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String and 5-brane junctions are shown to succinctly classify all known 8D N =1 string vacua.
This requires an extension of the description for ordinary [p, ¢]-7-branes to consistently include O7
planes, which then naturally encodes the dynamics of 8p, gauge algebras, including their p-form center
symmetries. Central to this analysis are loop junctions, i.e., strings/5-branes which encircle stacks of
7-branes and O7%s. Loop junctions further signal the appearance of affine symmetries of emergent 9D
descriptions at the 8D moduli space’s boundaries. Such limits reproduce all 9D string vacua, including the

two disconnected rank (1,1) moduli components.
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I. INTRODUCTION

Supergravity theories in a large number of dimensions
form an ideal laboratory to investigate the manifestation
of quantum gravitational consistency conditions in the low-
energy limit of string theory. In particular, they provide a
concrete class of models that corroborates the conjecture
of “string universality,” or “string lamppost principle,”
stating that all consistent (super)gravity theories arise from
string theory.

Formulating and sharpening the relevant conditions on
consistent effective theories of quantum gravity are at the
heart of the Swampland Program [1,2]. Arguably, among
the best motivated of these constraints is that quantum
gravity theories should have no exact global symmetries.
This statement can also be applied to higher-form global
symmetries, such as 1-form center symmetries of non-
Abelian gauge sectors. The condition demands that these
symmetries are either gauged or broken. However, if they
are to be gauged, one needs to demand the absence of
obstructions/anomalies to turning on the gauge fields of
these generalized symmetries. This absence of anomalies of
center 1-form symmetries can lead to severe restrictions on
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the global topology of the allowed gauge groups in
supersymmetric theories [3,4]. Similarly, the absence of
global symmetries requires certain topological invariants
called bordism groups to be trivial [5], once more leading to
powerful constraints, in particular on the total rank of the
gauge symmetry, of consistent supergravity theories in
more than six dimensions [6,7].

Being confronted with the set of supergravity models
that pass the above consistency tests, the remaining ques-
tion is whether all of these can be realized in string theory.
To answer this we therefore need good control of the
realization of the global form of the gauge groups, i.e., the
fate of the center 1-form symmetries in string theory
constructions. In the present work we focus on compacti-
fications to eight and nine dimensions (8D and 9D) with
16 supercharges (i.e., N' = 1).

A powerful approach that successfully utilizes the
machinery of geometry is F theory [8], which ties the
algebraic and arithmetic properties of elliptic K3 surfaces
to 8D gauge theories with ADE (algebra of type A, D, or E)
gauge algebras of total rank (2,18)." In this context, the
global gauge group structure is encoded in the Mordell-
Weil group of rational sections of the elliptic fibration
[9-11]. Under M-/F-theory duality, this can be phrased in

"Throughout this work, we collect the number a of indepen-
dent graviphotons, and the maximal non-Abelian gauge rank r
into a pair (a, r), which we often refer to as the (total) gauge rank.
At generic values of moduli, the gauge algebra is hence 1t(1)9"".
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terms of gauging and breaking higher-form symmetries
[12], which is reflected geometrically in the gluing of
torsional homology cycles in local patches containing the
non-Abelian gauge dynamics [13].2 Moreover, through
suitable deformations that correspond to infinite distance
points in the 8D moduli space, the F-theory geometry also
classifies 9D N =1 string vacua with gauge rank (1,17)
[27,28]. This is consistent with the dual heterotic descrip-
tion, where the 9D moduli space—described via the rank
(1,17) Narain lattice—is contained in that of the 8D moduli
space, with a rank (2,18) Narain lattice description (see [29]
for a recent comprehensive study).

However, the dictionary between geometry and physics
is less understood in the presence of so-called frozen
singularities [30-33]. While these are known to be the
necessary ingredient for an F-theory description of 8p
gauge algebras on the 8D N = 1 moduli branches of gauge
ranks (2,10) and (2,2), the characterization of, e.g., the
gauge group topology is no longer purely geometric (i.e.,
given by the Mordell-Weil group) [34]. Likewise, it is not
immediately clear how to identify decompactification
limits on these moduli spaces. On the other hand, advances
in the Swampland program [35] strongly suggest that all 8D
N = 1 vacua should have a characterization in terms of an
elliptically fibered K3.

As we will demonstrate in this work, string junctions
provide a unified framework that encompasses all these
features. In this description, the underlying elliptic K3
is encoded in the configuration of [p,g|-7-branes of
type IIB string theory, whose [p,g| type are in one-to-
one correspondence to elliptic singularities characterized
by an SL(2, Z) monodromy M, ;. The junctions are then
(p, q) strings or 5-branes stretched between the 7-branes.
In their original formulation [36-38] that is equivalent to F
theory without frozen singularities, junctions describe the
8D gauge dynamics with ADE gauge algebras,3 as well
as their higher-form symmetries [13]. To account for a
junction description of all 8D N = 1 vacua, we extend the
discussion to include O77 planes, which are the IIB avatars
of frozen singularities, and have the same monodromy as an
elliptic Dg singularity [30-32].

A concept that will be key to this work are so-called
fractional null junctions, which are certain fractional (and
hence, unphysical) (Z) charges encircling all 7-branes, i.e.,

loop junctions. In the absence of O7" planes, these are
known to be equivalent to Mordell-Weil torsion of the
underlying elliptic K3 [48,49]. To correctly account for the
electric and magnetic center symmetries and the gauge
group topology for the 8p gauge symmetries that arise in

The investigation of generalized symmetries within the geo-
metric engineering framework has received broad attention in
recent literature [3,4,13-26].

String junctions have been also used to construct lower-
dimensional theories, see Refs. [39-47].

the presence of O77, it turns out to be instrumental to study
separately (p, ¢) strings and 5-branes. The key difference
is, while any integer number of 5-branes can end on an
O7*, the number of string prongs there must be even.
Indeed, with this modification, we find that the junction
description of 8D vacua with one O7" is equivalent to
so-called CHL (Chaudhuri—Hockney—Lykken) vacua
[50,51] of rank (2,10), including the characterization of
the global gauge group structure [34,52]. Moreover, it is
straightforward to include two O7™ planes, thereby giving a
junctionesque classification of 8D string vacua with gauge
rank (2,2) including their gauge group topology, for which
there is no known heterotic or CHL string description.

In addition, we also propose a junction description for
decompactification limits to 9D including O7" planes.
Parallel to the 9D uplifts of the rank (2,18) setting [27,28]
(see also [53] for a related discussion of 10D uplifts of 9D
heterotic vacua), we identify the corresponding infinite
distance limits with O7" planes by the emergence of loop
junctions that affinize the 8D gauge algebra. Again, the
subtle differences from having modified boundary con-
ditions for strings and 5-branes can be cross-checked with
the momentum lattice description of the CHL string for
uplifting 8D rank (2,10) theories to 9D rank (1,9) theories.
Like in 8D, the junction description naturally encodes the
gauge group topology of 9D vacua. For the rank (2,2)
theories without a momentum lattice analog, the 9D
theories with rank (1,1) that result from the junction
description live on two-disconnected moduli branches that
are only connected through an S' reduction to 8D, which
matches other stringy constructions [54]. This further
establishes junctions as a complimentary framework to
sharpen aspects of the Swampland distance conjecture [2]
in string compactifications.

The rest of the paper is organized as follows. After
reviewing the junction framework with ordinary [p, ¢]-7-
branes in Sec. II, we discuss, in Sec. III, the modified
boundary conditions for strings and 5-branes on an O7"
plane that give rise to the correct higher-form symmetries
of 8p gauge algebras in 8D. In Sec. IV, we then describe
global 8D models by “gluing” together local patches with
7-brane stacks involving O7" planes. A particular focus
will be on the gauge group topology that is encoded in the
fractional null junctions. We then examine, in Sec. V, the
infinite distance limits described via 7-branes and junctions
that correspond to 9D N = 1 vacua, for which we will also
determine the global gauge group structure. The appendices
contain some technical aspects, as well as the full list of
gauge group topologies for all 8D vacua with maximally
enhanced non-Abelian symmetries in Appendix C.

II. STRING AND 5-BRANE JUNCTIONS

String junctions provide an efficient way to classify
electrically charged states with respect to gauge symmetries
localized on 7-brane stacks in type IIB string theory.

026007-2



ALL EIGHT- AND NINE-DIMENSIONAL STRING VACUA FROM ...

PHYS. REV. D 106, 026007 (2022)

Therefore, they also contain information about the electric
1-form center symmetries and the global realization of the
8D gauge group [13,48,49]. The magnetically dual per-
spective is provided by 5-brane webs, which can also be
described by junctions [55-58].

In this section, we recall some properties of string and
5-brane junctions in the presence of a general [p, g]-7-
brane stack. This provides a local construction of the
charged states. Importantly, the charge under the center
symmetry is related to the appearance of certain fractional
junctions, the extended weight junctions, that determine
the global properties of the model [13]. We then general-
ize the discussion of string and 5-brane junctions to
backgrounds containing O7% planes, whose geometric
interpretation in F theory is more challenging [32,33].
With the help of string junctions we can successfully
extract the correct properties of these configurations and
identify the electric center symmetries also for symplectic
gauge groups. This analysis is repeated with 5-brane
junctions, which, as opposed to the ADE algebras
realized without O7"s, have a subtle distinction from
string junctions that is precisely needed to correctly
account for the magnetic center symmetry.

A. Basics of [p.q|-7-branes and junctions

In this section we will recall the basics of the junction
description for 8D N =1 dynamics from type IIB com-
pactifications [36,38]. The key players are spacetime filling
[p. q]-7-branes X, ,, which we will denote with square
brackets. A single 7-brane must have coprime p and g. In
the plane perpendicular to its world volume, X|, ;1 induces
a singularity in the axiodilaton profile 7 = Cy 4+ ie™?,
composed of the Ramond—Ramond (RR) 0-form C, and
the dilaton field ¢, which is characterized by an SL(2, Z)
monodromy

1+pg —p?
M[p’q] = < 5 S SL(2, Z), (21)

q 1 - pq

which acts on 7 by a Mdbius transformation, and in the
doublet representation,

on the NSNS- and RR-2-form fields (B,, C;). This mono-
dromy can be captured by a branch cut in the perpendicular
plane that emanates form the 7-brane. In the following it
will prove useful to introduce conventions for some special
7-branes, that will later appear in the construction of non-
Abelian gauge algebras

" 1 -1
[1,0] - O 1 9

(2.3)

In a local model, where the perpendicular plane is
noncompact (i.., is R?> = C 3 z), it is customary to extend
the branch cuts all downwards (meeting at z = —ico,
without crossing each other before). Starting from a
configuration describing a certain 8D vacuum, we can
obtain another one on the same 8D N/ = 1 moduli space by
moving the 7-branes. When X, , | crosses the branch cut
of X{,, 4, from the left to right, the [p, g]-type changes
according to

X100 X202 = Xpraos X(ptDprgyiDgs)s (24)

_—

where D =det(?! 72), and the arrow indicating the
a1 gy

branch-cut-crossing 7-brane. Likewise, when it crosses
from right to left, one has

X2 X1or.a1) = XpitDprag+0a) Xiprgs)- (2.5)
o

For any concrete configuration, we can arrange the
7-branes along a horizontal axis, and denote them as
X510 X[prqo)--- Dy labeling from left to right. The
SL(2,Z) monodromy around any (connected) part of this
chain is the product of the individual monodromies of the
encircled branes from right to left. To obtain a valid global
configuration (i.e., where the perpendicular plane is P'!)
describing an 8D N =1 supergravity model, tadpole
cancellation requires exactly 24 [p, g|-7-branes, whose
overall monodromy must be the identity. Note that, while
their relative [p, g types are pivotal for distinguishing
different physical configurations, an overall SL(2,Z) > g
transformation,

Pi Pi _ .
L}l Hg[q'], M, o1+ gMy, 197" foralli,  (2.6)

does not matter physically for a model (local or global)
described by a collection of 7-branes X, ;.
Bobomol'nyi—Prasad—Sommerfield (BPS) particles in
8D arise from (p, g) strings—a bound state of p funda-
mental and ¢ D strings with electric charge (lq’ ) under (Iéz)—

anchored on the 7-branes of the same [p,q| type, and
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Strings and 5-branes, which are represented as lines in the perpendicular plane, form junctions, where the (?) charge at each

vertex is conserved (left). In the presence of 7-branes, they undergo monodromy transformations (2.7) when they cross a branch cut
(middle). By a Hanany-Witten transition, the same junction can be represented as having a prong on the 7-brane (right).

extending as a directed line into the perpendicular plane.
Their magnetically dual objects, which are four-dimen-
sional in 8D, are given by (p, ¢)-5-branes—a bound state
of p NS5- and g-D5-branes with magnetic charge (Z ) under

(gi)—that share four common spatial directions as the

7-brane and also project to lines in the perpendicular plane.
Since strings and 5-branes can fuse and split, so long as
the overall (Z) charge is conserved at every vertex,

they form junctions, see left of Fig. 1. Note that, by
flipping the direction on any prong, its (Iq’ ) charge acquires
a minus sign.4

As charged objects of the 2-form fields (B,, C,), strings,
and 5-branes also experience SL(2,Z) monodromies as
they are transported around 7-branes. This action can be
represented in the perpendicular plane, after choosing the
branch cuts, by an analogous transformation

()= () =mea(0) = )+t ()

(2.7)

on the (7) charges of a junction prong as it crosses the
branch cut of a [p, ¢]-7-brane, see middle of Fig. 1. Finally,
in analogy to Hanany-Witten transitions [59], the same
junction can be expressed by moving the branch-cut-
crossing prong across the 7-brane, as a junction with an
additional prong on the 7-brane, see right of Fig. 1.

To have non-Abelian gauge dynamics in 8D, we have to
collide 7-branes to form stacks. Strings that stretch between
different constituents of a stack then become light and form
massless W bosons of the enhanced gauge symmetry.

“To make contact with the F-theory description of type IIB,
note that (directed) junctions can be interpreted as (oriented)
2-cycles in an elliptic K3, on which M2- and M5-branes can be
wrapped, which are the objects dual to strings and 5-branes
under M-/F-theory duality. See, e.g., [13] for details of this
correspondence.

In terms of the 7-brane types (2.3) ADE-gauge algebras
are realized when the following stacks form”™:

’ Lie algebra | Brane constituents ‘ Monodromy ‘

1 -n
su A"
-1 n-4
50 A"BC
2n 0 1
-2 2n-9
ensi A IBC? "
-1 n-5
-3 3n-11
¢ A"X _1C
n>0 [2,-1] (_1 n—4 )

(2.8)

where we have used exponents to group the same type of
branes that are appear consecutively. The overall mono-
dromy of a 7-brane stack is the product of the individual
branes from right to left: e.g., M, = M[I’I]M[l,_l]Mﬁm.
The realizations of the exceptional algebras are physically
equivalent, i.e., equal up to 7-brane moves inside the stack
and SL(2, Z) conjugations, for n > 2.% while ¢ ~ 3u, and
¢; = u(1); finally, the &, configuration corresponds to a
trivial gauge algebra. There are additional strongly coupled
versions of the Lie algebra 8u,, with n € {2, 3} of the form
A"*1C. In the remaining part of this section, we will focus
mainly on the “standard” cases 8u,, 80,,, and e, s, while
¢, will be relevant in Sec. V. Of course there is a beautiful
relation between the 7-branes stacks above with their
induced SL(2,Z) monodromies, and the classification of

>We have chosen a particular SL(2, Z) frame that is common
in the literature, but any SL(2,Z)-conjugated configuration
would obviously give the same gauge algebra.

We use the standard identifications e, = 81, @ u(l),
ey = §113 (&) §u2, ey = §115, e5 = §010.
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singularities in elliptic fibrations by Kodaira, which is
central in F theory (see [60,61] for recent reviews and
additional references). In the following, we will focus
solely on the junction perspective.

B. The junction lattice

In the following, we give an abstract definition of
junctions as lines in the plane perpendicular to the 7-branes
satisfying the axioms above. In principle, one has to specify
if they represent (p, g) strings or 5-brane webs to attach
physical meaning to them.

Consider the junctions formed by a single prong extend-
ing from one 7-brane X, ,, which we denote with a
lowercase letter as x|, ,1, and sometimes call a unit junction.
In analogy to the different types defined in (2.3), there are
then also junctions

a,b,c,n. (2.9)
Since a general string or 5-brane junction takes the form
of a linear combination of the individual prongs, the
set of all physical junctions (strings or 5-branes) on a
7-brane configuration, X[ ]X[ ] X[m,qi] ..., form a
Z module,

P19 P2:9>2

Jphys = {j = Za"x[pi‘qi”a" (S Z} (210)

One important physical invariant is the net, or asymptotic

asymp - Ei a’( I;: )

One further defines a symmetric bilinear pairing (.,.) on
this module as follows. For the basis junction x|, , (note
that the ordering of the 7-branes is important), one defines’

(2’) charge of a junction j, given by ({q’)

(X[Pi-,qf]’ X[Pj;qi])

(X[Pj,q_;]’ X(p,.q))
1, ifi=j

taee( P7 P7Y i X, s on the left of X[, 1
2 g g [pi-ai] [pj.4;]
i J

(2.11)

By linearly extending to the module Jy, we endow it
with a lattice structure, which will be called the
(physical) junction lattice. For example, consider an
arrangement of only A, B, and C branes, which are ordered
“alphabetically,”

"Here, we simply present the rules as stated in [38]. It can be
shown that they agree with the geometric intersection pairing for
the elliptic K3 of the dual F-theory description.

Aj---Ay--B---Bg---Cy---C,. (2.12)

For this 7-brane configuration, we have
(b, by) =—=6p,

1
(ag.c,) =5 (bg.c,) = 1.

(am aa’) = _5(1,(1” (CJ/’ cJ//) = _6%7"

(a0.by) :-%, (2.13)
An important property of the pairing (2.11) is that it is
invariant under 7-brane motions. That is, given a fixed set
of 7-branes X, .1, the lattice (Jypys, (,+)) changes only
up to a unimodular transformation (i.e., change of basis)
when we move the 7-branes. To see this it suffices to
consider a two-branes configuration X, ,1X[p,q,] With
Jonys = {a' X, 4] + @*X[, 5,1}, for which the pairing
-1 DJ2
D/2 -1 ),
moving X, . across the branch cut to the right, as in (2.4)
[the other direction, (2.5), works analogously], the con-
figuration X, . 1X(,, +Dp,.q,+Dg,] = Xi X, has the lattice

matrix is ( with D :det(g1 22) After
192

Jonys = {a;X; +a,x,}, with

()=o)
—% -1 1 0
(G
b 10/

- 1

1 0>

how the original unit prongs {X[pi,qf]} are expressed

in terms of the new basis {x;,x,} after the 7-brane
transition (2.4),

(Xi’Xj) =

(2.14)

The unimodular transformation ( precisely traces

X| - —-Dx; +x,, X| - X, (2.15)

P1:q1] P2:9>)

1. Loop junctions and their self-pairings

A junction type that will be particularly important to our
discussions are loop junctions. These are formed by
encircling a collection of 7-branes with an (’) charge that
undergoes SL(2,Z) transformations as it crosses their
branch cuts. As a convention for nomenclature, we use
the (7) charge it starts out with to label the loop junction
€ (rs)> even if its (p, g) type changes after it comes back,
see Fig. 2. If the overall monodromy of the encircled
stack is M, then such a loop has asymptotic charge
(f]’) = (M —1)(%). For two loops, €, and €, ), encir-
cling the same 7-branes, one clearly has &, ) + €, ,) =
€ (r+u,s+v)- In principle, any such loop can be turned into the
standard basis (2.10) with prongs on 7-branes by pulling
the loop across the encircled 7-branes via a Hanany-Witten

026007-5
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FIG. 2. A loop junction ¢, around a collection of
7-branes with overall monodromy M. The asymptotic charge

(Z) = (;’,) — (1) = (M = 1)(%) is in general nonzero.

transition, which allows us to compute pairings involving
loop junctions. However, since the loop does not touch the
encircled 7-branes, but only sees their overall monodromy,
the self-pairing of a loop should be computable just with
this data.

To do so, first consider the junction j = X[, ;] + X[, 4 as
depicted on the left of Fig. 3. According to (2.11), we have

(3:3) = (Xpp.g X(p.g) + Xrg)s X)) + 2(X[p g5 Xrg])

,
:—2+det<p )
qg s

As pointed out in [38], this result can also be interpreted as
the sum of the contributions from the two end points of the
7-branes (each contribution —1), and the contribution of the
three-pronged vertex. The latter must therefore be

R )

:det<—(p+r) p)’

—(g+s) ¢

(2.16)

(2.17)

i.e., the determinant of two of the three (Z )-charge vectors,

arranged in their counterclockwise ordering (and all prongs
either ingoing or outgoing).

