bd for the Z3 one-form symmetry that
descends from the 6d two-form symmetry. While the first
corresponds to the shiftFa → Fa þ a

3
B for the SUð3Þ Cartan

fluxes, the second shifts the field strength of the Uð1Þd as
Fd → Fd þ 1

3
Bd. The latter can be viewed as a transforma-

tion Ad → Ad þ 1
3
ϵ, where ϵ is a flat Z3 connection

[24,27,56]. From (4.35), we would then obtain the term

1

2

X2
a;b¼1

Kdab
1

3
ϵ ∧ a

3
B ∧ b

3
B ¼ 1

3
ϵ ∧ B ∧ B: ð4:38Þ

This constitutes a mixed ’t Hooft anomaly between the two
Z3 one-form symmetries, which can be written in terms of a
6d anomaly theory,

A½Bd; B� ¼
Z
X6

1

3
Bd ∧ B2; ð4:39Þ

where ∂X6 ¼ M5 is an auxiliary manifold whose boundary is
the 5d spacetime.
It appears natural to uplift this anomaly to the 6d gauge

theory that corresponds to F-theory compactified on Y6.
Here, this would be a mixed ’t Hooft anomaly between the
6d two-form Z3 symmetry for the instanton strings, and the
one-form Z3 center symmetry of the non-Higgsable SUð3Þ
gauge sector. One intuitive explanation for this anomaly is
that, by turning on a background field for the one-form
center symmetry, the instanton number fractionalizes, being
now instantons of an SUð3Þ=Z3 bundle. Compared to the
instanton strings of SUð3Þ, which have charge 0 mod 3
under the Z3 two-form symmetry, the SUð3Þ=Z3 instantons
have charge 1 mod 3, and hence screen all asymptotic
charges of the two-form symmetry. It would be interesting
to investigate potential field theoretic counterterms for this
anomaly, and, if present, their imprints in geometry.
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APPENDIX A: DEFECT GROUP STRUCTURES
OF M-THEORY ON ELLIPTIC FIBRATIONS

In this Appendix, we compute the defect group struc-
ture for the 7d theories listed in Table I. The strategy is
to first determine a representative of the Ni-torsional
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one-cycles Ci in H1ð∂YÞtors ≅ cokerðκÞ as a linear combi-
nation of the A ¼ ð1; 0Þ and B ¼ ð0; 1Þ cycles, which
intersect on T2 as A2 ¼ B2 ¼ 0 and A · B ¼ −B ·A ¼ 1.
This can be done by a Smith decomposition on κ. Then,
there is a two-chain Σi ⊂ ∂Y with ∂Σi ¼ NiCi. The linking
pairing L∶ TorðH1ð∂YÞÞ × TorðH1ð∂YÞÞ → Q=Z is then
computed as

LðCi; CjÞ ¼
1

Ni
Σi · Cj mod Z: ðA1Þ

IN fiber.—The standard representation of the mono-
dromy around an IN fiber is given byK ¼ ð1

0
−N
1
Þ. It is easy

to see that

κ ¼
�
1 0

0 1

�
−
�
1 −N
0 1

�
¼
�
0 N

0 0

�
ðA2Þ

has imðκÞ ≅ Z, generated by the one-cycle
κB ¼ ðN

0
Þ ¼ N ×A. Therefore,

cokerðκÞ¼H1ðT2Þ
imðκÞ ≅

��
1

0

�	
Z
×

��
0

1

�	
Z��

N

0

�	
Z

≅ZN ×Z;

ðA3Þ

where hviZ denotes the Z-span of a vector v. Here, the ZN
factor is generated by the A-cycle, and the free Z factor by
the B-cycle. Another way to read (A2) is that the two-cycle
Σ ⊂ ∂Y, obtained by tracing the B-cycle over any point
p ∈ S1base once around the circle S1base back to p, has
boundary ∂Σ ¼ KB − B ¼ −κB ¼ −NA. This allows us
to compute the linking pairing:

LðA;AÞ ¼ −
1

N
Σ ·A mod Z ¼ 1

N
mod Z; ðA4Þ

where we have used the specific realization of Σ as the
B-cycle fibered over S1, which intersects theA-cycle only in
one fiber, where B ·T2 A ¼ −1. This result agrees with the
physical expectation that the IN fiber realizes an suðNÞ
gauge symmetry as a 7d M-theory compactification, whose
electric one-form and magnetic four-form symmetry are both
ZN , with the defect group pairing (A4).
I�N−4 fiber.—The monodromy around an I�N−4, N ≥ 4,

type fiber, in the above ðA; BÞ basis, is K ¼ ð−1
0

N−4
−1 Þ. To

compute cokerðκÞ, it is easiest to distinguish between even
and odd N.

