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Compactifications of the Chaudhuri-Hockney-Lykken (CHL) string to eight dimensions can be
characterized by embeddings of root lattices into the rank 12 momentum lattice ΛM, the so-called
Mikhailov lattice. Based on these data, we devise a method to determine the global gauge group structure
including allUð1Þ factors. The key observation is that, while the physical states correspond to vectors in the
momentum lattice, the gauge group topology is encoded in its dual. Interpreting a nontrivial π1ðGÞ≡ Z for
the non-Abelian gauge group G as having gauged a Z 1-form symmetry, we also prove that all CHL gauge
groups are free of a certain anomaly [1] that would obstruct this gauging. We verify this by explicitly
computing Z for all 8D CHL vacua with rankðGÞ ¼ 10. Since our method applies also to T2

compactifications of heterotic strings, we further establish a map that determines any CHL gauge group
topology from that of a “parent” heterotic model.

DOI: 10.1103/PhysRevD.104.086018

I. INTRODUCTION

Supersymmetric string compactifications on low-
dimensional internal manifolds have seen a resurgence
of interest within the Swampland program [2,3]. One of the
main reasons is that, thanks to the large amount of super-
symmetry, one can essentially classify all supergravity
models that arise as the low-energy description of such
compactifications. Therefore, they provide an excellent
“laboratory” to test our understanding of the physical
principles that separate the Landscape from the Swampland.
Given the profound role of gauge symmetries in our

mathematical formulation of effective theories, principles
that delineate the boundary between consistent and incon-
sistent gauge groups of supergravity models are of particular
interest. In the context of 8D N ¼ 1 supergravity theories,
significant progress in this direction has been made recently,
which not only explains the absence of specific gauge
algebras [4–6] in the 8D string landscape, but also some
of the intricate patterns of the possible global structures, i.e.,

topology, of the gauge group [1,5]. In particular, the ideas
pertaining to the gauge group topology have been mostly
tested and confirmed for 8D theories with total gauge rank1

20 in their F-theory realization [7], where the relevant
geometric features [8–10] have been classified [11].
To lend further credence, but, more importantly, to

collect additional “data” to eventually sharpen these argu-
ments,2 it would be desirable to also study other branches
of the 8D moduli space. Unfortunately, there does not exist
a classification of gauge group topologies in rank 12 or
rank 4 theories as comprehensive as in the case of rank 20
theories [11,12]. With this motivation in mind, the purpose
of this work is to provide the general framework to
determine the gauge group topology in 8D N ¼ 1 string
models, with a focus on rank 12 theories.
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1Within the known 8DN ¼ 1 string landscape, the total gauge
rank can be either 4, 12, or 20; this limitation can be understood
as a quantum-gravitational consistency condition, by invoking
Swampland arguments [5]. Different from the rank counting in
that work, which organizes the theories into having rank 2, 10, or
18, we include the contributions of the N ¼ 1 gravity multiplet
which always contains two graviphotons, because the associated
Uð1Þ factors are generally involved in the overall gauge group
topology.

2The arguments of [1,5] provide necessary, but not sufficient
criteria for a nontrivial global gauge group structure; see [1] for a
detailed discussion.
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Rank 12 theories arise as S1 reductions of the CHL string
[13,14]. The physical states, which are characterized by the
winding numbers and momenta of the CHL string, live in
an even lattice ΛM of rank 12, the so-called Mikhailov
lattice [15]. Then, any non-Abelian gauge algebra g that
can arise in an 8D CHL vacuum must have a root lattice Λg

r

that embeds in a specific way into ΛM. Such lattice
embeddings can be classified [16] in an analogous fashion
as for rank 20 theories based on their heterotic realization
[12], where the corresponding string momentum lattice is
the rank 20 Narain lattice ΛN [17,18].
On the other hand, as we will elaborate in Sec. II, the

information about the global structure of the gauge group
G ¼ G̃=Z, with G̃ the simply connected group with algebra
g, is encoded in the lattice dual to the string momentum
lattice ΛS with ΛS ¼ ΛN or ΛM. Roughly speaking, the
definition of the dual lattice Λ�

S ⊂ ΛS ⊗ R as having
integer pairing with all vectors in ΛS can be regarded as
a constraint on the representations of the physical states in
ΛS. More precisely, the fundamental group,

Z ¼ π1ðGÞ ¼ ΛG
cc=Λ

g
cr; ð1:1Þ

depends on the cocharacter latticeΛG
cc, which is a sublattice

of the coweight lattice Λg
cw ¼ Λ�

r . This is the dual of the
character latticeΛG

c , which corresponds to the charge lattice
occupied by physical states,3 which clearly is the momen-
tum lattice ΛS. From this perspective, the self-duality of the
Narain lattice (imposed by modularity of the heterotic
world sheet), together with the fact that rank 20 theories
only have ADE algebras [whose (co-)root lattices Λg

r ¼ Λg
cr

agree], appear as a coincidence that makes it straightfor-
ward to compute the fundamental group Z ¼ π1ðGÞ as (the
torsional piece4 of) ΛN=Λ

g
r , as done in [12]. This is

confirmed via duality by F-theory geometries [11], where
the corresponding data are encoded in the Mordell-Weil
group [8–10]. In the rank 12 case, this quotient is no longer
the correct object to compute, due to ΛM ≠ Λ�

M, as well as
the appearance of nonsimply laced sp algebras with
Λsp
r ≠ Λsp

cr . Instead, as we shall demonstrate explicitly in
Sec II, the correct prescription for π1ðGÞ of CHL vacua is
captured by the “mismatch” between Λg

cr and Λ�
M.

Moreover, our approach naturally computes the global
gauge group structure including the Uð1Þ gauge factors.
That is, given the embedding data Λg

r ⊂ ΛS of the non-
Abelian root lattice into the momentum lattice, we can
determine the entire gauge group topology, which takes the
generic form

½G̃=Z� × Uð1ÞrF
Z0 ; ð1:2Þ

with rF ¼ rankðΛSÞ − rankðgÞ. As we will explain, the
quotient Z0, which may be interpreted as a constraint on
the Uð1Þ charges of states in certain representations of g,
arises due to lattice generators of Λ�

S that are not in the
plane containing Λg

r . For rank 20 theories, our approach is
equivalent to methods based on string junctions that des-
cribe the dual F-theory model [22,23], and we will demon-
strate its efficacy also in a concrete CHL model below.
An important consequence, which we prove in Sec. II D,

is that the non-Abelian gauge group topology G̃=Z is
consistent with a gauged 1-form Z symmetry [24], in both
heterotic and CHL vacua. That is, there is no mixed
anomaly that would obstruct such a gauging, consistent
with the findings in [1]. We verify this explicitly by
computing Z ¼ π1ðGÞ for all maximally enhanced CHL
models [i.e., those with rank ðGÞ ¼ 10], which is presented
in Appendix B. We also find a consistent cross-check for
two of these models, which are subject to constraints posed
in [5]. To facilitate the computation of Z, we show, in
Sec. III, that for any CHL model, specified by an embed-
ding Λg

r ⊂ ΛM, the corresponding gauge group topology
can be directly inferred from that of a “parent” rank 20
heterotic model with Ghet ¼ G̃het=Zhet.

5 This then allows
for an easy extraction of Z via Zhet, the latter of which can
be obtained from the heterotic classification [12,23]. We
conclude in Sec. IV with some outlook to related topics.

II. GAUGE GROUPS FROM
MOMENTUM LATTICES

We begin this section by reviewing the group-theoretic
definition of the global gauge group structure in terms of
the various lattices. We then discuss how these structures
emerge in root lattice embeddings into the momentum
lattice ΛS of string states. We will highlight the key
differences between rank 20 heterotic theories with ΛS ¼
ΛN the Narain lattice, and rank 12 CHL theories with ΛS ¼
ΛM the Mikhailov lattice.

A. Lattices and gauge group topology

Any non-Abelian gauge algebra g of rank r is specified
by a root system Φg, which is a finite subset of a Euclidean
vector space E ≅ Rr satisfying certain axioms (see, e.g.,
[20,21] for a broader introduction; we follow the con-
ventions of [19]). Relevant to us in the following will be
that the root lattice Λg

r ⊃ Φg—spanned by integer linear
3Here, we adapt the notation from [19]. It is also common (see,

e.g., [20,21]) to refer to ΛG
c (ΛG

cc) as the (co-)weight lattice of the
group G.

4The free part corresponds to Uð1Þ symmetries, which in fact
can also have a nontrivial global structure with the non-Abelian
group; we will elaborate on this in detail below.

5Via string dualities, the CHL model corresponds to Sec. II B
with an O7þ plane, or, equivalently, F theory on a K3 surface
with a (partly) “frozen” singularity [25–27]. The same K3,
when interpreted without the frozen singularity, defines a rank
20 F-theory model that is dual to the parent heterotic model.
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combinations of simple roots μ ∈ Φg—is a rank r lattice
inside E. The space E comes equipped with a bilinear
pairing ð·; ·Þ∶ E × E → R which induces a pairing on Λg

r .
The normalization is such that ðν; νÞ ¼ 2 for ν ∈ Φ a short
root, and ðν; νÞ ¼ 4 for the long root of spðnÞ. The axioms
also assert that 2ðν1; ν2Þ=ðν2; ν2Þ ∈ Z for any two roots
ν1; ν2 ∈ Φg, ensuring that the coroots,

Φ∨
g ¼

�
ν∨ ≔

2ν
ðν; νÞ

����ν ∈ Φg

�
⊂ E; ð2:1Þ

and their integer span Λg
cr, the coroot lattice, have integer

pairings with roots. For g an ADE algebra, we have
Λg
r ¼ Λg

cr, because all ADE roots have length squared 2.
One then defines the weight and coweight lattices, Λg

w and
Λg
cw, as their respective dual lattices6:

Λg
w ≔ ðΛg

crÞ� ¼ fw ∈ Ejðw;α∨Þ ∈ Z for all α∨ ∈ Λg
crg

⊃ Λg
r ;

Λg
cw ≔ ðΛg

r Þ� ¼ fw̄ ∈ Ejðw̄;αÞ ∈ Z for all α ∈ Λg
r g

⊃ Λg
cr: ð2:2Þ

Note that all these lattices are of rank r, i.e., they span E
over R. If g ¼⊕j gj is a sum of simple factors, there is an
orthogonal decomposition E ¼ ⊕j Ej, where Ej are
spanned by the roots Φgj and their associated lattices of
the corresponding simple factor gj.
So far, all data are defined by the gauge algebra g with

roots Φg. The actual gauge group G is specified by a third
pair of lattices, the character lattice ΛG

c , and the cocharacter
lattice ΛG

cc, which are intermediate lattices,

Λg
r ⊂ ΛG

c ⊂ Λg
w;

Λg
cr ⊂ ΛG

cc ⊂ Λg
cw; ð2:3Þ

that are dual to each other, ðΛG
c Þ� ¼ ΛG

cc, with respect to the
pairing ð·; ·Þ. A gauge theory with group G can only have
dynamical states whose weight vectors lie in ΛG

c , which is
also often called the weight lattice of the groupG.7 In terms
of the (co-)character lattices, the center and the fundamen-
tal group of G are

ZðGÞ ¼ Λg
cw=ΛG

cc ≅ ΛG
c =Λ

g
r ;

π1ðGÞ ¼ ΛG
cc=Λ

g
cr ≅ Λg

w=ΛG
c : ð2:4Þ

If G ¼ G̃ is the simply connected group with algebra g,
then ΛG̃

c ¼ Λg
w and ΛG̃

cc ¼ Λg
cr. Elements c in the center

ZðG̃Þ ¼ Λg
cw=Λg

cr, represented by a coweight v̄c ∈ Λg
cw, act

on a weight by a phase expð2πicðwÞÞ, where the fractional
number

cðwÞ ¼ ðw; v̄cÞ≡ ðw; v̄c þ α∨Þ mod Z

for any α∨ ∈ Λg
cr; ð2:5Þ

can be interpreted as the charge of w under the center
element c represented by v̄c mod Λg

cr. Note that this center
charge is invariant for all weights of an irreducible
representation R of g, because cðw þ αÞ ¼ ðw þ α; v̄cÞ ¼
ðw; v̄cÞ mod Z for roots α ∈ Λg

r .
Since ΛG

c ⊂ Λg
w ≡ ΛG̃

c , we can regard a character
w ∈ ΛG

c of a nonsimply connected group G as weights
of G̃. Then we see that they are acted on trivially by
π1ðGÞ ¼ ΛG

cc=Λ
g
cr ⊂ Λg

cw=Λg
cr ¼ ZðG̃Þ, because they have

center charges cðwÞ ¼ ðw; v̄cÞ ¼ 0 mod Z for v̄c ∈ ΛG
cc.