This logic can now be easily applied to compute self-
pairings of loop junctions. Since such a junction has no end
|

gun:ai:ai—ai+1, lE{l,,n—l},
§D2n2ai:ai—a,~+1, lE{l,,n—]},
e”:al‘:ai—al;H, lE{l,,n—Z},

a1 :an—2+an—l_b_clv a, =C; —Cy,

()
() ot (F7)

FIG. 3. The self-pairing of a three-pronged junction (left) can
be separated into contributions from the ends on 7-branes and the
vertex, see (2.16). When there are no prongs ending on 7-branes,
such as for loop junctions (right), the only contribution is that of
the vertex.

points on 7-branes, the only contribution to the self-pairing
must come from the three-pronged vertex. For the junction
€ in Fig. 2, this contribution evaluates to (after

accounting for the signs necessary to have all prongs
in- or outgoing)

/
(t’(,ws),t’(,ws))—det<p r>——det<r r/). (2.18)
qg s s s

As a consistency check, consider a loop junction 7,

around a single [p, g]-7-brane such that the asymptotic
charge is (Z) (see right of Fig. 3), i.e.,

(Mg = ﬂ)(:) = (qr—pS)(l:)

:!<’;) o (gr-pil,  (219)

which always has a solution for (7, s) since the labels of a
single X, ;) must be coprime. Then, the self-pairing is

r
(f(r,s)v f(rf)) = det(lq] S) =pSs—qr= —-1= (X[P-q]’ X[P~q])'

This was expected since, by construction, this loop is
equivalent, by a Hanany-Witten transition, to the unit
junction X, ..

2. (Co)weight lattices from junctions

For a single brane stack of ADE type (2.8), the physical
junctions without asymptotic charges are generated by

an:an—l+an_b_c9

(2.20)
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where we have indexed 7-branes and their associated unit
junctions of the same [p, g| type. Computing their mutual
bilinear pairing of «; one finds

(aj,c;) = Ay, (2.21)
with A;; as the negative Cartan matrix. Indeed, strings
represented by the junctions above are associated to the W
bosons, which lead to the enhanced gauge symmetry on the
7-brane stack. We will call them root junctions for obvious
reasons, and they span the root junction lattice of the ADE
algebra A, C Jppys-

In complete analogy to representation theory (save for a
minus sign for the pairing), the bilinear pairing allows the
definition of the coroot junctions, whose span is the coroot
junction lattice A, as follows

al = Lai.
—(a;, a;)

(2.22)
Since for ADE algebras all roots have length-square 2,
these coincide with the root junctions. However, physically,
these should be thought of as the magnetically dual states,
and hence arise from 5-brane webs represented by the
junctions. We can therefore also identify the pairing
between two junctions, where one represents a string
and the other a 5-brane, as the Dirac pairing between
electric and magnetic operators of the 8D gauge theory.

One further defines the weight junctions w;, which are
dual to the coroot junctions with respect to (.,.) (or, more
precisely, its Q-linear extension),

(Wi, a}) = =6 (2.23)

ije
They span the weight junction lattice A,,, and correspond to
the electric states of the gauge symmetry if they represent a
string. Similarly, one defines the coweight junctions w;” and
their lattice A, via

(w/.a;) = =6 (2.24)

ijs
which, when representing a 5-brane, is a magnetic state.
Note that the (co)weights and (co)roots are in a very real
sense localized degrees of freedom. For any additional
7-brane X,  that is added to the system, we can explicitly

compute from (2.20) that (x[,’s],aﬁ-v)

) = 0. Therefore, any
junction that has no prong on the 7-brane stack represents
an uncharged state under the gauge symmetry on that stack.

For ADE algebras the coweights and weights again
agree, and there the distinction between string and 5-brane
junctions is only of a formal nature. However, it will
become important once we include O7" planes. Before
that, we have to introduce the concept of so-called extended

(co)weight junctions [38].

C. Extended (co)weights and higher-form
center symmetries

In general, the (co)weight junctions,

W= (AT W= (AT

J J

(2.25)

with A;; = (. e}), will have fractional coefficients in
front of the unit prongs xj,, ... This implies that they are
not physical junctions on their own. However, they can be
made physical by adding certain other fractional junctions
with nonzero asymptotic (‘q’ ) charges, resulting in an integer

(i.e., physical) junction with a prong that extends away
from the 7-brane stack. Equivalently, it formalizes the
intuition that nonadjoint matter states (carrying weights that
are not roots) on a 7-brane stack arise from open strings that
have ends on other 7-branes (possibly at infinity).

As a simple example, consider g = 311,, realized on an
A, A, stack. While the (co)weight junction w¥) = % (a; —
a,) without any asymptotic (p, ¢) charge is nonphysical,
we can consider the unit string junctions a; or a,, each
of which carries an asymptotic (/) = (;) charge. From
(a;,a”)=(a;,a,—a,)=—(a,,a;—a,)=—1, we expect
these (string) junctions to be fundamental matter of the
8u,. Note that we can formally write

1
a :—(al +az) —W. (226)

1
a;=;(a;+a)+w, 5

2
Because 1 (a; + a,) = @ has asymptotic charge (j), and
satisfies (@, a) = 0, we can interpret the above rewriting as
separating the 3u, gauge charges of the unit junctions,
captured by the summand proportional to w, from the
asymptotic SL(2, Z) charges, captured by w. By linearity,
this separation can be done for any physical junction
Jj =ma; +ma,. For 3u,, the state corresponding to
J = swW+kw € Jyy is a weight of an spin-s/2 represen-
tation, which has charge s mod 2 under the Z, center. It is
easy to see in this case, the physicality condition, i.e., for j
to have integer number of prongs on the 7-branes, relates
s = k mod 2. Therefore, the coefficient of any physical
junction in front of @ provides an equivalent way to encode
the center charge of that corresponding state. This line of
argument can be generalized to any ADE stack [38].
First, notice that, by a Hanany-Witten transition,
® =¥y _1/2) is a loop junction around the A A, stack.
For a general stack with monodromy M, one defines w,
which are called extended weight junctions, as the gen-
erators of all loop junctions €, ;) [with possibly fractional
(r, s)] encircling the stack that have integer asymptotic (2’ )

charge, i.e.,

(M-u><:> e 22 (2.27)
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For the ADE algebras realized via the stacks as given
in (2.8), a standard basis for these are denoted @, , with
asymptotic charges

i (0) ) wel]) )

g’un(A”) :wp = t’(OV—l/n)
i=1

1 1
:Zzai’ (@) @)) =——,

For 8u,, stacks, (M — 1) has only rank 1, so there is only
one generator, @, with asymptotic ((1)) charge. Due to the
generally fractional (r,s) prong that crosses the branch
cuts, the prongs that end on the constituent branes of the
stack are also fractional after a Hanany-Witten transition,
see Fig. 4. Explicitly, the extended weight junctions and
their pairings are given by8

®, =710 —%(b—i—c) 0 0
QDzn(AnBC): (wa’wﬁ) = ( n ) ’
®, =C(1_p/4-1)2) Za -b+c-nw, |, 0 42— 1/
_ 1 4 1 1
0, =013 =—32 8 +5b+3> 71 ¢ 3 T2
66(A5BC2) . { 5 (wa’ wﬂ) = 1 ’
0, = f(—l,—l) = Z':l a; —3b - Zi:l ¢, 2 1 aff
w, =17, a,+2b+>7% ¢, 5 -l
e,(ASBC2): ] ! (1/21/2) = —3 2201 > (g @p) = < 2 j ) ’
W, =€ 5 37 = 221 pa;—5b - 22 =1 i -1 3 ap
w,=7¢ 14, +4b+2 c;, 1 =3
es(ATBC2):{ P DT 2 X (@.5) = ( . 2) . (2.29)
W, = f(—7.—3) =3 Zi:l a; —1Ib-5 Z -1 Ci» -2 7 af

All physical junctions associated to a 7-brane stack, i.e.,
junctions with prongs of only integer (Z) charge, can be
written uniquely in terms of a linear combination of weight
and extended weight junctions

j:Zaiwi—l-apwp—Faqa)q, a,a’,a’ez. (2.30)
7

Physically, this means that a physical (p, g)-string/-5-brane
is fully characterized by its asymptotic electric/magnetic
(Z ) charge under (B,, C,), and the weight/coweight charges
under the 7-brane gauge algebras.

In turn, it can be verified that every possible weight
junction w = >_. a'w; (a' € Z) of the gauge algebra g can
be completed into a physical junction by the addition of an
integer linear combination j, = a’®, + a‘@, of extended
weights [38]. Such an integer linear combination is not
unique and is determined only up to multiples
n’w, + nlw,, which have integer charges for each prong.

®Note that we can infer (w,,w,) from the self-pairing of
w,+w, = t’(,p‘sp) + t’(,q,sq) = t’(,’ﬁrq,sﬁsq), which can be
computed from the contribution of the single three-pronged
vertex, as in Fig. 3.

I
This nonuniqueness can be understood as the fact that j, is
determined by the charge of w under the center Z(G) of the
simply connected group G associated to g. Intuitively, this
is expected because the charge under the center of a specific
state w is encoded in its prefactors of the weight basis w;,
which in turn introduces fractional prongs that can only be
canceled by the extended weights. Analogously to how
weights can be screened by the W bosons for observers
“at infinity,” there are multiples of specific asymptotic (2’)

FIG. 4. Construction of extended weight junctions. Since the
(g ) charges that appear in the loop are in general fractional, the
prongs ending on the 7-branes after pulling the loop across also
have fractional coefficients.
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charges that can be added and subtracted without affecting
the local gauge dynamics on the 7-branes.’

The precise connection between higher-form symmetries
and extended weights have been described in [13].
Formally, we can define the lattice,

Jext = {Je = d’w, + a’w |a?, a € Z}, (2.31)
whose elements are arbitrary integer linear combinations of
extended weights that may be fractional. Then, the screen-
ing arguments for the center symmetries, together with the

junction characterization of gauge degrees of freedom,
translates into

~ weights  coweights J
Z(Gapg) = = = er);tj ’
ext

(2.32)

roots COroots J

phys
where (Jpnys N Jex) denotes extended weight junctions that
are themselves physical, i.e., do not contain fractional
prongs. Note that, since @, = €, ;  are loop junctions of
the form depicted on the left of Fig. 4, (Jpnys N Jex) are
precisely the loops 7. = npf(,]),sp) + nf f(,q_sq) with
integer (r, s). Concretely, in terms of the extended weights
summarized in (2.29), one finds

g Jext/ (Tphys N ext)
3u, %%{al’mod n}=z,
30y, %E (a’Pmod2,a’mod2)} =7, ® Z,
80412 | (i as {207 +a'mod 4} =7,
e %E{a"mod3}gz3
e %E{al’—i—aqmodﬂ%zz

(2.33)

In the language of higher-form symmetries (see also [13]),
a physical string/5-brane junction j = ", a'w; + a’w, +
, carries an electric/magnetic Z(G) 1-form/5-form
symmetry charge prescribed by (2.33).

alw

III. JUNCTIONS ON O7* AND CENTER
SYMMETRIES OF 3p DYNAMICS

So far, we have reviewed the junction framework for
ordinary [p, g]-7-branes, which succinctly encode the 8D
N = 1 gauge dynamics with simply laced gauge algebras.

9Describing the gauge dynamics by F theory on a noncompact
K3, this is reflected by the homology of the asymptotic boundary
exhibiting discrete torsion, associated to the fact that n?” x
(A cycle) 4+ n9 x (B cycle) on the generic torus fiber shrinks
at the singularity [13].

However, field theoretically, one can also have 8p, alge-
bras. In the type IIB string constructions these are linked to
the presence of O7" planes, which was not considered
systematically within the junction framework previously.
Therefore, we need to generalize the above analysis.
First, we note that the O7% plane, unlike the O7~ plane,
does not split, at finite string coupling, into constituents
represented by ordinary [p, g|-7-branes. Therefore, we will
represent it by a single, albeit special, 7-brane. The
monodromy generated by one O7* plane is in the same
SL(2, Z) conjugacy class as a 7-brane stack with ¢ = 80 .
In the following local analysis, we use the same presen-

tation as in (2.8),
Mo — -1 4
o=\¢g _1)

There are multiple ways of arguing for this physically.
The prevalent interpretation of an O7" in recent literature
[30,31] is as the remnant of “freezing” the 30,4 gauge
dynamics on an ordinary 7-brane stack, see also [32,33].

However, even after two decades, the freezing operation
remains somewhat mysterious. In particular, a geometric
derivation of its effect on higher-form symmetries in the
M-theory frame [15,16] appears to be challenging.
However, as we will argue now, one can obtain a complete
picture, at least in the IIB duality frame, of the mechanism
using junctions. The key distinction to [p, ¢]-branes is that
the physicality condition for prongs that end on an O7*
differ between strings and 5-branes.

From the perturbative IIB picture, only pairs of funda-
mental strings can end on an O7" [62], which one can see
in a perturbative picture via Chan-Paton factors. Via various
dualities it can also be argued that only an even number of
D-strings can end on the O7™ plane, see [62,63]. Thus, the
physical string junctions emanating from the O7" plane
have (Z) charge restricted by p, ¢ € 2Z. In contrast, (p, g)-

(3.1)

5-branes can end with any integer number on O7". This is
relevant, e.g., in the construction of 5D superconformal
field theories (SCFTs) via 5-brane webs [64]. Hence, a
prong of a physical 5-brane junction can end with arbitrary
integer (Z )-charge on an O7". As we will see momentarily,

these conditions naturally give rise to a consistent descrip-
tion of 3p, gauge algebras, including their center sym-
metries, from the junction lattice. Moreover, once we have
set up the notation in Sec. IV, we can derive these
conditions independently in global models with one O7™
plane that realizes 8D rank (2,10) by appealing to the dual
description of these models via the CHL string (see
Appendix A).

It is worthwhile to compare the boundary conditions for
strings and 5-branes on O7" with the unfrozen 80,4 stack.
First, since both generate the same monodromy, the loop
junctions that generate all integer asymptotic (Z ) charges in
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the presence of a single O7™ are the same as for an 80,4
stack (2.29),
o7t _ f

(0] =

0 (3.2)

20 OF =Criop
We will call these the extended weight junctions of the
07", even though a single O7™" (unlike its unfrozen cousin)
has no gauge dynamics, and hence no root or weight lattice
to begin with. By collapsing the loop or, equivalently,
performing a Hanany-Witten transition across the orienti-
fold plane, these extended weight junctions have a (}) and a
(%) prong, respectively, on the O7*. The set of junctions
ending/emanating from one O7", which is entirely char-

. . P
acterized by its total (1(;) = (Calq ) charge, can therefore be
written as

. + +
j=a’0)" +aiw)" . al,a? € 7.

(3.3)

Physical string junctions must then have (a”,a?)=
(0 mod 2,0 mod 2), which agrees with the physicality
condition for junctions on an 8p0;4 stack that has no
(unscreenable) gauge charge, see (2.33). Equivalently,
any string loop 7, ) that encircles the O7* is physical
if and only if r and s are both integer. In contrast, a physical
5-brane junction with odd (a”, a), which can end on an
O7%, would not be admissible on an 8p,¢ stack without
picking up (unscreenable) gauge charge. In particular, this
means that physical 5-brane loops #, ) around the O7*
could have half-integer valued r and s.

To fully incorporate O7 s in the junction framework, we
also need to define the bilinear pairing. It is hard to come up
with a rule for prongs ending on the O7* by appealing to
any geometric counterpart in a dual M-/F-theory picture
because of the presence of frozen singularities there.
However, since the extended weights can be viewed as
loops that are only sensitive to the induced SL(2,Z)
monodromy M, but not the “microscopics” of a 7-brane
stack, one would naturally expect that the pairing of such
junctions is insensitive to whether M is sourced by an O7"
or an 8p;¢ stack. Following the discussion around Fig. 3,
we can therefore directly compute (rather than define,
which would require further justifications) from the loop
junction representation:

07" 97") =0,

o7t 07T\ _
p 7wp )_17

07+ 07"} —
;@ )=0.

(@ (@ (@, .o,

(3.4)
Considering O7* planes together with general [r, s]-7-

branes (which we assume to be on the left of the O7™), one
further finds

. s
(0’1(37 ) X[r,s]) = E , (wq

A. 3p gauge algebras and their higher-form
symmetries from junctions

From the perturbative IIB picture, it is well known that
we can generate 8D 8p,, gauge dynamics on a 7-brane stack
formed by n A-branes on top of one O7". This 7-brane
stack, of the form A”OQ77, has the same monodromy as an
80,62, Stack:

-1 4+n
MQ’Pn — MA"O7+ == 0 _1 .

(3.6)
This allows us to straightforwardly define the extended
weight junctions, as loops ¢, around the entire stack
(including the O7") such that an asymptotic () (for @) or
(%) charge (for @,) remains. Then, after performing the
suitable Hanany-Witten transitions, we find

é'p” _ _ O7+
w," =€ 10 =0,

1< n
ﬂ)gp” = f(—l—n/4,—l/2) = 5 Z a; — 5(1)1?7Jr + 0)51)7+. (37)
i=1

Since Mg, = Mg, ., . the loop junctions look identical

to those of 80,5,5,. Hence, with Jo, = {a’@}"+

a"w?’” a’,a? € 7}, the physicality condition on linear

combinations of extended junctions is captured by

Jext/ (Jext N Jphys.strings)
{ {(a’?mod 2, a%mod 2)} = Z, x Z,,
| {2a” + atmod 4} = 7,,

n even
nodd
(3.8)

On the other hand, for 5-brane junctions, we have

Jext/("ext N Jphys,S—branes) = {aq mod 2} = ZZ' (39)
Comparing to the discussion around (2.33), one might be
tempted to identify Z(Sp(n))eecnic = Z2 X Z, or Z4, and
Z(Sp(n)) magnetic = Z2> Which is clearly not correct.

To rectify this, we must instead consider in detail the role
of the extended weights as completing weights and cow-
eights into physical strings and 5-branes, respectively. In
analogy to the ADE stacks, we first construct the 8p,, roots
a; as string junctions with no asymptotic (Z ) charge, which
stretch between the constituents of this stack. A basis for
such junctions are

o7+
p b

(3.10)

a;,=a;—a;,, le{l,,n—l}, an=2an—2w

see also Fig. 5. With this and the bilinear pairings in (3.4),
one straightforwardly verifies
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A 01 G2 (679 or*

FIG.5. Root junctions of 8p algebra (the double arrow denotes
the factor of 2 required by evenness on O77).

(aman):_“" (ai’an)zzéi,n—h
=2, i=j

(.o;)=< 1, |i—j|=1, 1<ij<n-1, (3.11)
0, else

which precisely reproduces the negative of the Cartan
matrix of an 8p, algebra. In particular, we see that, while
the short roots (those with length squared 2) arise from
single-pronged strings between the A-branes, just as for
ADE algebras, the long root a,, is only a generator due to
the evenness condition for strings ending on the O7™.

As a nonsimply laced algebra, 8p has different coroots
than roots:

1<i<n-1

a) = 2a; _ {ai’
i = =31, _ o7+
—(a;, ;) ja, =a,— o),

P IL=n

(3.12)

Since these are the magnetic objects in a gauge theory
context, they arise from 5-brane junctions, which, consis-
tent with the boundary conditions, can have a single prong
on the O7* that is needed to form the short coroot @,/ with
length squared 1.

The distinction between strings and 5-branes are of
course also important for the weights and coweights.
The weight junctions are obtained as dual to the coroot
junctions. Defining the matrix A4;; = (a}, a;), these can be
written as

w; = (—A‘l)ijay = Zmin{i,j}ay
j

3
|

1
min{i, j}a; + Emin{i, nta,. (3.13)

1

~.
Il

Similarly, one obtains the coweight junctions as duals of
the root junctions. With the negative Cartan matrix

A = (@;, ;) one has

3

S min{i, jlaY + i), i<n
v_(_A—l) a':{ ;1] J n

P N
jzlzaj, l1=n

(3.14)

expressed as fractional linear combinations of coroots.

