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We argue for the quantum-gravitational inconsistency of certain 6D N ¼ ð1; 0Þ supergravity theories,
whose anomaly-free gauge algebra g and hypermultiplet spectrumM were observed by Raghuram et al. [J.
High Energy Phys. 07 (2021) 048] to be realizable only as part of a larger gauge sector ðg0 ⊃ g;M0 ⊃ MÞ in
F-theory. To detach any reference to a string theoretic method of construction, we utilize flavor symmetries
to provide compelling reasons why the vast majority of such ðg;MÞ theories are not compatible with
quantum gravity constraints, and how the “automatic enhancement” to ðg0;M0Þ remedies this. In the first
class of models, with g0 ¼ g ⊕ h, we show that there exists an unbroken flavor symmetry h acting on the
matter M, which, if ungauged, would violate the no-global-symmetries hypothesis. This argument also
applies to 1-form center symmetries, which govern the gauge group topology and massive states in
representations different from those of massless states. In a second class, we find that g is incompatible with
the flavor symmetry of certain supersymmetric strings that must exist by the completeness hypothesis.
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I. INTRODUCTION AND SUMMARY

Physical features of string compactifications are highly
constrained by geometric restrictions on the underlying
compactification space. One of the main insights from the
Swampland program [1] is the idea that, rather than
limitations of string model building, these restrictions
should reflect consistency conditions for coupling an
effective quantum field theory to gravity (see [2–4] for
reviews). To draw lessons about generic features of
quantum gravity, it is therefore paramount that we under-
stand the physical principles corresponding to these geo-
metric restrictions.
With gauge symmetries being a central building block of

the effective field theory framework, one important ques-
tion to address is the landscape of possible symmetry
groups. In the context of effective supergravity theories,
recent progress in this direction has been made in spacetime
dimensions d > 6 [5–10] by finding physical consistency
conditions that lead to the same restrictions as in known

string compactifications, such as bounds on the total gauge
rank as well as the allowed gauge algebras and their global
structures.
In 6D, the gauge dynamics of N ¼ ð1; 0Þ supergravity

theories is already heavily constrained by the cancellation
of chiral anomalies. Nevertheless, the landscape of string-
derived models, in particular, F-theory constructions [11–
14], appears to be much smaller compared to the vast set of
anomaly-free field theories [17–19]. Utilizing swampland
principles [7,20–27], we have since learned that, indeed,
most of such field theories are inconsistent when coupled to
quantum gravity. However, our knowledge about the
boundary between the swampland and landscape in the
context of 6D supergravity theories is still blurred when it
comes to the precise set of consistent gauge symmetries.
A recent proposal [28] dubbed the “automatic enhance-

ment conjecture” attempts to sharpen this boundary con-
siderably. This is based on the observation that, in
engineering certain gauge algebras g with matter M via
F-theory, the underlying geometry forces the appearance of
a “larger” symmetry g0 ⊃ g, whose matter spectrumM0⊃M
does not allow for a supersymmetric Higgsing of g0 to g. In
other words, it appears that F-theory can only realize ðg;MÞ
as a subsector of a larger gauge symmetry, even though all
gauge and gravitational anomalies are canceled [29]. This
motivated the conjecture [28] that, for such a pair of
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theories ðg0 ⊃ g;M0 ⊃ MÞ, where the larger ðg0;M0Þ can be
constructed in F-theory, the smaller ðg;MÞ theory belongs
to the swampland—the set of apparently consistent effec-
tive gravitational theories which cannot be UV completed.
This formulation makes explicit reference to an
F-theoretic method of construction, as the enhanced gauge
group g0 was found through explicit geometric engineering.
The geometric motivations obscure the physical “origin” of
ðg0;M0Þ apart from the nonexistence of a supersymmetric
Higgs transition ðg0;M0Þ → ðg;MÞ, and, in particular, do
not explain why the ðg;MÞ theory is inconsistent by itself.
The goal of this work is to shed light on the physical

arguments underlying the automatic enhancement
conjecture. While our analysis reveals no single, unifying
principle, two sets of arguments—related to flavor sym-
metries—emerge that lend credence to the conjecture in
different types of automatic enhancement observed in [28].
The first type of enhancement we seek to explain are

models where g0 ¼ g ⊕ h, with the matter M0 ¼ ⨁rx
0
r ×

ðRðrÞ
g ;RðrÞ

h Þ (for RðrÞ
f representations of f ¼ g; h) being

just a rearrangement of the original matter M ¼
⨁rðx0r dimRðrÞ

h Þ ×RðrÞ
g into bicharged representations.

In these instances, we show that h has the interpretation
of the subalgebra of the classical flavor symmetry ĥ of
ðg;MÞ for which the flavor-gauge, flavor-flavor, and flavor-
gravitational anomalies can be canceled by a generalized
Green-Schwarz (GS) mechanism [30,31] with the tensor
multiplets present in the theory. The characterization of h as
a subalgebra of the flavor symmetry implies in particular
that there is no Higgsing from ðg0;M0Þ to ðg;MÞ, since an
honest flavor symmetry of g only charges matter that is
already charged under g, which would then also break g if
given a vacuum expectation value (VEV). The automatic
enhancement to ðg0 ¼ g ⊕ h;M0 ≅ MÞ is then the result of
an equivalent formulation of the conjecture that needs no
reference to any string theory construction: If the flavor
symmetry of ðg;MÞ has a subalgebra h whose anomalies
can be canceled by an appropriate GS term, then, in a
consistent 6D supergravity model, h must also be gauged.
In particular, it implies that any potential sources of

symmetry breaking in the UV are entirely captured by
anomalies in the low-energy effective gauge theory.
Therefore, the absence of these anomalies implies that
the ðg;MÞ theory is inconsistent as an effective description
of quantum gravity, because it has an unbroken global
symmetry. To conform with the no-global-symmetries
hypothesis [32–34], this symmetry must hence be gauged
in quantum gravity. In Sec. II, we discuss this interpretation
in more detail and provide detailed examples. Moreover,
we also relate the global structure of the gauge group in
these cases, which arises in F-theory models “automati-
cally” in the form of the Mordell-Weil group [35–37], to an
automatic enhancement of 1-form center symmetries [38],
which in 6DN ¼ ð1; 0Þ theories have an anomaly [25] that

obstructs their gauging. As we point out in Sec. II D, the
cases in [28,39] where the gauge group associated with the
enhanced algebra g0 is automatically nonsimply connected
have no such obstruction. Hence, the automatic gauging of
the 1-form symmetry leading to the nonsimply connected
gauge group can be understood equivalently as an
incarnation of the no-global-symmetries hypothesis, now
for generalized global symmetries. In Sec. II E, we further
comment on the relationship of the aforementioned
obstructions to the validity of the “massless charge suffi-
ciency conjecture” [39] in 6D supergravity theories.
While these arguments provide a consistent interpreta-

tion of the automatic enhancement conjecture in the larger
web of quantum gravity constraints, this bottom-up per-
spective does not provide the means to rule out UV-
breaking mechanisms not captured by anomalies; the
observed enhancement is only a post factum confirmation
of the absence of such a breaking. Hence, this reformula-
tion, while revealing the intimate connection to the no-
global-symmetries hypothesis, does not constitute defini-
tive proof of the conjecture. Moreover, there are enhance-
ments ðg;MÞ → ðg0;M0Þ found in [28] that do not have an
interpretation as gauging a flavor symmetry of ðg;MÞ, and
thus would require a different set of arguments to explain.
As we argue, the key objects to formulating such

arguments are Bogomol'nyi-Prasad-Sommerfield (BPS)
strings. However, because the automatic enhancement
conjecture places a lower bound on the allowed gauge
symmetry, the methods of [7,23,27] to utilize the so-called
supergravity string—a type of BPS string present in all 6D
N ¼ ð1; 0Þ supergravity theories—are not immediately
applicable, as these place upper bounds. Instead, we find
that one must inspect strings specific to the model, whose
world sheet consistency then provides constraints equiv-
alent to the automatic enhancement conjecture. In 6DN ¼
ð1; 0Þ theories, such strings must exist by virtue of the
completeness hypothesis [34] as charged objects of 2-form
fields in tensor multiplets, which themselves are required to
cancel gauge anomalies via the Green-Schwarz mecha-
nism. Then, the consistency of the world sheet conformal
field theory (CFT) poses conditions on the spacetime gauge
dynamics beyond effective field theory considerations. In
particular, from the world sheet perspective, it is now the
spacetime symmetry g that plays the role of a global, or
flavor, symmetry. In this case, the specific type of strings
(with charge b) present in the supergravity theory can
constrain the symmetry algebra g, even if it is consistent
with gauge anomalies in the 6D bulk. From this perspec-
tive, the enhancement g → g ⊕ h observed in F-theory
constructions reflects the geometry’s “awareness” of these
constraints. It avoids the string of charge b with an
inconsistent flavor symmetry g by “pairing” it with a
spacetime gauge symmetry h, i.e.; it only allows instanton
strings of h with compatible flavor symmetry to have
charge b. In Sec. III, we exemplify this principle in two
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classes of models, where the constraining strings are strings
of 6D N ¼ ð1; 0Þ superconformal field theories (SCFTs)
with well-known flavor symmetries. In Sec. IV, we discuss
some open questions about the automatic enhancement
conjecture that needs further study of BPS strings of 6D
supergravity theories to elucidate.