For even N ≡ 2n, n ≥ 2, we have

κ ¼
�
1 0

0 1

�
−
�−1 2n − 4

0 −1

�
¼
�
2 4 − 2n

0 2

�
¼
�
1 2 − n

0 1

��
2 0

0 2

��
1 0

0 1

�
; ðA5Þ

where the last equality can be interpreted as a Smith
decomposition, showing in particular that

cokerðκÞ ≅

D
 1
0

�E
Z
×
D
 0

1

�E
ZD
 2

0

�E
Z
×
D
 0

2

�E
Z

≅ Z2 × Z2: ðA6Þ

Now consider the two-chain Σ1 ⊂ ∂Y obtained from fiber-
ing the one-cycle −A≡ ð−1

0
Þ once over the boundary circle

back to a reference point p ∈ S1base. Then we have
∂Σ1 ¼ −κð−AÞ ¼ 2A, showing that A is a two-torsional
one-cycle in ∂Y. Likewise, we can also see that B is a two-
torsional cycle in ∂Y, as −κð2−n−1 Þ ¼ ð0

2
Þ, i.e., 2B is the

boundary of the two-chain Σ2 swept out by moving the one-
cycle ð2−n−1 Þ around S1base once. To compute the linking
pairing, first note that

Σ1 ·A ¼ −A ·T2 A ¼ 0; Σ1 · B ¼ −A ·T2 B ¼ −1;

Σ2 ·A ¼ ðð2 − nÞA − BÞ ·T2 A ¼ −1;

B · Σ2 ¼ B ·T2 ðð2 − nÞA − B ¼ 2 − n: ðA7Þ

Thus, the linking pairing, in the basis ðA;BÞ, is (with
1
2
¼ − 1

2
mod Z)

even N∶ LI�N−4
¼
�
0 1

2

1
2

N
4

�
mod Z: ðA8Þ

For odd N ¼ 2nþ 1, n ≥ 2, we have

γ ¼
�
1 0

0 1

�
−
�−1 2n − 3

0 −1

�
¼
�
2 3 − 2n

0 2

�
¼
�

1 n − 1

−2 3 − 2n

��
1 0

0 4

��
0 −1
1 2

�
; ðA9Þ

implying cokerðκÞ ≅ Z4. A generating four-torsional one-
cycle is given by ð1−n

1
Þ ¼ 1

4
× ð−κð 1

−2ÞÞ, i.e., four copies of it
is the boundary of the two-chain Σ obtained from moving
ð 1
−2Þ around S1base once. From Σ · ð1−n

1
Þ ¼ ð 1

−2Þ ·T2 ð1−n
1
Þ ¼

3 − 2n ¼ 4 − N, we find the linking pairing
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odd N∶ LI�N−4
¼ −N

4
mod Z: ðA10Þ

Again, this reproduces the physical expectations, namely
that I�N−4 realizes an soð2NÞ gauge symmetry. For even
N ¼ 2n, the electric and magnetic symmetries areZ2 × Z2,
whose defect group pairing is (A8).25 Meanwhile, for odd
N ¼ 2nþ 1, soð2NÞ has Z4 center symmetry, which pairs
with its magnetically dual Z4 symmetry as (A10).
IV fiber.—The monodromy is given by K ¼ ð−1

1
−1
0
Þ, so

κ¼
�

2 1

−1 1

�
¼
�

2 −1
−1 1

��
1 0

0 3

��
1 2

0 1

�
: ðA11Þ

Therefore cokerðκÞ ≅ Z3, whose generator can be repre-
sented by the B-cycle, since 3B ¼ ð0

3
Þ ¼ −κð−1

2
Þ is the

boundary of Σ obtained from fibering ð−1
2
Þ over S1base.