In terms of the junctions, the electric center symmetry,

{3}
an)

Z(Sp(n)) = weights/roots & ~ 7,, (3.15)

—~

is precisely generated by multiples of la, = a, — @97,

which is unphysical as a string junction because of the odd
prong on the O7*. To obtain a physical junction with the
same 8p, gauge charge, we must therefore add linear
combinations of the extended weights (3.7) with integer
prongs on A, and odd numbers of prong of (f]’ ) = (;) charge
on the O7". For even n, this requirement is met by
apw?,p” + aqwzp" with @’ =1 mod 2 and a? =0 mod 2,
whereas for odd n, we need 2a” + a? = 2 mod 4. Each of
these generate a Z, subgroup of the putative center (3.8),
which is the correct presentation of Z(Sp(n))eectic =
Z(Sp(n)). The mismatch from (3.8) is because not all
integer linear combinations of extended weight junctions
can be completed into a physical string junction with an
8p, weight. For the magnetic center symmetry,

Hom(Z(Sp(n)). Z) = Z(Sp(n))
= coweights/coroots

o 1wy

~ , 3.16
coroots ( )

the unphysical 5-brane coweight junctions come from the
half-integer valued prongs in

n . n
i 1 n
V § VI E o7t _ 8P,
W, = *ai —E ai—ia)p —ﬂ)q
i=1 i=1
gp!l

which can be made physical by adding a”a)f,p "+ alwy
with a? =1 mod 2.

In summary, for a physical string junction that ends on an
3p,, stack, which can be uniquely decomposed as

—0%7",  (3.17)

i= Zaiwi + @} + alw]” (3.18)
i

in terms of the extended weights (3.7) and weight junctions
(3.13), the Z, charge of the corresponding state under the
electric center symmetry is

neven

a’mod?2,
{ (3.19)

a” +%a’mod2, nodd (thena’mustbe even)’

For a physical 5-brane junction, decomposed into extended
weights and coweights (3.14),

ji= Za"wiv + alw" + alwl, (3.20)
i

its magnetic Z,-center charge is
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a? mod 2. (3.21)

This completes the list of local building blocks of simple
gauge algebras that can be combined into a global model
describing 8D supergravity. As we will discuss now, the
consistent combination of the individual brane stacks then
determines the global structure of the gauge dynamics in
these models.

IV. EIGHT-DIMENSIONAL STRING VACUA AND
THEIR GLOBAL STRUCTURE FROM JUNCTIONS

In this section, we combine the above local descriptions
of simple gauge algebras into a compact setting, to classify
all 8D V' = 1 string vacua using junctions. These vacua fall
into three moduli branches, which have gauge rank (2,18),
(2,10), and (2,2), respectively. As shown in [35], the gauge
symmetries of the effective supergravity descriptions can
be classified by the SL(2, Z) monodromies associated with
each simple gauge factor, with a few additional consistency
conditions. In theories of rank (2,18), which enjoy a
description as F-theory on an elliptically fibered K3 sur-
face, these restrictions are met by 24 [p, g|-7-branes with
trivial total monodromy [65-67]. Via the freezing pro-
cedure [30,32,33], one can further obtain all rank (2,10)
or (2,2) vacua, if one replaces any rank (2,18) 7-brane
configuration with one or two 804.,, stacks with the
corresponding frozen 8p, algebra that contains an O7"
[35]. Based on this, junctions provide a unified description
of the gauge dynamics, in particular, the gauge group
topology, for all these vacua.

Before we dive into the details, let us give a schematic
description of this approach. For a given 7-brane configu-
ration (with or without O7%) in a global model, the set of
characters or cocharacters (i.e., a sublattice of the weight or
coweight lattice that is occupied by dynamical states)
correspond to physical (string or 5-brane) junctions that
have zero asymptotic (fq’) charge. Since the (z ) charge of a

prong ending on a stack is entirely captured by extended
weight junctions, which in turn encodes the center charge
of the (co)characters represented by the junction, enumer-
ating all linear combinations of extended weights from
different stacks that add up to zero (Z )asymp also enumerates

the center charge of all dynamical gauge charges. In
particular, computing the center charges of all string
junctions that have no u(l) charges determines Z(G),
and those of 5-brane junctions determine 7;(G) = Z,
where G = G/Z is the physically realized non-Abelian
gauge group, with simply connected cover G.

For the rank (2,18) branch, the information about Z has
been shown to be conveniently encoded in so-called frac-
tional null junctions [49], which are certain fractional

multiples of physical loop junctions f](\; 5) around all

7-branes (with trivial total monodromy). As we will see,
this correspondence continues in realizations of rank (2,10)
with one O7* plane, and rank (2,2) theories with two O7*s.
While for rank (2,10), we can crosscheck the results with
those obtained from a dual CHL string description [34,52],
the junction description provides a prediction for the gauge
group topology of rank (2,2) vacua which are inaccessible
via the heterotic/CHL string. To illustrate the procedure we
will explicitly work out an example for each of the three
branches of the 8D moduli space.

A. Gauge group topology from global null junctions

The construction of supersymmetric 8D theories with a
dynamical gravity sector and rank (2,18 —8k) gauge
sector requires the identification of a set of (24 — 10k)
[p, q]-7-branes and k O7* planes with vanishing overall
monodromy. These configurations can then be placed on a
P!, which compactifies the underlying type IIB theory from
ten to eight dimensions."

Following the conventions laid out in the previous
section, we arrange the 7-branes along a horizontal axis
in the perpendicular plane (which is now a compact P'),
and enumerate (from the left to right) the ordinary [p, g|-7-
branes and the O7 s separately. Within the vector space of
all possible junctions [which carries a pairing given by
simply linearly extending the rules (2.11) and (3.4)],

24—10k '
J = { Z alx[[’wq,']
i=1

+3 " (blw, " + bw, " )a', b, b € @}, (4.1)
=1

string junctions giving rise to the electrically charged states
must have integral number of prongs on 7-branes, with
“integrality” on the O7" being defined as having even
number of prongs. Analogously, magnetically charged
states are described by physical 5-branes with integral
number of prongs on all 7-branes, including the O77s.
However, since the 7-branes move on a compact P!,
physical junctions must have vanishing asymptotic (Z)

charge, i.e., have no open ends. This means that the
physical string/5-brane junction lattice, corresponding to
dynamical electric/magnetic states of the 8D supergravity
theory, is

'"The number of branes in the setup can also be understood as
the demand that their cumulative gravitational backreaction in
terms of the induced deficit angle adds up to 4z as appropriate for
the two-sphere S ~ P!
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j= X0 Gix, Yk 1(2b/wp’ +2biwg ),

Jel —

Py TN with af, b, B €7, Salpi+3260 =0,  Sdig+326 =0 (
i J i Jj
i N\T24-10k iy + Zk (bl 7 i o7+)
gmag _ 3= 2=t @ X[pg] j=1 a),, 42)
Phys ) with af, b/, b € Z, :

Ya'pi+ > b =0,
i J

Z(liqi + Zl;j =0
i J

Obviously, these lattices are of rank 24 — 10k —2 = 22 — 10k.

Furthermore, by Hanany-Witten transitions, different
elements in these lattices can represent the same physical
junction. Equivalently, we can add arbitrary multiples of
so-called (global) integer null junctions,

Ne]/mag {6

mt

el/mag| oN
e‘]phy< |6(r.s)

= t’(,’s)loops around all 7-branes}, (4.3)

where it is understood that, a priori, there are different
integral null junctions for strings and 5-branes. Because of
the compactness, such a loop can be shrunk to a point “on
the other side” of the P! without crossing any 7-branes, and
thus are physically trivial. However, they would appear as a
nontrivial element in Jy, after pulling them through the
7-branes, which must therefore be modded out before we

can identify the junction lattice with the physical charge

lattice. Note that, by construction, 6 ) € JN, has trivial

pairing with any other 6Y € JY, as well as no asymptotic

(5 ) charge (since they encircle a configuration with trivial

,§) =0 for all
6N )€ JN. if and only if j has zero asymptotic charge
[38] Hence, 5N )€ JN

nt

overall monodromy). Moreover, (5?Ls)

has trivial pairing with all physical
junctions, explalmng the prefix “null.” As a notational
convention, we shall denote any loop junctions Z'(, ;) with
no asymptotic charge by §.).

This allows us now to identify the (co)character lattice
A. (Ag), the lattice of all electrically (magnetically)
charged states present in the supergravity theory, as

/JNel

~ gmag N,mag
nt CC =J /J

~ el
A =J phys/ “ int ’

phys (44)
which are rank 20 — 8k lattices. Since we mod out a
sublattice that is null, the junction pairing on (4.1) induces
a nondegenerate pairing on these lattices, whose signature

can be shown to be (2, 18 — 8k). For [j.] € A and [j,,] €
A with representatives j,, j,, € J;L/yrgag, integrality of the
Dirac pairing requires (j,, j,.) € Z. Moreover, the com-
pleteness hypothesis for quantum gravity implies that the

two lattices are dual to each other, A, = (A.)*, i.e., for any

[j.] there is a [j,,] such that (j,,j,) = 1 and vice versa.
This can be explicitly checked, as we will discuss later.

Now suppose that the 7-branes give rise to the full 8D
gauge algebra

g=@Dg, ® u(1)®,

ra=20—8k =) rank(g,).

with

(4.5)

Since for each 7-brane stack with gauge factor g,, we have

(co)weight junctions wfy 1), iy =1,...,rank(g,), we can

uniquely (up to global null JuHCthHS) decompose

Z(Za W +a6w"+aaw)

el (mag)
+ ZbSXY € Jlohyg ’

(4.6)
where s labels the remaining 7-branes (including potential
O7%s) that are not part of the non-Abelian stacks, on which
the prongs must be integral, b; € Z (or satisfy the corre-
sponding integrality condition on O77s). Since gauge

charges under g, are carried by the (co)weights wf, l),

the states with only Abelian charges live in the subspace
orthogonal to the (co)weights,

. . . el (ma;
JZ/ = {PA(Je(m))Ue(m € Jph(YS g)}phys

I
= {Z(aé’mg + alwf) + stxs} N Jg}l/yrzag,
s

o

(4.7)

where P, is the projection onto the orthogonal complement
of the non-Abelian (co)weights. In particular, since global

null junctions have zero pairing with all physical junctions,

N el/mag - Jel/mdg

we have J; |

"Note that each stack & can appear with a monodromy that is
conjugated by g, € SL(2,Z) compared to the “standard frame”
(2.8) or (3.6) chosen in the previous section, so that the extended
weights have (p.q) charges g,(;) for @ and g,() for g,
respectively.
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Because the overall (Z ) charge of any physical junction

must be zero, only specific linear combinations of extended
weights, and therefore, only (co)weights of g, with specific
center charges, can be completed into a physical junction in
(4.6) with the available singlet branes. If the resulting string
junctions give rise to representations that are all invariant
under a subgroup Z of the center, then the gauge group has
some nontrivial global structure.

More precisely, the most general global gauge group
structure is

[1,G,/2] < u(1)™

G= = :

(4.8)

where G, is the simply connected realization of the gauge
algebra g,. The finite group Z embeds into the overall
center [[, Z(G,) of the non-Abelian factors with a trivial
map to the Abelian groups, whereas Z’ does have a
nontrivial map into the Abelian sector. We will now explain
how to extract these discrete groups from junctions.

We first focus on the factor Z, which demands that
electric states can appear only in certain irreducible
representations under [[, G, that are invariant under Z.
Equivalently, this can be understood as the existence of
magnetic states [j3] € A . charged only under the non-
Abelian gauge factors, which via the Dirac pairing con-
dition (j,, j2*) € Z enforces the absence of electric states
that are not invariant under Z C [], Z(G,). Decomposing
such a junction,

snA __ loprV P, o 4,0
In = E < E agWe.; + asw}, + aaa)q>
c iy

+ stxs € Jg;f;;gg’ (49)
s

the assumption that this junction is only charged under the
non-Abelian factors implies that the Abelian part,

Z(”ng + alwf) + stxs e ®Q, (4.10)

o

has also zero pairing with every junction in J,*¢. However,
this is only possible if it is proportional to a linear
combination of global integer null junction with rational
coefficients, i.e.,

PA(iR) = Y (abarty + alw]) + Y byx, = b,

o

oY e

(i -Sm) it >

b, € Q. (4.11)

Considering such decompositions for all 5-brane junc-
tions jit € JI® with no Abelian charge, one obtains the
lattice

frac
= 0 v, bl €I U
c i,
(4.12)

of what is called (global) fractional null junctions [48,49].
Let us further denote the smallest positive integer 7, such
that n,b,08, € JY™mE - Since the prongs on X, are

nt
already integral, due to the physicality of jiA, n,, is also the

smallest positive integer such that n,(af®$, + alwf) €
Johys, 5-branes is physical on every non-Abelian stack o. At
the same time, according to the discussions around (2.33)
and (3.21), the coefficients (a5, al) specify an element

JS

Im = (ZU) € Hﬁ = HZ(GU)

phys ext

(4.13)

Since the set of all such z,, generates the discrete factor Z
in (4.8), we find

N,mag
~ " frac
Z N
int

(4.14)

The main advantage of this formula is that we can

conveniently compute Jiy ™ from pulling the two gen-
N,mag

erators 83 of J, ™ across all 7-brane stacks, which yields

8Y = (chowf + chowl) +> cusXs €T, (4.15)
s

o

Then J3-™ is generated by Q-linear combinations,

oY + 1,8 = Z((Mf;g + Aol s

o

+ (Aicl, + Acl,)of)

+ Z(ﬂlcl;s +’12C2;S)XS’ (416)

such that (4;cf.,, + Ach.,), (4icl, + Aac3.,) are integers,
and (4y¢y,; + Aycyp,) satisfies the physicality condition on
X,. As advertised, this procedure applies indiscriminately
to configurations with or without O7* planes, as long as the
integrality conditions on O7"s and 8p, stacks follow the
prescription in Sec. III.

The second discrete factor 2’ C [[, Z(G,) x U(1)™ in
(4.8) correlates the representations under the non-Abelian
factors [ ], G, of electric states to their 1(1) charges, such
that their transformation under [, Z(G,) is compensated
by a Z’ subgroup in U(1)". Analogously as above, this

026007-14



ALL EIGHT- AND NINE-DIMENSIONAL STRING VACUA FROM ...

PHYS. REV. D 106, 026007 (2022)

subgroup can be viewed as being enforced by the presence
of magnetic states, now with nontrivial U(1) charges, and
hence have a junction representation [j, ] € A, with

Jmag

phys > jn= Z (Za W i, + agw" +alw ) + stxs
N
- Z Zakwa;ia +lam:
c g

(4.17)

where ju,, = P4(j,.) € J4 ® Q is no longer a null junc-
tion. Nevertheless, as the mismatch of j,,, from being a
physical junction is still determined by the coefficients
(af,al), we have

o AT

e (4.18)

Intuitively, this measures the “fractionality” of the u(1)
charges of all magnetic objects (living in J hyb) with respect
to the charges of those that are uncharged under any non-
Abelian symmetry (and hence live in J3“®). Note that, since

Py(JN)=JN, the null junctions do not affect these
quotients.

B. Duality to heterotic and CHL descriptions

Theories of rank (2,18) and (2,10) have a dual con-
struction in terms of the heterotic and CHL string, respec-
tively, which provides a crosscheck for the junction
description. In both cases, electrically charged states are
identified as elements from a momentum lattice for
perturbative string excitations. For the heterotic string
the momentum lattice is the so-called Narain lattice [68]:

ANarain = <_E8) 2] (_ES) eUveU, (419)

with (—Eg) as the negative of the Eg root lattice and U the
hyperpolic lattice defined by the bilinear form

7 (1 o)

The CHL string is determined by the Mikhailov lattice [69]

(4.20)

(-Dg)@dU® U= (-E)®dU@U(2),

(4.21)

AMikhailov =

with the negative spin(16) root lattice (—Dg). Here, U(x)
denotes a lattice of rank two with bilinear form (4.20)
multiplied by x.

Following the notation of [13], we will denote them
collectively as Ag. Then, if the duality holds, we expect
Ag = A.. Equivalently, points in the dual momentum

lattice'? correspond to physical magnetically charged
states and therefore must be associated to 5-brane
junctions (modulo null junctions) in A.. The non-
Abelian gauge factors are then specified by an embedding
of the corresponding (negative) root lattice into Ag; the
coroot lattice then naturally embeds in the dual lattice Aj.
It is worth noting that the computation of the gauge group
topologies from this data [13,29,52] is in a sense
complimentary to the junctions approach outlined above.
While in both scenarios, the setting is fully characterized
by the non-Abelian gauge algebras (by specifying either
the 7-brane stacks or the embedding of the (co)root
lattices), the gauge group is concisely encoded in the
projection of the full physical lattice onto the Abelian
junctions [see (4.14) and (4.18)], the methods in
[13,29,52] extract the gauge group from the projection
onto the (co)root lattice.

To corroborate the equivalence of the two approaches,
we describe in the following the precise identification of
the momentum lattices with string junctions on 7-brane
configurations with zero or one O7" plane.

1. Narain lattice from junctions

To construct the Narain lattice (4.19) from junctions, it is
easiest to find a 7-brane configuration in which the two
(—Eg) factors are manifest via the root junctions on two eg
7-brane stacks, and make use of the fact that the lattice
structure does not change as we move 7-branes. Each of
these eg stacks contains ten 7-branes, leaving a remaining
four branes to specify the compact type I1IB background. A
convenient configuration of this sort has been presented in
Sec. 7 of [70], and takes the form

A(A7BCC)X}3]A'(A7BCC)'X] (4.22)

3.1]°
up to possible SL(2,Z) conjugations. In fact, the above
configuration has two identical parts, consisting of
A(A7BCC)X 31> each having a trivial SL(2,2)
monodromy In addition, by pushing the 12 branes onto
a single stack, one enhances the symmetry to the so-called
double loop algebra &y, whose significance we will explain
further in Sec. V. In an F-theory description, one may
interpret this configuration as a stable degeneration limit of
the elliptically fibered K3 into two dPg surfaces.

Note that for eg, whose extended weights (2.29) are
physical, roots and weights junctions agree, so the span of
all physical string prongs on each eg stack [with decom-
position as in (2.30)] contains two copies of the (—Eg)
lattice. Next we need to find the factor U @ U in the
orthogonal complement of the eg root lattices. A convenient

12 . .
Note 'that Alarain = ANarain 18 self-dual while Ajjpior
AMlkhzulov 18 not.

PNote however that the s in cover of the monodromy is
nontrivial and given by (— € Mp(2, 2), see, e.g., [71-73].
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d(1,0)

d(3,1)

FIG. 6. String junction lattice for rank (2,18) theories.

set of generators for these two hyperbolic lattices can be
expressed as'*

U:(8(1,0)-0(1,0) + Xj3,1) = X[3 1))

U: (6(3’1),5(3.1) —a-+ a’). (423)

Here 8, ) = €, ) denotes a (r, s)-string loop around one

A(ABCC)X 3 ) configuration, which has no asymptotic
charge since th1s stack has no overall monodromy. Its
orthogonality to the eg root lattice is evident from the fact
that this junction has no prongs on any of the two stacks.
Note that, as is evident from Fig. 6, such a loop automati-
cally encircles the other A(A’BCC)X{3; configuration.
Using Hanany-Witten transition one can rewrite them in
terms of integer strings ending on the brane constituents in
the interior (say, on the left in Fig. 6), e.g.,

6(1’0) = 3(1);8 + (028 - X[3’1],

6(3.” = —a+ a)?f, (424)
or equivalently for the primed stack.

This accounts for a rank 20 sublattice (—Eg)®? @ U®? of
the full string junction lattice Jphyg The remaining two
directions are spanned by the global null junctions J th, for
which the canonical basis is

810 = —(B@) +@F) + X3 = (Bw) +og) + X3,
8.1y = —a+ 10w} + 307 —3x3 —a’

+ 1003 gus 3a)q = 3xp3,) (4.25)

Since these have trivial pairing with all physical junctions,
the lattice pairing of the above generators (including the eg

"This is the same result as in [70] (see their Fig. 8).

roots and those of the U lattices) descend, without
modification, to the quotient

Tohys _ (“Eg)®2 @ U2 @ T

A =

]N el = ANarain . (4 . 26)

N el
int J;

nt

Since there are no O7* planes, the 5-brane junction lattices
are the same as their stringy counterparts, so we immedi-
ately find

— Jmag / JN mag el _]N el o

*
phys/ “ int phys/ int ANaram A

Narain*

(4.27)

2. Mikhailov lattice from junctions

The Mikhailov lattice describing the momentum lattice
for the 8D CHL string is obtained as follows. We keep one
of the &y configurations unchanged, which still leads to an
(—Eg) factor in the string junction lattice. On the other side,
we remove a C-brane from the eg stack, but add to it the
singlet A-brane, which leads to an 80,4 brane stack, which
we then “freeze” into an O77 plane:

AEgX[:},,l] - A(A7BCC)X[3,1]

— (A®BC)CX[3 ) » O7"CX[5;.  (4.28)
The resulting complete 7-brane configuration,
O7+CX[3,1]A’(A7BC2)X’[3’1], (4.29)

and is depicted in Fig. 7. The total rank of the junction
lattice is now 14.