II. AUTOMATIC ENHANCEMENT AS GAUGING
OF FLAVOR SYMMETRIES

In this section, we focus on the bottom-up interpretation
of the automatic enhancement conjecture as quantum
gravity avoiding unbroken global symmetries. First, we
verify for enhancements ðg;MÞ to ðg0 ¼ g ⊕ h;M0 ≅ MÞ,
with no hypermultiplets charged solely under h, that h is the
subalgebra of the flavor symmetry ĥ of ðg;MÞ for which the
flavor-gauge, flavor-flavor (or ’t Hooft), and flavor-
gravitational anomalies can be canceled by a generalized
Green-Schwarz mechanism. We then use the same perspec-
tive to explain the global gauge group topology as quantum
gravity avoiding an unbroken 1-form global symmetry.

A. Review of 6D gauge anomalies

To begin with, we review the gauge and gravitational
anomalies of 6D N ¼ ð1; 0Þ gauge and supergravity theo-
ries, which also explains our notation. For a pedagogical
discussion, see, e.g., [40]. We are not concerned here with
global anomalies; for more on such anomalies, see [41–43].
Six-dimensional N ¼ ð1; 0Þ supergravity theories

famously have an associated signature-ð1; TÞ unimodular
lattice Γ with pairing Ω that corresponds to the charge
lattice of one self-dual and T anti-self-dual 2-form fields
(or, dually, with the BPS strings charged under these
2-forms) in the supergravity and tensor multiplets, respec-
tively. The VEVs of the scalars in these multiplets are
parametrized by a vector J ∈ Γ ⊗ R of unit length under
Ω, which in turn defines a positivity cone Γþ given by the
requirement Ωðv;J Þ≡ v · J ≥ 0 for any v ∈ Γþ. There is
a model-specific vector a ∈ Γ called the gravitational
anomaly coefficient. To complete the data for a (1,0)
supergravity theory, we have to specify the gauge algebra,

g ¼ ⨁
i
gi ⊕ ⨁

α
uð1Þα; ð2:1Þ

and hypermultiplet spectrum

M ¼ ⨁
r
xr ×RðrÞ

g ≡⨁
r
xr × ðRðrÞ

g1 ;…;RðrÞ
gi ;…Þ

qðrÞ
1
;…;qðrÞα ;…

:

ð2:2Þ

Here, the irreducible representations (irreps) RðrÞ
g with

multiplicity xr are distinguished by irreps RðrÞ
gi under each

non-Abelian gauge factor gi and by charges q
ðrÞ
α under each

Abelian uð1Þα factor [44].

We associate with each non-Abelian factor gi an
anomaly coefficient bi ∈ Γþ and to each pair of Abelian
gauge factors an anomaly coefficient bαβ ¼ bβα that sat-
isfies 1

2
bαα, bαβ ∈ Γ, and for which J · bαβ is a positive

definite matrix [45]. A tensor multiplet with charge b that is
an anomaly coefficient of a gauge factor gi is said to be
“paired” with the corresponding vector multiplet [46].
Equivalently, this means that the one-instanton configura-
tion of gi, which is stringlike in 6D, has charge b.
These anomaly coefficients encode the contributions to

the total anomaly polynomial Itotal8 ¼ I1−loop8 þ IGS8 from a
generalized version of the Green-Schwarz mechanism
[30,31] via the inclusion of tree-level diagrams mediated
by the (anti-)self-dual 2-form fields:

IGS8 ¼ 1

32
ΩðX4; X4Þ≡ 1

32
X4 · X4; ð2:3Þ

with

X4 ¼
1

2
atrR2 þ 2

X
i

bi
λi
trF2

i þ 2
X
α;β

bαβFαFβ; ð2:4Þ

where Fα, Fi are the field strengths of the (non-)Abelian
gauge symmetries, R is the spacetime curvature 2-form,
and tr denotes trace in the fundamental representation. The
λi are normalization constants associated with the simple
non-Abelian Lie algebra given by λi ¼ 2c∨i =Agi with c

∨
i the

dual Coxeter number. Meanwhile, the one-loop part I1−loop8

receives contributions from the gravity, tensor, vector, and
hypermultiplets. Their explicit expressions, as well as the
resulting conditions for anomaly cancellation Itotal8 ¼ 0 and
the values for λi are summarized in Appendix A.

B. Cancellation of flavor anomalies

From the bottom-up perspective, it is natural to think
about a supergravity theory as coupling an effective 6D
N ¼ ð1; 0Þ field theory with gauge algebra g and massless
matterM to gravity in a specific way. For the ðg;MÞ gauge
theory, there is an associated classical flavor symmetry ĥ
that rotates M [47]. This reorganizes the matter (2.2) as

M ¼ ⨁
r
xr ×RðrÞ

g ≅ ⨁
r
RðrÞ

g⊕ĥ
¼ ⨁

r
ðRðrÞ

g ;RðrÞ
ĥ
Þ; ð2:5Þ

with xr ¼ dimRðrÞ
ĥ
. We are interested in the cancellation of

flavor anomalies, which allows for gauging a part h ⊂ ĥ of
the flavor symmetry, i.e., all flavor-gauge, flavor-flavor,
and flavor-gravitational anomalies associated with h. To
cancel the one-loop contributions, one must introduce
appropriate Green-Schwarz terms, which structurally take
the same form as in Eq. (2.4), but now include the field
strengths of h. In particular, this requires the introduction of
anomaly coefficients bI, bαβ̂, and bα̂ β̂ for the flavor factors
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h ¼ ⨁IhI ⊕ ⨁α̂uð1Þα̂; in terms of the effective field
theory action, this requires a coupling of the 2-form field
dual to bI to the instanton density of h.
In the context of 6D SCFTs, such a gauging procedure

(of non-Abelian flavor factors) can be used to construct
new SCFTs out of existing ones. However, this always
introduces a new anomaly coefficient bI that is linearly
independent of those already present. In other words, the
lattice of string/tensor charges is extended in these gaug-
ings. On the other hand, the automatic enhancement
conjecture describes a change of gauge symmetry without
altering the tensors. In other words, the required Green-
Schwarz terms must be supplied by the existing tensors of
the supergravity model prior to enhancement. Moreover,
we demand that this is possible without the introduction of
additional charged hypermultiplets that are charged under
h. This retains the interpretation of h as “just the flavor
symmetry” of the gauge sector ðg;MÞ, and, furthermore,
prevents h from being Higgsed without also breaking g. In
short, we would like to determine the subalgebra h ⊂ ĥ for
which all one-loop anomalies induced by the hypermul-
tiplet spectrum (2.5) are canceled by the h-vector multiplets
and Green-Schwarz terms built out of tensors already
present in the ðg;MÞ theory.
If this is possible, then, from a bottom-up perspective,

there are no obstructions to turning on a “background
gauge field” for the flavor symmetry h—after all, the
anomalies precisely measure such obstructions that are
detectable in the effective field theory description.
However, in a gravitational theory, there are no background
gauge fields; in 6D N ¼ ð1; 0Þ theories, this would require
the gauge coupling g2I ∝ ðJ · bIÞ−1 to vanish, which gives
an infinite tension J · bI to the string dual to bI. Therefore,
the background field for h is allowed to fluctuate (note that
this requires also the cancellation of what would be ’t Hooft
anomalies for h if treated as a global symmetry), and, in
particular, gauges h, thus avoiding an unobstructed global
symmetry. We have verified for all relevant examples
discussed in [28] that the observed automatic enhancement
is precisely such an automatic gauging of an unobstructed
flavor symmetry h.
To perform this verification, one would, ideally, consider

every possible subalgebra embedding h ¼ ⨁IhI ⊕
⨁α̂uð1Þα̂ ⊂ ĥ and consider, for each of these cases, if
the associated flavor-gauge, flavor-flavor, and flavor-
gravitational anomalies can be canceled by assigning
anomaly coefficients bI; bαβ̂; bα̂ β̂ ∈ Γ. However, this
approach can become quite computationally demanding
when the flavor symmetry is large and thus has a very large
number of subalgebras. We propose here an alternate
approach that allows for a more direct computation of
the maximal gaugeable subalgebra of ĥ.
We first consider gauging an arbitrary uð1Þ subalgebra of

ĥ and then consider the constraints on the charges of the

resulting matter spectrum following from the 6D anomaly
cancellation conditions (A7). In practice, this is done by
augmenting the gauge algebra g (with the anomaly coef-
ficients bi, bαβ) with an additional uð1Þ factor and con-
sidering all possible assignments of uð1Þ charges for irreps
RðrÞ

g of the original matterM and anomaly coefficient buð1Þ
that solve the anomaly cancellation conditions.
Crucially, in solving for anomaly-consistent spectra, we

allow for a potentially negative number of hypermultiplets
charged only under the new uð1Þ gauge factor. The
presence of a negative number of such hypermultiplets
signals that the newly introduced uð1Þ must be embedded
in a larger non-Abelian subalgebra of ĥ in order to be
consistent.
More precisely, imagine the uð1Þ arising from an adjoint