From Σ · B ¼ ð−1
2
Þ ·T2 ð0

1
Þ ¼ −1, the linking pairing is

LðB;BÞ ¼ − 1
3
mod Z. This defines the linking pairing

for the Z3 one-form electric/four-form magnetic symmetry
of an suð3Þ gauge symmetry, which is different than an
suð3Þ realized via an I3 fiber.
IV� fiber.—In this case, the monodromy is K ¼ ð−1−1 1

0
Þ,

so

κ ¼
�
2 −1
1 1

�
¼
�
2 −1
1 0

��
1 0

0 3

��
1 1

0 1

�
: ðA12Þ

Hence cokerðκÞ ≅ Z3, which can be generated by the
A-cycle, since 3A ¼ ð3

0
Þ ¼ −κð−1

1
Þ ¼ ∂Σ, which also

defines Σ to be the two-chain obtained by fibering ð−1
1
Þ

over S1base. Then Σ ·A ¼ ð−1
1
Þ ·T2 ð1

0
Þ ¼ −1, so the linking

pairing isLðA;AÞ ¼ − 1
3
¼ 2

3
mod Z Physically, this agrees

with the expectation from an 7d e6 gauge symmetry from an
IV� fiber, which has one-form electric/four-form magnetic
Z3 symmetry, and defect group pairing − 1

3
¼ 2

3
mod Z [6].

III fiber.—The monodromy of this fiber is K ¼ ð0
1

−1
0
Þ,

so

κ ¼
�

1 1

−1 1

�
¼
�

1 0

−1 1

��
1 0

0 2

��
1 1

0 1

�
: ðA13Þ

Therefore cokerðκÞ ≅ Z2, which is generated by the
B-cycle, since 2B ¼ ð0

2
Þ ¼ −κð 1

−1Þ is the boundary of Σ
obtained from fibering ð 1

−1Þ over S1base. From Σ · B ¼
ð 1
−1Þ ·T2 ð0

1
Þ ¼ 1, the linking pairing is LðB;BÞ ¼

1
2
mod Z. Physically, this agrees with the expectation

from a 7d theory with an suð2Þ gauge symmetry from a
type III fiber.
III� fiber.—The monodromy is K ¼ ð 0

−1
1
0
Þ, so

κ ¼
�
1 −1
1 1

�
¼
�
1 −1
1 0

��
1 0

0 2

��
1 1

0 1

�
: ðA14Þ

The cokerðκÞ ≅ Z2 can be represented by the A-cycle,
which is the boundary of Σ obtained by fibering ð−1

1
Þ

around S1base: −κð−11 Þ ¼ ð2
0
Þ. The defect group pairing is

determined from Σ ·A ¼ ð−1
1
Þ ·T2 ð1

0
Þ ¼ −1 to be

LðA;AÞ ¼ − 1
2
¼ 1

2
mod Z, which agrees with that of

the one-form electric/four-form magnetic symmetry of a
7d e7 theory [6].
II and II� fibers.—Lastly, these fiber have monodromy

KII ¼ ð1
1

−1
0
Þ and KII� ¼ ð 1

−1
1
0
Þ. Since, in these cases,

κII ¼
�

0 1

−1 1

�
; κII� ¼

�
0 −1
1 1

�
ðA15Þ

is unimodular, the cokernels are trivial, conforming with
expectations of neither a trivial nor an e8 gauge symmetry
have any higher-form electric and magnetic symmetries.

APPENDIX B: INSTANTON
FRACTIONALIZATION IN 5d SUðNÞk THEORIES

In this Appendix, compute the ’t Hooft anomaly between
the instanton Uð1ÞI zero-form symmetry and the ZgcdðN;kÞ
one-form symmetry of a 5d SUðNÞk gauge symmetry. The
Calabi-Yau threefold geometry is the local neighborhood of
the surface configuration [73]

FN−k−2 e1—h2 FN−k−4 e2 ���hm FN−k−2m em—emþ1

F−Nþkþ2ðmþ1Þ hmþ1
���eN−2

FNþk−4 hN−2—eN−1
FNþk−2;

ðB1Þ

where the degrees na ¼ N − k − 2a for a ≤ m, and na ¼
−ðN − k − 2aÞ for a > m, are all positive. Each of these
(complex) surfaces have a basis of two-cycles, ðea; faÞ,
with ha ≔ ea þ nafa, which inside Fna intersect as
e2a ¼ −na, f2a ¼ 0, ea · fa ¼ 1. The set of all ðea; faÞ
generate H2ðY6Þ. However, they are not all independent,
since the intersections Ca

—Caþ1 between σa and σaþ1, as
indicated in (B1), impose the gluing condition C1 ¼ C2

in Y6.
26

This allows to pick a basis fγig for H2ðYÞ, which we set
to be

25Note that this deviates from [6] for odd n, or N ≢ 0 mod 4,
where the pairing matrix is given by ð1=2

0
0
1=2Þ. One can easily

check that we arrive in this form by a simple basis change
ðA;BÞ → ðAþ B;BÞ.