Hence, we can also view the “nontrivial global structure”
G ¼ G̃=π1ðGÞ of a gauge group as imposed by requiring a
subgroupZ ≡ π1ðGÞ ⊂ ZðG̃Þ to act trivially on all dynami-
cal representations.

B. Gauge group topology from lattice embeddings

Compactifications of the heterotic or CHL string to 8D
are characterized by a lattice ΛS with a symmetric non-
degenerate bilinear pairing h·; ·iS∶ ΛS × ΛS → Z of sig-
nature ð2; RÞ. For the heterotic string, ΛS is the rank 20
Narain lattice ΛN with R ¼ 18 [17,18]. For the CHL string,
ΛS is the rank 12Mikhailov latticeΛM with R ¼ 10 [15]. In
either case, we can linearly extend ΛS to vector space V
with a symmetric nondegenerate bilinear pairing h·; ·i:

VS ≔ ΛS ⊗ R; hλ1v1; λ2v2i ¼ λ1λ2hv1; v2iS
for v1; v2 ∈ ΛS; λ1; λ2 ∈ R: ð2:6Þ

Since ΛS ⊂ VS, we will identify the lattice pairing h·; ·iS
with the vector space pairing h·; ·i in the following. Then
there is a dual lattice Λ�

S ⊂ VS defined with respect to h·; ·i.
The Narain lattice is self-dual, Λ�

N ¼ ΛN , but for the
Mikhailov lattice, Λ�

M ≠ ΛM.
By tuning the compactification moduli, the gauge

symmetry of the effective theory in 8D can change.
Roughly speaking, this tuning amounts to setting the
masses of certain states to 0, which can furnish the W
bosons of non-Abelian gauge symmetries. The question of
which non-Abelian gauge algebras g are realizable in this
way can be answered by cataloging all embeddings of the
root lattices Λg

r into ΛS, whose roots Φg satisfy the world-
sheet conditions which guarantee their masslessness. This
process has been recently carried out in detail [12,16,28],
which in particular resulted in the full list of realizable
gauge algebras with maximal rank [i.e., rankðgÞ ¼ 18 for
Λg
r ↪ ΛN , and rankðgÞ ¼ 10 for Λg

r ↪ ΛM].

6Given a lattice Λ with pairing ð·; ·Þ, the dual lattice is defined
to be Λ� ¼ fā ∈ Λ ⊗ Rjðā; vÞ ∈ Z for all v ∈ Λg. Λ� has the
same rank as Λ.

7One can show, see, e.g., [20], that ΛG
c is isomorphic to

character group HomðT;C×Þ of the maximal torus T ⊂ G of the
group.
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The purpose of this work is not to reiterate the necessary
and sufficient criteria to find such embeddings, but to
focus on the extraction of the global form of the gauge
group from the embedding data. To this end, our working

assumption will be that any root lattice embedding Λg
r ↪

{
ΛS

we consider in the following satisfies these criteria, which
guarantees that the corresponding 8d compactification (be it
heterotic or CHL) has a non-Abelian symmetry algebra g.
From this starting point, let us now distill the properties
pertaining to the gauge group topology.
At the level of vector spaces we introduced above, an

embedding Λg
r ↪

{
ΛS extends to an injective homomor-

phism {∶ E ↪ VS, with E ¼ Λg
r ⊗ R, such that

(1) hð{ðvÞ; {ðwÞi ¼ ðv;wÞ for any v;w ∈ E;
(2) {ðΛg

r Þ is a sublattice of ΛS ⊂ VS;
(3) {ðΛg

crÞ is a sublattice of Λ�
S ⊂ VS.

The first and second points are just a careful restatement of

“Λg
r ↪

{
ΛS is a lattice embedding.” For heterotic vacua, the

third point is equivalent to the second, since ΛN ¼ Λ�
N , and

Λg
r ¼ Λg

cr for an ADE algebra g. For the CHL string this is a
nontrivial criterion, which however is satisfied in valid
embeddings [15], as we will discuss below. From criterion
1, it is straightforward to show that {ðΛ�Þ ¼ {ðΛÞ� for any
lattice Λ ⊂ E. Then, the second and third conditions imply
{ðΛg

cwÞ ¼ {ððΛg
r Þ�Þ ⊃ Λ�

S ∩ {ðEÞ, and {ðΛg
wÞ ¼ {ððΛg

crÞ�Þ ⊃
ΛS ∩ {ðEÞ.
Given such an embedding {∶ E ↪ VS, we naturally have

an orthogonal decomposition

VS ¼ {ðEÞ ⊕ F; where F ¼ fv ∈ Vjhv; {ðwÞi ¼ 0

for all w ∈ Eg; ð2:7Þ
because the restriction of h·; ·i to {ðEÞ is the pairing ð·; ·Þ
which is nondegenerate. For later convenience, we define
the projections

πF∶ {ðEÞ ⊕ F → F; ð2:8Þ
πE∶ {ðEÞ ⊕ F → {ðEÞ: ð2:9Þ

This decomposition determines the number of independent
uð1Þ gauge factors to be dimRðFÞ≡ rF ¼ 2þR− rankðgÞ.
The lattice points of ΛS ⊂ VS define physical states, and

lattice points of Λ�
S impose constraints on the g represen-

tations and uð1Þ charges of these states, because they have
to pair integrally with points inΛS. These constraints can be
interpreted as a nontrivial global structure of the gauge
group of the form

½G̃=Z� × Uð1ÞrF
Z0 ; ð2:10Þ

where G̃ is the simply connected version of the non-
Abelian group with algebra g, Z ⊂ ZðG̃Þ a subgroup of the
center, and Z0 embeds into both ZðG̃Þ and Uð1ÞrF .

Let us first understand the “purely non-Abelian” con-
straints, i.e., those that specify the non-Abelian group
G ¼ G̃=Z. These are restrictions on the physically realized
weights that form the character lattice ΛG

c ⊂ Λg
w ⊂ E. In the

string realization, any physical state corresponds to a lattice
point s ∈ ΛS, which can be decomposed orthogonally as
s ¼ sE þ sF ∈ {ðEÞ ⊕ F. The weight w ∈ Λw ⊂ E of such
a state s under the non-Abelian part G ¼ G̃=Z is then the
orthogonal projection of s onto {ðEÞ, i.e., sE ¼ πEðsÞ.8
In other words, the character lattice of G is the

orthogonal projection of ΛS onto {ðEÞ:

ΛG
c ≅ πEðΛSÞ ⊂ {ðEÞ: ð2:11Þ

The vectors s ∈ ΛS are subject to the constraint that they
pair integrally with all points in Λ�

S. Consider in particular a
constraint associated with a point c ∈ Λ�

S ∩ {ðEÞ ⊂ {ðΛcwÞ,
and let v̄ ∈ Λcw be such that {ðv̄Þ ¼ c. By orthogonality,
we have

hs; ci ¼ hπEðsÞ; ci ¼ h{ðwÞ; {ðv̄Þi ¼ ðw; v̄Þ ∈ Z: ð2:12Þ

This shows that Λ�
S ∩ {ðEÞ can be identified with the

cocharacter lattice ΛG
cc of G. So, from (2.4), the non-

Abelian gauge group G satisfies

ZðGÞ ¼ ΛG
c

Λg
r
¼ πEðΛSÞ

{ðΛg
r Þ ; π1ðGÞ ¼

ΛG
cc

Λg
cr
¼ Λ�

S ∩ {ðEÞ
{ðΛg

crÞ :

ð2:13Þ

Equivalently to (2.11), the projection of the lattice ΛS of
physical states onto F gives the “characters” of the Uð1Þs,
i.e., the possibleUð1Þ charges. Just as how the non-Abelian
weight wðsÞ of a state is specified by the Dynkin labels
wi ¼ ðw; μi∨Þ ¼ hsE; {ðμi∨Þi, where the simple coroots μi∨
span E (over R), the Uð1Þ charges are defined by the
pairing with basis vectors of F. To fix the normalization of
the Uð1Þs, we use a lattice basis ξl, l ¼ 1;…; rF, for
Λ�
S ∩ F, i.e., the orthogonal complement of {ðΛg

crÞ insideΛ�
S

(we will see momentarily that Λ�
S ∩ F ≠ ∅):

qlðsÞ ≔ hs; ξli: ð2:14Þ

In this normalization, states s ∈ ΛS that are singlets under
the non-Abelian gauge algebra g, i.e., πEðsÞ ¼ 0 ⇔ s ∈
ΛS ∩ F, clearly have integer Uð1Þ charges ql. The lattice
points of Λ�

S that are not inside {ðEÞ now constrain the
Uð1Þ-charges qiðsÞ and the non-Abelian weights wðsÞ of a
physical state corresponding to s ∈ ΛS. To see this, we

8More precisely, we identify sE ¼ {ðwÞ. Recalling that
any weight is specified by its Dynkin labels wi ¼ ðw; μi∨Þ,
where μi∨ ∈ Λcr ⊂ E are the simple coroots, we have
hs; {ðμi∨Þi ¼ hsE; {ðμi∨Þi ¼ ðw; μi∨Þ.
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orthogonally decompose Λ�
S ∋ c ¼ cE þ cF. Note that, in

general, neither cE nor cF are lattice points of Λ�
S! But,

because for a root {ðαÞ ∈ {ðΛg
r Þ ⊂ ΛS ∩ {ðEÞ, we have

Z ∋ hc; {ðμÞi ¼ hcE; {ðμÞi, this guarantees that cE ¼ {ðv̄Þ ∈
{ðΛg

cwÞ for some coweight v̄ of g.
Then, since Λg

cr ⊂ Λg
cw are lattices of the same rank, we

know that for any v̄ ∈ Λg
cw there is a smallest positive

integer k such that {ðkv̄Þ ¼ kcE ∈ {ðΛg
crÞ ⊂ Λ�

S, so kcF ¼
kc − kcE ∈ Λ�

S ∩ F is an integer linear combination of ξl.
This means that hcF; si ¼

P
l λlqlðsÞ is a k-fractional

linear combination of the Uð1Þ charges qlðsÞ of s.
Therefore, the vector c ∈ Λ�

S of the dual lattice imposes that

X
l

λlqlðsÞ þ ðwðsÞ; v̄Þ ∈ Z: ð2:15Þ

Moreover, from the above considerations it is clear that
kλl ∈ Z and kðwðsÞ; v̄Þ ¼ ðwðsÞ; kv̄Þ ∈ Z. Hence, the
constraint is a Zk constraint, in that it becomes trivial
when it is multiplied by k. It can be interpreted as
identifying a Zk ⊂ ZðG̃Þ with a subgroup of Uð1ÞrF , i.e.,
it defines a Zk subgroup of Z0 in (2.10). Just by counting
dimension of Λ�

S=ðΛ�
S ∩ {ðEÞ), there are at most rF linearly

independent such constraints that are also independent of
the “non-Abelian constraints” in Z, i.e., Z0 ≅

QrF
l¼1Zkl .

Then, analogously to (2.13), we have

Z0 ≅
Λ0
cc

{ðΛg
crÞ with Λ0

cc ≔ πEðΛ�
SÞ ⊂ {ðΛg

cwÞ: ð2:16Þ

In general, g ¼ ⊕ gi will be a sum of simple algebras,
with a orthogonal decomposition of the lattice Λg

cw ¼
⊕i Λ

gi
cw. Then, any lattice vector c ∈ Λ0

cc or c ∈ ΛG
cc has

a unique decomposition c ¼ P
i {ðw̄iÞ, where w̄i ∈ Λgi

cw

defines an equivalence class ½w̄i�≡ ki ∈ Λgi
cw=Λgi

cr ¼ ZðG̃iÞ.
Then, the equivalence class of c in Λ0

cc={ðΛg
cwÞ (or

ΛG
cc={ðΛg

cwÞ) ⊂ {ðΛg
cwÞ={ðΛg

crÞ ≅ ZðG̃Þ can be represented
by the tuple ðkiÞ ∈

Q
i ZðG̃iÞ ¼ ZðG̃Þ.