Higgsing of h, in which hypermultiplets charged solely
under h generically decompose into charged singlets. These
are counted against those hypermultiplets that are “eaten”
by the vectors in the Higgs transition. A formally negative
number of such charged singlets in the Higgsed phase
therefore signals that there were not enough hypermultip-
lets to begin with to facilitate this Higgsing of h. The exact
(negative) number of charged singlets in the spectrum
restricts the simple non-Abelian subalgebras h of ĥ into
which the uð1Þ factor can consistently be embedded. One
can then verify whether this candidate algebra is anomaly-
free with the anomaly coefficient bh ∝ buð1Þ.
When solving the anomaly cancellation conditions for

g ⊕ uð1Þ, we allow for the possibility that each hyper-

multiplet in a given representationRðrÞ
g has a different uð1Þ

charge to accommodate any possible embedding into a
larger algebra. However, we only consider (nonpositive
multiplicities of) singlets of charge 1 and 2 under the
additional uð1Þ factor. The reason for this is that, although
adjoint Higgsings of simple non-Abelian factors can result
in singlets of other charges, higher-charge representations
can always be “exchanged” via anomaly equivalences until
only charges 1 and 2 remain, and the number of uncharged
singlets will always increase in such an exchange.
Specifically, the following anomaly equivalence holds [48]:

1q ↔ −
q2ðq2 − 4Þ

3
× 11 þ

q2ðq2 − 1Þ
12

× 12

þ
�
q4

4
−
5q2

4
þ 1

�
× 10: ð2:6Þ

We see that a single charge-q singlet is equivalent under
anomalies to a negative number of charge-1 singlets along
with positive numbers of charge-2 and charge-0 singlets.
As we are only using the charged singlets as a computa-
tional tool to identify that the uð1Þ factor is embedded in a
gauged non-Abelian algebra, this allows us to reduce the
scope of the computation. Furthermore, we can reduce the
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list of possible charges of other hypermultiplets by con-
sidering analogous anomaly equivalences for uð1Þ-charged
non-Abelian representations other than singlets. Including
higher uð1Þ-charged representations will always reduce the
number of uncharged singlets; because each model ðg;MÞ
we consider has only a finite number of uncharged singlets,
there is a limit to the magnitude of the uð1Þ charges under
the new uð1Þ factor before the number of uncharged
singlets would be forced to be negative.
We stress that this procedure is merely a computational

simplification to find the gaugeable subalgebra h. We have
not investigated potential exceptions to this algorithm,
since in all cases where we utilize it, we find a consistent
subalgebra h ⊂ ĥ, which furthermore agrees with the
instances of automatic enhancement observed [28]. As
we will see in Sec. II C 2, the algorithm might lead to an
intermediate uð1Þ spectrum that does not embed into the
full flavor ĥ, but, in addition, also to a spectrum compatible
with the Cartan charges of a subalgebra h ⊂ ĥ that
agrees with the automatic enhancement. Since the alter-
native spectrum has a negative number of some singlets, it
is inconsistent by itself anyway, so it does not pose a
violation of the automatic enhancement conjecture
per se [49].
In all examples we have examined, we only find one

unique subalgebra h ⊂ ĥ, which reflects the fact that in all
models studied in [28], there is a unique automatic
enhancement. However, it is in principle possible that
there exist multiple (potentially identical) subalgebras hl
of ĥ that can be consistently gauged with different anomaly
coefficients bl, all of which would be detectable by the
algorithm above. By definition, there would not be
any supersymmetric Higgs transitions that flow from one
case to another, so, from our bottom-up perspective, the
gauging of any hl with bl would be a consistent model. If
such cases exist, then this must happen for T ≥ 1, in
which case it would be interesting to investigate, from an
F-theory perspective, how the multiple allowed enhance-
ments may be realized. Note that there can be additional
consistency constraints for T ≥ 1 such as those that we
discuss in Sec. III, which could potentially exclude
these cases.

C. Examples

1. Large SUðNÞ gauge group with T = 0 and b = 1

To illustrate the procedure, we will demonstrate how it is
carried out for the enhancements of large suðNÞ gauge
algebras with T ¼ 0 and b ¼ 1; these appear in Sec. 4.3 of
[28]. We will begin with the case N ¼ 22, where the flavor
symmetry is small enough that we can carry out the
exhaustive computation mentioned in Sec. II B before
addressing the same example and all subsequent ones
using the shortcut approach described there.

For the gauge symmetry suð22Þ and T ¼ 0, we consider
the hypermultiplet spectrum

x1¼ 19; x22¼ 2; x231¼ 3; x483 ¼ 0; ð2:7Þ

which solves the anomaly cancellation conditions with
anomaly coefficient b ¼ 1. Here, xR denotes the multi-
plicity of the representationR. The full flavor symmetry of
this model is ĥ ¼ uð2Þ ⊕ uð3Þ associated with the two
fundamental and three antisymmetric representations. We
thus want to find the subalgebras of uð2Þ ⊕ uð3Þ which
can be gauged.
First, we note that the suð2Þ ⊂ uð2Þ associated with the

fundamental flavors is nonanomalous; to see this, we look
for solutions to the anomaly cancellation conditions (A7)
for an suð22Þ ⊕ suð2Þ algebra with T ¼ 0 and bsuð22Þ ¼ 1

that only have suð22Þ fundamentals charged under the
additional suð2Þ factor. The unique solution is

xð1;1Þ ¼ 22; xð22;1Þ ¼ 0; xð231;1Þ ¼ 3;

xð483;1Þ ¼ 0; xð22;2Þ ¼ 1; ð2:8Þ

with bsuð2Þ ¼ 1. Thus, the suð2Þ fundamental flavor
symmetry can be gauged.
Next, we can consider gauging a subalgebra of the suð3Þ

antisymmetric flavor symmetry. Similar to above, we can
look for solutions to the anomaly cancellation conditions in
which only the suð22Þ antisymmetric representations are
allowed to have nontrivial charge under the additional
gauge factor; we find that there are no valid solutions for
any subalgebra of the suð3Þ. To see how this occurs,
consider the case of suð22Þ ⊕ suð3Þ. The solutions to the
anomaly cancellation equations take the form

xð1;1Þ ¼ 5b2suð3Þ −
687

20
bsuð3Þ þ 19;

xð22;1Þ ¼ 2;

xð231;1Þ ¼ 3 −
3

20
bsuð3Þ;

xð1;3Þ ¼ bsuð3Þ

�
309

20
− 3bsuð3Þ

�
;

xð483;1Þ ¼ 0;

xð1;8Þ ¼
1

2
ðbsuð3Þ − 1Þðbsuð3Þ − 1Þ;

xð231;3Þ ¼
bsuð3Þ
20

: ð2:9Þ

Requiring that this suð3Þ is a subgroup of the flavor uð3Þ
of the suð22Þ antisymmetrics sets xð231;3Þ ¼ 1 and
xð1;3Þ ¼ 0, which cannot be solved simultaneously; thus,
the suð3Þ cannot be gauged. Similar results hold for all
subgroups of the suð3Þ. We then proceed to check
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anomalies for the two uð1Þ factors; the fundamental 22 is
charged only under the uð1Þ ⊂ uð2Þ, while the antisym-
metric 231 is charged only under the second uð1Þ ⊂ uð3Þ.
Again, we find that the anomaly conditions cannot be
solved without the introduction of further charged hyper-
multiplets. To rule out potential linear combinations of
Cartan uð1Þ’s that can be gauged, we must then also
consider linear combinations of uð1Þ charges for the
bifundamental and antisymmetric hypermultiplets, which
could result in an anomaly-free spectrum. Since this
procedure is precisely the starting point of the alternate
approach that we will discuss momentarily, we simply state
that there are no such uð1Þ’s in ĥ ¼ uð2Þ ⊕ uð3Þ, and so
we conclude that the suð2Þ fundamental flavor symmetry is
the unique subalgebra of the full flavor symmetry that can
be gauged without altering the tensor or hypermultiplet
spectrum; indeed, Eq. (2.8) is precisely the automatic
enhancement identified in [28].
Let us now see how wewould reach this same conclusion