Inside the string junction lattice J¢  of this configura-

phys
tion, we now need to identify U @ U(2) orthogonal to the
eg roots. Given the similarities to the rank (2,18) configu-
ration, a natural choice for the generators would be a
variation of (4.23). While the first set exists also for the

frozen configuration, the second U factor has a generator

9(1,0)

d(3,1)

FIG. 7. String junction lattice for rank (2,10) theories.
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with a single a prong, which would become part of the
O7%, and not be physical. Therefore, the set of generators
orthogonal to the Eg root lattice are

U:(8(1,0)-0(1,0) + Xi3,1] = X3 1))

U2):(831).28031) + 2097 —2a’), (4.30)

where the second generator of U(2) is primitive because of
the evenness condition for strings ending on O7*. These

have an equivalent representation with

6(1.0) = 2mg7+ +c - X[3,l]7

8.1 = 209" 2097 + 2¢. (4.31)
After quotienting out the global null junctions JSEL, with
generators
51(\1,0) = —2(1)5,)74r —-C+ X[, — (3(0;8 +0);8) -+ XE3-1]’
8.1 = 408" =207 +5¢ = 3xp - a’
+ 100, +30g —3x(; ), (4.32)
one finds
A= (-Eg) ® U @ U(2) = Amiknaitov-  (4.33)

In this case it is interesting to also analyze the 5-brane
junctions that correspond to the dual lattice. Here, it is
important to remember that 5-branes have different physi-
cality conditions, which allow for an arbitrary integer
number of them to end on the O7* plane. This does not
affect the eg root junctions, and the U factor in (4.30),
but does imply that §3 ;) in (4.31) is no longer a primitive
5-brane junction. Instead, it is a multiple of

1

5061 =06/212) = —0f" -0l +ec.

0 (4.34)

This implies that the there is an overlattice of U(2) in (4.30)
inside the physical 5-brane junction lattice, given by

1\ /1 .
U<§> . (56(3’1),6(3.1) —+ (01?7 — a/> . (435)

Note that the null junction lattice spanned by (4.32) remain
primitive as a sublattice of Ji'%. Therefore one has for the
magnetic 5-brane junction lattice

1
Aee = (_ES) eUd U(E) = AK/ﬁkhaﬂow (4-36)

which precisely coincides with the dual of the Mikhailov
lattice (4.21).

610  Oi

FIG. 8.

String junction lattice for rank (2,2) theories.

C. A rank (2,2) momentum lattice

Eight-dimensional rank (2,2) string vacua have no
known constructions as 72 or S' reductions of the heterotic
or CHL string. However, using the junctions, we propose
an analog of a momentum lattice description, which can be
applied, in particular, to determine the gauge group
topologies of these theories. To this end, we start with a
7-brane configuration with two O77's, which we obtain
from further freezing an 80,4 stack on the primed side of
(4.22). The overall brane configuration is then given by

O7+CX[3 |07 C'X ]y, (4.37)

] El

and is depicted in Fig. 8.
The string junction lattice in this case has rank 6, whose
non-null directions are isomorphic to
U U(2). (4.38)

The explicit generators in terms of physical string junctions
are given by

U: (8(1,0):0(1.0) + X3.1] — X3 1)

UR2): (6331).261) + 209 —2097"),  (4.39)
where the loop junctions satisfy the same relation as in

(4.31). The string null junctions J"*! have generators

phys
8 o) = 209" —c+ x5 - 2097 — ¢ + L SE
80y =40 =207 +5¢ = 3x) )

+40)" =207 4 5¢/ = 3x1, . (4.40)

The full physical string junction lattice is therefore
Ty = UBUQ) @ Iy

As for the rank (10,2) case above, we find that for
S-branes the U(2) turns into a U(3), ie., Jo¥ =

U UM & Jﬁ;;lsag. A novel modification that will affect
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the gauge group computation is that also the null junctions
N,mag
J

are refined. Namely, the generators of J i ¢

are

1 + +
E (6?{’0) + 6%’”) = 61(\1/2’1/2) = w]077 - wf]ﬁ +2¢ — X[3’1]

o7 _ 07 R
tw, —wy +20—xp,),

1 + +
3 000 = 000n) = 8l1jp1yp) = 3057 +0f
-3¢ —2xp - 309" + 00"
—3¢/ 4 2x, . (4.41)

In summary, after modding out the null junctions, we have

A=UUQR), Au=U® UG) = A5 (4.42)

D. Examples

Using the techniques outlined in Sec. IVA, we can
determine the brane configurations and the resulting gauge
group topologies for all 8D N =1 string vacua. This is
done explicitly for all maximally enhanced cases on each
branch of the moduli space, as summarized in Appendix C.
In the following we demonstrate the general procedure in
specific examples. For convenience, we focus 8D theories
that were discussed in [34,52] from the perspective of the
heterotic or CHL. momentum lattice. The generalization to
rank (2,2) theories is, to our knowledge, the first time in
the literature the global gauge group topology has been
computed for these string vacua.

1. A rank (2,18) example
The non-Abelian gauge algebra of the model is given by

g = §020 @ §114 @ §u4 @ 93112 @ §u2, (443)

which can be generated by the following brane configu-
ration:

(AVBC)NX, ; X2

5 C2. (4.44)

]

Note that for a consistent overall monodromy, the $u
algebras are not associated to a stack of A-branes, but rather
in some SL(2,Z) conjugated frame. Accordingly, the
associated extended weight junctions summarized in
(2.29) need to be conjugated and are given by

| 1 Jo
80, (A'"BC): », :i(b +¢), o, :EZ a;,—3b -2c,
i=1
1
Suy(NY): @) 21211;,
i=1
1
suy (X} )0 @13 :Z;X[I,S],iy
1 2
ﬁuz(X[zz,s])i W5 = sz[z,s],i,

1 2
Quz(CZ)Z w(],l) :EZ C;, (445)
i=1

where @, ;) is the extended weight of the corresponding
3u stack with asymptotic (Z) charge. In terms of these

extended weights the two linearly independent integer null
junctions are given by

61(\1,0) = —20)1, —40)(0‘1) +4(1)(1’3> —20)(2_5) +2(0(1’1),
61(\(/),1) = 6wp —2a)q +2460(01) —2060(1’3) + 8(0(2’5) —2(0(1’1).
(4.46)

Notice how, in both junctions, the greatest common divisor
of the coefficients is 2. Therefore, the fractional null
junctions are generated by

N.ma 1
e = (oo + B Poalor Bon 532
(4.47)

and the global realization of the non-Abelian gauge group
is determined by

L Bolgkez) Belbez)
= = =4, 2-
T, 0%

(4.48)

Moreover, the coefficients in front of the extended weights
in %6” determine, according to (2.33), the generators of
Z c Z(spin(20)) x Z(SU(4))* x Z(SU(2))? to be

1

561(\1’0) ~(1,0;2:2;1;1) €(Zy X Zy) X Zy X Zy X Zy X 7,
1

56%‘” ~(1,1;0;2;0;1) € (Zy X Zy) X Zy X Zy X Zy X Z5.

(4.49)

Beyond the non-Abelian gauge factors, the theory
contains two graviphotons generating two u(1) gauge
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factors. These arise from Abelian junctions (4.7) that are
not null junctions, which for the present model can be
easily determined, from (4.45), to be linear combinations of

u; = 4((0(0,1) T W13 —W@os) + w(l,l)) =4vy,

u, = 4((0(0’1) —w,) = 4v,. (4.50)

v,, while themselves nonphysical, can be made physical by

adding coweight junctions, so lie in P, (J;%). At the same

time, there are no “finer” coweights to make fractions of v,,

physical, so v, generates P4(Jp,). Then, the Abelian

quotient Z’, according to (4.18), is

PA(JTg) xXvVi|x €Z Vo|ly EZ
_ nggys _ { 1| } % {y 2|y } — Z4 % Z4.
A

Z () ()

(4.51)
The generators of Z’ are

v; ~(0,0;1;1; 1; 1]e™/?;1)
€ (Zy X Zy) X Zy X Zy X Zr x Zr x U(1); x U(1),,
v, =~ (0,1;1;0;0;0|1; e%/?)
€ (Zy X Zy) X Zy X Zy X Zy x Zr, x U(1); x U(1),,
(4.52)
where we have used a vertical line to separate the finite
groups from the U(1)s, whose trivial element is 1.
Consequently, the global form of the gauge group is
given by
[(spin(20) x SU(2)? x SU(4)?)/(Z, x Z,)] x U(1)?
Z4 X Z4 ’
(4.53)

in perfect agreement with the heterotic analysis in [34].

2. A rank (2,10) example
Since the brane configuration above already contains an
80, stack we can simply reinterpret this as an O7* plane,
leading to the brane configuration

(A207H)N*X4 X2, . C2.

1.3 8%2.5] (4.54)

This setup has a non-Abelian gauge algebra given by
q= épz @ §114 @ 6114 @ §u2 @ 6112, (455)
leading to a model with rank (2,10) dual to a specific CHL

background. Except for the 3p factor, the extended weights
are the same as in (4.45). For the 8p algebra one has

3p,(A2077): @, = 09",

ST

@, = (31 + 32> — CI)EJ)Tr + (0?7+.

q

(4.56)

Formally, the global null junctions 61(};.‘1) are the same as

in (4.46), except that the @, , appearing there are now the
extended weight junctions of 8p. Again, we can divide both
by 2, obtaining the fractional 5-brane junctions

1

N,m

Tine & = {’12\1,0)5?{,0) + 40.1)800.1) 141 0y Al0.1) € EZ}’
(4.57)

implying Z =~ Z, x Z,, with generators

1
3000 = (022 11) € Zy X Zyx Zy X Zy X Z,

= Z(Sp(2) x SU(4)? x SU(2)?),
1
55?6.1) ~(1:0:2:0;1) € Zy X Zy X Zy X Zy X 2

= Z(Sp(2) x SU(4)? x SU(2)?), (4.58)

where the entry for Z, = Z(Sp(2)) is determined only by
the coefficient in front of @, see (3.21).

In a similar way, there are two 1(1) generators that
formally are the same as in (4.50). Since (uy, v;) have no
prongs on the 8p stack, we get a Z, factor in Z’, with
generator

vi=(0;1;1;1;1]e"/21) € Zy x Z3 x Z3 x U(1); x U(1),.
(4.59)

Moreover, since v, has an order-4 prong that is not on the

O7*, physicality conditions do not change the fact that we

obtain another Z, factor in Z’, now with generator

v, = (151;0;0;0|1;e7/2) € Zy x Z5 x Z3 x U(1); x U(1),.
(4.60)

To summarize, the global gauge group of this rank (2,10)
model is

[(Sp(2) x SU(2)* x SU(4)*)/(Z, x Z,)] x U(1)?
ZyxZy ’

(4.61)

agreeing with the CHL result computed in [34].

3. A rank (2,2) example

The rank (2,2) moduli branch has six special points with
non-Abelian symmetry enhancements [35]. We have enu-
merated the 7-brane configurations for all of these, as well
as the resulting gauge group topologies in Appendix C 4.
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It turns out that there is only one whose non-Abelian
gauge group is nonsimply connected. For illustration,
we consider this example in more detail. The brane
configuration is

0707 B2C?, (4.62)

where the monodromy of the O7"" is SL(2, Z) conjugated

t0be(_74 12)

of O7" generate all (Z ) charges, whose parity is invariant

" Notice that, since the extended weights

under SL(2,Z) conjugation, we use the canonical basis

w7 for the O7*, which have (}) and (%) prongs,

respectively.
The non-Abelian gauge algebra of (4.62) is 811, @ Su,,
with extended weights

81,(B?): w1y =@, == (b +by),

= N =

é’,uz(Cz): 0)(1.1) =w, = (C] -+ Cz). (463)

The physical 5-brane null junctions J™¢ [see (4.41)]

phys
are then
N _ 07t _ 07" o7+ _ 0T _
6(1/21/2) =) 0, +o, W, 2wy,
N _ 2,07 o7t _ 7,07
6(1/2’_1/% = 3w, + o, Tw),

+ 509" + 8w, + 20,., (4.64)

JN,mag

from which we find that the fractional null junctions Ji..,

is generated by

1
5 @021/ +001012)
— &N

(1/2.0)
= -0 -30" + 20" + 3w, + ®,. (4.65)
It corresponds to the generator
(3mod 2,1 mod 2) =(1,1) € Z, x Z,
=Z(SU(2) x SU(2)) (4.66)

_ yN.mag ; yN.mag
of Z = Jgt /It = Z,.

Together with the null junctions, the Abelian junction
lattice J\“® is generated by

This can be viewed as freezing both 804 algebras of the rank

(2,18) configuration (A®BC) (X?z,—l] BX};_j)B2C%.

u; = 2V1 = 2(—(0974r + (1)274r + G)h),
u, =2v, =2(-09" -0 +o,). (4.67)

Clearly, this leads to Z' = Z, x Z,, with generators

vi~ (1,0 =1;1)
v, ~ (0; 1]1;-1) }
€Zy,xZ,xU(l); xU(1),
=Z(SUR2)g xSUR2)e x U(1), x U(1),). (4.68)
The full gauge group is thus
[SU(Z)XSU(Z)]/szU(l)Z. (4.69)

ZzXZz

V. NINE-DIMENSIONAL VACUA VIA AFFINE
7-BRANE STACKS

Recently, it was argued that one can recover any 9D N = 1
string vacuum with gauge rank (1,17) from F-theory on a
suitably degenerated K3 geometry that lies at infinite distance
in the complex structure moduli space [27,28]. As shown in
these works, such decompactification limits have a particu-
larly convenient description in terms of [p, ¢]-7-branes and
junctions that realize affine algebras. In the following, we
demonstrate how the methods from the previous sections
naturally apply also to these limiting configurations, and
compute the 9D gauge group topologies for rank (1,17) vacua.

Since the affinization is characterized entirely by the
SL(2,7Z) monodromy, a natural proposition is that these
configurations also describe 9D uplifts when we include
O7* planes. Indeed, (after resolving an ambiguity by string
dualities) this straightforwardly reproduces the landscape
of 9D rank (1,9) vacua [52], including their global gauge
group structures. Moreover, applying the same reasoning to
configurations with two O77s, we consistently find two
branches of 9D rank (1,1) vacua [54], which are only
connected through circle reductions to 8D.

The key ingredient that enters the description for all
ranks are 7-brane stacks realizing an affine Lie algebra &,
which we will now briefly recall.

As found in [70,74,75], the e, and €, algebras can be
enhanced to their affine versions, by including a specific
7-brane on top:

E,» = A"'BC2X[; ) = A" 'BCBC,
21 = Xp.

E,
E,»o = A"Xp_)CX . (5.1)
—
i

n

Note that for n > 2, these are equivalent up to 7-brane
moves and SL(2, Z) conjugations [75]. It is straightforward
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to check that, in this SL(2,Z) frame, they have
monodromy

wie) =mE) = (") 62

0 1

The hallmark of these stacks is the existence of a special
loop junction &(; o) = 6 around them (with no asymptotic
charge), satisfying (8,8) = (8, ;) = 0, with a; the root

junctions of E, or E,. By a Hanany-Witten transition, one
finds the equivalent presentation [70]

E:X[3.1]_b_cl_C2:b2+c2_bl_cl’
(5.3)

Representation theoretically, é plays the role of the
imaginary root required for the affinization of e, or €,.
They generate an infinite dimensional Kac-Moody algebra
with roots {a + ké|k € Z}, where a is any root of e, or €,.
When we separate the affinizing X-branes in (5.1) from the
e, or &, stacks, these junctions, as strings, give rise to BPS
states with masses proportional to k. In the affine limit,
we thus obtain an infinite tower of massless BPS states.
Physically, string junctions of these type give rise to an
infinite tower of massless BPS states.

A special extension exists for n = 8. Here, by adding an

A-brane from the left to the Eg or Eg, the monodromy

becomes 1= M(Ey) = M(E,). This would give rise to
two independent towers of massless BPS states from loops
of (3) and (V) string junctions, which lead to the double loop
enhancement of eg. These special enhancements reflect a
decompactification to 10D [27,28]. For discussions of 9D
vacua, we will not consider such double loop brane stacks,
but the necessary constituent branes form one half of the
rank (2,18) configuration (4.22) that correspond geomet-
rically to the singular fibers of a dPgy surface.

Among the various types of infinite distance limits of
F-theory compactified on K3 surfaces, those describing
decompactification from 8D to 9D are captured by so-
called Kulikov models of type Ill.a [27,28]. In these
geometries, the complex structure moduli have been tuned
such that the K3 degenerates into a collection of intersect-
ing elliptic and/or rational surfaces. While we refer to those
references for details, the relevant fact about these defor-
mations is that they correspond to brane motions which
generate one or two 7-brane stacks carrying an &, or &,
algebra (with n < 8). The tower of massless states from the
imaginary root may then be identified with the momentum
states of a Kaluza-Klein (KK) tower on a circle whose size
becomes infinite at the infinite distance limit. In the case
with two affine stacks, the individual imaginary root
junctions turn out to be identical in the global setting,
consistent with having just one KK tower [28].

A. Global structure of 9D vacua of rank 17

As for the classification of 8D vacua, one can also
categorize all brane configurations with such affine stacks.
Then, if the non-Abelian brane stacks correspond to the
algebra ) @ é’n or h é‘n & ém (where £ =e or ¢) for
some finite semisimple, simply laced algebra §, the
associated non-Abelian gauge algebra in 9D is h @ &,
or h ®E, & E,,, respectively [27,28]. This reproduces,
e.g., all the maximally enhanced non-Abelian algebras (i.e.,
with rank 17) determined in the dual heterotic frame [29].

To also analyze the gauge group topologies in this
description, we need to examine the full junction lattice,
including the branes away from the affine stack. An
important detail here is that the overall gauge rank reduces
by 2 as we decompactify from 8D to 9D, corresponding to
the reinterpretation of the KK states (which become
massless) and the decoupling of the winding states (which
become infinitely heavy) as we increase the size of the
compactification circle. In the momentum lattice descrip-
tion of the 8D and 9D theories of rank (2,18) and (1,17),
respectively, we have

AR = Al @ U = A3 = AR/ U, (5.4)
with U the rank 2 hyperbolic lattice that is spanned by
the KK and winding states. Since the momentum lattice

is equivalently described by junctions Jg &= J3
A @ Jghys, with the KK tower being generated by the

junction &, there must exist another non-null junction € that
generates this U factor with 6, i.e., satisfying

(6.€) = 1.(5.5) = (e.) = (6.§) = (€.§) = 0. (5.5)
for j any (co)weight or (co)root junction, or a non-null
generator of the Abelian junctions J,. Such an € junction
always exists, but the details depend on the specific
configuration.

Since the junction lattice reproduces the 9D momentum
lattice, it must also encode the global structure of the gauge
group. In particular, it allows us to use the intuition in terms
of fractional null junctions to rederive the results of [29].
Let us demonstrate this for 9D models with maximally
enhanced non-Abelian symmetries, for which there are two
classes of 8D brane configurations [28].

In the first class, the non-Abelian algebra (with the place
holder £ = ¢ or &) is

08D,c0 = BW18_ym—p D En®E, = aop
=3U3_,,_, DE, DE,.m, ne{0,1,3,....8},
(5.6)

whose brane configurations (together with the U-lattice
generators) are
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EVI

m>n>1: A (AmIX 00 X3

X(y—6.1)) (A" BC*X 3 ),

[n-8.1]
(6.€) = (6F (1.0’ (n 5)5R + f )t Xp-61] — X3, 1) (5.7a)
E, £,

m=1n=0: A17( [10,— I]Xg 1] [6,—1])(X[2,—1]CX[4,1]),
(6.€) = (88 o) —1T@a + X10.-1) + 2Xp 1) =€), (5.7b)

ﬁm#l I:i(]

m>n=0;m#1: A "(A" Xy Xjs -1 X5 —1) (X o) CX )

(6,6‘) = (6{21’0), —66,0) —+ X[5y_1] — 2X[2’_1] — C). (57C)

where 6% and £® are loop junctions that encircle counterclockwise around the second affine stack. Note that, because the ((1))
loop is mutually local with respect to the A-branes, it is evident that, by pulling &, o) across these, one obtains a loop
junction around the other affine stack, showing explicitly that imaginary roots of each affine stack are identical.