In the following, we will exemplify the above structures
in 8D heterotic and CHL vacua. To ease the notation, we
will from now on drop the explicit embedding map {, and
regard all occurring lattices and subspaces as embedded
into VS ≔ ΛS ⊗ R ¼ Λ�

S ⊗ R, with all pairings inherited
from h·; ·i on VS.

C. Global gauge group structure of 8D
heterotic vacua

For 8D heterotic vacua with gauge rank 20, the topology
of the non-Abelian gauge symmetry G ¼ G̃=Z has been
recently studied through lattice embeddings in ΛN in [12].
There, the crucial data were an overlattice M of the root
lattice Λg

r , whose length-squared 2 lattice points coincide
with Λg

r , that embeds primitively inside ΛN . Then, the
identificationZ ¼ π1ðGÞ ¼ M=Λg

r was cross-checked with

the classification of Mordell-Weil torsion of elliptic K3
surfaces in [11], which is known to provide an equivalent
characterization of the non-Abelian gauge group topology
of 8D heterotic vacua via F theory [8].
Comparing with the general formula (2.4) for π1ðGÞ,

this identification seems to be at odds at first, since it is
the coroot lattice Λg

cr rather than root lattice Λg
r that appears

in the quotients characterizing the fundamental group. Of
course, this is remedied by the fact that, in 8D heterotic
vacua, only ADE algebras g can be realized, which have
Λg
r ¼ Λg

cr. Then, to be consistent with (2.4), the overlattice
M should be identified with the cocharacter lattice ΛG

cc.
Indeed, becauseM contains Λg

r ¼ Λg
cr, the requirement that

it embeds primitively into ΛN means that it contains all
points of ΛN ∩ E. Furthermore, as M=Λg

r is of finite order,
M has the same rank as Λg

r , which is the same as the dimen-
sion of E, so it cannot contain more points than ΛN ∩ E.
Therefore, we indeed find M ¼ ΛN ∩ E ¼ Λ�

N ∩ E to be
the cocharacter lattice as in (2.13).
Our proposal can further determine the nontrivial con-

straintsZ0 between the non-Abelian group and theUð1Þs of
the heterotic compactification. Note that, through duality to
F theory, there is an independent method to determine this
structure via string junctions [22]. While we leave a full
proof of the equivalence between these two methods to an
upcoming work [23], we remark here that we indeed find
identical results for 8D heterotic string vacua. We will
present, for completeness, an example of a heterotic model
with g ¼ suð2Þ2 ⊕ suð4Þ2 ⊕ soð20Þ in Appendix A,
where we show that the global gauge group is

½SUð2Þ2 × SUð4Þ2 × Spinð20Þ�=½Z2 × Z2� ×Uð1Þ2
Z4 × Z4

:

ð2:17Þ

D. Gauge group topology of 8D CHL vacua

Our main focus is to derive the gauge group topology of
8D CHL vacua. The important difference from heterotic
vacua is the fact that the string lattice ΛS is no longer self-
dual in this case. As found in [15], the rank 12 momentum
lattice is the Mikhailov lattice

ΛM ¼ Uð2Þ ⊕ U ⊕ E8 ≅ U ⊕ U ⊕ D8: ð2:18Þ

Here, E8 (D8) denotes the root lattice of the Lie group E8

(Spinð16Þ). The rank 2 latticeU ¼ fleþ nfjðn; lÞ ∈ Z2g is
defined by the Gram matrix

� he; ei he; fi
hf; ei hf; fi

�
¼

�
0 1

1 0

�
: ð2:19Þ

In this basis, Uð2Þ ¼ fleþ nfjl ∈ 2Z; n ∈ Zg. The dual
Mikhailov lattice is then
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Λ�
M ¼ Ū

�
1

2

�
⊕ U ⊕ E8 ≅ U ⊕ U ⊕ D�

8; ð2:20Þ

with Ūð1
2
Þ ¼ fleþ nfjl ∈ Z; n ∈ 1

2
Zg.

The criteria for embeddings of root lattices into ΛM have
also been studied in [15]. One key novelty, compared to
heterotic vacua, is that one can realize nonsimply laced
spðnÞ gauge algebras in 8D CHL vacua. Importantly,
one criterion of the associated root lattice embedding

ΛspðnÞ
r ↪

{
ΛM is that a long root νL (with ðνL; νLÞ ¼ 4) of

spðnÞ must embed such that it has even pairing with all
points in ΛM:

h{ðνLÞ; vi ∈ 2Z for all v ∈ ΛM: ð2:21Þ

This in turn means that the short coroots, ν∨L ¼ 2νL=
ðνL; νLÞ ¼ 1

2
νL, pair integrally with ΛM. In particular, this

means ν∨L ∈ Λ�
M. Since all other roots have length 2, and

thus map to themselves as coroots, the coroot lattice ΛspðnÞ
cr

is guaranteed to embed into Λ�
M, which is our condition 3

for the embedding map {∶ E ↪ V. As a result, the methods
outlined in Sec. II B carry through.
To highlight the difference from the process for heterotic

vacua, note that, in general, the “overlattice” ΛM ∩ E of the
root lattice Λg

r ⊂ E neither contains all points of actual
cocharacter lattice ΛG

cc ¼ Λ�
M ∩ E, nor those of the char-

acter lattice ΛG
c ¼ πEðΛMÞ. For example, this discrepancy

means that the quotient ðΛM ∩ EÞ=Λg
r generally gives only

a subgroup of the center ZðGÞ ¼ πEðΛMÞ=Λg
r , and is not

directly related to the fundamental group π1ðGÞ.

1. Example

To explicitly demonstrate our approach, we will consider
a CHL model with g ¼ suð2Þ2 ⊕ suð4Þ2 ⊕ spð2Þ. To this
end, we represent vðlÞ ∈ VM ≔ ΛM ⊗ R

vðlÞ ¼ ðlðlÞ1 ; lðlÞ2 ; nðlÞ1 ; nðlÞ2 ; σðlÞ1 ;…; σðlÞ8 Þ; ð2:22Þ

with pairing

hvð1Þ; vð2Þi ¼ lð1Þ1 nð2Þ1 þ lð2Þ1 nð1Þ1 þ lð1Þ2 nð2Þ2 þ lð2Þ2 nð1Þ2 þ
X8
j¼1

σð1Þj σð2Þj : ð2:23Þ

Then, in the presentation ΛM ¼ U ⊕ Uð2Þ ⊕ E8 of the Mikhailov lattice, the U lattice is spanned by ðl1; 0; n1; 0; 0;…Þ
with l1; n1 ∈ Z, while the Uð2Þ part is spanned by ð0; l2; 0; n2; 0;…Þ with l2 ∈ 2Z; n2 ∈ Z [see also (2.19)]. The E8 lattice
is then generated by ð0; 0; 0; 0; σÞ with

E8 ≅
�
σ ¼ ðσ1;…; σ8Þ ∈

�
1

2
Z

�
8
����X

8

i¼1

σi ∈ 2Z and σi − σj ∈ Z ∀ i; j

�
: ð2:24Þ

For v̄ ∈ Λ�
M ¼ U ⊕ Ūð1

2
Þ ⊕ E8 ⊂ VM, the only difference for the conditions on the coefficients is that l2 ∈ Z and n2 ∈ 1

2
Z.

The root lattice embedding which realizes the gauge algebra g ¼ suð2Þ2 ⊕ suð4Þ2 ⊕ spð2Þ has been computed in [16].
Λg
r is specified by the embedding of the simple roots μ into ΛM in the above representation:

2
66666666666666666664

μ1

μ2

μ3
μ4
μ5

μ6

μ7
μ8
μ9

μ10

3
77777777777777777775

¼

2
66666666666666666664

1 2 −1 −1 0 0 0 1 1 1 1 −2
1 0 −1 −1 0 0 0 0 0 0 0 −2
0 0 0 0 1 −1 0 0 0 0 0 0

0 0 0 0 0 1 −1 0 0 0 0 0

0 0 0 0 −1 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 −1 0

0 0 0 0 0 0 0 0 1 −1 0 0

0 0 0 1 0 0 0 −1 −1 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0

0 2 −2 −3 0 0 0 0 2 2 2 −2

3
77777777777777777775

: ð2:25Þ

Here, the first two rows μ1, μ2 are the simple roots of suð2Þ2, the next groups of three are the simple roots of the two
suð4Þ’s, and the last two rows are simple roots of spð2Þ, with μ10 being the long root. The corresponding coroot lattice is
spanned by μ∨i ¼ μi for i < 9, and μ∨10 ¼ 1

2
μ10. The coweight lattice is then spanned by w̄i ¼ ðC−1Þijμj, with Cij ¼ hμi; μji,

which we reexpress in terms of the coroots:
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suð2Þ2∶ w̄i ¼
1

2
μ∨i ði ¼ 1; 2Þ;

suð4Þ2∶ w̄mþi ¼

0
BB@

3
4

1
2

1
4

1
2

1 1
2

1
4

1
2

3
4

1
CCA

ij

μ∨mþj ðm ¼ 2; 5Þ;

spð2Þ∶ w̄9 ¼ μ∨9 þ μ∨10; μ̄10 ¼
1

2
μ∨9 þ μ∨10: ð2:26Þ

The orthogonal complement F of Λg
r in ΛM ⊗ R is

spanned by

ξ1 ¼ ð−2; 0; 2; 0; 0; 0; 0; 0; 0; 0; 0; 2Þ;
ξ2 ¼ ð2; 4;−2;−5; 0; 0; 0; 1; 3; 3; 3;−4Þ

hξ1; ξ1i ¼ hξ2; ξ2i ¼ −4; hξ1; ξ2i ¼ 0: ð2:27Þ

These give the generators of the two independent Uð1Þs.
As explained above, any vector of v̄ ∈ Λ�

M can be written
as an integer linear combination of coweight and the Uð1Þ
generators:

v̄ ¼ ðl1; l2; n1; n1; σ1;…; σ8Þ

¼
X10
j¼1

kjw̄j þm1ξ1 þm2ξ2; kj ∈ Z: ð2:28Þ

To determine the gauge group data (2.13) and (2.16), we
then need to express the basis of Λ�

M in this fashion. This is
a straightforward, but rather cumbersome exercise in linear
algebra. Sparing the details, the key step is to find the
generators of Λ�

M that are linearly independent modulo the
coroots μ∨i . For Λ�

M ∩ E, where E ¼ Λg
r ⊗ R, there are two

such generators:

c1 ¼ ð1; 1;−1;−2; 0; 0;−1; 0; 1; 1; 1;−2Þ
¼ w̄2 þ w̄4 þ w̄10;

c2 ¼ ð1; 1; 0; 0; 0; 0; 0; 0; 1; 0; 0;−1Þ
¼ w̄1 þ w̄7 þ ðw̄9 − w̄10Þ: ð2:29Þ

These generate π1ðGÞ ¼ ðΛ�
M ∩ EÞ=Λg

cr as follows. From

(2.26), we see that c1 projects onto w̄2 ¼ 1
2
μ∨2 ∈ Λsuð2Þ

cw of
the second suð2Þ factor, which is an order two element

in Λsuð2Þ
cw =Λsuð2Þ

cr ≅ Z2. Likewise, the component w̄4 ¼
1
2
μ∨3 þ μ∨4 þ 1

2
μ∨5 projects onto the order two element in

Λsuð4Þ
cw =Λsuð4Þ

cr ≅ Z4 of the first suð4Þ factor. Finally, the
component w̄10 ¼ 1

2
μ∨9 þ μ∨10 projects onto the order 2

element in Λspð2Þ
cw =Λspð2Þ

cr ≅ Z2. Therefore, c1 itself projects
onto an order 2 element in Λg

cw=Λg
cr ¼ZðSUð2Þ×SUð2Þ×

SUð4Þ×SUð4Þ×Spð2ÞÞ¼Z2×Z2×Z4×Z4×Z2. More-
over, this analysis shows that this element must be

zðc1Þ ¼ ð0; 1; 2; 0; 1Þ ∈ Z2 × Z2 × Z4 × Z4 × Z2: ð2:30Þ

An analogous argument shows that c2 also projects onto an
order 2 element in ZðG̃Þ, given by

zðc2Þ ¼ ð1; 0; 0; 2; 1Þ ∈ Z2 × Z2 × Z4 × Z4 × Z2: ð2:31Þ

So, the global structure of the non-Abelian gauge
group G is

G ¼ SUð2Þ2 × SUð4Þ2 × Spð2Þ
Zð1Þ

2 × Zð2Þ
2

; ð2:32Þ

where the embedding of each ZðiÞ
2 into ZðG̃Þ is given by

zðciÞ. Once more, notice the importance of the dual
momentum lattice in determining the global gauge group.
Neither c1 nor c2 are elements ofΛM, since l2 ¼ 1 ∉ 2Z, so
just inspecting points in ΛM would not have yielded this
result. However, c1 þ c2 ∈ ΛM, from which one might be
tempted to deduce that π1ðGÞ ¼ Z2, which is the diagonal

Z2 ⊂ Zð1Þ
2 × Zð2Þ

2 . Note that this Z2 embeds trivially
into ZðSpð2ÞÞ.
We can explicitly verify, from the generators zðciÞ, that the

Z ¼ Zð1Þ
2 × Zð2Þ

2 1-form symmetry is free of the anomaly [1].
Indeed, we will prove momentarily that this is guaranteed
for the non-Abelian gauge group topology of any 8D CHL
vacua.
From the lattice embedding, we can also determine the

gauge group structure involving theUð1Þ0s. Two generators
of Λ�

M that are not contained in Λ�
M ∩ E are

c3 ¼
�
0; 0; 0; 0;

1

2
;−

1

2
;−

1

2
;−

1

2
;
1

2
;−

1

2
;−

1

2
;−

1

2

�

¼ 1

4
ξ1 þ w̄2 þ w̄3 þ w̄7;

c4 ¼ ð1; 2;−1;−1; 0; 0;−1; 0; 1; 1; 1;−2Þ

¼ 1

4
ξ2 þ w̄1 þ w̄4 þ w̄8: ð2:33Þ

In Λ0
cc ¼ πEðΛ�

MÞ ⊂ Λg
cw, we then have πEðc3Þ ¼

w̄2 þ w̄3 þ w̄7 and πEðc4Þ ¼ w̄1 þ w̄4 þ w̄8, whose equiv-
alence class in ZðG̃Þ ¼ Z2 × Z2 × Z4 × Z4 × Z2 are

zðc3Þ ¼ ð0; 1; 1; 2; 0Þ; zðc4Þ ¼ ð1; 0; 2; 1; 0Þ: ð2:34Þ

which each generate a Z4 subgroup. The first Z4, generated
by c3, is a subgroup of the Uð1Þ generated by ξ1, whereas
the second Z4 generated by c4 is in the Uð1Þ associated
with ξ2. So, in summary, the global form of the full gauge
group is
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½ðSUð2Þ2 × SUð4Þ2 × Spð2ÞÞ=ðZ2 × Z2Þ� ×Uð1Þ2
Z4 × Z4

:

ð2:35Þ

E. Absence of 1-form anomalies

A nontrivial global structure G ¼ G̃=Z for the non-
Abelian gauge group can be interpreted as having gauged
the subgroup Z of the ZðG̃Þ 1-form center symmetry of the
simply connected group G̃ [24]. In supergravity theories
of dimension five or higher, such a gauging may be
obstructed due to a mixed anomaly involving the large
gauge transformations of the tensor field in the supergravity
multiplet [1,29,30]. For 8DN ¼ 1 theories, this obstruction
can be quantified as follows [1]. Let G̃ ¼ Q

i G̃i, where G̃i

are simple factors, with ZðG̃iÞ ≅ Zni , or ZðG̃iÞ ≅ Z2 × Z2

for G̃i ¼ Spinð4NiÞ. Then a generator z ofZ ⊂
Q

i ZðG̃iÞ is
specified by a tuple ðkiÞ, where ki mod ni ∈ Zni .

9 The
absence of the anomaly that would obstruct the gauging
of Z requires that for any generator z ≃ ðkiÞ, we have

X
i

miαG̃i
k2i ¼ 0 mod Z; ð2:36Þ

where mi is the Kac-Moody level of the world-sheet
current algebra realization of G̃i. The nontriviality of this
condition is due to the fractional numbers αG̃i

; for G̃ with

nontrivial ZðG̃Þ that can appear in 8D supergravity, these
are [31]10

G̃ SUðNÞ Spinð4N þ 2Þ Spinð4NÞ E6 E7 SpðNÞ
αG̃

N−1
2N

2Nþ1
8

ðN
4
; 1
2
Þ 2

3
3
4

N
4

: ð2:37Þ

In the following, we show that for any non-Abelian gauge group G ¼ G̃=Z realized via lattice embeddings into the Narain
or the Mikhailov lattice, as described above, (2.36) is satisfied.
To do so, we first recall that any generator z ≃ ðk1; k2;…Þ ∈ Z ¼ π1ðGÞ may be represented by a cocharacter vector

c ¼ {ðv̄cÞ ∈ ΛG
cc ¼ Λ�

S ∩ {ðEÞ. If G̃ ¼ Q
i G̃i with simple factors G̃i, then E ¼ ⊕i Ei, where Ei ¼ Λgi

r ⊗ R, is an
orthogonal decomposition of E. So

v̄c ¼
X
i

v̄ðiÞc ; with v̄ðiÞc ∈ Λgi
cw representing ki ∈

Λgi
cw

Λg
cr
¼ ZðG̃iÞ;

and ðv̄ðiÞc ; v̄ðjÞc Þ ¼ 0 for i ≠ j: ð2:38Þ

The key feature to prove (2.36) is that

hc; ci ¼ ðv̄c; v̄cÞ ¼
X
i

ðv̄ðiÞc ; v̄ðiÞc Þ ∈
�
2Z for c ∈ Λ�

N ¼ ΛN;

Z for c ∈ Λ�
M:

ð2:39Þ

Then, to prove (2.36) for heterotic vacua (i.e., c ∈ ΛN), which only allows ADE-type groups G̃i withmi ¼ 1, we need to

show that, for any v̄ðiÞc ∈ Λgi
cw ⊂ Ei which represents ki ∈ ZðG̃iÞ, its length square satisfies ðv̄ðiÞc ; v̄ðiÞc Þ ¼ 2αG̃i

k2i mod Z. For

CHL vacua with c ∈ Λ�
M, we need ðv̄ðiÞc ; v̄ðiÞc Þ ¼ 2αG̃i

k2i mod Z for ADE-type G̃i at level 2, and ðv̄ðiÞc ; v̄ðiÞc Þ ¼ αG̃i
k2i mod Z

for G̃i ¼ SpðNiÞ at level 1.
ForADEgroups, this simplifies due toΛg

r ¼ Λg
cr being an even self-dual lattice. In this case,ZðG̃Þ ¼ Λg

cw=Λg
cr ¼ ðΛg

r Þ�=Λg
cr ¼

ðΛg
r Þ�=Λg

r is the so-called discriminant group of Λg
r (see [32] for more details). Via the pairing on Λg

r ⊗ R, one can use

1

2
ðw̄ þ α; w̄ þ αÞ ¼ 1

2
ðw̄; w̄Þ þ ðw̄;αÞ þ 1

2
ðα;αÞ ¼ 1

2
ðw̄; w̄Þ mod Z;

for α ∈ Λg
r and w̄ ∈ Λg

cw ¼ ðΛg
r Þ�; ð2:40Þ

9For G̃i ¼ Spinð4NiÞ with ZðG̃iÞ ≅ Z2 × Z2, we would have two integers kð1Þi and kð2Þi modulo 2 specifying the embedding of z
into ZðG̃iÞ.

10For G̃ ¼ Spinð4NÞwith ZðG̃Þ ¼ Z2 × Z2, there are two inequivalent anomaly coefficients, ðαð1Þ; αð2ÞÞ. The first is the same for both
generators (1, 0) and (0, 1) of each Z2 factor; the second coefficient is associated with the generator (1, 1) of the diagonal Z2 subgroup.
In this identification, the (co-)spinor representation is charged under (1, 0) and (0, 1), respectively; hence, both are charged under (1, 1).
The vector representation is charged under both (1, 0) and (0, 1), but invariant under (1, 1).
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todefineaquadratic formq∶ ZðG̃Þ → Q=Z,which is aquadratic refinementof the so-calleddiscriminantpairingonZðG̃Þ.Then, if
the vector v̄ðiÞc ∈ Λgi

cw projects onto ki ∈ ðΛgi
r Þ�=Λgi

r ¼ ZðG̃iÞ, we evidently have ðv̄ðiÞc ; v̄ðiÞc Þ ¼ 2qðkiÞ mod Z. The upshot of this
detour is that the discriminant form ofADE root lattices and its quadratic refinements arewell known (see, e.g., [11]), and given by

suðNÞ∶ ZðG̃Þ ¼ ZN; qðkÞ ¼ k2 ·
N − 1

2N
¼ k2αSUðNÞ;

soð4N þ 2Þ∶ ZðG̃Þ ¼ Z4; qðkÞ ¼ k2 ·
2N þ 1

8
¼ k2αSpinð4Nþ2Þ;

soð4NÞ∶ ZðG̃Þ ¼ Z2 × Z2; qðk1; k2Þ ¼
N
4
ðk21 þ k22Þ þ

N − 1

2
k1k2;

e6∶ ZðG̃Þ ¼ Z3; qðkÞ ¼ k2 ·
2

3
¼ k2αE6

;

e7∶ ZðG̃Þ ¼ Z2; qða; bÞ ¼ k2 ·
3

4
¼ k2αE7

: ð2:41Þ

Hence, for all simple ADE-type G̃i, the quadratic form gives ðv̄c; v̄cÞ ¼ 2qðkiÞ ¼ 2k2i αG̃i
, as required to show (2.36) for both

heterotic and CHL vacua.11

For G̃i ¼ SpðNiÞ,ZðG̃iÞ ¼ Z2 is no longer thediscriminantgroupof the root lattice, since ðΛsp
r Þ� ≠ Λsp

cr . So,weneed to find
an explicit representation of k ¼ 1 ∈ Z2 ¼ Λsp

cw=Λsp
cr in terms of a co-weight v̄, and compute its length squared. One way to

represent the simple roots of SpðNÞ insideE ≅ RN , with standard basis femg, is μm ¼ em − emþ1 form < N, and μN ¼ 2eN
(see, e.g., [21]). Then, a basis w̄l for Λ

spðNÞ
cw ¼ ðΛspðNÞ

r Þ�, which is the dual basis of fμmg, i.e., ðw̄l; μmÞ ¼ δlm, is given by

w̄l ¼
X
m

ðM−1Þlm μm with Mlm ¼ ðμl; μmÞ ¼

0
BBBBBBBB@

2 −1 0 … 0

−1 2 −1 . .
.

0

. .
. . .

. . .
.

0 … −1 2 −2
0 … 0 −2 4

1
CCCCCCCCA
: ð2:42Þ

The inverse is

ðM−1Þkm ¼ minðk;mÞ; k; m < N;

ðM−1ÞNm ¼ ðM−1ÞmN ¼ m
2
; m < N; ðM−1ÞNN ¼ N

4
: ð2:43Þ

Now, because the coroot lattice ΛspðNÞ
cr is spanned by μ∨m ¼ μm for m < N, and μ∨N ¼ 1

2
μN ¼ eN , the co-weight basis

vectors w̄k ¼
P

mðM−1Þkmμm with k < N are actually integer vectors in ΛspðNÞ
cr , and hence represent

0 ∈ ZðSpðNÞÞ ¼ ΛspðNÞ
cw =ΛspðNÞ

cr . The nontrivial element 1 ∈ Z2 ≅ ZðSpðNÞÞ must therefore be the equivalence class of
w̄N ¼ P

N−1
m¼1

m
2
μ∨m þ N

2
μ∨N . Then, one can explicitly compute that

ðw̄N; w̄NÞ ¼
N2

2
−
N
4
− 2N þ 2 ¼ N2

2
−
N
4
−
NðN − 1Þ

2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
∈Z∀N

mod Z

¼ N
4

mod Z

¼ αSpðNÞ mod Z; ð2:44Þ

which indeed is the form needed to prove (2.36) for CHL vacua with sp gauge factors.