by instead considering arbitrary uð1Þ subalgebras of the
flavor symmetry. We solve the system of equations (A7) for
gauge algebra suð22Þ ⊕ uð1Þ in terms of the multiplicities
of the representations 10, 22nþ22f1 , 22nþ22f2 , 2312nþ22a1 ,
2312nþ22a2 , 2312nþ22a3 , 4830, 122, 144, where we leave the
integers −10 < n ≤ 11, fi, and ai unspecified. We have
chosen to normalize the uð1Þ charges such that all charges
will be integral regardless of the presence or absence of
quotients in the global structure of the gauge group; as a
result, two hypermultiplets transforming in the same
suð22Þ representation must have uð1Þ charges that differ
by a multiple of 22. The variable n allows for offsets related
to these possible quotients, while the variables fi, ai allow
the various hypermultiplets to have distinct charges. The
offset of 2n for the antisymmetrics is required for con-
sistency with the offset n of the fundamentals. We then look
for solutions to the anomaly cancellation equations for
which x122 ; x144 ≤ 0, all other multiplicities are non-
negative, and all multiplicities are integral. As discussed
in Sec. II B, we can use the number of uncharged singlets in
Eq. (2.7) to constrain the magnitudes of fi, ai in our search
for solutions. The resulting spectra with nontrivial uð1Þ are
all of the form

x10 ¼ 22; x2211m ¼ x22−11m ¼ 1; x2310 ¼ 3; x122m ¼−2

ð2:10Þ

for m ∈ Z, with all other multiplicities zero. Here, we see
the negative number of charged singlets indicating that the
uð1Þ factor we have gauged must be embedded in a gauged
non-Abelian subalgebra of ĥ in order to be anomaly-free.
Specifically, there are two charged singlets in the branching
rule of the suð2Þ adjoint to its Cartan uð1Þ subalgebra, and
so this is an indicator that the appropriate anomaly-free
subalgebra of ĥ is in fact suð2Þ; the fact that the suð22Þ

fundamentals are charged under this uð1Þ while the
antisymmetrics are not indicates that this is the fundamental
flavor suð2Þ, and the appropriate anomaly-free enhance-
ment is the one given in Eq. (2.8). As mentioned above, this
enhancement is precisely the one found in [28], and so we
see that the arguments here reproduce the results of the
original automatic enhancement conjecture.
For the remaining examples, we will use only the

shortcut approach in order to reduce the necessary compu-
tations. Next we consider the model with gauge symmetry
suð20Þ, T ¼ 0, and hypermultiplet spectrum

x1 ¼ 23; x20 ¼ 4; x190 ¼ 3; x399 ¼ 0; ð2:11Þ

which solves the anomaly cancellation conditions with
b ¼ 1. The flavor symmetry of this model is uð4Þ ⊕ uð3Þ.
We add an additional uð1Þ gauge factor and solve the
anomaly cancellation conditions (A7) with bsuð20Þ ¼ 1,
allowing for potentially distinct uð1Þ charges for each
fundamental and antisymmetric hypermultiplet. The spec-
tra with nontrivial uð1Þ and satisfying the requisite pos-
itivity conditions are all of the form

x10 ¼ 25; x2010m ¼ x20−10m ¼ 2; x1900 ¼ 3; x120m ¼−2

ð2:12Þ

for m ∈ Z. As before, the negative number of charged
singlets along with the charge assignments indicate that the
appropriate anomaly-free subalgebra of ĥ is the suð2Þ
fundamental flavor symmetry algebra, so the enhancement
is to suð20Þ ⊕ suð2Þ with spectrum

xð1;1Þ ¼ 25; xð20;1Þ ¼ 0; xð190;1Þ ¼ 3;

xð399;1Þ ¼ 0; xð20;2Þ ¼ 2: ð2:13Þ

This again matches the enhancement found in [28].
Continuing with the cases discussed in Sec. 4.3 of [28],

we consider the model with gauge symmetry suð19Þ,
T ¼ 0, and hypermultiplet spectrum

x1 ¼ 26; x19 ¼ 5; x171 ¼ 3; x360 ¼ 0; ð2:14Þ

which solves the anomaly cancellation conditions with
b ¼ 1. The flavor symmetry of this model is uð5Þ ⊕ uð3Þ.
Adding an additional uð1Þ gauge factor and solving the
anomaly cancellation conditions (A7) with bsuð19Þ ¼ 1, we
find that all spectra with nontrivial uð1Þ and satisfying the
requisite positivity conditions are of the form

x10 ¼ 25; x199m ¼ 5; x171−1m ¼ 3 ð2:15Þ

for m ∈ Z. We see in this case that there is no negative
number of charged singlets, and so this uð1Þ is not
embedded in a non-Abelian anomaly-free subalgebra of
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the flavor symmetry. Furthermore, both the fundamental
and antisymmetric representations are charged under this
uð1Þ; this uð1Þ is apparently a combination of uð1Þ’s from
within both factors of the uð5Þ ⊕ uð3Þ flavor symmetry.
We can carry out the process again, adding another uð1Þ
factor to verify that this enhancement is maximal, and we
find that indeed it is. This reproduces the enhancement
of [28].
Finally, we consider the model with gauge symmetry

suð18Þ, T ¼ 0, and hypermultiplet spectrum

x1 ¼ 30; x18 ¼ 6; x153 ¼ 3; x323 ¼ 0; ð2:16Þ

which solves the anomaly cancellation conditions with
b ¼ 1. The flavor symmetry of this model is uð6Þ ⊕ uð3Þ.
We add an additional uð1Þ gauge factor and solve the
anomaly cancellation conditions (A7) with bsuð18Þ ¼ 1, the
spectra with nontrivial uð1Þ, and satisfying the requisite
positivity conditions are all of the form

x10 ¼ 30; x189m ¼ x18−9m ¼ 3; x1530 ¼ 3 ð2:17Þ

for m ∈ Z. We again see that the uð1Þ is maximal in this
case, but this time it is embedded solely in the uð6Þ
fundamental flavor symmetry. Adding another uð1Þ factor
and carrying out the process again, we can verify that this
enhancement is indeed maximal, and it again matches the
enhancement of [28].

2. suð3Þ gauge algebra with T = 0

In the case of g ¼ suð3Þ, T ¼ 0, we encounter our first
example where the shortcut approach indicates that there
are potentially multiple distinct maximal anomaly-free
subalgebras of ĥ. For bsuð3Þ ¼ 6, there is an enhancement
of the gauge algebra by uð1Þ2, as expected from [28]. The
potential issue appears when bsuð3Þ ¼ 7, with M ¼ 42 × 3,
which was seen in [28] to exhibit enhancement to gauge
group G0 ¼ ½SUð3Þ × SUð3Þ�=Z3 (see Sec. II D for further
discussion of the global structure of the gauge group). If we
solve the anomaly cancellation conditions for suð3Þ ⊕
uð1Þ and impose the relevant constraints, we find four types
of spectra with nontrivial uð1Þ (after removing cases that
amount to rescaling the charges):

buð1Þ ¼ 12∶ x10 ¼ 40; x31 ¼ 28; x3−2 ¼ 14; x80 ¼ 15; x13 ¼ −4;

buð1Þ ¼ 36∶
�
x10 ¼ 42; x30 ¼ x33 ¼ x3−3 ¼ 14; x80 ¼ 15;

x13 ¼ −4; x16 ¼ −2;

buð1Þ ¼ 54∶ x10 ¼ 54; x33 ¼ x3−3 ¼ 21; x80 ¼ 15; x13 ¼ −18;

buð1Þ ¼ 54∶
�
x10 ¼ 45; x36 ¼ 1; x33 ¼ 18; x30 ¼ 3; x3−3 ¼ 20;

x80 ¼ 15; x13 ¼ −6; x16 ¼ −3:
ð2:18Þ

The first two spectra correspond to different uð1Þ sub-
algebras of h ¼ suð3Þ and match with the expected
suð3Þ ⊕ suð3Þ multiplicities of

xð1;1Þ ¼ 43; xð8;1Þ ¼ 15; xð3;3Þ ¼ 14; ð2:19Þ
with anomaly coefficientbh ¼ 2. Themultiplicities anduð1Þ
charges of the flavor-suð3Þ fundamentals in these cases
correspond to the branching rules of the bifundamental
representation for these two embeddings, while the negative
numbers of charged singlets correspond exactly to the
numbers expected from the branching rules for the adjoint
representation. The third and fourth spectra in Eq. (2.18),
however, cannot correspond to an embedding of the uð1Þ
factor into an suð3Þ, and thus potentially indicate the
existence of a separate maximal anomaly-free subgroup of
the flavor symmetry group. The final spectrum can immedi-
ately be ruled out from the distribution of charges of its suð3Þ
fundamental representations, while the third spectrum
requiresmore attention. In order to determine if this spectrum

actually admits an embedding into a larger algebra, we must
explicitly check the other possible non-Abelian subalgebras
of the uð42Þ flavor symmetry. Note that the enhancement
cannot be by multiple non-Abelian factors, as if both factors
had nontrivial anomaly coefficients b, then there would be a
nonzero number of hypermultiplets charged under the
bifundamental representation for these two factors, which
cannot be the case for a subalgebra of a flavor symmetry.
Carrying out this explicit check, we find that the third
spectrum in Eq. (2.18) does not correspond to an actual
maximal subalgebra, and suð3Þ is the unique maximal
subalgebra of the flavor symmetry that can be gauged.
This issue does not arise for bsuð3Þ ¼ 8; in this case, only

the expected spectra corresponding to the enhanced gauge
group G0 ¼ ½SUð3Þ × SUð3Þ�=Z3 found in [28] appear.