The second class has non-Abelian gauge algebras

98D.c0 = 30342k D & = Gop = 803494 D &4,

whose brane configurations (and U-lattice generators) are

Dl7—k

0<k<8 k#2, (5.8)

E;

k=1,3,...,

Dy;

k

0: (AVX
(576) = (6?1,0

again, with the imaginary root junction 6

By separating the X-brane responsible for the affiniza-
tion from each affine stack, we obtain a genuine 8D
configuration. For these configurations, we can apply the
same procedure as in the previous section, and construct the
global fractional null junctions that encode to the cochar-
acters of the 8D gauge symmetry. Since the affinization
(5.4) mods out by physical junctions that are orthogonal to
the root lattices of the 9D gauge factors, it does not affect
the coefficients of global null junctions in front of the
extended weights. Therefore, the fractional null junctions
are the same for the 8D configuration as for its affinized
version.

As a concrete example, consider (5.9a) with k =7,
which in 9D gives rise to gop = 30,9 @ e;. Separating
the singlet brane responsible for the affinization,

/—/%
8: (AT X101 Xprog 1) X ks 1) (A BCX 5 1])X(2>

(6.€) = (8% )-8F o) + X131y = X))

(
10.-1 X g,

ERIN

(5.9a)

E
2

D x? (X 1 CXy )X

) X s m (X -1 CX 1) X3 1
2)

),—26@0)4—)(8

8.1 — 3Xp-1y — 2X[1,1])» (5.9b)

o) being the () loop around the affine stack to the right.

) X2

WX, (5.10)

(AX 3y X ) X1 (A°BC2 BC?)X|

—_————

D), I
-1 6.

we find the 30, stack to have monodromy ( 0 -1 ) in

this SL(2, Z) frame, with extended weight junctions ), ,
carrying asymptotic (Z) charges as follows:

! . 1 ! . _2
@p:{ | o\ ) (5.11)
The two global null junctions 6?1 o) and (5N ) can be then
expressed in terms of the extended welghts a) 1.q Of 805 and

®,, of e; as
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6N —

(1) (2)
(1.0) = 20, —X[_1 )~ 50, — @, X0 X0

_ (1) (2)
6?(’)’1) =20, - 2w, +5x_ )+ 17w, + 30, +Xp0 X3

(5.12)

It is easy to see that the fractional null junctions are then
multiples of

(801.0) T 8001))

N =

= -, +2x_ ) + 6w, + o, + XE;)I] + xg.)l]. (5.13)

By (2.33), this corresponds to the central element

(0,1;1) € Z3 x Z, = Z(spin(20) x E;), (5.14)
which leads to the 9D non-Abelian gauge group
[spin(20) x E;|/Z,.

To determine the full gauge group, including the grav-
iphoton U(1), we must first find the non-null generator of
the Abelian junction lattice that is orthogonal to the U
lattice spanned by (8, €). In this example, it can be easily
determined (by avoiding prongs on the e; stack or the X3 ;)
branes),

u =2v=_2(@), + o, - X ) (5.15)
which immediately gives Z’ = Z,, with generator
v (1,1;0[e) € Z(spin(20) x E; x U(1)).  (5.16)
Therefore, the 9D gauge group is
[spin(20) x E;]/Z, x U(1) . (5.17)

Z,

By analogous computations, we compute the non-Abelian
gauge groups of all models with maximally enhanced non-
Abelian symmetry (summarized in Table I), which agree
with results from the heterotic picture [29].

B. Nine-dimensional CHL vacua via junctions

Having reproduced the maximal rank branch of the 9D
moduli space, we would like to extend the junction method
also to rank-reduced theories. We start by matching the
known circle compactification of the 9D CHL string in
terms of junctions in the presence of a single O7" plane,
focusing again on the cases with maximal non-Abelian
gauge rank.

A key assumption here is that the decompactification
limit of 8D vacua, even in the presence of O7" planes, is
characterized by the appearance of singularities in the
axiodilaton profile that induce SL(2,Z) monodromy of

affine type. Though we do not have a proof for this, we
expect the identification of the resulting loop junctions as
the only BPS tower compatible with decompactification to
be valid also with O77" planes, given that the loop can be
thought of as a (p, ¢) string that is only sensitive to the
monodromy, but not the details of the 7-branes. Moreover,
as we will see below, the results following this assumption
agree with the momentum lattice description for the 8D and
9D CHL strings [52,69].

Analogous to the procedure in previous sections of
describing the O7™ as freezing a 80,¢ stack in an “ordinary”
rank (2,18) setting, we therefore focus on those brane
configurations in (5.7) and (5.9), whose non-Abelian
stack can host a 80;4. This is only possible if the
configuration includes a D, g or Eg brane stack. While
for (5.7), there is only one rank (2,18) configuration, with
08D.c0 = Sy D &3 P &5, there is an ambiguity for the
class (5.9), in that we can naively embed the O7" inside
the &g or the 3o stack. However, inspecting the set of
allowed string and 5-brane junctions reveals a striking
difference between the two options.

If we embed the O7™ inside the 8o stack, the freezing of
the 30,4 subalgebra and the modified boundary conditions
for the junctions do not affect the U lattice. This is made
explicit in (5.9), since § and € junctions only have prongs
on the affine stack, which remains unmodified. On the other
hand, if we would embed the O7* inside an Eg, then the
freezing procedure restricts the set of allowed string
junctions to be orthogonal to the 80,4 roots, and have
even prongs on the orientifold plane. As we will explain in
detail in Appendix B, the result is that we can no longer
consistently define a U lattice from the allowed junctions.
Instead, the evenness condition can at most accommodate a
stretched hyperbolic lattice U(2).

Based on the dual CHL string description, we propose
that only the embeddings with a modified U lattice gives a
consistent 9D uplift. Namely, unlike the maximal rank case,
the momentum lattice AGH" = (—Eg) @ U @ U(2) of 8D
CHL vacua is no longer self-dual, whereas the correspond-
ing 9D lattice A§H =~ (—Eg) @ U is [69]. The additional
U(2) in 8D arises from the winding and KK states of the
CHL string, and must therefore be represented in terms of
the imaginary root junction around the affine stack, and
another string junction that emanates from it. If we embed
the O7" inside the Dy;_; stack of (5.9) instead, then we
would have an unstretched U lattice for winding and KK
states. Moreover, if we would naively identify the wouldbe
9D gauge algebra with that of 8D (replacing the affine
symmetry with its nonaffine version), this kind of embed-
ding would lead to an 8p algebra in 9D, which again is
not compatible with the CHL string. While these arguments
provide strong evidence in favor of the proposal, we
leave a rigorous proof for future works, and discuss the
resulting characterization of 9D CHL vacua in terms of
string junctions.
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TABLE L

junction (FNJ) 6N )= 6

Non-Abelian gauge group Ggp of all maximally enhanced 9D rank (1,17) string vacua, seen as
dimensional uplifts of 8D string junction vacua. The generator of z;(Gyp)

=~ 7, is represented as a fractional null

(p/?.q/?)
(gop, 71 (Gop)) FNJ (gop, 71 (Gop)) FNJ
G8D.c0 = SUyg_p_n D &, D &,

eg @ eg D 3u,,—) (es @ Suz @ Su, B Suo, Z3) ‘5% /3
eg D e; @ Suy, —) (e6 @ Bu, @ Buyy,—)
eg @ eg D Buy, —) (es @ 81y, Z3) 5% /3
eg @ 80,y D Sus, —) (8010 @ 8010 @ Bug, Zy) 5?{1)/4
es @ 3115 @ B1tg, —) (8019 © 3us @ 3u9,—)
eg @ 813 @ su, @ 3u,, ) (8010 @ 3u3 @ 3u, @ 31,9, Z,) 81 _1)/2
eg @ Suy @ Su,, —) (8019 @ Su, @ 8uyy, Zy) 5?’1 /4
eg @ 3119, —) (800 @ 8113, —)

e; De; @ duy, 7Z,) 6’(V1 /2 (8us @ sus @ 3u,9, Zs) ‘Sivl /5

(
(
(
(
(
(
(
(
(
(e7 @ es @ 3us,—)
(e7
(
(
(
(
(
(
(

(QU5 @ §u3 @ §U2 @ §1111,—)

@ 30,) D 314, 2>) 571._1)/2 (8us @ 3u, @ 31,3, —)
e; D 3us @O suy,—) (Bus @ suy,—)
e; @ 8u; @ su, @ sug, Z,) 81 1)/2 ((8u3 @ 8u,) & (8u; @ 8u,) @ 81y, Zg) 5% 1/6
&7 @ su, @ 319, Z,) 81 1)/2 ((su; @ 3u,) @ 3u, @ 3uyy,Z,) tn/2
e @ 8uy;,—) ((813 @ 3u,) @ 315,73 6?(’) h/3
e @ e @ 31, Z3) 80.1)/3 (81, @ Su, @ 816, Z4) o1 _1)/4
e D 30,0 D S1y,—) (81, @ 817, —)
e D s @ sug, —) (813, Z3) 5% /3

08D,c0 = 903421 D €

(98 @ §Dlg,—) (§115 @ §0267_)

(e7 @® 8050, Z;) 001 1)/2 ((8u3 @ 3u,) @ 30y, 7,) 811)/2

(e(, (&) §022, —) (§U2 (53] §032, Zz) 6?{ 1>/2

(8019 @ 80y, 2Z,) 51(\]1 /2 (8034, —)

'Let us start fr.om t.he 8D rank (2,18) conﬁgklration (5.7a) 0 g (1> _ <1> i g (0) _ <—1 ) (5.19)

with n = 8, which, if we moved X, ;) from E,, across the 0 0 1 1
branch cut of E,_g, becomes (5.9a) with k = 8. Using the 3 ]
brane moves described in Appendix B, we can turn the B~ The Dy stack can be conjugated by ¢ = ( 1 0 ) to
into an SL(2, Z)-conjugated E, stack: the standard representation, ¢'M(Dg)g~' = M(A®BC).

E"‘l D/S
AL (A" X oy Xy X ) Xy X1 X 12 X 1.2
| 08 oM
(5.18)
N . 11 .
The E,, stack can be conjugated by g = ( 0 1 ) to obtain

the standard form from Sec. II. In particular, this means
that the standard extended weight junctions now carry
asymptotic (Z) charge given as

Introducing the O7%, i.e., X?OJ]X[IA]X[LZ] — 07" [where
we use the prime to denote the nonstandard SL(2,Z)
frame], we obtain

E

m

A0 (AMTX X, 1])([2_1])07#)(“.2].
S——————— —

(5.20)
Em NE;EES

Compared to the standard presentations discussed in
Sec. II [i.e., where the monodromy of O7" is M(O7") =
-1

( 0 _41 )1, the O7* monodromy in this SL(2, Z) frame is
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-1 0

M(O7+) = ¢-'M(07)g = (_4 iy

), (5.21)

and the standard extended weights @
(q) charges

s ()-(5) wer ()-(0) v

for which the pairing relations (3.4) hold. We can pull the
imaginary root junction § = 6?1 ©) across the branch cuts,

" have asymptotic

and obtain the equivalence

0 =2(~w), — 0y + X[ ), (5.23)

which consistently has only even number of prongs
on O7%. Moreover the pairings are (@), X[) =

—(a)gﬁ,x[].z]) 2, and assert, together with (3.4), that
(8,8) = 0. The € junction from (5.7a) cannot be realized as
a string junction in the presence of the O7", because it
requires a net ({q’) = (3) charge to end on O7"'X|; 5 (see
Appendix B for details). Instead, the prongs of any physical
string junction on the O7%'X{; 5 stack must be

20,0} + 22,0 4 X1 5] A

r€Z,  (5.24)

P9

which necessarily has an even ¢ charge, as well as an
even pairing with . This means that, orthogonal to the
31_, D e, weight junctions in (5.20), we must have
a U(2) lattice, spanned by string junctions & and
€ =-6+ 6(0;, + 4X[1,2] - 2X[2.1].

In the magnetically dual picture, any integer number of
5-brane prongs can end on Q7. In particular, 5-brane
junctions corresponding to 16 and 1 €' are then physical,
and would span a squeezed hyperbohc lattice U (%) This is
consistent with the fact that in the 9D uplift of CHL vacua,
the momentum lattice “loses” a U(}) factor [69]:

(0§ = (B @ U@ U 3).

(ASH")" = A" = (-Es) @ U. (5.25)
The remaining moduli available in 9D are then the
deformations that move the 7-branes outside the
o7+ X[ stack. The resulting maximal non-Abelian
enhancements can be equally characterized by an 8D
configuration of type (5.7a) (with n = 8) or (5.9a) (with
k = 8), but with Eg frozen via the embedding of an O7+
described above (as summarized in Table II).

TABLEII. Maximal non-Abelian enhancements on the 9D rank
(1,9) moduli space that has a dual description in terms of the CHL
string, obtained from an affine 8D realization in which an ég is
frozen. Note that all cases have trivial non-Abelian gauge group

topology 71 (Gop).

8D Brane
gSHL 71(Gop) 48D.co configuration
61110 0 §1110 =+ ég (5 7C) n=23y8
31y @ 31, 0 Buy®é dé (5.7¢),m=1,n=238
3u; @3, D3u; 0 Bu; @é; D ég (5.7a),m=3,n=28
5116@%115 0 §u6®é4®é (573) m = 4,n—8
Sus @ 80y 0 §u5€|965@é (573)’7’[—5,”—8
5114@96 0 51146966@6 (5721) —6,1’128
313 @ ey 0 3Bu;Pé; dé (5.7a),m=7,n=38
3u, @ eg 0 3u,dédé (5.7a),m=8,n=238
§018 0 3018 @ es (5 9a) k=28

The null junctions for (5.20) are

6?{.0) = 3w}’ 2w, — 2wy + 2X| 2,

6%.1) =(m-

Cl)q + X[z 1]~
10)wg, + (18 — m)w}’

+ 3(1)2'” - 3X[2’1] + 40);, + 260; - x[l,Z]v (526)
from which one can straightforwardly determine the non-
Abelian gauge group structure for specific m. It so happens
that they are all trivial in the maximally enhanced cases,
which agrees with the CHL-string computations [52].

C. Disconnected moduli branches
for 9D rank (1,1) vacua

The description of 9D rank (1,9) theories presented above
has a clear interpretation in terms of “freezing,” i.e.,
introducing an O7" plane into the 7-brane system that
describes a rank (1,17) theory. In parallel to the construction
of 8D vacua discussed in Sec. IV, it then is natural to propose
that 9D rank (1,1) theories arise by a further freezing.
Moreover, the duality to the CHL string strongly suggests
that, in 9D, the freezing process requires an ég affine algebra,
in which the eg root junctions, as well as odd multiples of the
winding-state junction (i.e., €) are projected out. Therefore,
from the maximally enhanced cases in Table II, only the
second to last [with brane configuration (5.20)], but not the
last entry, can undergo a further freezing.

After repeating the brane motions discussed in
Appendix B, now for the first affine stack in (5.20), the
corresponding (doubly) frozen configuration looks like

A(O7 X1 ) (07 X1 ). (5.27)

where the M (671 )= (_3 4 ;.L) is the monodromy of the

left O7* plane in this SL(2,Z) frame. We obtain an
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enhanced g = 3u, non-Abelian symmetry when the two
A-branes are moved on top of each other, which is the
maximal enhancement we can have in 9D. In fact, if one
could separate the two X-branes from their corresponding
O7* (making the KK modes massive), and move them next
to each other, they would be locally mutual, thus allowing
for another $u, enhancement—this would be nothing but
the 8D rank (2,2) example (4.62) studied in the previous
section, which had an SU(2)?/Z, non-Abelian gauge
group. However, since for the 9D uplift, one of them must
be broken, the fractional null junction that generated this
Z, quotient no longer exists for the configuration (5.27).
Hence, the 9D non-Abelian gauge group must be SU(2).

It is suggestive that this doubly frozen, rank (1,1) moduli
branch corresponds to M theory on a Klein bottle [54].
Namely, starting from the rank (1,17) theories with heter-
otic description, which is dual to M theory on a cylinder,
the first freezing led to CHL vacua in 9D, which are
equivalent to M theory on a Mobius strip, or a cylinder with
one cross-cap. Freezing once more, i.e., adding another
cross-cap on the other side, then produces a Klein bottle.

However, as pointed out in [54], there is a second branch
of 9D rank (1,1) moduli space that is disconnected from M
theory on a Klein bottle. That is, it cannot be realized as
freezing 9D rank (1,9) models. However, since after an S'
reduction, the 8D rank (2,2) moduli space is connected,
there should exist a junction description for this 9D branch,
as a suitable infinite distance limit in which KK states
become light.

In fact, starting from the general 8D configuration with
two O7*s, depicted in Fig. 8, it is not hard to identify such
potential limits. Starting from O7"CXp jO7*CXp3 ),
where both O7s now have the standard monodromy, we
can either push the C-branes from the left on top of the
orientifolds,

(077C)X 5. (077C) X3, (5.28)

affine affine

which is just a slightly rearranged version of (5.27),
or we can generate a El = BCCXj3 ) stack, by moving
7-branes as

07+CX[3’1]O7+CX[3'1] i 07+CO7+BCX[31]
— 07+07"X;_;BCXj5 ;) — 0707 (BCCX ).
W_/
=K,

e

(5.29)

First, notice that one cannot transition between (5.28)
and (5.29) without separating branes making up the
affine stack. In other words, these configurations are
connected only via the 8D moduli space. Second, by the

brane move CX[3,1] — BC inside the affine stack, we find
-

that B, = BCCX3 ) =~ (BC)(BC) is the strong-coupling
version of two O7~ planes on top of each other. Therefore,
(5.29) is T dual to IIA on an interval with O8%s at each end,
which further dualizes to the 9D Dabholkar-Park back-
ground in type IIB [30,76]. This is indeed the branch of 9D
rank (1,1) moduli space that is disconnected from M theory
on a Klein bottle [54].

VI. CONCLUSIONS AND OUTLOOK

In this work, we have extended the framework of string
junctions on [p, ¢]-7-branes [36-38] to include O7" planes.
The key difference is the distinction between physical
(p, q) strings and 5-branes that can end on the O7": while
the latter can end with arbitrary integer (Z) charges on the

O7", only even numbers of integer (p, ¢) strings may do
so. When applied to the construction of 8D N = 1 gauge
theories on stacks including both ordinary [p, ¢]-7-branes
and O7%s, this modification consistently reproduces the
root and coroot lattices of nonsimply laced 8p algebras, as
well as their electric 1-form and magnetic 5-form center
symmetries. Furthermore, this provides a junction descrip-
tion for all 8D rank (2,10) string compactifications with a
dual CHL-string description [13,52], including their gauge
group topologies that are succinctly characterized by loop
junctions encircling all 7-branes. In addition, using junc-
tions, we find a previously unknown lattice description for
8D string vacua of rank (2,2), that is analogous to the
Narain lattice characterization of 8D and 9D heterotic/CHL
vacua. This establishes junctions as a unifying framework
to describe gauge enhancements (including the global
gauge group structure) of all 8D string vacua.

Moreover, in synergy with Swampland ideas [27,28], we
have discovered a full classification of 9D N =1 string
vacua, including their global gauge group structures, by
7-brane configurations with affine stacks characterized by
loop junctions for their imaginary roots. Again, the con-
sistent inclusion of O77 planes in the analysis of potential
infinite distance limits on the 8D moduli space turns out to
be vital to capture subtleties, such as the two components
of the 9D rank (1,1) moduli space that are connected only
through an S' reduction to 8D [54].

The 9D results motivate a string-independent classifica-
tion of the 9D N = 1 supergravity landscape in a similar
fashion to [35], where the 8D landscape was classified
based on a Swampland “translation” of the SL(2,Z)
characterization of 7-branes and O7" planes. While per-
haps unexpected from their direct constructions, our work
shows that 9D string compactifications also admit a
completely analogous characterization. Hence, it is sug-
gestive that there should also be a parallel story for the
moduli space of 9D instantons that can be studied by
SL(2,Z) monodromies. In particular, such a bottom-up
analysis could provide an explanation independent of
the CHL string, for why the 9D analog of the freezing
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mechanism can only be performed with an Es but not a
D,g stack.

Another useful insight from the junction perspective is
on the stringy origin of center symmetries in 8D gauge
theories with nonsimply laced algebra. Via dualities, it
would be interesting if one can use this insight to generalize
the geometric engineering framework for higher-form
symmetries in M and F theory [15,16,34] to include frozen
singularities. This may have promising applications to the
study of 6D SCFTs constructed on such singularities [33]
as well as lower dimensional SCFTs, obtained either from
dimensionally reducing 6D theories, or directly engineer-
ing them with junction techniques [41,43,45,46].
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APPENDIX A: DERIVING THE EVENNESS
CONDITION ON O7* VIA 8D CHL STRINGS

In this appendix, we present a derivation of the evenness
condition for string junctions the O7" plane in 8D rank
(2, 10) models. This proof utilizes the known equivalence
between the heterotic Narain lattice (4.19) and the junction
lattice (modulo null junctions) on 24 ordinary 7-branes, and
the construction Apgixnailov < ANarain Of the Mikhailov
lattice, describing states of rank (2, 10) vacua, as a
sublattice [69], also known as “freezing” [52,77].