11For soð4NÞ, the generators k⃗ ¼ ð1; 0Þ; ð0; 1Þ ∈ Z2 × Z2 both satisfy qðk⃗Þ ¼ N
4
¼ αð1ÞSpinð4NÞ mod Z, and k⃗ ¼ ð1; 1Þ satisfies

qðkÞ ¼ N − 1
2
¼ 1

2
mod Z ¼ αð2ÞSpinð4NÞ. This agrees with the mixed 1-form anomalies with the individual Z2 subgroups; see footnote 10.
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III. CHL GAUGE GROUPS FROM
HETEROTIC MODELS

In this section, we show how we can recover the data
ðZ;Z0Þ about the gauge group topology [cf. (2.10)] of any
8D CHL vacua from the corresponding data of an 8D
heterotic configuration. Physically, this is based on the
duality between CHL vacua and heterotic compactifica-
tions “without vector structure” [25], or, equivalently F
theory with O7þ-planes encoded in “frozen” singularities
[26,27]. In either of these duality frames, an 8D CHL
vacuum with non-Abelian gauge algebra g ¼ spðnÞ ⊕ h,
with h of ADE type, arises from a heterotic or F-theory
model with gauge algebra ghet ¼ soð16þ 2nÞ ⊕ h (see
also [6]). Indeed, our CHL example in Sec. II C with g ¼
spð2Þ ⊕ suð4Þ2 ⊕ suð2Þ2 can be obtained from the het-
erotic example with ghet ¼ soð20Þ ⊕ suð4Þ2 ⊕ suð2Þ2,
whose global structure we compute in Appendix A. A
direct comparison shows that both examples have the same
data, ðZ;Z0Þ ¼ ðZhet;Z0

hetÞ, which specifies the global

structure of the gauge group. Though, in general, these
two pairs need not be identical, the identification of the
CHL gauge group data ðZ;Z0Þ is straightforward to obtain,
given the corresponding information about the heterotic/
F-theory model. The information about the latter can be
extracted from various sources, e.g., from K3 data [11]
specifying the F-theory setting, or the lattice embeddings of
heterotic models [12]. An alternative way is to use string
junctions [22], which will be explored in full detail in an
upcoming work [23].
To describe the procedure, let us assume that we have

the explicit embedding of the subgroup ðZhet;Z0
hetÞ into

ZðG̃hetÞ ¼ ZðSpinð16þ 2nÞÞ × ZðH̃Þ, where G̃het and H̃
are the simply connected groups with algebra ghet
and h, respectively. Then, any generator z ¼ ðzsp; zhÞ ∈
ZðSpðnÞÞ × ZðH̃Þ ¼ Z2 × ZðH̃Þ of the group Z (or Z0,
respectively) specifying the CHL gauge topology arises
from a generator ẑ ¼ ðẑso; ẑhÞ ∈ ZðSpinð16þ 2nÞÞ ×
ZðH̃Þ of Zhet (or Z0

het, respectively), via the map

zh ¼ ẑh ∈ ZðH̃Þ;

zsp ¼
� ẑsomod 2; ẑso ∈ Z4 ¼ ZðSpinð16þ 2nÞÞ ðn oddÞ;
ẑð1Þso þ ẑð2Þso mod 2; ẑso ¼ ðẑð1Þso ; ẑ

ð2Þ
so Þ ∈ Z2 × Z2 ¼ ZðSpinð16þ 2nÞÞ ðn evenÞ:

ð3:1Þ

While we will provide a proof of the validity of this map
momentarily, it allows us to readily determine the gauge
groups of all CHL vacua, given their heterotic parent. We
illustrate this for all maximally enhanced cases (i.e., where

the non-Abelian algebra g has the maximally allowed rank
of 10) in Table I in Appendix B. We find not only instances
with Z ¼ Z2, but also examples with Z ¼ Z2 × Z2.
Moreover, as an explicit check of the claims of Sec. II D,

TABLE I. All 61 maximally enhanced CHL vacua, together with the simply connected cover G̃ ¼ Q
i G̃i of their

non-Abelian gauge groupG ¼ G=Z. The embeddingZ ↪ ZðG̃Þ is specified by expressing the generator(s) ofZ via

a tuple ðkiÞ ∈
Q

i ZðG̃iÞ. If G̃i ¼ Spinð4nÞ, then ki ¼ ðkð1Þi ; kð2Þi Þ ∈ ZðSpinð4nÞÞ ≅ Z2 × Z2. All ADE factors have
Kac-Moody level 2, while the SpðnÞ factors have level 1. Note that, while Spð1Þ ≅ SUð2Þ as Lie groups, we will use
Spð1Þ if the gauge factor is at level 1, and SUð2Þ if it is at level 2.
No. G̃ Z Z ↪ ZðG̃Þ
1 E8 × Spð2Þ 0 � � �
2 E8 × Spð1Þ × SUð2Þ 0 � � �
3 E7 × Spð3Þ 0 � � �
4 E7 × Spð2Þ × SUð2Þ Z2 (1, 1, 0)
5 E7 × Spð1Þ × SUð3Þ 0 � � �
6 E7 × SUð3Þ × SUð2Þ Z2 (1, 0, 1)
7 E6 × Spð4Þ 0 � � �
8 E6 × Spð3Þ × SUð2Þ 0 � � �
9 E6 × Spð1Þ × SUð4Þ 0 � � �
10 E6 × Spð1Þ × SUð3Þ × SUð2Þ 0 � � �
11 E6 × SUð5Þ 0 � � �
12 Spð10Þ 0 � � �
13 Spð9Þ × SUð2Þ 0 � � �
14 Spð8Þ × SUð3Þ Z2 (1, 0)

(Table continued)
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all these center embeddings correspond to anomaly-free
1-form center symmetries.

A. Proving the validity of the map

The proof of the validity of (3.1) proceeds in three steps.
First, we review the embedding of the Mikhailov lattice and

its dual into the Narain lattice [15], and highlight the role of
the soð16Þ ⊂ soð16þ 2nÞ subalgebra. Second, we con-
struct the roots and coroots of the CHL gauge algebra g
from those of the parent heterotic algebra ghet. Because
g ⊃ spðnÞ, the coroot lattice of g will no longer be a
sublattice of the heterotic configuration. In the third step,

TABLE I. (Continued)

No. G̃ Z Z ↪ ZðG̃Þ
15 Spð8Þ × SUð2Þ2 Z2 (1, 0, 0)
16 Spð7Þ × SUð3Þ × SUð2Þ 0 � � �
17 Spð6Þ × SUð5Þ 0 � � �
18 Spð6Þ × SUð4Þ × SUð2Þ Z2 (1, 0, 1)
19 Spð6Þ × SUð3Þ2 0 � � �
20 Spð6Þ × SUð3Þ × SUð2Þ2 Z2 (1, 0, 1, 0)
21 Spð5Þ × Spinð10Þ 0 � � �
22 Spð5Þ × SUð6Þ 0 � � �
23 Spð5Þ × SUð5Þ × SUð2Þ 0 � � �
24 Spð4Þ × Spinð12Þ Z2 (1, (1, 1))
25 Spð4Þ × Spinð10Þ × SUð2Þ Z2 (1, 2, 0)
26 Spð4Þ × SUð5Þ × SUð2Þ2 Z2 (1, 0, 1, 1)
27 Spð4Þ × SUð4Þ × SUð3Þ × SUð2Þ Z2 (1, 2, 0, 0)
28 Spð4Þ × SUð3Þ2 × SUð2Þ2 Z2 (1, 0, 0, 1, 1)
29 Spð3Þ × SUð7Þ × SUð2Þ 0 � � �
30 Spð3Þ × SUð6Þ × SUð3Þ 0 � � �
31 Spð3Þ × SUð5Þ × SUð3Þ × SUð2Þ 0 � � �
32 Spð3Þ × SUð4Þ × SUð3Þ2 0 � � �
33 Spð2Þ × Spinð14Þ × SUð2Þ Z2 (1, 2, 1)
34 Spð2Þ × Spinð12Þ × SUð3Þ Z2 (1, (1, 0), 0)
35 Spð2Þ × Spinð10Þ × SUð3Þ × SUð2Þ Z2 (1, 2, 0, 1)
36 Spð2Þ × SUð9Þ 0 � � �
37 Spð2Þ × SUð7Þ × SUð3Þ 0 � � �
38 Spð2Þ × SUð6Þ × SUð4Þ Z2 (1, 3, 0)
39 Spð2Þ × SUð6Þ × SUð2Þ3 Z2 × Z2 (1, 3, 0, 0, 0), (1, 0, 1, 1, 1)
40 Spð2Þ × SUð5Þ2 0 � � �
41 Spð2Þ × SUð5Þ × SUð4Þ × SUð2Þ Z2 (1, 0, 2, 1)
42 Spð2Þ × SUð4Þ2 × SUð2Þ2 Z2 × Z2 (1, 2, 0, 1, 0), (1, 0, 2, 0, 1)
43 Spð1Þ × Spinð18Þ 0 � � �
44 Spð1Þ × Spinð10Þ × SUð5Þ 0 � � �
45 Spð1Þ × SUð10Þ 0 � � �
46 Spð1Þ × SUð9Þ × SUð2Þ 0 � � �
47 Spð1Þ × SUð8Þ × SUð2Þ2 Z2 � � �
48 Spð1Þ × SUð7Þ × SUð3Þ × SUð2Þ 0 � � �
49 Spð1Þ × SUð6Þ × SUð5Þ 0 � � �
50 Spð1Þ × SUð6Þ × SUð4Þ × SUð2Þ Z2 � � �
51 Spð1Þ × SUð5Þ × SUð3Þ2 × SUð2Þ 0 � � �
52 Spinð16Þ × SUð2Þ2 Z2 × Z2 ((1, 1), 1, 1), ((0, 1), 0, 0)
53 Spinð12Þ × SUð4Þ × SUð2Þ Z2 × Z2 ((1, 1), 2, 0), ((1, 0), 0, 1)
54 Spinð10Þ2 Z2 (2, 2)
55 SUð10Þ × SUð2Þ Z2 (5, 1)
56 SUð8Þ × SUð3Þ × SUð2Þ Z2 (4, 0, 0)
57 SUð7Þ × SUð3Þ2 0 � � �
58 SUð6Þ2 Z2 (3, 3)
59 SUð6Þ × SUð5Þ × SUð2Þ Z2 (3, 0, 1)
60 SUð6Þ × SUð4Þ × SUð2Þ2 Z2 × Z2 (0, 2, 1, 1), (3, 0, 1, 0)
61 SUð4Þ2 × SUð3Þ2 Z2 (2, 2, 0, 0)
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we show that the cocharacter lattice of the CHL configu-
ration is obtained from a suitable projection of the
cocharacter lattice of the heterotic model. Analogously
to Sec. II E, each cocharacter ĉ projects onto co-weights of
each gauge factor, thereby specifying a generator of the
fundamental group as embedded into the center of the
simply connected cover. Then, by identifying the gener-
ators of Λg

cw=Λg
cr in terms of those of Λghet

cw =Λghet
cr , we will

establish the map (3.1).