3. Other cases

In addition to the examples worked out here, we have
also checked all of the relevant enhancements from
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Secs. 4.2 and 4.4 [50] of [28] and again find agreement with
the enhancements presented there. These include cases
where T ¼ 1, which, as mentioned in Sec. II B, could
potentially exhibit multiple allowable enhancements.
Nevertheless, we again only find a unique gaugeable
subalgebra h ⊂ ĥ in all of these cases.

D. Gauge group topology from gauged 1-form
symmetries

Another observation based on F-theory models, named
the massless charge sufficiency conjecture [28,39], is that
the absence of massless hypermultiplets transforming non-
trivially under Z—a subgroup of the center ZðG̃Þ of the
simply connected cover G̃ for the non-Abelian gauge
algebra g—automatically “enhances” the gauge group to
G ¼ G̃=Z. The description as an enhancement becomes
literal if one interprets the nonsimply connected gauge
group as the result of having gauged a Z 1-form global
symmetry of the g gauge theory [38]. Then, cases that
satisfy the massless charge sufficiency conjecture can be
explained similarly as above, namely, as quantum gravity
gauging an anomaly-free global symmetry.
The anomaly in this case is a mixed anomaly between the

1-form center symmetry and the large gauge transforma-
tions of the (anti-)self-dual tensors originating in the Green-
Schwarz term in the effective action [25], which can be
quantified as follows. Let the gauge algebra g ¼ ⨁

i
gi have

the simply connected cover G̃ ¼ Q
i G̃i with center ZðG̃Þ ¼Q

i ZðG̃iÞ ≅
Q

iZni [51]. Then, there is an obstruction to
turning on a background field for—and, therefore, also to
gauging—a subgroup Z ¼ Zm ⊂ ZðG̃Þ generated by
ðkiÞ ∈

Q
iZni , if there exists a tensor with charge vector

b for which

X
i

b · biαik2i ∉ Z: ð2:20Þ

This is a nontrivial constraint, since the numbers αi
associated with each gauge factor gi with anomaly coef-
ficient bi are in general fractional; for gi ¼ suðniÞ, we have
αi ¼ ni−1

2ni
[52] (see [53] for values for other Lie algebras).

As an example, consider a T ¼ 0 theory containing a
g ¼ suð2Þ gauge sector with anomaly coefficient bg ¼ 12.
This is free of (0-form) gauge symmetries with only adjoint
hypermultiplets, which are invariant under the center
Z ¼ Z2. For any other tensor with charge b, the anomaly
above, b · bgαg ¼ 3b ∈ Z, is always trivial. Assuming that
there are no other obstructions to turning on a Z 1-form
symmetry background, it would constitute a global sym-
metry, which must be gauged in a gravitational theory. This
gauging leads to an SOð3Þ gauge group, which is also
reflected in the geometry of the F-theory realization [28,39].
Another T ¼ 0 example is a g ¼ suð24Þ gauge algebra with

bg ¼ 1, which has 2-index antisymmetric hypermultiplets.
This preserves a Z2 ⊂ Z24 ¼ ZðG̃Þ, which is generated by
k ¼ 12 mod 24 ∈ Z24. Since αgk2 ¼ 23

48
122 ¼ 69 ∈ Z, this

center subgroup is also anomaly-free; again, the correspond-
ing 1-form symmetry is automatically gauged in F-theory
[54] in the gauge group G ¼ SUð24Þ=Z2. Moreover, the
logic also applies to automatic enhancements g0 ¼ g ⊕ h
discussed above, where there is a resulting nontrivial global
group structure G0 ¼ ½G̃ × H̃�=Z involving the enhanced
flavor symmetry H̃. From the perspective of the original g
gauge theory, this nontrivial global structure arises from aZ-
twisted gauge bundle that is compensated by a corresponding
Z-twist in the flavor bundle (see, e.g., [55–58]). In particular,
it means that there is the option to turn on a background 1-
formZ ⊂ ZðG̃Þ gauge field that is “locked” to an analogous
background for the flavor symmetry. In 6D N ¼ ð1; 0Þ
theories, such a background can have a similar obstruction as
above [25]; since h is gauged through automatic enhance-
ment, this anomaly boils down to including the anomaly
coefficient bh in the sum in Eq. (2.20). The model discussed
in Sec. II C 2 provides an example of this sort. There, the
enhanced gauge algebra is g0 ¼ suð3Þg ⊕ suð3Þh, with
bg ¼ 7 and bh ¼ 2, and the hypermultiplet spectrum con-
tains only bifundamental matter, so a diagonal Z ¼ Z3

generated by the ðkg; khÞ ¼ ð1; 1Þ ∈ Z3 × Z3 ¼ ZðSUð3Þ ×
SUð3ÞÞ center is left unbroken. Since this is a T ¼ 0 model,
the only constraint comes from the self-dual tensor:
αsuð3Þðbgk2g þ bhk2hÞ ¼ 1

3
ð7þ 2Þ ∈ Z. So there is indeed

no obstruction for the Z 1-form symmetry, whose gauging
leads to the gauge group G0 ¼ ½SUð3Þ × SUð3Þ�=Z3.

E. Comment on the massless
charge sufficiency conjecture

Lastly, let us briefly comment on the exceptions to the
massless charge sufficiency conjecture discussed in [39],
that is, cases where a simple gauge sector g has no massless
nonadjoint representations, yet there is no nontrivial global
gauge group, i.e., G ¼ G̃. These fall into two categories,
namely, either when g is non-Higgsable or when it is an
N ¼ ð1; 1Þ gauge sector (i.e., its anomaly coefficient
satisfies bg · bg ¼ bg · a ¼ 0), which is coupled to an N ¼
ð1; 0Þ supergravity system.
As stand-alone gauge theories, i.e., when decoupled

from the rest, these indeed do not have the anomaly (2.20)
that would obstruct the center 1-form symmetry from being
gauged; for the non-Higgsable clusters, this was discussed
in [25], and for the N ¼ ð1; 1Þ sectors, it follows from the
absence of a Green-Schwarz term due to the properties of
bg. In F-theory, it turns out that the local geometries
describing such gauge theories do exhibit Mordell-Weil
torsion reflecting an unbroken 1-form center symmetry
[35,36,59]. For the non-Higgsable theories, whose 1-form
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symmetries were first analyzed in [60], we refer again to
[25] for the detailed relationship between Mordell-Weil
torsion and absence of the anomaly (2.20). For the
(1,1) sectors, the local base geometry is simply T2 × C,
where the torus is the curve associated with the anomaly
coefficient bg. Since the axiodilaton is constant along the
T2, the elliptic fibration only changes nontrivially in the C
direction, where there is a (noncompact) K3 surface with
one singular fiber corresponding to the gauge algebra g;
equivalently, this is a trivial T2 reduction of an 8D N ¼ 1
F-theory model with a g gauge symmetry. The 8D gauge
theory has an unbroken ZðG̃Þ 1-form center symmetry [59]
(see also [60,61]), which therefore also survives after a
trivial T2 reduction. Geometrically, it is reflected in the
Mordell-Weil torsion preserved locally around the singular
fiber in C, which extends trivially to Mordell-Weil torsion
over C × T2.
We therefore see that the massless charge sufficiency

conjecture does—if extended to nongravitational theories
—apply to the pure non-Higgsable clusters and (1,1) gauge
sectors: In the absence of massless hypermultiplets that
break the 1-form center symmetry, the latter constitutes a
global symmetry of the gauge theory. From this perspec-
tive, it is clear that the violation of the conjecture, at least in
the models considered in [39], must arise from coupling to
gravity. Indeed, this can be easily understood from the
mixed 1-form anomaly. Namely, in these examples, there
always exists at least one other dynamical tensor with
charge b, such that Eq. (2.20) is not an integer. For the
simplest gravitational models containing a non-Higgsable
cluster corresponding to F-theory on Hirzebruch surfaces
Fn, the tensor dual to the fibers of the ruling on Fn induces
the anomaly. Likewise, the simplest models with (1,1)
sectors have T ¼ 9 corresponding to F-theory on a rational
elliptic dP9 surface. While the (1,1) sectors live on the
generic elliptic fibers of this surface, they are intersected by
the sections of the fibration, which give rise to independent
tensors whose large gauge transformations have a nontrivial
anomaly (2.20). One may wonder how these exceptions to
the massless charge sufficiency conjecture satisfy the
completeness hypothesis. Clearly, since the gauge group
is G̃ rather than G̃=Z, there must be massive states
transforming nontrivially under Z. As elaborated in [25],
these states are precisely provided by the excitations of the
BPS strings that are dual to the tensor multiplets with a
nontrivial anomaly (2.20).
We have not checked other examples apart from these

“simplest” gravitational models that violate the massless
charge sufficiency conjecture. However, it is suggestive that
such models must always contain tensor multiplets that
give rise to the anomaly (2.20) by virtue of the necessary
unimodularity of the tensor charge lattice. It would be
interesting to attempt such a proof, at least geometrically
for models constructable in F-theory.