Assuming that the freezing mechanism in the IIB/7-
brane picture is a local operation, Dy = A BC — 07", we
show that the evenness condition discussed in Sec. III is the
necessary and sufficient condition for the string junction
lattice on the O7* and the unaffected 7-branes to agree with
the Mikhailov lattice.

To this end, first recall that there is a particular 304
root lattice (—Dg) C Anarain @long which one defines an
orthogonal projection P [69] (see also Ref. [34]). Since
P(Dg) = 0, this 80,4 is interpreted as projected out from,
or “frozen” inside the heterotic model. Then, Ayjixhaiiov €
ANarain 18 the image of P inside Aygrain, 1-€-,

A A
0 0

[j] € AMikhailov < 1 [.ﬂ € ANarain : [j] = P([J]) € ANara.in'
(A1)

This is a nontrivial condition on the choice of m since not
all elements of Ayyr,in Map to integer lattice points under P.

To make contact with the junction description, it is
important to remember that any element of the Narain
lattice corresponds to an equivalence class of physical

junctions modulo null junctions. Therefore, we first iden-
. 0 1
tify j € Johys
7-brane configuration with a Dg stack. Now, as explained in
Sec. IVA, the junction j, prior to freezing, enjoys a
decomposition into an integer linear combination,

as a physical string junction in a rank (2, 18)

8
J=Ydwi+ arol + a0l + ), (A2)
i=1

where jA” has no prongs on Dg. This decomposition is
unique only up to the addition of physical null junctions
6’&’1. o however, because such junctions carry no physical

charge, their prongs on the Dg stack must induce no 3044
center charges, which, according to (2.33), requires even

. 3 3 .
multiples of @},"'® and wy"'°. Hence, any representative j

of the equivalence class [j] modulo null junctions takes
the form

8
j+oN = Zaiwi +(a? +2nP)05"° 4 (a4 +2n1) w5 4§,
=1

1

(A3)

for some junction j that has no prongs on the Dyg.

As this stack will be replaced with the O7*, the Dg root
lattice defining the projection in the momentum lattice
description is identified with the root junction lattice of this

A
0

stack. The representative for P([j]) is then

P(j) = (aP + 2nP>wi016 + (aq + 2nq>w2016 + j/’

nte”. (A4)

al,n?, a4,

Therefore, the condition P([j]) € Anaan translates into
P(j) € J5hye
the physicality conditions. Since, by construction, j' has
no prongs on the Dy stack, this means that a?,a? € 2Z.
As we identify the extended weights of 80,4 with those of

the O7" after freezing (see Sec. III), we conclude that the

junction P(j) representing an element of Apgpailey MUSE
have even (Z) charge.

i.e., its prongs on the Dg stack must satisfy

Finally, it is straightforward to verify the condition for
the magnetically dual 5-brane junctions from the lattice
description of the dual Mikhailov lattice, which in terms
of the above projection map is given by Ayjihailov =
P(Anarain) [13,69]. Since the projection simply removes
the terms proportional to the 80,5 weights in (A2) from any
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physical junction j in the rank (2, 18) configuration, it is
obvious that one ends up with any integer-valued a”, a¥.

APPENDIX B: EMBEDDING O7* INTO Eg4

In this appendix, we discuss the junctions resulting from
embedding an O7" into an Eg stack. First describe the
embedding 80,c & &g in terms of 7-branes. To this end, we
use the equivalence Eg ~ Eg of 7-brane stacks [70,74],
where Eq is conjugate to ASBC?, see (2.8). In this
presentation, it is straightforward to identify the 8o

|

E; = ATBC2X[3 ; » A’TBCBC

- BXFO,]]

subalgebra as the Dg = A®BC part. By the “freezing”
procedure, the Eq stack becomes an Q7" C stack. Now, due
to the evenness condition discussed in Sec. II, only a subset
of string junctions that were allowed to end on E¢ prior to
freezing are allowed in the presence of the O7.

One such junction that we will focus on in the following is
the € junction given in (5.9a). This junction has a unit (3)
prong on the X3 ;j-brane that affinizes the stack—however,

this is in the realization Eg! To connect the two descriptions,
we repeatedly use brane moves (2.4) and (2.5) to obtain

CBC - BCA’BC

- CX[3,1]A7BC d CA7X[_4.1]BC — CA7BX[_1._2]C
i CA7BCX[0._1] i CA7BX[0’1]X[1Y2] — CA7X[O,1]AX[1,2]

- X’

0.1 2

¢ X[IA]XEI‘) x?
———————

=Dy’

In each step, it is easy to track the changes of the prongs of
the € junction that starts out with a unit X3 ;) prong, simply
by requiring that the prongs on the two moving branes
change in such a way that the net (Z) charge remains

invariant. For example, after the first step, we have
X3,1] = by + 2¢,. After the whole process, we end up with

(8) (1) (2
Xpa] = X — 2X[14) 4X[1,2] + X2 (B2)

Since the first three summands end on the Dj stack, one can
decompose their sum using the extended weights of 304
and the weight junctions; the important thing to track here
is that the net (7) charge of this part is (). However, after

introducing the O77, ie., replace Dy — O7*", which
removes the 30,4 weights, there is an odd ¢ charge
emanating via this junction from the orientifold, which
is not allowed for a string junction. Indeed, it is easy to
check that any physical string junction leaving the
| DN — O7%'X[; 5 stack must have an even ¢ charge.
Therefore, only even multiples of e are physical string
junctions after freezing. On the other hand, this prong, and
therefore also € would be acceptable as a 5-brane junction.

APPENDIX C: ALL 8D SUPERGRAVITY
VACUA VIA [p.g]-7-BRANES

In this appendix, we give the full catalog of maximally
enhanced 7-brane configurations realizing 8D string vacua
of maximal non-Abelian rank for all three classes of

0.11CX0.11AX 1 )

[1.2]

= X X1 2AX 1

— K. (B1)

[
models, i.e., total rank (2, 18), (2, 10), and (2, 2). We
further determine global structure of their non-Abelian
subgroup given by Z and the explicit realization of the
fractional null junction.

Before we provide the classification we further describe
a procedure that allows to incorporate the nonmaximally
enhanced cases, with additional 1(1) factors.

1. Nonmaximally enhanced cases

In principle, the process of obtaining the global gauge
group topology for the nonmaximally enhanced cases is
equivalent to what was described in the main text: First one
obtains the associated brane configuration, with which one
has access to the discrete quotients Z via the fractional null
junctions as in (4.14) as well as Z’ as in (4.18). Even
though one cannot avoid repeating the computations of Z
and Z', one fortunately can take a shortcut of finding the
corresponding brane configurations (which is technically
the most challenging step) by starting from the maximally
enhanced setups and suitably splitting the brane stacks.

Here we stress that, given a single non-Abelian brane
stack, all of the natural brane splittings corresponds to
Higgs transition with W-boson vacuum expectation values
that decrease the rank by 1. Adjoint Higgsing that preserves
the rank (such as eg — 804¢), on the other hand, are not
guaranteed to admit a realization in a specific brane
configuration. Even in brane configurations where such
adjoint Higgsings are possible, it would necessarily involve
not only the constituent branes in the stack but also some
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additional branes (Eg & A’BC? and Dy = A®BC in the example). For this reason, we focus on the W-boson Higgsing,
which is guaranteed to have straightforward brane realizations:
(i) Splitting 811;: 8u; — 31y @ 8u,_p: AX - AKX 4 AFK
(i) Splitting 8p,: 8p, — 8u, @ 8p,_,: AlO7TT = Al + A'O7+
(iii) Splitting 30,,,:
30,,, = 3u,: A”BC - A" + BC
80,,, — 281, @ 3u,, ,: ABC ~ A" 2N>C? - A" 2 + N? + C?
80y, — 81ty @ 811,31 A"BC ~ A" ?N2C? x A" C*X 35 > A" 4 C* + X3y
80,5, — 80y, ® 81, (4<m <m—1): A"BC - A" BC + A"
(iv) Splitting e,:
e, = 8u,: A"'BC? ~ A"X}3 N - A" + Xj3 _j; + N [see (2.12) of [75]]
e, — gozn_zz An_]BCZ - An_lBC + C
e, = 8u, @ su, ;: A" 'BC*> - A" + B+ C?
e, — 81, @ Su; @ du, 3(~e; D du, 3): A"'BC? - A3 + A?BC? 2 A" 3 + CA2C? ~ A" 3 + N?C? -
A"+ N2+ C3
e, > Sus @ 8u,_4(~e; O 81, 4): A"'BC? 5 A" + ASBC? = A" 4+ X[ 5)C° - A"* + X1 4 ©3
e, = 8019 @ 311, 5(~es @ 8u,5): A" 'BC? > A" + A'BC? ~ A" + C°AX|; 5 [see (2.11) of [75]].
e, > ey ®su, ,(6<n <n-1): A"'BC?> - A" + A"-'BC2.
These splittings matches with the “substitution rules” as given in Table 2.2 of [78].

2. No O7*

We give all possible brane configurations with rank (2, 18) realizing maximally enhanced non-Abelian gauge algebras in
Table III. Our list reproduces the mathematical classification of [78] of the ADE singularities of elliptically fibered K3
surfaces. This is an expected result, since the junctions describe the same physics in a type IIB perspective. For each brane
configuration, we give not only the non-Abelian fundamental group 7z, (G,,) = Z but also its particular embedding into the

center 7,(G,a) < Z(G) using string junctions, where G is the simply connected cover of the non-Abelian gauge
algebra G, = G,a/ 2.

TABLEIII. All 8D maximally enhanced rank (2, 18) brane configurations. For each entry, we present the brane configuration, the non-
Abelian gauge algebra g,5 and Z = 7,(G,,), generators of its associated FNJ, and the embedding 7,(Gns) < Z(Gya) of the
fundamental group into the center of the simply connected cover G, 5 of the non-Abelian symmetry. For the last entry, the values are
ordered in alignment with the “brane configuration” column rather than the g column.

71(Gpa) & Z(G,a) (Order via

No. g 71 (Gpa) Brane configuration FNJ brane Conﬁguratlon)
1 6311y Zyx 7, A'BINX 5 C*XE /4 (0.3,1,2,1,1),(3,3,0,3,3,2)
<01>/ 4
2 281, @ 48us Zs ANXP X7, CXF 8%51)/5 4,3,1,0,2,0)
3 2815 @ 281, @ 28u; ANXR X3 X, C
4 38u, @ 331, Zy x Zg A"X[ﬁ ]N2C"X2 X[ZM 0/2 (0.3,1,3,1,0),(.2,0,5 1. 1)
<01>/ 6
5 4315 @ 281, Zyx 74 BN*COA’XY, X3, 4 80)/3 4.1,2,0,1,0).(4,0,4,2,0,2)
‘5?31>/ 3
6 3uy @ 381 Z ASXS, N'XE ]XBJ]XBJ] 8%.1)/6 (5,5,2,2)
7 231, @ 23u, @ 23u, Zy X Z, ASNCHXE) | XF Xy 80)/2 0,1,2,3,0,2),(3,0,2,0,1,2)
5%”/2
8 81, @ 2813 @ Su, @ 281, Zg ANOXT , CHXG | XF 871 4)/6 (1,1,2,2,5,0
9 2815 @ 231, ACX3 X5 oy NOX3 L X5

B.-1] [13]

(Table continued)
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TABLE III. (Continued)

71(Gya) & Z(Gpp) (Order via

No. g 71 (Gpa) Brane configuration FNJ brane conﬁguratlon)

10 2815 @ Sus @ 231, Z; APXYNXp 5 X0 X oin/3 (2,0,2,2, 1)

11 3u, @ su, @ 3us A 231, Z, ASX ;5 CO X[21 X[ ]X[ 1 6?1 0/2 ©, 3,3,0,2)

12 3u, ® su; @ 23%u, @ sus ® sug 27, A3N6X[21 3 C4X[ 1 10)/2 ©,3,1,0,2,2)

13 331, z, C’A’B'X; _2]X[2 3 X113 8%5.1)/7 2,6, 3)

14 231, @ 28u; @ 281, ATN2CXT; | X2 X

15 281, @ 281, A7B4N4XFL2]X[2,3] 4.1]

16 31y @ Sus G 281, A’X 1Z]CSX{&I])(“OB]Xfm

17 28u, @ 8u; @ 28us @ Suy ANX] 5 X3 5 CXF

18 3u, @ Suy @ 28us @ Su, ASX[ZZ_”B4N7xf1‘3]x[2_5]

19 313 @ 281, @ Sus @ Su, ANTXp 5 X] 5 CXE,

20 3u, @ 238u; @ Suy @ Sus ® Su; ... AXP,  NTXE X 2]X[ 4

21 281, @ 231, @ 81, Z, ATN*COXE, 5 X 55X, 81 .0)/2 0, 1,3, 1, 3)

22 3u, @ 28u, @ Sug @ Su, z, A'BN'X}, X5 5 X g 80.1)/2 2,1,0,2,3)

23 3u, @ su; D Sus D sug d su; ... A7Xf ]X[23 1 N° X[lg]X[z.s]

24 Su, @ Sus @ su @ Suy (A7X39B%)X [3’5]C4X[62’1]

25 431, @ 231y Z,x 7,4 A8x[23’_1]sz,_l]BZCZX[g‘]] 0/2 0. 1,4, 1,1,1),(2,0,2, 1,0, 1)
i 1>/ 4

26a 23u; @ 231ug A N3Xfl 2]C8X[3,2]X[4.1] .

26b 2815 @ 28ug 7, APBC’XE, | X5 XY 01 1)/2 (4,0,4,0)

27 31, @ Su, @ 238ug Zyg ASB*NEC2X ;5 X s 6@ /8 (7,1,5, 1)

28 231, @ 38u, @ Sug Zyx 7, A'BXE ,NPX7 8 g/4 (0,1, 1,2,1,1),(2,2,1,0,1,2)
N 1)/2

29 3u; @ 381, @ Sug Z, ASNEX ;. 4]xf ]C4X‘[‘ , (, 0/4 ©0,2,2, 1, 1)

30 2315 @ 3u, @ Sus @ suy ARN'XF, 5 X5 CP Xy .

31 28u, @ 8u; @ 8u, @ 8us @ 8uy 72, AX? BINSXG, X3 01.0)/2 (0,1,2,4,0, 1)

32 81, @ 281 @ 1y 7, APBXS, X g N*Xpy ) 5(”31 /2 4,1,3,0)

33 38u, @ su, @ Sus D sugy 7, x 7, ASNPCOXE, X2 X, ) 0/2 0.1.3.1,1,2),(4,0,3,0,1,0)
<o 1>/ 2

34 31, @ Su; @ Su, @ Sug D sug 7, A6N2C4X[8241]X[7‘3]Xf3.1] (1 /2 (3,1,0,4,0)

35 23811, @ 315 D Sug D Sug Z, A6N2C5X?342]X[5_3]X[23.1] 6?’1 /2 (3, 1,0, 4,0)

36 313 @ 8us @ 81, @ Buy A¥Xp 3 X0 N*X? 5 X g

37 31, @ 2315 @ Su; @ Sug A8N2C3XF371]X[10’3]X%]] .

38 281, @ Suy @ Su; @ Sug 7, ASBEXY X7 o N'X ) 010)/2 4,1,2,1,0)

39 3y @ Suy @ Su; O Sug ANTX ;. 3]C8X[43]X‘[‘ 1

40 31, @ sus @ 3u; D Sug AX[ 2 CTXE 5 X5 5 X7 )

(Table continued)
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TABLE III. (Continued)

71(Gpa) = Z(Gya) (Order via

No. g 71 (Gpa) Brane configuration FNJ brane configuration)
41 31, @ Su; @ Buy ATX (5 B X) X 5 Xy

42a 281, @ 281, (A’BC?)(X, X134 X7 )

42b 28u, @ 28u, Zs A’X(3 1 BX s g NXE 1 1)/3 (3,0,0,0)
43 31, @ 3315 @ Su, @ Suy Z ANCXE XD 5 Xy 86 /3 (3,0,2,1, 1,0
44 281, @ 28us @ 81y A%X X35 NCXE

45 38u; @ Sus @ Suy 75 APXD,  NOX g XF X, o /3 (2,0,3, 1, 1)
46 3u, @ 3u; @ Su, @ Sus D Suy APXE X gNXG 5 X

47 31, @ 2315 @ 31y @ 31y 7, A9X[3’_1]B6N3C3X[23y” 6@{)_1) /3 (6, 4,0, 2, 0)
48 31u; @ suy @ Sug A 3u, 7y A6X[3y_1]B9X[3__4]N4Xf’1.2] 6%,1)/3 “4,6,0,2)
49 31, @ s @ 81 @ 31, A9X[26‘_1]X[4__1]N6X[5L3]X[Z,S]

50 281, @ 813 @ Su; D 81y A%X[ ) C7X X X )

51 811, @ 81y @ 31; @ 311y ATNX( 71X 5 X3 5 Xy

52 3us @ 31, @ 31y AX[7 ) X[S3’_1]X“1_2]N9X[1,2]

53 3u, @ 3uz @ 3ug @ 3ug ASBX] X1 N X

54a 281 AX (6 1 X3 - NOX ) X 5

54b 281 Zs AX g X NOX X 5 82)/5 (6,2)

55 311, @ 31y @ 231, D duy Z, A4B2Xf1~_4]X[I,_6]N10X‘[‘1,1] 6?{,0)/2 0, 1,0, 5,2)
56 281, @ 2815 @ Su, @ Su, 7, A1°N2C3X[3311]X[25‘1]X‘[‘671] 5?’1.1)/2 (5,1,0,0,0,2)
57 3u, @ 23us @ su,, Zs A‘OX[9~_2]X[54._1]X[1’2]C5X[23_1] 51{, /5 6,1, 4,0)
58 381, @ 8u; @ sus @ 8uy Z, AXE X NCXE 811)/2 (5.1,0,1,0, 1)
59 281, @ Su, @ Sus @ duy Z, ASX[ZZ_,]B“N'OX[?M)]XM 6@0)/2 ©,1,2,5,0)
60 281, @ Su; @ Sue @ 81y 7, AN?X?, 5 COX g 5 X3, 60.1)/2 (5,0,0,3,0)
61 31, @ suy @ Sug d Sy, Z, A4B2N6X[4,,3]X['33]X[2,5] 6’(‘(),1)/2 2,1,0,5)
62a 8us @ 816 @ 81ty ABOX g 11X 3 X3 X7

62b Sus @ Sug @ Su g Z, A6X[2__1]N5X[4¢13]X[llojlx[ls] 6?{)_1)/2 (3,0,5)

63 33u, @ su; @ su 7, ATXs o Xl BCXE 810)/2 0,51, 1, 1)
64 31, @ Suy @ 8u; @ Sy AX s NXT X3 5 XE

65 81y @ 817 @ 81t ATNACX 5 5 X 7.3 X 5,15

66 3u; @ Sug @ 31y, A3X[1,_2]N8X[4.13]X[‘l"_ﬂxp’ﬂ

67 3u; @ suy @ 31 APX(y X3 NOX 6 X5

68 8u; @ 281, @ Suy, AN Xy 5 CH Xy 5 XE

69 811, @ 2815 @ Su, @ Sy, AUNX]  CXE Xy

70 28us @ 8 A"Xp B X5 X X

71 28u3 @ 3us @ Suy,

A3X[1»—3] Xfl 5] N' Xfl 3] Xps|
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TABLE III. (Continued)

71(Gpa) = Z(Gya) (Order via

No. g 71 (Gpa) Brane configuration FNJ brane configuration)
72 23u, @ Su3 @ Sus @ suy AHX[I«Z]CSX[Z3,1]X[26‘1]X?m]

73 3u, @ suy @ sus @ duy, A4B2N“X[IJ]X[SH]XM

74 1, @ 313 @ 81, @ 81, X2 X5 A BOX g Xy

75 3uy @ su, @ 8uy, A" X X3 - N'XE 5 X3

76 281, @ Su; @ Su,, A“X[1,21C7X[27’5]X[2271]X[m]

77 3u; @ su; A uy, A”X[2.3]C7X[10’7]X[S,S]sz’”