26Note that in [5], the degrees of Fna are uniformly denoted by
na ¼ N − k − 2a and hence can go negative, with the under-
standing that in F−n ≅ Fn, the role of e and h ¼ eþ nf are
exchanged [73].
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γa ¼ fað1 ≤ a ≤ N − 1Þ; γN ¼ e1: ðB2Þ

The other curves ea, a ≥ 2, are then determined by the gluing conditions ha ¼ ea−1 for a ≤ m, ha ¼ eaþ1 for a > m:

ea ¼ e1 −
Xa
b¼2

nbfb for 2 ≤ a ≤ m < N − 1;

emþ1 ¼ em ¼ e1 −
Xm
b¼2

nbfb;

ea ¼ e1 −
Xm
b¼2

nbfb þ
Xa−1

b¼mþ1

nbfb for mþ 2 ≤ a ≤ N − 1: ðB3Þ

The intersection matrix is

Mai ¼ hσa; γii ¼

0BBBBB@
−2 1 0 � � � N − k − 4

1 −2 . .
.

2þ k − N

0 . .
. . .

.
1 0

0 1 −2 0

1CCCCCA≡
�
C v⃗

�
; ðB4Þ

where Cab ¼ hσa; fbi is the (negative) Cartan matrix of SUðNÞ [see (4.18)], and va ¼ hσa; γNi ¼ hσa; e1i.27 Note that this
intersection matrix does not depend on the different presentation of the surface configuration (B1) compared to [5]. Hence,
the subsequent computations of this Appendix proceed analogously.
Since C has the known Smith decomposition (4.19), we have

M ¼ S

�
D w⃗

��T 0

0 1

�
;

w⃗≡ S−1v⃗ ¼ ð−2; k − N;…; k − NÞt; ðB5Þ

where the ðN − 1Þ × ðN − 1Þ matrices ðS;D; TÞ are given as in (4.19). With the first N − 2 diagonal entries of D being 1,
one further can eliminate the first N − 2 components of w⃗ with elementary column operations that add multiples of the first
N − 2 columns of D to w⃗:

ðDjw⃗Þ

0BBBBBBB@

0 −w1

1N−2
..
. ..

.

0 −wN−2

0 12

0

1CCCCCCCA ¼

0BBBBBBB@
1 0 0

0 . .
. ..

.

1 0 ..
.

N k − N

1CCCCCCCA≡ ðD0jw⃗0Þ: ðB6Þ

For the last two entries, ðN; k − NÞ, we can use an extended Euclidean algorithm, such that there is an invertible integer
2 × 2 matrix Q−1 with

detðQÞ|fflfflffl{zfflfflffl}
¼�1

ðQ22N −Q21ðk − NÞÞ; ðk − NÞQ11 −Q12NÞ≡ ðN; k − NÞQ−1 ¼ detðQÞðgcdðN; kÞ; 0Þ

⇒ Q11 ¼
N

gcdðN; kÞ ≕l; Q12 ¼
k − N

gcdðN; kÞ ≕ l̃; Q22 ¼
detQþ l̃Q21

l
∈ Z: ðB7Þ

27One can infer the intersection pairing h·; ·i in the Calabi-Yau threefold Y6 from the intersection of two-cycles C1 · C2 in σ ≅ Fn. Let
γ ⊂ σ, then hσ; γi ¼ −ð2eþ ðnþ 2ÞfÞ · γ. If there is another four-cycle σ0 such that σ and σ0 intersect along C ⊂ σ, then hσ0; γi ¼ C · γ.
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This can be summarized as



D0 w⃗0

�
0BBBBBBB@

0 0

1N−2
..
. ..

.

0 0

0 Q−1

0

1CCCCCCCA ¼

0BBBBBBB@
1 0 0

0 . .
. ..

.

1 0 ..
.

gcdðN; kÞ 0

1CCCCCCCA≡ ðD00j0Þ; ðB8Þ

which shows explicitly that H4ðY6; ∂Y6Þ=imð|4Þ ≅ Z ⊕ ZgcdðN;kÞ [5]. This means that the Smith decomposition of (B4)
takes the form

M ¼ SðD00j0Þ

0BBBBBBB@

0 0

1N−2
..
. ..

.

0 0

0 Q−1

0

1CCCCCCCA

−10BBBBBBB@

0 −w1

1N−2
..
. ..