III. AUTOMATIC ENHANCEMENT ENFORCED
BY BPS STRINGS

We have seen that a large class of automatic enhance-
ments is consistent with the gauging of an anomaly-free
subalgebra h of the flavor symmetry of a g gauge theory.
However, the absence of anomalies is a necessary but not
sufficient condition for the appearance of the additional
gauge sector h. That is, these arguments do not explain why
the absence of additional gauge sectors would be incon-
sistent. Moreover, there are cases with hypermultiplets
charged just under h, although not enough to allow for a
supersymmetric Higgsing; these cases do not allow for an
interpretation of h as a flavor symmetry.
In this section, we analyze two classes of T ¼ 1 models

without non-Higgsable clusters that exhibit automatic
enhancements of this sort. In these models, we can argue
physically why certain gauge algebras g with anomaly
coefficient bg satisfying bg · b1 ¼ 1 are inconsistent, where
b1 is the charge of the (unpaired) anti-self-dual tensor that
necessarily has b1 · b1 ¼ −1 or −2. The key ingredient is—
by the completeness hypothesis—the existence of a
dynamical string charged under b1. Under some mild
assumptions, these strings can be identified with the
E-string and the M-string [the string of an N ¼ ð2; 0ÞA1

SCFT] for b1 · b1 ¼ −1 and b1 · b1 ¼ −2, respectively.
Then, the inconsistency of models that are observed to
automatically enhance is an incompatibility of the gauge
symmetry g with the flavor symmetry of these SCFT
strings.

A. Automatic enhancement enforced by the E-string

Let us first consider T ¼ 1 models with tensor pairing

Ω ¼
�
0 1

1 −1

�
; ð3:1Þ

where the basis is chosen such that the positivity cone is
spanned by (1,0) and (0,1). The gravitational anomaly
coefficient is a ¼ ð−3;−2Þ. In F-theory, such models are
realized with the Hirzebruch surface F1 as the base
manifold.
With such a tensor pairing, any 6D supergravity theory

with gauge algebra g ¼ suðN > 3Þ and anomaly coefficient
bg ¼ ð2; 1Þ (with bg · bg ¼ 3 and bg · a ¼ −5) is anomaly-
free with hypermultiplet spectrum M ¼ ð40 − 3NÞ×
F ⊕ 5 ×AS, where F (resp., AS) denotes the fundamental
(resp., antisymmetric) representation. However, F-theory
models with N > 8 automatically enhance to g0 ⊃ suðNÞ
[28], indicating the inconsistency of a bare suðNÞ gauge
algebra in these cases. Note that the enhancement patterns
g0 ¼ ḡ ⊕ h (where ḡ has anomaly coefficient bḡ ¼ bg) do
not fit into the framework discussed previously, in that the
additional gauge symmetries that appear in the F-theory
constructions are not flavor symmetries of ðg;MÞ (they have
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additional charged matter [62], which, however, does not
allow for a supersymmetric Higgsing by itself). These
enhancements are shown in Table I. The common feature
of all these enhanced algebras is that the additional gauge
factor h1 has anomaly coefficient b1 ¼ ð0; 1Þ. This corre-
sponds to an anti-self-dual tensor with b1 · b1 ¼ −1. The
validity of the automatic enhancement conjecture would
therefore imply that, forN > 8, an unpaired tensorb1, i.e., no
gauge algebra with anomaly coefficient b1, is inconsistent.
To provide a physical argument, observe that, by the

completeness hypothesis, there must be a dual string
charged under the tensor with charge b1. If b1 is unpaired,
there are compelling arguments [63] based on anomaly
considerations on the world sheet of such a string that there
must be an E8 flavor symmetry in 6D; since it agrees with
that of the E-string, it is generally believed that any such
string must be an E-string. When coupled to gravity, the
world sheet E8 flavor symmetry is generically broken in the
bulk. A subalgebra g ⊂ e8 may be gauged if one can assign
an anomaly coefficient bg, with bg · b1 ¼ 1, to g, provided
all gauge and gravitational anomalies are canceled (which
may require hypermultiplets charged under g). However, it
is clear that any such gauging can not “exceed” E8, as it
would be otherwise inconsistent with the world sheet
dynamics of the string.
This “E8 rule” [64–67] immediately explains why g ¼

suðNÞ with N > 9 are inconsistent, as these su algebras
are not contained in e8. By forcing such a gauge algebra
with anomaly coefficient bg ¼ ð2; 1Þ in an F-theory con-
struction [28], the observed automatic enhancement can be
interpreted as the geometry attempting to rectify this
inconsistency by pairing the string with charge b1 ¼
ð0; 1Þ with a gauge symmetry h. In this case, the string
is no longer an E-string, but rather an instanton string of h,
which is not subject to the E8 rule. Note that this does not
explain why, for N ¼ 11, the suð11Þ has to enhance to
ḡ ¼ suð12Þ, but it does rule out a bare suð11Þ.
At first sight, the E8 rule does not seem to explain the

inconsistency of the model with N ¼ 9, since suð9Þ ⊂ e8.
However, it is important to realize that, at the group level,
E8 does not have an SUð9Þ subgroup, but rather SUð9Þ=Z3.
To retain this nontrivial global structure, it means that any
gauging of an suð9Þ ⊂ e8 subalgebra must have an unbro-
ken Z3 ⊂ Z9 ¼ ZðSUð9ÞÞ 1-form symmetry. In particular,
this requirement demands the absence of any fundamental

and 2-index antisymmetric hypermultiplets. Within the 6D
SCFT landscape, the only possible gauging of this kind is
g ¼ suð9Þ with anomaly coefficient bg satisfying bg · bg ¼
−2 and bg · b1 ¼ 1 (where b1 is the tensor dual to the
E-string), which has no massless hypermultiplets. A super-
gravity model where an suð9Þ ⊂ e8 subalgebra of the
E-string flavor symmetry is gauged can be constructed
in F-theory on a dP9 surface, i.e., a model with T ¼ 9 (see
Appendix B); in this geometric construction, the Z3 1-form
symmetry is manifestly gauged by the presence of Mordell-
Weil torsion [68].
Returning to the T ¼ 1 supergravity models with tensor

pairing (3.1) and gauge symmetry g ¼ suðNÞ with
anomaly coefficient bg ¼ ð2; 1Þ, we now see that the
inconsistency of the N ¼ 9 model stems from the presence
of the fundamental and antisymmetric hypermultiplets,
which are needed to cancel the gauge anomalies and which
explicitly break the Z3 center symmetry.

B. Automatic enhancement enforced by the M-string

The simplest supergravity models that contain an
M-string SCFT sector have a tensor pairing

Ω ¼
�
0 1

1 −2

�
; ð3:2Þ

where we have chosen the basis in which the positivity cone
is spanned by (1,0) and (0,1), with the latter being the anti-
self-dual tensor b1 that has self-pairing −2. The gravita-
tional anomaly coefficient is a ¼ ð−4;−2Þ. In F-theory,
such models are realized with the Hirzebruch surface F2 as
the base manifold.
We can easily verify that, just based on gauge and

gravitational anomalies, a g ¼ suðNÞ model with M ¼
ð48 − 4NÞ × F ⊕ 6 ×AS and anomaly coefficient bg ¼
ð3; 1Þ (satisfying bg ·bg ¼ 4;b ·a¼−6;bg ·b1¼ 1) would
be consistent for 4 ≤ N ≤ 9; for N ¼ 2, 3, the anomaly-free
hypermultiplet spectrum would be 40 × 2 and 42 × 3,
respectively. However, if we attempt to engineer suchmodels
in F-theory, we see that there is automatic enhancement g0 ¼
ḡ ⊕ h for N ≥ 3, with an additional gauge factor h1 ⊂ h
having anomaly coefficient b1; see Appendix C for details.
Again, a physical argument for the automatic enhance-

ment conjecture in this instance, i.e., why an unpaired
tensor b1 would be inconsistent for N > 2, comes from the
flavor symmetry of the string with charge b1, which exists
by the completeness hypothesis. By a similar argument as
for the E-string, one can show that the spacetime flavor
symmetry is limited via world sheet anomaly arguments to
be suð2Þ, which agrees with the flavor symmetry of what is
known in the literature as the M-string [70,71].
Alternatively, such a string arises as the charged object
of a 6D N ¼ ð2; 0Þ tensor multiplet [which also furnishes
the tensor branch description of a (2,0) A1 SCFT]. When
coupled to anN ¼ ð1; 0Þ background, an suð2Þ subalgebra

TABLE I. Enhancement patterns for suðN > 8Þ F-theory
models on base F1.

N ḡ h ¼ ⨁IhI

9 suð9Þ suð2Þ
10 suð10Þ suð2Þ ⊕ suð2Þ
11 suð12Þ spð2Þ
12 suð12Þ spð2Þ
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of the (2,0) R-symmetry may be interpreted as the flavor
symmetry of the SCFT [72]. Therefore, any model with an
suðN > 2Þ symmetry on bg with bg · b1 ¼ 1 can only give
a globally consistent supergravity model if the tensor b1 is
paired with a nontrivial spacetime gauge symmetry itself.