78 31, @ sug @ Suy, A“X[1,2]C8X[24,3]X[3¢1]XM

79 3ug @ Suy, AMX (5 COX 3 0 X 7.5 X s 1

80 $u, @ 38u; @ Suy, Z, X5 APBXE L C X g 1 1)/3 (2,8,1,0,0)
81 38u, @ 23u3; @ Su,, Zs APXE XL NCXE 8%.1)/6 (10, 1,2, 1, 1, 0)
82 31, @ 281, ® su,, Z, A12N4X[21,3]C4X[3.1]X[u] 5?’1.3)/4 (3,1,0,2)
83a 2815 @ Su, @ Suy, Z AP Xy X6 N'X3 5 X ) 8.1)/3 (8,0,2,2)
83b 2815 @ Su, @ su, Zg A12N3C4X[loy7]X[g_s]sz_’l] 6@"_1)/6 (10,2, 2, 1)
84a  28u, @ 3u; @ u, @ Suyy 7, APXG X5 BCIXE 81 1)/2 (6,1,0,0, 1)
84b  23u, @ 3u; @ su, O su,, Z, A12N4x[31’3]X[23.7]C2X[7¢1] 6?{_3)/4 (3,1,0,1, 1)
85 33u, @ us @ su, Z, APNCXE (XE X 8n/2 6,1,0,0,1)
86 31, @ Suy O Sus O Sup, ASCZXMX[IZ%I]XMX[@J]

87a 281, @ Sus @ 81y Z, APNX? 5 COX s X 81 1)/2 6,1,1,0)
87b 281, @ 8u, @ Su), Zs APNOX? Xy 15X 5 C? 8%.1)/6 (10, 4,1, 1)
88 31u; @ Sug @ suy, Z, APNOX () 9 Xy 7 X 55/ C? 6?’1,1)/3 (3,2,0
89 3u, @ su; @ 3u, ATX [ _gN2C? X7 5 X5 )

90 281, @ 281u; @ 315 APXE X, N CXp

91 31, @ 3u; @ 3u, @ u; AP X(e X3 N XF X )

92 231, @ Sus @ Su 3 X[SGJ]ABBCZX[%‘,]X[]1,2]

93 3u; @ 3us @ 313 ABX[12CXE | X5 X

94 31, @ Suy @ 813 A13X[1,2]Cﬁx[2&3]x[3,1]X[g,l]

95 3u; @ Suy; APBX| 5 C X 45X 3]

96a 3u, @ 28u3 @ Suyy AMXp ) BPC X 5 X3

96b 8u, @ 2813 @ Suyy Z, AUNPCXE | X5 11X ) 001 1)/2 (7,1,0,0)
97 331, @ Su; @ S1yy z, X X5 AYBCXE 8n/2 1,0,7,0,0)
98 281, @ su, @ suy, Z, AUNPCHXE 5 X3 1 X ) 01 1)/2 (7, 1,0, 0)
99 3u3 @ suy @ Suyy AYBX (5 C* X g 5X}

100a 3u, @ Sus @ suy, A”X[LQ]CSX[ZSJ]X[G‘I]X[g’l]

100b 3u, @ 3us @ 3uyy Z, AMXp X7 N X Xy 80.1)/2 (7,1, 0)
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TABLE III. (Continued)

71(Gya) & Z(Gpp) (Order via
No. g 71 (Gpa) Brane configuration FNJ brane conﬁguratlon)
101 Sy D Sy AMXB‘,I]B6X[2_,3]X[211]X[5_1]
102 2§113 (&) §1115 Zg A15N3C3X[7,4]X[S.Z]X[AH]
103a 2@112 @ su3 @ 3uy; A15N2C3X[4 I]X[9 ]]X[]] 2]
103b 23u, @ 3u; @ S1,5 Z; A15N2C3X2 1 X6 X, 6% /3 (10, 0, 2, 0)
104 3u, @ du, D S5 A15N2C4X[3$1]X[g_l]X[lu]
105 Sus D S5 AISBSX[Z,_g,]X[3$1]X[6.1]X[10,1]
106 38u, @ Su4 Z, ABCXE | X X7 85 1)/4 (12,1,0, D
107a 3u, @ du; @ S, A16N2C3X[4$1]X[g_l]X[“’l]
107b 31, @ Su; @ 814 Z, A16BC2X[33Y”X[5_1]X[9” 5% /2 (3,0,0)
108 Sy @ 3u g Z4 A16C4X[9,7]X[7_5]X[5$3]X[3_l] 5?1 1)/4 (12, 2)
109 2§112 @ §u17 A17BC2X[23YI]X[21’5]X[9‘2]
110 suz @ suyy C3A17X[13,—1]X[IO.—I]X[S,—]]X[I,—I]
111a §112 @ §1I]8 AlsBC2X[4‘1]X[g’I]X[H‘]]
111b §112 @ gu]g Z} AISX[3.—1]NX[23,|]X[6,1]X[9‘1] 61(\61 (12, O)
112 89 AP X Xp o Xp o X, Xy
113 23us @ 230y A5(C5AX | 2])X~F3 1](X[57 2]X 1 X[17.5])
114 31, @ 281, @ 80y Z, (ASBC)N®X 3 4 X[1 3]X[ 8 6?{,0)/2 (2,3,3,0
115 2§115 @ §116 @ §0]0 AS(C AX[l 2])X[ ]X[17,5]X[7’2] .
116 8u, @ su, @ 8us @ su @ 80y 27, (A’BO)NXE, X2, X 81 .0)/2 2,3, 1,2
117 §u2 @ 2§117 @ §010 (ASBC)N7X 29]X[1 4]X[ ]
118 23u; @ 3u, @ 3u; @ 30y (A’BC)N'X}, , X1, X5, 3]
119 31, @ su; @ Sus @ su,; @ 80y, AS(COAX |y )X[ ]X[10 3 [ )
120 31, @ Sy @ 317 B 80y (A’BC)N’X)p 4 X . 3]X[ 2 .
121 §112 @ §u8 @ 2§010 Z4 A8(X[53’ l]AX7 2 )(C AX 1 2) [3 1] 6% 1 / (69 l, 1, 0)
122 8u, @ 8u; @ su, @ Sug 8oy 7,4 (ABC)N* X} ]X[zl 4]X[ 2 801 2)/4 (3,2,3,1,0)
123 23u, @ sus @ sug @ 30, Z, (A5BC)N8X2 b [14] [ 3 6% 0/2 2,4,1,0, 1)
124 3119 (&) 2@010 A9X[5,_1]( [524,—1]A [5~_2])(C AX[LQ])
125 3u, @ 8us @ 8uy @ 809 A(COAX (1) XD X134 XF 5
126 81, @ 81y D 80y (ABC)N°X ), 71X}, 5 X )
127 28113 @ 81y @ 80y (A’BO)N'X, o X1 59X, .
128 28u, @ 3u; @ 81,y @ 80 Zy  (AXF X% )(CAX)X2 6 ,)/2 (5, 1,0,2,0)
129 3u, @ 31, @ 31,y D 80,0 Z, (A5BC)N1°X2 X?, o X[ 5(Nl 0/2 2,5, 1,0)
130 3us @ 3u;y D 8o A0 X[S,—Z] [2_1](C‘ AX[I,Z])X[4.1]
131 §112 (&) §u3 (&) 31111 (&) §010 1&11)([23._1])(?2 _1](C5AX[1,2])X[4.1]
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TABLE III. (Continued)

71(Gya) & Z(Gpp) (Order via
No. g 71 (Gpa) Brane configuration FNJ brane conﬁguratlon)
132 2§1,l2 @ gulZ @ §0|0 Z4 AIZX[S 1 (C AX 1 2]) [3 1] 6% 1)/4 (9’ 1, 1; 0)
133 A2 D s, & §010 ZQ (ASBC)N12X[1 8] ¥ 6]X[ 1.4] 6?1 0) /2 (2, 6, 0)
134 §112 (&) §11|3 (&) §0]0 A13X[4._1] 2 _1](C AX[lz]) 4]
135 Suyy D 80y (AHX[(,’_]]X[3._]])(CSAX[IQ])X[KH] .
136 380, ZyxZ, (A®BC)(N°X[;A)(CAX[ ) 6?10)/2, (1, 1,1, 0),(1, 0)),
6N /2 ((Oa 1)9(17 1)9(07 1))
(0.1)
137 281, @ 280, Zyx 7, (A°BC)X}, BY(Xf ,BX} 5)) /2 ((1, 1), 2, 2,(1, 1)),
2 (0, 1), 0, 2,00, 1))
80, 1>/
138 2315 @ 23us @ S0, (ASBC)N° X[31 . [ ]CS
139 2§112 @ 2§116 @ §012 Zz X Z2 ( C)N6X[21 2] [ ]CG 61(\]10)/2, ((19 ])’ 33 Oa 07 3)7 ((Oa ])’ 09 1’ 17 3)
oY /2
(0,1)
140 Su, ®28u, @ 8uc @80, 2Z,x2Z, (A®BC)NX?, 5 X, ,C* 81 0)/2, (1,1),3,1,0,2),((0,1),0,1,2,2)
SN /2
<o 1)
141 3u, @ 3us @ Sus @ 80, Z, (A°BC)N>X ) 5/X5, ,,C* 80.1)/2 (0, 1), 0, 3,2
142 2€>II7 (&) §012 (A6BC)X[1 —3]N7XFI¢2]X[2‘3]
143 Su; @ Sus @ su; @ 30, (AﬁBC)Xf4 3 Xp, _7]B7N3
144 3u, @ 28u; @ 3uz @ 80, 7, (ASBON®X?, (X7, C° 01 1)/2 ((1,0), 4,0, 1)
145 3u; @ su, @ Sug @ 80, Z, (A’BC)N*X 1 4 X}, C* 010)/2 (1, 1), 4,0,2)
146 8u, @ 8us @ 31z @ 80y, Z, (A*BC)X|; 5 N*X7, 5 X7 811)/2 ((1,0), 4,0, 1
147 Sus @ Suy @ 801y A%X[5C (X[31 X134 X(7.2) X 5.1 .
148 31, @ s1u; @ 1,y D 80, Z, (AGBC)NIOX[Z X7, 6]X[ ol 5% 0/2 (1, 1), 5, 1, 0)
149 §u4 (&) §u|0 (5] §D|2 ZQ (AﬁBC) [1.- ]N X[l S]X[l 3] 6(11)/2 ((1» O), 5, 0)
150 3us; @ su;; @ 8o, (A6BC)NHX[1.7]X[L4]C
151 su, @ su;, @ 80, Z, (ABC)X () 5 CX 5 4 X7, 1 0) (1, 1), 6,0
152 §1113 @ §012 (A6BC)X[L_3]X[|'_6]N13X[1Y2]
153 31, @ 81y D 80,y D 80, 7, A )([33 1](XE_” AX[s ) (COAX1 ) 5% ) (3, 0,00, 1), 2)
154 ug @ 80,9 @ 80, Zy  (CAX[)AX(B°AX ) 6 ,)/2 (2, 4,1, 1)
155 2313 @ 2804 (ATBC)(X], X, 2]A)X s 2B B3
156 Su; @ 381, @ 304 Z, (A’BC)B*X}, , X, 5N 871 5)/4 (1,1,0,3, 1)
157 8u, @ Su; @ 23us @ 804 (ABC)B°NX}, X7,
158 Sus @ 3uy D Su; @ 304 (1&7]3(3)]33N7)(4[1 ]X[l 3]
159 éuz @3115 @3117 @5014 A XIZCS(X[31 X]g4]X[72]) [41]
160 3ug D Su; @ S0y (A7BC)B7X[1 —Z]X[I,Z]X[2,3] .
161  23u, @ 3u; @ 3ug @ 304 Z, AfiN2c*(x{3 1 [13,4])([7.2]))([24’1] 51{, H/2 4,1,0,2,1)
162 31, @ 31, D Sug P 30y Z, (A7BC)B4X[2L_2}N8X[L2] 51(V1 /4 (1,1,0,2)
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71(Gya) & Z(Gpp) (Order via

No. g 71 (Gpa) Brane configuration FNJ brane conﬁguratlon)
163 2§112 b §11|0 @D 304 Z2 (A7BC)X X[7 4]X[ ]X 1] 6?1 0) (2, 0,5, 1)
164 3u; @ 3y D S04 (A7BC)B3X 1. 3]N X[I,Z]
165 5112 ® 51111 ® §014 A“X[3,—1]N(X[3 l]X 13.4] X[7 2])X[24,1]
166 §u12 &) §014 Z4 (A7BC) 12]X Cl 62\]1 2) / (1, 9)
167 3u, ® Sug @ 30,9 D 3014 Z,  (COAX[)A°XE (B AX[H]) 811)/2 (2,3, 1,2
168 31, @ 80, D 8014 7, (A°BC)(N'AX |, 2]) LX) 5%.1)/2 (0, 1), 2, 3)
169 281, @ 23044 Z,x7Z, (A*BC)(X} b BXp- 1)B2C? 61(‘(’),1)/2, (((1(,00)1,51(,01)1,)1,01)6)
5?/1.”/2 , 1),\U, 1), U,
170 2815 @ 281, D 806 Z, (A*BC)B°N*XY, ,,C° 80.1)/2 ((1,0),0,2,2,0)
171 28u, @ 8046 Z, (A®BC)BX|; _5COX 3y 6?’1 0/2 (1, 1), 3, 3)
172 2§112 @ §1I4 @ §1I6 @ §Dl6 ZZ X Z2 (ASBC)BA‘X[ZL_Z]NG.CZ /2 ((19 0)’ 27 l’ 07 1)7 ((Oa 1), 09 1’ 37 0)
<l |>/ 2
173 3112 (&) QU5 (&) gll6 b 5016 ZZ (ASBC)B6X[2,_3]N5C2 (01 /2 ((1, 0)’ 3,0, 1)
174 2@113 @ §u7 @ §016 (AgBC)B3N3C7X[32]
175 31, @ Su; @ Sug D 80,4 Z, (A’BC)B*X|; _yN8C? 811 (0, 1), 0, 4, 0)
176 §112 @ §1110 @ §016 ZZ (AsBC)X[l 2]C10X[3’2]X[2311] 6?{ 0) / ((l, l), 5, l)
177 2%010 (&) 5016 ZQ (A8BC)( 2.-1] [ 1] [3,_1])(N5CB) 5%1 / ((1’ 0), 2’ 2)
178 8u, @ suy, @ 801, D80y, Zr, xZ, (A*BC)(XC o l]X[l__l]XB,_u)B“NZ 00.1)/2, (1, 0),(1, D), 2, 0),
/2 (0, D,(1,0), 0, 1)
<1 1)
179 ZQDIS AQBC)B C AX il 2])X['; 2]
180  8u, @ 2315 @ Sus @ S04 (A9BC)Xf1 2 X[ ]C .
181 3u, @ suy @ 3u O S0 Z, (A"BC)NX], X2 o X1 610)/2 (2.3,2,1
182 3us P Sug D 805 (AgBC)C( [3.1 ]X[17 S]X[7,2])
183 3u, @ 3u; @ su; @ 8oy (A’BC)CX], [103])([3772]
184 25112 @ §118 @ §018 Z2 (A9BC)N8X[1 4] [ ]CZ 6?{ 0) /2 (29 4, 1, l)
185 3u, @ Sug @ 803 (AQBC)CX X[H 4]X[ 2]
186 S1yp @ 303 (AgBC)C(X[&]X[19‘6]X[10,3])
187 8us @ 801y D 80,3 (A’BC)(X},_ BXp _))N°X] 5
188 281, @ 281, @ 80y Zy, X Z, (ABC)N*X}, ;X C? %1 1/2. ((1,0),2,0,1,0), (00, 1),0,2,0, 1)
6?{“)/2
189 2%115 @ €>020 (AIOBC) [2 3]C X[S 1] X[16‘3] .
190 §u2 @ §114 @ §115 @ §020 Zz (AlOBC)N4X[21 Z]C XB-I] 5% 1 / ((1, O)a 2, 1, O)
191 381, @ 81, @ 80y 7y x 7, (AYBC)NX?, ;X7 5, C? 81 1)/2, ((1,0),3,0,0,0), (0, 1),0, 1, 1, 1)
6% l>/2
192 31, @ 31y B 80, Z, (ABC)BX35C* X[2 1 <1 H/2 (1, 0), 0, 3)
193 3us; @ 3u,; @ S0y

(A"BC)(X [3.4]C7X[2,1]) [5.1]
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TABLE III. (Continued)

71(Gya) & Z(Gpp) (Order via
No. g 71 (Gpa) Brane configuration FNJ brane conﬁguratlon)
194 319 @ 80y (ABC) Xy X1 N X 3
195 3u, @ 3u; @ 80,) D 30y Z, (ABC)(X?,_ | BX[3_))N°C? 80.1)/2 (0, 1), 2,0, 1)
196 Sus @ 80, @ 30y Z, (AYBC)(X{, ;BX[;_1))B*C 61 1)/2 (1, 0),(1, 0), 0)
197 81, @ 8014 @ 80y Z,  (AYBO)X% N(X], X1 X))  8,)/2 (0, 1), 1, 2)
198 2313 @ 31y @ 80y, (A'BC)(N*CPX}, )X s
199 31, @ 813 @ 315 D 80y (A''BC)X 2Q]CSX[5 qu 1
200 813 @ Sug D 80y (A"BC)CXg 5 X, X5
201 3u, @ su; @ 80y (AMBC)C(X11 X 1])X[Zm]
202 281, @ 28u; @ 80y, Z, (APBC)N’C? X7 | X 80.1)/2 ((1,0),0, 1, 1, 0)
203 31, @ su; @ 1, @ S0y Z, (AIZBC)NZC“X[Z 1 X 61{, 0)/2 (1, 0), 0, 2, 0)
204 281, @ 8us @ 80,y Z, (APBC)X |4 1C°X}, | XT 80.1)/2 ((1,0), 1,0,
205 31, @ Ds @ 80y Z, (APBC)(XD,_ X Xp )N Xpy 8Y,/2 ((1, 0), 2, 0)
206 30, @ 80y, Z, (A12BC)( X X )NX g 80.1)/2 (1, 0),1, 1))
207 311, @ 315 D 80,4 (A13BC)C( i 2]X[ ])X[g 1
208 31t @ 804 (APBC)BX 55 C°X 3
209 30,0 @ 80y (ASBC)(NBAX(; _5) X015 X[16]
210 2815 @ 3055 (AMBC)Xp N C¥X 3
211 2811, @ Su; @ 30,4 7, (AMBC)X; C2X[2 ,]X[ , 6% /2 0, 1), 1,0, 0)
212 3u, @ suy @ 80y Z, (A14BC)X[_4,1] e XhyXby  601)/2 (0, 1), 0, 1)
213 3us @ 3043 (AMBC)CX o5 X3, X
214 81, @ 8u; @ 805 (APBC)CXF | X 1 Xpo .
215 28u, @ 803, Z, (ABC)X(y Xp X5 X5y 00,)/2 (1, 0), 0, 0)
216 $u; @ 803, Z, (ABC)Xy _NX}, | Xy 60.1)/2 ((1, 0), 0)
217 31, @ 303y (ABC)X[s ) Xp_1)C* X3 )
218 3034 (ABC)CX g 11X 5,11 X 11.1]
219 3e6 Z; (A’BC?)(ABC?)(XY,  X;5s2A%)  6(,)/3 1,1, 1)
220 231, @ 2eq AYA’BC?)XY, (X3, X134 XF )
221 3u, @ 3u, @ 23us D ¢4 AX3 X%, BY(ABC?) .
222 3u, @ Sug @ 2e Z, (A’Xp X7, ) AC(ABCYHXE, 86./3 1,4,1,0
223 813 @ 2816 D e6 Zs A°XY XX 5 (ASBC?) 8 /3 4,0,2, 1)
224 2815 @ 81y @ S, D ¢ 75 A°XE X B} (ATBC?) 8.1)/3 (4,0, 1,2, 1)
225 31y @ 8us O 81 P ¢ ASX[ 9 CXE (X5 1 X134 XF )
226 3u; @ 2e4 A7(ASX 5 B?)(ASBC?H)X
227 8u, @ su; @ su, O Su; D eg X}, ATXE,_(A’BCY)X
228 281, @ Sus D Su; D e A7 X[4 1]X[2 ]Bz(A5BC2)
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71(Gya) & Z(Gpp) (Order via
No. g 71 (Gpa) Brane configuration FNJ brane conﬁguratlon)
229 315 @ Sus @ S1; D e A’ X),_ 1]X[5<_3]B3(A5BC2)
230 31, @ 3u, B 81, D e (A5BC2)A6X[2 ]B7X[1 )
231 5112 (&) §115 D ng (S) [ (ASX[z 1) [ ])A X[] 2] C X[g 1]
232 S D Sug D eq (ASBC2)A8X[3,_1]B X[],—Z]
233 2815 @ Suy B e Z, (A5BC2)A9X[3 _B°N? 6%1 /3 (1,6,2,0
234 23u, @ 3u; D 3ug D e Z; (AXp X [ ])A9N2C3X[23 1 80.1)/3 (1, 6,0, 2,0)
235 3u, @ 3uy, D §u9 (S) eg 149]3(12)(?3 1 (X X 134 . 2])
236 §u5 @ §119 @ €q A9X[3_,2]B5 (ASBCZ)
237 5112 ® §113 ® 51110 (&) €q AIO)([2 ]B%(ASBCZ)XM’]]
238 Suy @ Suy D e Al X[3 I]NXP1 (X2 5 1]X[13 4]X2 )
239 2%112 D 3uy; D e Al X22 1] X[4 3](A BC? ) 3.1]
240 31, @ 31y D e (A’BC?H)AM X X,y N?
241a 3u, @ su;,, €g AIZXB I]Bz(ASBCZ)XH] .
241b §112 @ §1112 @ 73 Z3 A12X[3 1]X[3 2 (ASBC2) [3 1] 6%1 / (8, 1, 0)
242 §u13 (&) eg A13X5 1 X[2 1] (ASBC )X[4 1]
243 311, @ 3us D 80,y D ¢4 A3(C3AX ) XH, ](XB 1 X134 X[27 2])
244 3112®§117 @§010@€6 (A X21 [41) 7(C AX]2)X
245 Sug @ 30,5 D eq N8C(X BXB 1])(N5CB2)
246 301, @ 2e¢4 (A5BC2)(C6AX[1.2])(X[ 1 X, 2A?)
247 315 @ Sus @ 80, D e A5B3(N6AX[]._2])(A5NX[2 )
248 31, @ 30, D eq (ASNX[ZZI])A7B(C6AX[12])
249 31, @ 815 D 80,4 D e (A5NX[22.]])A5N2(C7AX[L2])
250 30,0 B 8014 B ¢4 (A’BC?)(ABC)(N°AX|_; )
251 3us P 30,6 D eg (ASBCZ)(AgBC)NSX[Lg]
252 31, @ 815 D 80,3 D e (A’BC?)(ABC)B2N?
253 31ty @ 8015 @ e (A’BC)CX} (X3 1 X134 XF )
254 3u, @ 80,5, D ¢4 (A’BC?)(A""BC)X |, _y)N?
255 30,4 D eq (AIZBC2)(A5CX[231 ) 6.1]
256 2815 @ 2e; AY(A°BC*)X}, (XSG, X (134XF5)
257 31, @ Sy @ 2e; Z, A*(A%X3 ) B*)(A°BC*)XE 811)/2 2,1, 1,0
258 Sus @ 2e, A3(ASX ), N?)(ABC?) Xy
259 3u, @ 23u, @ Sus @ e, 7, (ASBC*)A'B°X7 ,N* 01 1)/2 (1,2,0, 1,2)
260 2815 @D 1, D Sus D e A5X‘[‘2y71]B3N3(Af’BC2)
261 281, @ 8us @ ¢; Z, A*B*X|; _yN°(ABC?) 1) (2,0,3, 1)
262 8u, @ Su; DBu, Dsugde; 7, X}, JA°B*(A°BC*)X}, 81 1)/2 (2,3, 1,0
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TABLE III. (Continued)