B. Finding Mikhailov inside Narain

As argued in [15], there is, up to isomorphisms, a unique
embedding

Λsoð16Þ
r ≡ D8 ↪ Γ16 ⊂ Γ16 ⊕ U ⊕ U ¼ ΛN ð3:2Þ

of the root lattice of soð16Þ into the Narain lattice.
Denoting by VM the subspace of VN ≔ ΛN ⊗ R that is
orthogonal to D8, with projection PM∶ VN → VM, the
Mikhailov lattice ΛM and its dual Λ�

M are found as

PMðΛNÞ ≅ D�
8 ⊕ U ⊕ U ≅ Λ�

M;

ΛN ∩ VM ≅ D8 ⊕ U ⊕ U ≅ ΛM: ð3:3Þ

To give an “intuitive” argument for this, note that the
lattice Γ16 can be identified with the character lattice of
Spinð32Þ=Z2, i.e., it is generated by the root lattice of
soð32Þ together with the weights of the spinor representa-
tion Ssoð32Þ. The embedding D8 ↪ Γ16 then corresponds to
the embedding of the roots of an soð16Þ ⊂ soð32Þ sub-
algebra. Conversely, the branching soð32Þ ⊃ soð16Þ ⊕
soð16Þ corresponds to an orthogonal decomposition
Γ16 ⊗ R ¼ ðD8 ⊗ RÞ ⊕ ðD8 ⊗ RÞ≡ VD8

⊕ V 0
D8
. We can

extend this decomposition to

VN ¼ ΛN ⊗ R ¼ VD8
⊕ V 0

D8
⊕ ðU ⊗ RÞ ⊕ ðU ⊗ RÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≕VM

;

PM∶ VN → VM; s ¼ sD þ sM ↦ sM: ð3:4Þ

From this, the nature of the two lattices PMðVNÞ and ΛN ∩
VM can be inferred from the group-theoretic decomposition

soð32Þ ⊃ soð16Þ ⊕ soð16Þ;
adjsoð32Þ → ðadjsoð16Þ; 1Þ ⊕ ð1; adjsoð16ÞÞ

⊕ ðVsoð16Þ;Vsoð16ÞÞ;
Ssoð32Þ → ðSsoð16Þ;Ssoð16ÞÞ ⊕ ðCsoð16Þ;Csoð16ÞÞ; ð3:5Þ

where adj, V, and C denote the adjoint, vector, and
cospinor representations, respectively. At the level of
lattices, the lack of any nonadjoint representations that
are charged under just one of the soð16Þ factors means that
the only lattice points in the hyperplane V 0

D8
correspond to

adjoint weights, i.e., Γ16 ∩ V 0
D8

≅ D8.
12 However, since the

bicharged representations project onto the (co-)spinors and
vectors of each soð16Þ, the projection of Γ16 onto V 0

D8
is

Λsoð16Þ
w ¼ ðΛsoð16Þ

cr Þ� ¼ ðΛsoð16Þ
r Þ� ¼ D�

8. Since the copies of
U lattices in (3.2) and (3.4) are merely spectators in this
argument, we find the Mikhailov lattice ΛM and its dual as
given in (3.3).

C. Constructing the CHL (co-)roots

Since the heterotic gauge algebras ghet ¼ h ⊕
soð16þ 2nÞ, which are of interest to us, contain an
soð16þ 2nÞ algebra, we can identify an soð16Þ ⊂ soð16þ
2nÞ subalgebra, whose root lattice may be identified with
D8 in (3.2). By orthogonality (3.4), the root latticeΛ

h
r ⊂ ΛN

of the ADE algebra h must then lie in the plane VM, and
hence, by (3.3), Λh

r ¼ Λh
cr ⊂ ΛM.

In order to obtain the spðnÞ, first consider a basis for

Λsoð16þ2nÞ
r formed by the simple roots μ̂i, i ¼ 1;…; 8þ n,

of soð16þ 2nÞ, with μ̂nþ7 and μ̂nþ8 forming the “branched
nodes” in the soð16þ 2nÞ Dynkin diagram:

ð3:6Þ

Then, associated with the branching soð16þ 2nÞ ⊃
soð16Þ ⊕ soð2nÞ, the subspace VD8

in (3.4) is spanned
by the soð16Þ roots fμ̂nþ1;…; μ̂nþ8g. Orthogonal to that

will be the root lattice Λsoð2nÞ
r of soð2nÞ inside

D8 ⊕ U ⊕ U ≅ ΛM, with simple roots

ρ̂1 ¼ μ̂n−1; ρ̂2 ¼ μ̂n−2;…; ρ̂n−1 ¼ μ̂1;

ρ̂n ¼ μ̂1 þ
Xnþ6

i¼2

2μ̂i þ μ̂nþ7 þ μ̂nþ8: ð3:7Þ

At the level of lattices, we have Λsoð2nÞ
r ¼ ΛspðnÞ

r , but the
simple roots differ. In terms of the soð2nÞ roots ρ̂, the
simple roots ρ of spðnÞ are [21]

ρ1 ¼ ρ̂1; ρ2 ¼ ρ̂2;…; ρn−1 ¼ ρ̂n−1; ρn ¼ −ðρ̂n−1 þ ρ̂nÞ;
ð3:8Þ

12The symmetry between the two D8’s is an isomorphism of
ΛN . The results below would be the same if we swapped their
roles in the subsequent discussion.
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where ρn is the long root of spðnÞ. This modifies to coroot

lattice Λsoð2nÞ
cr ≠ ΛspðnÞ

cr ⊂ Λ�
M, with basis ρ∨i ¼ ρi for

i ¼ 1;…; n − 1, and ρ∨n ¼ 1
2
ρn. Under the projection

PM∶ VN → VM, we have

PMðμ̂iÞ ¼ 0 for i ¼ nþ 1;…; nþ 8;

PMðμ̂iÞ ¼ μ̂i ¼ ρn−i ¼ ρ∨n−i for i ¼ 1;…; n − 1;

PMðμ̂nÞ ¼
1

2
PM

�
ρ̂n − μ̂1 −

Xn−1
i¼2

2μ̂i

−
Xnþ6

i¼nþ1

2μ̂i − μ̂nþ7 − μ̂nþ8

�

¼ 1

2

�
ρ̂n − ρ̂n−1 − 2

Xn−2
i¼1

ρ̂i

�

¼ −
ρn
2
−
Xn−1
i¼1

ρi ¼ −ρ∨n −
Xn−1
i¼1

ρ∨i : ð3:9Þ

Note that, by our working assumption, the so roots (3.7)
satisfy the masslessness condition for the heterotic string. A
legitimate question is, then, if the sp roots (3.8) satisfy the
analogous conditions of the CHL string, i.e., whether the
corresponding CHL vacuum indeed has an spðnÞ ⊕ h
gauge symmetry. This is indeed the case, since the
embedding above is directly related to the realization of
sp gauge algebras given in [15].

D. CHL cocharacters from heterotic cocharacters

Having identified the (co-)root lattices, we now need to
show that every cocharacter of the CHL configuration
arises from a cocharacter in the heterotic model. By
defining Ê ¼ Λghet

r ⊗ R ⊂ VN and E ¼ Λg
r ⊗ R ⊂ VM,

we first want to show that

PMðΛNÞ ∩ E ¼ PMðΛN ∩ ÊÞ: ð3:10Þ

For this, we use the fact that the branching ghet ¼ soð16þ
2nÞ ⊕ h ⊃ soð16Þ ⊕ soð2nÞ ⊕ h induces the orthogonal
decomposition

Ê ¼ VD8
⊕ ðΛsoð2nÞ

r ⊕ Λh
r|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

¼Λg
r

Þ ⊗ R

¼ VD8
⊕ E ⊂ VD8

⊕ VM ¼ VN: ð3:11Þ
Combining this with the general decomposition (2.7) of
VN ¼ Ê ⊕ F, where F is the hyperplane containing the
Uð1Þs, (3.4) implies that

VM ¼ E ⊕ F ⊂ VD8
⊕ E|fflfflfflfflffl{zfflfflfflfflffl}
Ê

⊕ F ¼ VN: ð3:12Þ

Notice that, in particular, the number of independent Uð1Þ
gauge factors, rF ¼ dimF, is the same for the CHL and the
heterotic vacuum. So, any s ∈ VN can be written as s ¼
sD þ sE þ sF with sD ∈ VD8

, sE ∈ E, and sF ∈ F. Then,

s ∈ PMðΛNÞ ∩ E ⇔ s ¼ sE ∈ E and ∃ sD ∈ VD8
∶ sE þ sD ∈ ΛN

⇔ ∃ s0 ¼ sE þ sD ∈ ΛN ∩ Ê∶ s ≔ sE ¼ PMðs0Þ
⇔ s ∈ PMðΛN ∩ ÊÞ: ð3:13Þ

The significance of (3.10) is that we can identify the cocharacter lattice ΛG
cc of the CHL vacuum as the projection of the

heterotic cocharacter lattice ΛGhet
cc under PM.

13 Namely, from the general prescription (2.13), we have

ΛG
cc ¼ Λ�

M ∩ E ¼ð3.3Þ PMðΛNÞ ∩ E ¼ð3.10Þ PMðΛN ∩ ÊÞ ¼ PMðΛGhet
cc Þ: ð3:14Þ

Analogously, we can infer the CHL cocharacters Λ0
cc, that encode the constraints involving the Uð1Þ charges, from

the corresponding ones of the heterotic model, Λ̂0
cc. Namely, at the level of vector spaces, (3.12) implies that the projections

πÊ∶ VN → Ê and PM∶ VN → VM commute, and in fact compose to the projection πE∶ VN → E. Then, from (2.16), we have

Λ0
cc ¼ πEðΛ�

MÞ ¼ πEðPMðΛNÞÞ ¼ PMðπEðΛNÞÞ ¼ PMðΛ̂0
ccÞ: ð3:15Þ

In summary, we see that any cocharacter c of the CHL vacuum arises as the projection of a heterotic cocharacter ĉ under
PM. Any such cocharacter ĉ ∈ ΛN can be written as ĉ ¼ ĉsoð16þ2nÞ þ ĉh þ ĉF. If ĉF ∈ F is 0, then ĉ ∈ ΛN ∩ Ê ¼ ΛGhet

cc

13We can also determine the CHL group structure including the Uð1Þ0s, following (2.16), from the parent heterotic theory. We will
focus on the non-Abelian part, because the relevant data for its group topology are encoded in known K3 data [11].
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specifies an element ẑ of π1ðGhetÞ ¼ Zhet ¼ ΛGhet
cc =Λghet

cr ⊂
Λghet
cw =Λghet

cr ¼ ZðG̃hetÞ. If ĉF ≠ 0, then ĉ defines an element
ẑ of Z0

het ⊂ ZðG̃hetÞ ×Uð1ÞrF . In particular, each compo-

nent ĉh ∈ Λh
cw and ĉsoð16þ2nÞ ∈ Λsoð16þ2nÞ

cw specifies a center
element ẑh ∈ ZðH̃Þ and ẑso ∈ ZðSpinð16þ 2nÞÞ, respec-
tively, which is the restriction of ẑ to the corresponding
center subgroup.
To establish (3.1), all we need to determine is, given the

generators of Zhet and Z0
het in terms of ðẑh; ẑsoÞ ∈ ZðH̃Þ×

ZðSpinð16þ 2nÞÞ ¼ ZðG̃hetÞ, what the corresponding
center element z ¼ ðzh; zspÞ ∈ ZðH̃Þ × ZðSpðnÞÞ ¼ ZðG̃Þ

is. For zh, this is easy to answer. Since the coroot lattice Λ
h
cr

remains invariant when passing from the heterotic to the
CHL model, the component PMðẑhÞ ¼ ẑh defines the same

element zh ¼ ẑh ∈ ZðH̃Þ ¼ Λh
cw=Λh

cr.
However, the same does not hold for zsp, since in the

CHL vacuum, we have to compare PMðĉsoð16þ2nÞÞ to
the coroots of spðnÞ, rather than those of soð2nÞ ⊂
soð16þ 2nÞ. To this end, we first construct the co-weights
ˆ̄w of soð16þ 2nÞ which represent ZðSpinð16þ 2nÞÞ ¼
Λsoð16þ2nÞ
cw =Λsoð16þ2nÞ

cr . As duals of the roots μ̂i, i ¼ 1;…;
8þ n, a basis for these are given by

ˆ̄wl ¼ ðC−1Þliμ̂i with Cil ¼ ðμ̂i; μ̂lÞ ¼

0
BBBBBBBBBB@

2 −1 0 … … 0

−1 2 . .
. . .