IV. DISCUSSION

It would be desirable to explain all instances of auto-
matic enhancement using the consistency of BPS strings, as
these provide, at least in the examples above, a definitive of
proof why the lack of enhancement would be inconsistent.
In the case where these are strings of anti-self-dual tensors
b1, the distinction between consistent and inconsistent
gauge symmetries g with anomaly coefficient bg satisfying
bg · b1 ¼ 1 is analogous to the question of whether a g
flavor symmetry of a 6D SCFT containing the tensor b1 can
be gauged (see [73] and references therein). For super-
gravity models, the constraints are relaxed compared to
SCFTs in the sense that the anomaly coefficient bg of g can
be a self-dual tensor, and g is allowed to have adjoint
hypermultiplets (i.e., the genus of bg can be nonzero). As
we have seen above in simple models, this still poses strong
restrictions. Moreover, even though we have not discussed
them in detail, it is rather obvious that, in the presence of
multiple anti-self-dual tensors bA, there can be independent
constraints on g with anomaly coefficient bg from each bA
with bA · bg ≠ 0. By forcing the existence of the gauge
algebra g in the corresponding F-theory model, one might
then find a large, automatically enhanced algebra
g0 ¼ ḡ ⊕ ⨁AhA ⊕ …. Examples of this type appear,
e.g., in F-theory models on blowups of Hirzebruch surfa-
ces; see [28].
The main challenge to extend this method to other cases

of automatic enhancement, such as those discussed in
Sec. II, is that the strings in question are not SCFT strings;
i.e., they are associated with tensors with b1 · b1 ≥ 0. In the
case b1 · b1 ¼ 0 and b1 · a ¼ −2 (with a the gravitational
anomaly coefficient), the corresponding string may be
identified with the heterotic string, which has either E8 ×
E8 or Spinð32Þ=Z2 flavor symmetry. The latter contains an

SUðNÞ subgroup for N ≤ 15, yet one observes automatic
enhancements for 12 ≤ N ≤ 15 in suðNÞ gauge sym-
metries with bsu such that bsu · b1 ¼ 1 [28]. Moreover,
to the best of our knowledge, the maximal flavor symmetry
of strings with b1 · b1 ¼ 1 and b1 · a ¼ −2 present in all
T ¼ 0 supergravity models has not been studied.
In T ¼ 0 models, one observes an additional type of

enhancement pattern g → g0 ⊃ g with a simple algebra g0,
discussed in [28], which does not fall into the classes
discussed above. Another instance of this type is the N ¼
11 case in Table I, where g ¼ suð11Þ enhances to
ḡ ¼ suð12Þ, in addition to the appearance of h1 ¼ spð2Þ.
Presumably, this particular enhancement is related to the
supergravity string present in this model rather than the
E-string. Hence, a better understanding of the flavor sym-
metry of strings with b1 · b1 ≥ 0 will be necessary to
scrutinize the physical explanation of the automatic enhance-
ment conjecture for these and more general cases.
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APPENDIX A: ANOMALY CANCELLATION
CONDITIONS

In this appendix, we collect the explicit anomaly
cancellation conditions for a 6D N ¼ ð1; 0Þ supergravity
theory with tensor lattice Γ, pairing Ωðb1; b2Þ≡ b1 · b2 for
b1; b2 ∈ Γ, gauge algebra g ¼ ⨁igi ⊕ ⨁αuð1Þα, and
matter (2.2) [30,31,74,75]. The Green-Schwarz contribu-
tions cancel the one-loop contributions from the various
multiplets, as encoded in their respective anomaly poly-
nomials [76]:

Igrav8 ¼ −
273

5760

�
trR4

5

4
þ ðtrR2Þ2

�
þ 9

128
ðtrR2Þ2;

Itensor8 ¼ 29

5760

�
trR4 þ 5

4
ðtrR2Þ2

�
−

1

128
ðtrR2Þ2;

Ivector8 ðgiÞ ¼ −
dimðgiÞ
5760

�
trR4 þ 5

4
ðtrR2Þ2

�
−

1

24
tradjF4

i þ
1

96
tradjF2

i trR
2;

Ivector8 ðuð1ÞαÞ ¼ −
1

5760

�
trR4 þ 5

4
ðtrR2Þ2

�
; ðA1Þ

Ihyper8 ðRÞ ¼ dimðRÞ
5760

�
trR4 þ 5

4
ðtrR2Þ2

�
þ 1

24
trRF4 −

1

96
trRF2trR2; ðA2Þ
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where trR denotes the trace in the representation R. In the hypermultiplet contribution, the traces over the combined field
strength F of the full gauge symmetry g can be disentangled into products of field strengths of the individual (non-)Abelian
factors by applying recursively the formulas

trRðF2
f Þ ¼ dimðR1ÞtrR2

ðF2
2Þ þ dimðR2ÞtrR1

ðF2
1Þ; ðA3Þ

trRðF4
f Þ ¼ dimðR1ÞtrR2

ðF4
2Þ þ 6trR1

ðF2
1ÞtrR2

ðF2
2Þ þ dimðR2ÞtrR1

ðF4
1Þ ðA4Þ

for f ¼ f1 ⊕ f2 with fi simple non-Abelian and R ¼ ðR1;R2Þ, and

trRðF2
f Þ ¼ trRn

ðF2
nÞ þ qαqβFαFβ; ðA5Þ

trRðF4
f Þ ¼ trRn

ðF4
nÞ þ 4trRn

ðF3
nÞqαFα þ 6trRn

ðF2
nÞqαqβFαFβ þ qαqβqγqδFαFβFγFδ ðA6Þ

for f ¼ fn ⊕ ⨁
α
uð1Þα with fn and R ¼ ðRnÞðqαÞ. Here, summation over repeated greek indices is implied. Then, the

vanishing of the anomaly polynomial IGS8 þ I1−loop8 is ensured termwise if

trðR4Þ∶ 0 ¼ H − V þ 29T − 273; ðA7aÞ

trðR2Þ2∶ a · a ¼ 9 − T; ðA7bÞ

trðF2
i ÞtrðR2Þ∶ a · bi ¼ −

1

6
λi

�X
r

dðrÞi A
RðrÞ

gi
− Agi

�
; ðA7cÞ

trðF4
i Þ∶ 0 ¼

X
r

dðrÞi B
RðrÞ

gi
− Bgi ; ðA7dÞ

trðF2
i Þ2∶ bi · bi ¼

1

3
λ2i

�X
r

dðrÞi C
RðrÞ

gi
− Cgi

�
; ðA7eÞ

trðF2
i ÞtrðF2

jÞ∶bi ·bj¼λiλj
X
r

dðrÞi;j ARðrÞ
gi
A
RðrÞ

gj
; i≠j; ðA7fÞ

trðR2ÞFαFβ∶ a · bαβ ¼ −
1

6

X
r

dðrÞqðrÞα qðrÞβ ; ðA7gÞ

trðF3
i ÞFα∶ 0 ¼

X
r

dðrÞi E
RðrÞ

gi
qðrÞα ; ðA7hÞ

trðF2
i ÞFαFβ∶ bi · bαβ ¼ λi

X
r

dðrÞi A
RðrÞ

i
qðrÞα qðrÞβ ; ðA7iÞ

FαFβFγFδ∶ bαβ · bγδ þ bαγ · bβδ þ bαδ · bβγ

¼
X
r

dðrÞqðrÞα qðrÞβ qðrÞγ qðrÞδ ; ðA7jÞ

where dðrÞ ¼ xr
Q

i dimðRðrÞ
gj Þ, dðrÞi ¼ xr

Q
j≠i dimðRðrÞ

gj Þ,
and dðrÞi;j ¼ xr

Q
k≠i;j dimðRðrÞ

gk Þ. Here, H, V, and T are,
respectively, the numbers of hypermultiplets, vector mul-
tiplets, and tensor multiplets in the theory. The quantities
AR, BR, CR, ER are group theoretic coefficients defined by

trRF2 ¼ ARtrF2; trRF4 ¼ BRtrF4 þ CRðtrF2Þ2;
trRF3 ¼ ERtrF3 ðA8Þ

with trR the trace in representation R and tr the trace in the
fundamental (or defining) representation. We use Agi , Bgi ,
Cgi , Egi to denote these coefficients for the adjoint
representation of gi. The values of the coefficients λi are
shown in Table II.