71(Gya) & Z(Gpp) (Order via
No. g 71 (Gpa) Brane configuration FNJ brane conﬁguratlon)
263 281, @ 315 D Sug D ey 7, (A6BC2)A6X[22’_1]B5N2 62‘; /2 1,3,1,0, 1)
264 315 @ Sus B Su, D ey ASX[3 ]B6X[l _)(A°BC?)
265 §112 @ 2§113 @ §117 @ €7 A7N2C3XF3 1](X[ ]X ]34 [7 2])
266 315 @ Suy @ Su; O ey A'B’X), 5 N?(A°BC?)
267 31, @ Sus B 31, B ey (AGX[Z_I]NZ)ASX[ZZ’_I]B7X[1,_2]
268 éu(, @ QU7 @ €7 (AGX 2.-1 Nz)A7X[3 1]B6X[1 -2]
269 281; @ Sug @ e; (A°BC*)X3, X2 APy ) .
270 281, @ 813 @ Sug D ¢ Z, ASXE X% (ASBCY)XE 8 1/2 (4,0, 1,1,0)
271 31, @ 3u, @ 31z B e Z, (A6BC2)A8BX2 ct 6<Nl H/2 (1,4, 1,0)
272 us @ Sug @ e A X[l__z]NS(A6BC2) o
273 31, @ 31y @ Suy @ ey AB2N3(A°BC?)X
274 31, @ 311y D ey (A®BC?)A*X | 5 X 5 C°
275 2§u2 @ §U10 @ (7 AIOX[ ]Bz(AﬁBCZ)X[z3 l]
276a Su; @ du) D ey Al X[3 I]NX[”H ( B I]X[13~4]X[7,2]>
276b 31, @ Sy D ey Z, (A’BC*)A'°X 5 _|BC? 6?; ) (1, 5,0
277 3u, @ su;; D ey AllX[2’_1]N2(A6BC2)X[4.1]
278 3u;, @ ey AIZX[4._1]B(A6BC2)X[4.1]
279 30g @ 2e; Z, (A°BC?)(A°BC?)(A*BC) A 1, 1,1, 0))
280 Su; @ Sus © 30,9 D AS(CSAX[LZ])X?M](X[63.1]X[13-,4] X[27.2])
281 Su, @ 3u @ 30,y D ey Z, AS(B’AX[3 ) (A°BC*)XE 81 1)/2 (3,2,1,0
282 §117 (&) 5010 ® €7 A7(N5AX[1._2])(A()BCZ)XH.]]
283 éu:; @ 51‘4 @ §D]2 @ €7 ZQ A4B3(N6AX[1‘_2])(A6BC2) 6?{ 1) /2 (2, 0’(07 1)’ ])
284 §116 @ gﬂ]z @ €7 Zz (AGBCZ)AéB(CéAX[Izl) 6?1 ) / (1, 3,(1, 1))
285 §D]0 @ §012 @ €7 ZZ (AGBCZ)(A6BC)(C5AX[12]) 6?1 1) / (L(l, O)a 2)
286 3112 @ §114 @ §014 @ €7 ZQ (AéBCZ)A4N2(C7AX[1,2]) 5(11)/2 (17 2, 1, 2)
287 §u5 D §014 D €7 (AGX[2A’_|]N2)(A7BC)B5X[L_2]
288 Su, @ 3u; @ 30,6 D ey Z, (A°BC?)(A*BC)N?C? LA (1,0, 1), 1, 0)
289 313 @ 80,3 @ ¢; (A’BC)CXY, (XSG, 1 X134 XF )
290 31, @ 305 D e Z, (AYBC)B(A°BC*)X?, 811 ((1,0), 1, 0)
291 30, @ e, (A"BC)C(ANX?, ) X5 1
292 31y B Suy, Deg D ey A3(A6BC2)X4 (X[ }X[BA]X[@Q])
293 Su, @ 3us Deg D ey A3(ASX )5 B?)(A°BC?) X,
294 §116 @ €q @ €7 A6(A5X[2._1]N2)(A6BC2)X41
295 3010 [4>) €q (&) €7 (AéBcz)(szl]AX[gz])(XB I]X[ ]A )
296 28u; @ 2eg A*(ATBC?)XE, | (X, X134 XT )
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TABLE III. (Continued)

71(Gya) & Z(Gpp) (Order via

No. g 71 (Gpa) Brane configuration FNJ brane conﬁguratlon)
297 313 @ 2eg A3(ATBC?)(A’BC?)X [4.1]
298 2813 @ 23u, D eg (A’TBC*)A'N’X} , C
299 281, @ 2315 @ ey (A7BC2)A5B2N5C2
300 Su, @ Su; B Su, D Sus Deg ... (A7BC2)A5X[32’_1]B4N2
301 2§u6 @ eg (A7BC2)A6BC6X[3’2]
302 315 @ 3u, @ Sus @ eg A'B NCX|; 5 (ATBC?)
303 §u2 (<) §115 (&) §u6 (%3] eg A6X[1‘2]C5X[23,1](XF371]X[13.4]X[27~2])
304 23u; @ 31y D eg (A’BC*)ATBX}, ,,C
305 231, @ 3u; @ Su,; @ e A8N2C3X[231 (x7 b X34 X i 2])
306 31, @ 3u, @ Su; @ eg (ATBCHANC7X 3
307 3us @ 3u; D eg A7N5X[1Y2](A7BC2)X4 1
308 31, @ 313 D Sug D eg ASN2C(ATBC?) Xy
309 2§112 @ §119 @ eg [&913(‘:2)([22 1] (X X (13.4] [27.2])
310 313 @ 3ug P eg (A7BC2)A’; [LZ]C X[3$2]
311 éllz @ 531110 @ eg AIOBCZ(A7BC2)X 4.1
312 gu“ @ eg ALIX[3,1]N(A7BC2)X[4A’|]
313 28050 D g <o (A7XpB?)(A’BC)(N°AX]) )
314 Suy @ 3us @ 8050 D e e A(CAX ) XE (XE X34 XF )
315 éuﬁ (&) 5010 (&) eg Aé(CSAX[lz])(A7BC )X[4,1]
316 2§113 @ §D]2 @ eg A3N3(C6AX[]12])(A7BC2)
317 §115 @ §012 @ eg (A7BC2)(A6BC)C5X 32
318 3112 (&) §113 ® §Dl4 (&) eg (A7BC2)X[241 5 ]](A CX[31 )
319 QU2 @ gﬂlg ea eg (AgBC)CX[z31]( [3.1] [13.4]X[7‘2])
320 30, D eg (AlOBC)C(A7BC2)X
321 3u, @ Su, B ey D eg AZ(A7B(:2)XA[1 ](X X[13 4) [ ])
322 §u5 @ €q @ eg (A7BC2)(A5BC2) [2.1]X[5~2]
323 ng @ €q @ eg (A7X[2._1]N2)(A5BC2)(A4NX[2.]])
324 Su, @ su; e Dey AZ(A7BC2)X?3.1](X%,1]X[13,4]X[2742])
325 5114 @ €7 @ eg (A7BC2)(A6BC2)C4X[3’ZJ

3. One O7*

We proceed in this part to give the full list to brane configurations with a single O77" realizing maximally enhanced 8D
vacua of rank (2, 10) in Table I'V. This list precisely matches our previous results in 8D CHL strings in Appendix B of [34].
For each such brane configuration, in addition to giving all the information as provided in the previous table, we also refer to
its particular “uplift” to rank (2, 18), namely the rank (2, 18) configuration that one gets by unfreezing the A"O77 stack into
a A"8BC stack.
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TABLE IV. All 8D maximally enhanced rank (2, 10) brane configurations, in similar convention as the above rank (2, 18) catalog.

No. No.4120 g (g 71 (Gpa) Brane configuration FNJ 71(Gpa) = Z(Gya)
1 320 eg D 3P,/ (80450) 0 (A?077)C(A"BC?) Xy

2 319 eg @ 8p,/(8015) D 3u, 0 (AO7+)CX[23_]](X[73‘1]X[13'4]X[27_2])

3 291 e; @ 8p;/(80,,) 0 (A’OT")C(A°NXE, )X s

4 290 e; @ 8p,/(80y) @ 3u, Z, (A’07%)B(A°BC?)XY, 81.1)/2 (1, 1,0
5 289 7 @D 8p;/(8015) D Sus 0 (AO7H)CX, (XSG 1 X134 XF )

6 288 (8016 ®)e; ® Su;y @ 3u, z, (ASBC?)07+N2C? 8.1)/2 1, 1,0
7 255 e @ 84/ (80,4) 0 (A407+)(A5CX[23,1])X[6_1]

8 254 e @ 8p3/(805) @ 3u, 0 (A’BC?)(A307")Xp N2

9 253 es © 3p;/(3013) @ 3uy 0 (AO7+)CX‘[‘3_]](X[53_1]X[13.4]X[27‘2])

10 252 e D 8p,/(8013) @ 3u; @ 3u, 0 (A’BC?)(AO7)B2N?

11 251 (80,5 ®)eg D Sus 0 (ABC?)O7TN°X|; 5

12 218 310/ (8036) 0 (AO7H)CX 1 X5 1 X 11.1]

13 217 3py/(8034) @ 31, 0 (A°O7")X s 1 X C?X 3

14 216 3ps/(803,) @ 3u; z, (ASOT")X [ NXp Xy 8{0.1)/2 1, 0)
15 215 8ps/(803:) ® 281, Z, (AO7*)X g X XF X 80.1)/2 (1, 0, 0)
16 214 3p;/(803)) @ Su; @ Su, 0 (A707+)CX[25$1]X~[*6’”XM

17 213 3ps/(8023) D Sus 0 (A*O77)CX gy stql]x[&l]

18 212 3P/ (80,5) @ 31y D Su, Z, (A607+)X[_4_1]X[Z,HX‘[;_]]X[ZM 80.1)/2 (1,0, 1)
19 210 8P/ (80,5) @ 28115 0 (ASO7H) X, N C3X 3

20 211 3P/ (80,5) @ 313 @ 231, 7, (A6O7+)X[_4_1]C2Xf’211]X[zm 5%1) /2 1, 1,0, 0)
21 209 3ps/(8026) @ 8059 0 (ASBC)(NPAX () ) X115 X1 6]

22 208 3ps/(305) @ Bug 0 (ASO7)BX |55 CX 3

23 207 3ps/(805) @ Sus @ S, 0 (A507+)C(X[11~2]X[56_1])X[28’1]

24 206 8p4/(800) @ 80, 7y (A*O7)(XE,_ Xy Xp)NXuy  6)/2 (1,(1, 1))
25 205 3p,4/(80,4) @ 30,( @ Su, Z, (A407+)(X[52’_1]X[L_l]XB._l])NzX[M] 6%.])/2 1, 2, 0)
26 204 8P4/ (80y4) @ Bus @ 281, 7, (A*O7%)X [y C°X},  XFs 80.1)/2 (1, 1,0, 1)
27 203 8p,/(80y) @ 1y D Sus; D du, 7, (A4O7+)N2C4X?241]X[4'1] 6%])/2 (1,0, 2, 0)
28 202 8p,/(8054) @ 2813 @ 2811, Z, (A407+)N3C2X[25.1]X[36'” 61(‘{)’1) /2 (1,0, 1,1, 0)
29 201 3p3/(805) @ 31, @ 3u, 0 (APO7H)C(X (11 9 X ) X755

30 200 8p3/(802) @ 816 B Suy 0 (A*077)CX (g9 Xf; | X

31199 8p3/(80y) ®Bus @ su; Hsu, 0 (APO7")Xp 3 CXF Xy

32 198 3p3/(805y) @ Suy D 23u; 0 (A307+)(N4C3X§2.1])XM

33 197 8p,/(802) @ 8014 D 81, Z,  (A*O7N)XE _N(XT XpnXss)  6(y,)/2 (1,1,2)
34 196 3p,/(80y) @ 80, @ 3u3 7, (APOTH)(X{,_ Xp - Xp-)B’C 8 /2 (1,(1, 0, 0)
35 195  8p,/(80y) @ 80,0 @ 8u3 @ 3u, 7, (A207+)(szy_]]X[l__l]X[3,_1])N3C2 6(‘(’).1)/2 1,2,0,1)
36 194 3p,/(80y) @ 8114 0 (A2071) Xy X[ g N°X |y 5
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TABLE 1V. (Continued)

No. No.20 g (g) 71 (Gpa) Brane configuration FNJ 71(Gpa) & Z(Gyp)

37 193 3p,/(80y) @ 31, @ 3u; 0 (A207")(X34C"XE, )X s )

38 192 3p,/(80y) @ 81 @ 31, Z, (A207)BX ;5 C* x[2 | 8 1)/2 (1, 0, 3)

39 191 8p,/(805) @ Sug D 38U, Z,x7Z, (A207+)N6X[21 5 [ ]C2 6?{”/2, (1,3,0,0,0), (1,0,1,
Flo/2 b

40 189 3p,/(80,)) @ 28us 0 (A207)Xp5C° X[S,]X[16 3

41 190 8p,/(80y) @ 8us @ duy @ 3u, 7, (A207+)N4X2 2]C5X[31 6%])/2 1,0,2, 1)

42 188 3p,/(80) @ 281, ® 281U, Z,x7Z, (A*O77)N*XH 5 X3, 5 C? 8 ,)/2, (1,2,0,1,0).(1,0,2,
62\6‘1)/2 0, 1)

43 179 3p,/(8013) @ 805 0 (AOT")B(C'AX| 5) X3

4 187 3p,/(3013) @ 30,9 D Bus 0 (AO7*)(X2,_ BX[3 )N’ Xy 5

45 136 3p;/(8013) @ 3uyg 0 (AO7+)C(XE£1]X[19.6]X[10,3])

46 185 ap,/(83013) ® 31y ® 31, 0 (A07+)Cx‘[’3_l]X[BA]X@_Z}

47 184 8p;/(8013) @ Sug @ 231, Z, (AO7T")NBX 4]X[22 5]CZ o, 0/2 0,4,1, 1)

48 183  38p,/(80i3) ®su; ®sus; d3u, 0 (A07+)CX7 leo 3]X[ 2

49 182 3p,/(8013) @ 31ue @ 3us 0 (AOTH)C(XE, 1 X175 X3, )

50 181  8p;/(80;3) ® Bus D Su, ® Bu, 7, (AOT*)NX}, X2 o X1 81.0)/2 0,3,2,1)

51 180  8p,/(30;3) ® us ®28u; Hsu, O (AO7)X2, ]X[‘” [23.5]C3

52 169 (80,5 D)0, B 231, ZyxZ, O7H(X$ b 1]X“,,”XB,A])BZCZ 5%,”/2, (1, D, 1, 1), (0, 1), 0,
8 1)/2 0)

53 178 (8016 ®)%01, @ Sy D Sy Zox 2y OTH(XG_ X1y X3 1)) B*N? 801)/2. (1, 1).2,0).((1,0),0,
8 1)/2 D

54 177 (8016 @)280) Zy  OT* (X}, Xp-nXp-i))(N°CB)  8,)/2 2,2

55 176 (8016 @)3111) ® 3u, 7, 07" X12C "X 32 X3, 8{1.0)/2 5,1

56 175 (80,5 ®)3ug ® 3u; d su, Z, 07" B*X|; _3N*C? 5@1)/2 (0, 4, 0)

57 174 (80,5 ®)81; D 23u; 0 O7"B*N*C"X 3 5

58 171 (8016 @)281, Z, O7*B®X|; 5 C°X 39 81.0)/2 (3, 3)

59 173 (8016 ®)3us © sus @ su, Z, 07" B X, _3N°C? 80.1)/2 (3,0, 1)

60 172 (8016 D)3ug @ Buy B 23u, 2Z,xZ, O7+B4X[21._2]N6C2 6%” /2, (2,1,0,1),(0,1,3,0)
6?1,1)/2

61 170 (80,5 @)28u, @ 2315 Z, O7+B3N4X‘[‘1’2]C3 6%1) /2 ,2,2,0)

4. Two O7*’s

Finally, we give all six vacua in the rank (2, 2) branch via brane configurations in Table V, this time no longer restricting
to maximally enhanced cases. This is the first time that the global structure of such string vacua without a heterotic or CHL

description has been computed.
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TABLE V. All six vacua of 8D rank (2, 2) with two O7" planes,

not limited to maximally enhanced vacua. We give their rank (2, 18)

and rank (2, 10) uplift for the two maximally enhanced vacua. Here the two Q7" could be mutually nonlocally, and in this case the
subscript [[p, ¢], [r, s]] (with ps — gr = 1) stands for the SL(2, Z) transformation that ones need to transform a standard O7" into a

"
O ) rs))

No. NO..& 12 NO.4 20 (8,.2)2.15) Brane configuration FNJ 71(Gop) & Z(Gyp)
1 (2§Dl6’ Zz) O7+BO7+X[3y_]]BC

2 (2§016* —) 07+BCO7E1,1],[0,1]]AX[I'Z]

3 . (2806 @ 8115, Z,) 07+BO7+BC2

4 52 169 (2805 ® 231,. Z, X Z,) 07107}, 1 B>C? 8Y1,/2 1, 1

5 (803 @ 806, —) AOT*B(COT}, 1o 1) X3

6 43 179 (2805, —) (AO7H)B(COT}, 1 o)X
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