.

0 −wN−2

0 12
0

1CCCCCCCA

−1

�T 0

0 1

�

¼ SðD00j0Þ
� 1N−2 �

0 Q

�� 1N−2 �0

0 12

�
¼ SðD00j0Þ

� 1N−2 �̃
0 Q

�
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

≡T̃

; ðB9Þ

where we have used the schematic form (4.19) of the ðN − 1Þ × ðN − 1Þ matrix T ¼ ð1N−2
0

�0
1
Þ. We are omitting the details on

the upper right part of the matrices, because these ultimately specify only the generators of H4ðY6; ∂Y6Þ that lie in imð|4Þ in
terms of the dual basis of γi; these are projected out in the quotient that determines the global and one-form symmetries. The
decomposition also tells us that the gcdðN; kÞ-torsional boundary flux may be represented as

1

gcdðN; kÞ
X
a

ðS−1ÞN−1;a|4ðσaÞ ¼
1

gcdðN; kÞ
X
a

a|4ðσaÞ: ðB10Þ

Moreover, we have the generator

ϵI ¼
X
i

T̃N;iηi¼Q21ηN−1þQ22ηN ∈HomðH2ðY6Þ;ZÞ∶

XN
i¼1

μiγi≡
XN−2

i¼1

μiγiþμN−1fN−1þμNe1↦Q21μN−1þQ22μN: ðB11Þ

Furthermore, the intersections γab ¼ σa · σb with a ≠ b, as indicated by (B1), can be expressed in the basis γi ∈
ff1; f2;…; fN−1; e1g via (B3): γab is either trivial (if ja − bj > 1), or one of the gluing curves in (B1), whose homology
class takes the form el ¼ e1 þ

P
cð�ncÞfc. Omitting the precise expression, the important point becomes that the sum

never contains fN−1 because of (B3). For γaa ¼ σa · σa ¼ −ð2ea þ nafaÞ ¼ −2e1 þ
P

b ybfb, the sum also does not
contain fN−1 for a < N − 1. For a ¼ N − 1, we have

γN−1;N−1 ¼ −ð2eN−1 þ ðnN−1 þ 2ÞfN−1Þ ¼ −2e1 þ
XN−2

b¼2

y0bfb − ðN þ kÞfN−1 ðB12Þ

for some y0b. Therefore, we have
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KIab ¼ ϵIðσa · σbÞ ¼

8>>><>>>:
−2Q22 − δa;N−1ðN þ kÞQ21; if a ¼ b;

Q22; if b ¼ aþ 1;

Q22; if b ¼ a − 1;

0 otherwise:

¼ Q22ð−CabÞ − δa;N−1δb;N−1ðN þ kÞQ21: ðB13Þ

Therefore, in the presence of the ZgcdðN;kÞ one-form symmetry background, the cross term’s coefficients in (4.26) are

X
a

KIab
λa

gcdðN; kÞ ¼
1

gcdðN; kÞ
X
a

aðQ22ð−CabÞ − δa;N−1δb;N−1ðN þ kÞQ21Þ

¼
(
0; if b < N − 1;
Q22N−ðN−1ÞðNþkÞQ21

gcdðN;kÞ ; if b ¼ N − 1;
ðB14Þ

where we have used (4.21) for the particular weighted sum over Cartan matrix entries of SUðNÞ. Since both N and (N þ k)
divide gcdðN; kÞ, these coefficients are indeed integer.
Finally, we can compute the fractional shift of the instanton density,

1

2

X
a;b

Z
M5

KIabAI ∧
�
Fa∧Fbþ

λaλb
gcdðN;kÞ2B∧B

�
¼
Z
M5

�X
a;b

Q22

2
ð−CabÞAI ∧Fa∧Fb−

ðNþkÞQ21

2
AI ∧FN−1∧FN−1

�
þ
Z
M5

1

2gcdðN;kÞ2 ðQ22NðN−1Þ−Q21ðNþkÞðN−1Þ2ÞB∧B: ðB15Þ

For the last term, we define l ¼ N= gcdðN; kÞ; we can view the ZgcdðN;kÞ ⊂ ZN subgroup of the center of SUðNÞ being
generated by l mod N. Then

1

2 gcdðN; kÞ2 ðQ22NðN − 1Þ −Q21ðN þ kÞðN − 1Þ2Þ ¼ N − 1

2N
l2

�
Q22 −Q21ðN þ kÞN − 1

N

�
: ðB16Þ
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