.

. .
. . .

. . .
.

0 … −1 2 −1 −1
0 … 0 −1 2 0

0 … 0 −1 0 2

1
CCCCCCCCCCA

ð3:16Þ

The inverse of the Cartan matrix C of soð16þ 2nÞ is (see, e.g., [33])

ðC−1Þij ¼ ðC−1Þji ¼ minði; jÞ for i; j < nþ 6;

ðC−1Þnþ7;j ¼ ðC−1Þj;nþ7 ¼ ðC−1Þnþ8;j ¼ ðC−1Þj;nþ8 ¼
j
2

for j < nþ 6;

ðC−1Þnþ7;nþ8 ¼ ðC−1Þnþ8;nþ7 ¼
nþ 6

4
; ðC−1Þnþ7;nþ7 ¼ ðC−1Þnþ8;nþ8 ¼

nþ 8

4
: ð3:17Þ

Since we are ultimately interested in the equivalence classes of spðnÞ co-weights csp in Z2 ≅ ΛspðnÞ
cw =ΛspðnÞ

cr , we use (3.8) to
compute, for later convenience,

PMð ˆ̄wnþ7Þ ¼
Xnþ8

j¼1

ðC−1Þnþ7;jPMðμ̂jÞ

¼
Xn−1
j¼1

ðC−1Þnþ7;jρ
∨
n−j − ðC−1Þnþ7;n

�
ρ∨n þ

Xn−1
j¼1

ρ∨j
�

¼
Xn−1
j¼1

ðC−1Þnþ8;jρ
∨
n−j − ðC−1Þnþ8;n

�
ρ∨n þ

Xn−1
j¼1

ρ∨j
�

¼ PMð ˆ̄wnþ8Þ

¼
Xn−1
j¼1

j − n
2

ρ∨j −
n
2
ρ∨n : ð3:18Þ

Clearly, for any n ≥ 1, at least one of the summands has a fractional coefficient. And since 2PMð ˆ̄wnþ7Þ ¼
2PMð ˆ̄wnþ8Þ ∈ ΛspðnÞ

cr , this means that PMð ˆ̄wnþ7Þ ¼ PMð ˆ̄wnþ8Þ map to 1 ∈ Z2 ≅ ΛspðnÞ
cw =ΛspðnÞ

cr . Moreover, since
μ̂∨i ¼ μ̂i, we can easily verify that
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ˆ̄wnþ7 þ ˆ̄wnþ8 ¼
Xnþ8

j¼1

ððC−1Þnþ7;j þ ðC−1Þnþ8;jÞμ̂j

¼
Xnþ6

j¼1

jμ̂j þ
2nþ 14

4
ðμ̂nþ7 þ μ̂nþ8Þ

¼ nþ 1

2
ðμ̂∨nþ7 þ μ̂∨nþ8Þ mod Λsoð16þ2nÞ

cr :

ð3:19Þ

Now it is instructive to differentiate between even and
odd n.

For odd n, for which we know Λsoð16þ2nÞ
cw =

Λsoð16þ2nÞ
cr ≅ Z4, the above equation is ˆ̄wnþ7 þ

ˆ̄wnþ8 ¼ 0 mod Λsoð16þ2nÞ
cr . At the same time, since

2ðnþ 6Þ and 2ðnþ 8Þ cannot be divisible by 4 with odd
n, both ˆ̄wnþ7 and ˆ̄wnþ8 are order 4 elements modulo

Λsoð16þ2nÞ
cr . The order 2 element in Λsoð16þ2nÞ

cw =Λsoð16þ2nÞ
cr

is then represented by 2 ˆ̄wnþ7 ¼ 2 ˆ̄wnþ8 mod Λsoð16þ2nÞ
cr ¼

ˆ̄w2j−1 mod Λsoð16þ2nÞ
cr for 1 ≤ j ≤ nþ 6 [as also evident

from (3.17)]. Then, if ĉsoð16þ2nÞ projects onto an order 4

element in Λsoð16þ2nÞ
cw =Λsoð16þ2nÞ

cr ≅ Z4, it must be in the
same equivalence class as either ˆ̄wnþ7 or ˆ̄wnþ8, which
by (3.9) both map onto the order 2 element in

ΛspðnÞ
cw =ΛspðnÞ

cr ≅ Z2, confirming (3.1) for odd n.
For even n, we see from (3.17) and (3.19) that, in the

quotient Λsoð16þ2nÞ
cw =Λsoð16þ2nÞ

cr ≅ Z2 × Z2, the equivalence
classes of ˆ̄wnþ7, ˆ̄wnþ8, and ˆ̄wnþ7 þ ˆ̄wnþ8 all define order 2
elements. This means that ˆ̄wnþ7 and ˆ̄wnþ8 represent the
generators (1,0) and (0,1), respectively, while ˆ̄wnþ7 þ ˆ̄wnþ8

represents (1,1). Again, since PMð ˆ̄wnþ7Þ ¼ PMð ˆ̄wnþ8Þ map
to 1 ∈ Z2 ¼ ZðSpðnÞÞ, this confirms (3.1) for even n.

IV. SUMMARY AND OUTLOOK

In this work, we have presented an explicit identification
of the gauge group topology

½G̃=Z� ×Uð1ÞrF
Z0 ð4:1Þ

of 8D N ¼ 1 compactifications of heterotic and CHL
string theories, based on the embedding of the root lattice
Λg
r of the non-Abelian gauge algebra g (with simply

connected cover G̃) into the momentum lattice ΛS of string
states. For rank 20 theories, this agrees with known results
from the heterotic [12] or the F-theory duality frame
[8,11,22,23]. For CHL vacua, we have highlighted the
necessity to distinguish between ΛS and its dual, as well as
between the root Λg

r and coroot lattice Λg
cr. If this is taken

into account, the resulting non-Abelian gauge group top-
ologyG ¼ G̃=Z is guaranteed to have no anomalies for the

corresponding Z ⊂ ZðG̃Þ 1-form symmetry [1]. This can
be verified explicitly for all 61 maximally enhanced CHL
vacua, for which we have compiled the non-Abelian gauge
group topology Z in Appendix B.
We have also demonstrated in an explicit example how to

compute the subgroup Z0 ⊂ ZðG̃Þ, which is identified with
a subgroup of the Abelian gauge factor Uð1ÞrF. As we have
argued for in Sec. III, the global gauge group structure
ðZ;Z0Þ of any CHL vacuum can be in principle inferred
from the corresponding data ðZhet;Z0

hetÞ of a parent
heterotic model. While Zhet can be readily obtained from
existing data (e.g., from [12]), a comprehensive list of the
part Z0

het involving the Uð1Þ0s will be presented in an
upcoming work [23], from which we can then also classify
Z0 for CHL vacua. There, we will also extend the analysis
to include 8D N ¼ 1 theories with gauge rank 4
[25,34,35]. Additionally, it should be straightforward to
apply the machinery to 7D heterotic compactifications [36].
Another interesting direction would be to understand the

results about the global gauge group structures involving
geometrically engineered sp gauge symmetries in the
language of higher-form symmetries [24]. This would
require a refinement of the framework of [37,38] to M-
theory compactifications with frozen singularities [25–27].
Furthermore, it would be interesting to reproduce the spðnÞ
contribution to the mixed 1-form anomalies from a dimen-
sional reduction of the M-theory Chern–Simons term in the
presence of boundary fluxes which encode the 1-form
symmetry background [39]. Lastly, having a complete
catalog of gauge group topology including the Uð1Þ’s
could provide a guideline to formulate field-theoretic
constraints on allowed topologies Z0, in similar fashion
to [1,5].
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APPENDIX A: HETEROTIC CASE STUDY

In this Appendix, we study the global gauge group
structure of a rank 20 heterotic model, with g ¼
suð2Þ2 ⊕ suð4Þ2 ⊕ soð20Þ.
We choose a presentation of the Narain lattice ΛN and its

vector space VN ¼ ΛN ⊗ R as

VN ∋ vðlÞ ¼ ðlðlÞ1 ; lðlÞ2 ; nðlÞ1 ; nðlÞ2 ; sðlÞ1 ;…; sðlÞ16 Þ; ðA1Þ

with pairing
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hvð1Þ; vð2Þi ¼ lð1Þ1 nð2Þ1 þ lð2Þ1 nð1Þ1 þ lð1Þ2 nð2Þ2 þ lð2Þ2 nð1Þ2 þ
X16
j¼1

sð1Þj sð2Þj : ðA2Þ

Then, vectors in ΛN ¼ Λ�
N ≅ U ⊕ U ⊕ Γ16 are characterized by

lðlÞi ; nðlÞi ∈ Z; ðs1;…; s16Þ ∈
1

2
Z with

X16
j¼1

sj ∈ 2Z; sj − sk ∈ Z ∀ j; k: ðA3Þ

The explicit embedding of the g root lattice Λg
r into ΛN is given as

2
666666666666666666666666666666666666666664

1 4 −1 −3 0 −2 −2 −1 −1 −1 −1 −4 0 0 0 0 0 0 0 0

1 2 −1 −3 −1 −1 −1 −1 −1 −1 −1 −3 0 0 0 0 0 0 0 0

0 2 0 −2 0 −2 −1 −1 −1 −1 −1 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −2 0 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0

0 −2 0 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 4 −1 −3 −1 −2 −2 −2 −1 −1 −1 −3 −1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

3
777777777777777777777777777777777777777775

; ðA4Þ

whose rows we label by μ1;…; μ18. Here μ1 and μ2 are the roots of two suð2Þ’s; ðμ3; μ4; μ5Þ and ðμ6; μ7; μ8Þ are the roots of
two suð4Þ’s. ðμ9;…; μ18Þ are the roots of soð20Þ, with μ17, μ18 the two branched nodes. Since these are all ADE systems,
we have μi ¼ μ∨i .
The co-weight lattice Λg

cw is spanned by the co-weights

w̄i ¼ ðC−1Þijμj; with Cij ¼ hμi; μji: ðA5Þ

Note that C is simply the block-diagonal sum of the Cartan matrices of each simple factor in g. Now we examine the F
plane—the orthogonal subspace to E ≔ Λg

r ⊗ R, which is two dimensional in this case. Its generators can be chosen to be

ξ1 ¼ ð−2; 0; 2; 1; 0; 0; 0; 0; 0; 0; 0; 2; 0; 0; 0; 0; 0; 0; 0; 0Þ;
ξ2 ¼ ð2; 14;−2;−11;−3;−7;−7;−6;−4;−4;−4;−11; 0; 0; 0; 0; 0; 0; 0; 0Þ;
ξ21 ¼ ξ22 ¼ −4; ξ1 · ξ2 ¼ 0: ðA6Þ

With this basis, a general element v̄ of Λ�
N ¼ ΛN can be written as a linear combination of co-weights and the Uð1Þ

generators:
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v̄ ¼ ðl1; l2; n1; n1; s1;…; s16Þ ¼
X18
j¼1

kjw̄j þm1ξ1 þm2ξ2; kj ∈ Z: ðA7Þ

Modulo the (co-)roots Λg
cr ¼ Λg

r , we find two independent basis vectors of ΛN ∩ E ¼ ΛG
cc:

ĉ1 ¼
�
1; 5;−1;−5;−

3

2
;−

5

2
;−

7

2
;−

5

2
;−

3

2
;−

3

2
;−

3

2
;−

9

2
;
1

2
;
1

2
;
1

2
;
1

2
;
1

2
;
1

2
;
1

2
;−

1

2

�

¼ w̄2 þ w̄4 þ w̄17;

ĉ2 ¼
�
1; 1; 0;−1;