APPENDIX B: E-STRING WITH GAUGED
SUð9Þ=Z3 FLAVOR SYMMETRY IN F-THEORY

In this appendix, we give a concrete F-theory example
where an SUð9Þ=Z3 gauge group is located next to a (−1)-
curve. In particular, this provides a simple example of a
“non-Tate” tuning of the suð9Þ subalgebra of the e8 flavor
symmetry of an E-string, which was not possible with
Tate’s algorithm [67].
Such an F-theory geometry is an elliptic fibration over a

B ¼ dP9 surface given by the Weierstrass model y2 ¼
x3 þ fxþ g with

f ¼ 1

2
a1b31 −

1

48
a41; g ¼ 1

4
b61 þ

1

864
a61 −

1

24
a31b

3
1;

ðB1Þ

which is just the genericWeierstrassmodel withZ3 Mordell-
Weil torsion [35] specialized to a3 ¼ b31. From the discrimi-
nant Δ¼ 4f3þ27g2¼ 1

16
b91ð3b1−a1Þða21þ3a1b1þ9b21Þ,

TABLE II. Normalization factors for the simple Lie groups.

g suðNÞ soðNÞ spðNÞ e6 e7 e8 f4 g2

λ 1 2 1 6 12 60 6 2
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we see that there is an Is9 fiber over fb1 ¼ 0g (splitness
follows from 9g=2fjfb1¼0g ¼ −a21=4 being a perfect square),
which corresponds to an suð9Þ gauge algebra.
Note that the divisor classes ½fa1 ¼ 0g� ¼ ½fb1 ¼ 0g�

are just the anticanonical class −K of B ¼ dP9, which
coincides with the fiber class of the rational elliptic surface
dP9 → P1. Then, fa1 ¼ 0g and fb1 ¼ 0g, for generic
choices of sections of OBð−KÞ, correspond to two distinct,
smooth, and irreducible elliptic fibers of this fibration. This
means that, apart from the suð9Þ on fb1 ¼ 0g, the F-theory
model described by theWeierstrassmodel above has no other
non-Abelian gauge factor. Moreover, since generic fibers do
not intersect, there are no codimension-two singularity
enhancements, i.e., no massless matter other than the single
adjoint hypermultiplet associated with the genus of the
elliptic curve fb1 ¼ 0g on which the suð9Þ lives.
So far, we have only made manifest the SUð9Þ=Z3 gauge

group on fb1 ¼ 0g, with the Z3 quotient coming from the
Mordell-Weil group. To see that this gauges part of the E8

flavor symmetry of an E-string, recall that a dP9 surface
also has sections of the elliptic fibration B → P1, which
themselves are genus 0 curves with self-intersection (−1);
i.e., they give rise to E-strings via wrapped D3-branes.
Since a section S intersects any smooth fiber exactly once,
in particular, also fb1 ¼ 0g, we see that the SUð9Þ=Z3

indeed can be identified with the gauged flavor symmetry
of the E-string on S. Note that the dP9 surface actually has
nine independent (in homology) sections, so that the
SUð9Þ=Z3 on fb1 ¼ 0g is in fact the “diagonal” flavor
symmetry of all nine (independent) E-string sectors.

APPENDIX C: AUTOMATIC ENHANCEMENT
FOR F-THEORY ON F2

In this appendix, we describe the F-theory models on a
B ¼ F2 base that undergo automatic enhancement. To begin
with,we recall that aHirzebruch surface is aP1-bundle over a
baseP1.We introducehomogeneous coordinates ½s∶t� for the
fiber P1, and ½u∶v� for the base P1, and denote by [x] the
divisor class of the codimension-one variety fx ¼ 0g. Then,
the second homology lattice of F2, which is identified with
the tensor lattice, is generated by [s] and [v], with linear
relations ½s� ¼ ½t�, ½u� ¼ ½v� þ 2½s�, and intersection numbers
½s�2 ¼ 0, ½s� · ½v� ¼ 1, ½v�2 ¼ −2. The canonical class K,
which is identified with the gravitational anomaly coefficient
a, is K ¼ −ð4½s� þ 2½v�Þ.
The geometric origin of automatic enhancement can be

attributed to generic representatives of certain homology
classes becoming reducible [28]. Such a representative
can be expressed in terms of the vanishing locus fp ¼ 0g
of a homogeneous polynomial of the appropriate multi-
degree, which becomes reducible if any such polynomial
factorizes. For a representative of an effective divisor
class n½s� þm½v�, with n, m ≥ 0, the homogeneous
polynomials are

p ¼ vmqn þ vm−1uqn−2 þ � � � þ vm−kukqn−2k

þ � � � þ umqn−2m; ðC1Þ

where qd are homogeneous polynomials of degree d in
ðs; tÞ. If d < 0, then qd ≡ 0, which means that a generic
polynomial of multidegree n½s� þm½v� factorizes

p ¼ vm−bn=2cp̃ if and only if n < 2m: ðC2Þ

Note that a generic representative of any multiple of the
anticanonical divisor class −K ¼ 4½s� þ 2½v� is irreducible.
The relevant supergravity models considered in Sec. III

have suðNÞ gauge symmetry with anomaly coefficient
bg ¼ ð3; 1Þ ¼ 3½s� þ ½v�, which corresponds to a curve
class [C] with ½C�2 ¼ 4, ½C� · K ¼ −6, and, hence, a generic
representative is an irreducible rational curve. In F-theory,
engineering an suðNÞ on a generic curve C ¼ fσ ¼ 0g in
this homology class requires a Weierstrass model y2 ¼
x3 þ fxþ g to take the following forms [54,77]:

N¼2k∶ f¼−
1

3
Φ2þfkσk; g¼ 2

27
Φ3−

1

3
ΦfkσkþgNσN;

N¼2kþ1∶ f¼−
1

3
Φ2þ1

2
ϕ0ψkσ

kþfkþ1σ
kþ1;

g¼ 2

27
Φ3−

Φ
6
ðϕ0ψkþ2fkþ1σÞσkþ

1

4
ψ2
kσ

2kþgNσN ðC3Þ

with Φ ¼ 1
4
ϕ2
0 þ ϕ1σ.

Focusing on N ¼ 2k first, observe that the polynomials
fk and gN have divisor classes

½fk� ¼ ½f� − k½σ� ¼ −4K − k½σ�
¼ ð16 − 3kÞ½s� þ ð8 − kÞ½v�;
¼ ½g� − N½σ� ¼ −6K − N½σ�
¼ ð24 − 6kÞ½s� þ ð12 − 2kÞ½v�: ðC4Þ

By Eq. (C2), we have fk ¼ v⌈k=2⌉f̃k and gN ¼ vkg̃N for
k ≥ 1, where f̃k and g̃N are irreducible. Note that, since
½ϕ0� ¼ −K does not factorize, Φ2 and Φ3 do not contain
any nontrivial power of v as common factor. This means
that f and g remain generically irreducible (as long as ½fk�
and ½gN � are effective). Then, it is straightforward to check
that the discriminant of the Weierstrass model factorizes as

4f3 þ 27g2 ¼ σNð4f3kσk þ 27g2Nσ
N − 18fkgNΦσk

− f2kΦ2 þ 4gNΦ3Þ ¼ σNvkð� � �Þ: ðC5Þ

Note that for k ¼ 1, i.e., an suð2Þ on fσ ¼ 0g, this
factorization gives rise to an I1 singularity over fv ¼ 0g,
which does not give rise to any gauge symmetry. For larger
k, we find an Isk fiber, which gives rise to an suðkÞ gauge
symmetry over fv ¼ 0g. Note that the splitness here comes
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about because ½Φ� ¼ −2K has trivial intersection number
with [v], so Φ does not vanish anywhere on fv ¼ 0g;
hence, 9g=2fjfv¼0g is a perfect square.
In the odd (N ¼ 2kþ 1) cases, the relevant divisor

classes are

½ψk� ¼ ½f� − ½ϕ0� − k½σ� ¼ −3K − k½σ�
¼ ð12 − 3kÞ½s� þ ð6 − kÞ½v�;

½fkþ1� ¼ ½f� − ðkþ 1Þ½σ� ¼ −4K − ðkþ 1Þ½σ�
¼ ð13 − 3kÞ½s� þ ð7 − kÞ½v�;

½gN � ¼ ½g� − N½σ� ¼ −6K − N½σ�
¼ ð21 − 6kÞ½s� þ ð11 − 2kÞ½v�; ðC6Þ

which again all factorize by Eq. (C2):

ψk¼v⌈k=2⌉ψ̃k; fkþ1¼vb
kþ2
2
cf̃kþ1; gN ¼vkþ1g̃N: ðC7Þ

By carefully distinguishing between even and odd k, we
find a factorization of the discriminant:

4f3 þ 27g2 ¼
�
σNvkð� � �Þ k even;

σNvkþ1ð� � �Þ k odd:
ðC8Þ

This gives rise to either an suðkÞ (for even k) or an
suðkþ 1Þ (for odd k) gauge symmetry on fv ¼ 0g.
In summary, we see that F-theory constructions on F2 of

supergravity models with g ¼ suðNÞ and anomaly coef-
ficient bg ¼ ð3; 1Þ ¼ 3½s� þ ½v� always force a nontrivial
gauge symmetry h along the (−2)-curve fv ¼ 0g when
N > 2, indicating an automatic enhancement with anomaly
coefficient ½v�≡ bh ¼ ð0; 1Þ. For N ¼ 2, where there is no
enhancement, the presence of 40 fundamental hypermul-
tiplets confirms that the gauge group is G ¼ SUð2Þ.
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