1

2
;−

1

2
;−

1

2
;−

1

2
;
1

2
;−

1

2
;−

1

2
;−

3

2
;−

1

2
;−

1

2
;−

1

2
;−

1

2
;−

1

2
;−

1

2
;−

1

2
;
1

2

�

¼ w̄1 þ w̄7 þ w̄9 − w̄17; ðA8Þ

each of which defines an order two element, i.e., generates a Z2 ⊂ ZðSUð2Þ2 × SUð4Þ2 × Spinð20ÞÞ ¼
Z2 × Z2 × Z4 × Z4 × ðZ2 × Z2Þ, via the embeddings

zðĉ1Þ ¼ ð0; 1; 2; 0; ð1; 0ÞÞ; zðĉ2Þ ¼ ð1; 0; 0; 2; ð0; 1ÞÞ: ðA9Þ

The two generators of ΛN that are not within ΛN ∩ E are

ĉ3 ¼ ð0; 1; 0;−2; 0;−1;−1;−1; 0;−1;−1;−1; 0; 0; 0; 0; 0; 0; 0; 0Þ ¼ 1

4
ξ1 þ w̄2 þ w̄3 þ w̄7;

ĉ4 ¼ ð1; 4;−1;−4; 0;−2;−3;−2;−1;−1;−1;−4; 0; 0; 0; 0; 0; 0; 0; 0Þ ¼ 1

4
ξ2 þ w̄1 þ w̄4 þ w̄8: ðA10Þ

Their projection under πE onto Λg
cw define the following equivalence classes in ZðG̃Þ:

zðĉ3Þ ¼ ð0; 1; 1; 2; ð0; 0ÞÞ zðĉ4Þ ¼ ð1; 0; 2; 1; ð0; 0ÞÞ: ðA11Þ

In summary, we find that the full gauge group is

½ðSUð2Þ2 × SUð4Þ2 × Spinð20ÞÞ=ðZ2 × Z2Þ� ×Uð1Þ2
Z4 × Z4

: ðA12Þ

APPENDIX B: GAUGE GROUP OF MAXIMALLY ENHANCED 8D CHL VACUA

In this Appendix, we present the non-Abelian gauge group G ¼ G̃=Z of maximally enhanced 8D CHL vacua, i.e., with
rankðGÞ ¼ 10. There are 61 of them [6,16], listed in the same order as [6]. We determined these from their parent heterotic
models, as described in Sec. III. The global structure of these theories can be obtained with various methods, including that
of [12]. In practice, we use a generalization of string junctions techniques [22], which will be elaborated in our upcoming
work [23]. There, we will also compute the full global gauge group, including the Uð1Þs.
From the embeddings Z ↪ ZðG̃Þ, one can explicitly verify that all nontrivial gauge groups are consistent with the

vanishing of the mixed 1-form center anomaly [1]. We have also checked that the two cases, no. 24 and no. 52, whose
character lattice contains only real representations, satisfy the constraint dimðGÞ þ rankðGÞ ¼ 0 mod 8 [5]:

#24∶ dimðSpinð12ÞÞ þ dimðSpð4ÞÞ þ rankðSpinð12ÞÞ þ rankðSpð4ÞÞ ¼ 112 ¼ 0 mod 8;

#52∶ dimðSpinð16ÞÞ þ 2 dimðSUð2ÞÞ þ rankðSpinð16ÞÞ þ 2 rankðSUð2ÞÞ ¼ 136 ¼ 0 mod 8: ðB1Þ

GAUGE GROUP TOPOLOGY OF 8D … PHYS. REV. D 104, 086018 (2021)

086018-17



[1] M. Cvetič, M. Dierigl, L. Lin, and H. Y. Zhang, String
Universality and Non-Simply-Connected Gauge Groups in
8d, Phys. Rev. Lett. 125, 211602 (2020).

[2] C. Vafa, The string landscape and the Swampland, arXiv:
hep-th/0509212.

[3] H. Ooguri and C. Vafa, On the geometry of the string
landscape and the Swampland, Nucl. Phys.B766, 21 (2007).

[4] I. García-Etxebarria, H. Hayashi, K. Ohmori, Y. Tachikawa,
and K. Yonekura, 8d gauge anomalies and the topological
Green-Schwarz mechanism, J. High Energy Phys. 11 (2017)
177.

[5] M. Montero and C. Vafa, Cobordism conjecture, anomalies,
and the string lamppost principle, J. High Energy Phys. 01
(2021) 063.

[6] Y. Hamada and C. Vafa, 8d supergravity, reconstruction of
internal geometry and the Swampland, J. High Energy Phys.
06 (2021) 178.

[7] C. Vafa, Evidence for F theory, Nucl. Phys. B469, 403
(1996).

[8] P. S. Aspinwall and D. R. Morrison, Nonsimply connected
gauge groups and rational points on elliptic curves, J. High
Energy Phys. 07 (1998) 012.

[9] C. Mayrhofer, D. R. Morrison, O. Till, and T. Weigand,
Mordell-Weil torsion and the global structure of gauge
groups in F-theory, J. High Energy Phys. 10 (2014) 016.

[10] M. Cvetič and L. Lin, The global gauge group structure of
F-theory compactification with U(1)s, J. High Energy Phys.
01 (2018) 157.

[11] I. Shimada, On elliptic K3 surfaces, arXiv:math/0505140.
[12] A. Font, B. Fraiman, M. Graña, C. A. Núñez, and H. P. De

Freitas, Exploring the landscape of heterotic strings on Td,
J. High Energy Phys. 10 (2020) 194.

[13] S. Chaudhuri, G. Hockney, and J. D. Lykken, Maximally
Supersymmetric String Theories in D < 10, Phys. Rev. Lett.
75, 2264 (1995).

[14] S. Chaudhuri and J. Polchinski, Moduli space of CHL
strings, Phys. Rev. D 52, 7168 (1995).

[15] A. Mikhailov, Momentum lattice for CHL string, Nucl.
Phys. B534, 612 (1998).

[16] A. Font, B. Fraiman, M. Graña, C. A. Núñez, and H. Parra
De Freitas, Exploring the landscape of CHL strings on Td,
arXiv:2104.07131.

[17] K. S. Narain, New heterotic string theories in uncompacti-
fied dimensions < 10, Phys. Lett. 169B, 41 (1986).

[18] K. S. Narain, M. H. Sarmadi, and E. Witten, A note on
toroidal compactification of heterotic string theory, Nucl.
Phys. B279, 369 (1987).

[19] S. Gukov and E. Witten, Gauge theory, ramification, and the
geometric Langlands Program, arXiv:hep-th/0612073.

[20] D. Bump, Lie Groups, Graduate Texts in Mathematics
(Springer, New York, 2004).

[21] B. C. Hall, Lie Groups, Lie Algebras, and Representations
(Springer International Publishing, Cham, 2015).

[22] Z. Guralnik, String junctions and nonsimply connected
gauge groups, J. High Energy Phys. 07 (2001) 002.

[23] M. Cvetič, M. Dierigl, L. Lin, and H. Y. Zhang (to be
published).

[24] D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett,
Generalized global symmetries, J. High Energy Phys. 02
(2015) 172.

[25] E. Witten, Toroidal compactification without vector struc-
ture, J. High Energy Phys. 02 (1998) 006.

[26] Y. Tachikawa, Frozen singularities in M and F theory,
J. High Energy Phys. 06 (2016) 128.

[27] L. Bhardwaj, D. R. Morrison, Y. Tachikawa, and A.
Tomasiello, The frozen phase of F-theory, J. High Energy
Phys. 08 (2018) 138.

[28] B. Fraiman, M. Graña, and C. A. Núñez, A new twist on
heterotic string compactifications, J. High Energy Phys. 09
(2018) 078.

[29] F. Apruzzi, M. Dierigl, and L. Lin, The fate of discrete
1-form symmetries in 6d, arXiv:2008.09117.

[30] P. Benetti Genolini and L. Tizzano, Instantons, symmetries
and anomalies in five dimensions, J. High Energy Phys. 04
(2021) 188.

[31] C. Córdova, D. S. Freed, H. T. Lam, and N. Seiberg,
Anomalies in the space of coupling constants and their
dynamical applications II, SciPost Phys. 8, 002 (2020).

[32] V. V. Nikulin, Integral symmetric bilinear forms and some of
their applications, Math. USSR-Izv. 14, 103 (1980).

[33] Y. Wei and Y. M. Zou, Inverses of Cartan matrices of lie
algebras and lie superalgebra, Linear Algebra Appl. 521,
283 (2017).

[34] A. Dabholkar and J. Park, Strings on orientifolds, Nucl.
Phys. B477, 701 (1996).

[35] O. Aharony, Z. Komargodski, and A. Patir, The moduli
space and M(atrix) theory of 9d N ¼ 1 backgrounds of
M/string theory, J. High Energy Phys. 05 (2007) 073.

[36] B. Fraiman and H. P. De Freitas, Symmetry enhancements
in 7d heterotic strings, arXiv:2106.08189.

[37] D. R. Morrison, S. Schafer-Nameki, and B. Willett, Higher-
form symmetries in 5d, J. High Energy Phys. 09 (2020) 024.

[38] F. Albertini, M. Del Zotto, I. García Etxebarria, and S. S.
Hosseini, Higher form symmetries and M-theory, J. High
Energy Phys. 12 (2020) 203.

[39] M. Cvetič, M. Dierigl, L. Lin, and H. Y. Zhang, Higher-form
symmetries and their anomalies in M-/F-theory duality,
arXiv:2106.07654.

CVETIČ, DIERIGL, LIN, and ZHANG PHYS. REV. D 104, 086018 (2021)

086018-18

https://doi.org/10.1103/PhysRevLett.125.211602
https://arXiv.org/abs/hep-th/0509212
https://arXiv.org/abs/hep-th/0509212
https://doi.org/10.1016/j.nuclphysb.2006.10.033
https://doi.org/10.1007/JHEP11(2017)177
https://doi.org/10.1007/JHEP11(2017)177
https://doi.org/10.1007/JHEP01(2021)063
https://doi.org/10.1007/JHEP01(2021)063
https://doi.org/10.1007/JHEP06(2021)178
https://doi.org/10.1007/JHEP06(2021)178
https://doi.org/10.1016/0550-3213(96)00172-1
https://doi.org/10.1016/0550-3213(96)00172-1
https://doi.org/10.1088/1126-6708/1998/07/012
https://doi.org/10.1088/1126-6708/1998/07/012
https://doi.org/10.1007/JHEP10(2014)016
https://doi.org/10.1007/JHEP01(2018)157
https://doi.org/10.1007/JHEP01(2018)157
https://arXiv.org/abs/math/0505140
https://doi.org/10.1007/JHEP10(2020)194
https://doi.org/10.1103/PhysRevLett.75.2264
https://doi.org/10.1103/PhysRevLett.75.2264
https://doi.org/10.1103/PhysRevD.52.7168
https://doi.org/10.1016/S0550-3213(98)00605-1
https://doi.org/10.1016/S0550-3213(98)00605-1
https://arXiv.org/abs/2104.07131
https://doi.org/10.1016/0370-2693(86)90682-9
https://doi.org/10.1016/0550-3213(87)90001-0
https://doi.org/10.1016/0550-3213(87)90001-0
https://arXiv.org/abs/hep-th/0612073
https://doi.org/10.1088/1126-6708/2001/07/002
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1088/1126-6708/1998/02/006
https://doi.org/10.1007/JHEP06(2016)128
https://doi.org/10.1007/JHEP08(2018)138
https://doi.org/10.1007/JHEP08(2018)138
https://doi.org/10.1007/JHEP09(2018)078
https://doi.org/10.1007/JHEP09(2018)078
https://arXiv.org/abs/2008.09117
https://doi.org/10.1007/JHEP04(2021)188
https://doi.org/10.1007/JHEP04(2021)188
https://doi.org/10.21468/SciPostPhys.8.1.002
https://doi.org/10.1070/IM1980v014n01ABEH001060
https://doi.org/10.1016/j.laa.2017.01.036
https://doi.org/10.1016/j.laa.2017.01.036
https://doi.org/10.1016/0550-3213(96)00395-1
https://doi.org/10.1016/0550-3213(96)00395-1
https://doi.org/10.1088/1126-6708/2007/05/073
https://arXiv.org/abs/2106.08189
https://doi.org/10.1007/JHEP09(2020)024
https://doi.org/10.1007/JHEP12(2020)203
https://doi.org/10.1007/JHEP12(2020)203
https://arXiv.org/abs/2106.07654

