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We propose graphs, the Combined Fiber Diagrams (CFD), to characterize all 5d superconformal field 
theories (SCFTs) that arise as S1-reductions of 6d SCFTs. Transitions between CFDs encode mass 
deformations that trigger RG-flows between SCFTs. They provide a combinatorial classification of all such 
5d SCFTs and encode physical information about the strongly coupled theories, like the superconformal 
flavor symmetry and BPS states. We consistently reproduce known results, but more importantly predict 
new theories and strong coupling effects in 5d SCFTs.
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1. Introduction

5d N = 1 SCFTs are intrinsically non-perturbative quantum 
field theories. At low energies these can have effective descriptions 
in terms of weakly coupled gauge theories, however to interpolate 
between the infrared (IR) and ultraviolet (UV) fixed points requires 
methods beyond ordinary field theory, motivating a string theoretic 
approach. 5d theories have been engineered in string theory by 
(p, q)-fivebrane webs [1], or M-theory on non-compact Calabi–Yau 
threefolds with canonical singularities [2,3]. In the latter approach, 
there is a particularly elegant correspondence between geometry 
and physics, whereby the resolution of the singularity may be 
identified with a renormalization group (RG)-flow from the UV to 
an effective IR description.

In this letter, we show how this approach comprehensively sur-
veys 5d SCFTs and their salient physical properties. In essence, 
singularities in the M-theory realization, where complex surfaces 
have collapsed to points, correspond to SCFTs. In the smooth phase, 
when these surfaces have finite volume, their geometry determines 
the low-energy gauge theory descriptions for the SCFT, if one ex-
ists. Complex curves inside these surfaces determine the spectrum 
of matter hypermultiplets, as well as additional non-perturbative 
states, all of which become part of the BPS spectrum in the SCFT 
limit, where the surfaces collapse.

Recent progress in identifying M-theory geometries related to 
5d SCFTs has been made in [4–10]. The approach in this letter 
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is fundamentally different, as it intrinsically captures some of the 
strongly coupled physics and gives an efficient way of mapping out 
the landscape of 5d SCFTs.

We define for each SCFT a graph, the combined fiber diagram
(CFD), which encodes key properties of the geometry. Each such 
graph corresponds to an equivalence class of surface configura-
tions inside a Calabi–Yau threefold, whose singular limit defines 
the same SCFT. The vertices of each graph correspond to curves 
contained within the surfaces, and give rise to BPS states in the 
UV.

Transitions between CFDs encode flows between SCFTs. These 
reflect geometric transitions that modify the curve configuration 
on the surfaces, such that their collapse generates a different sin-
gularity. The graph theoretic description gives an efficient method 
to map out all SCFTs obtained by mass deformations from a given, 
starting point SCFT.

An intrinsically strongly coupled characteristic of a 5d SCFT is 
its flavor symmetry GF, which generally is larger than that of its 
low-energy description [11]. Determining this flavor enhancement 
is notoriously difficult. While techniques such as the superconfor-
mal index require an effective gauge description [12], these ap-
proaches are inapplicable for examples without such a description. 
However, the CFD manifestly encodes the Dynkin diagram of GF

in terms of a marked subgraph. The CFD-transitions correspond to 
precise rules how vertices are removed and unmarked. Finally we 
can compute the representations of BPS states under GF, knowing 
the CFD.

Our approach is rooted in the duality between M- and F-theory 
on a singular, elliptically fibered Calabi–Yau threefold, Y . F-theory 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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on Y determines a 6d N = (1, 0) SCFT, with flavor symmetry G(6d)
F , 

whose S1-reduction with holonomies in the 6d flavor symmetry 
yields 5d SCFTs realized as M-theory on different geometric limits 
of Y . In these limits, we can manifestly track the unbroken sub-
group of G(6d)

F that constitutes the flavor symmetry [7] and the 
BPS spectrum [13] in 5d. We develop the geometric foundation of 
this approach in the companion paper [14]. In a second compan-
ion paper [15], the focus is the gauge description on the Coulomb 
branch of 5d SCFTs, using the methods developed in [16], comple-
menting the CFD approach in cases lacking a gauge description.

2. SCFTs from graphs

A collection of compact complex surfaces inside a Calabi–Yau 
threefold defines, under suitable assumptions [3,4,6,17], a 5d N =
1 SCFT. While determining the IR descriptions requires precise 
knowledge of the surface geometries, the SCFT limit is insensitive 
to many of the geometric details. We encode this reduced set of 
properties, upon which the, rank N , SCFT depends, in the Com-
bined Fiber Diagram (CFD): the graph’s vertices are complex curves, 
Ci , inside the collection of surfaces, S = ⋃N

k=1 Sk , and the num-
ber of edges connecting two vertices Ci and C j is the intersection 
number mi, j = Ci · C j . Each vertex has labels (ni, gi), the self-
intersection number ni = Ci · Ci of Ci inside S and the genus of 
Ci (if gi = 0 the label is omitted). A detailed geometric derivation 
of the CFDs appears in [14].

Vertices with (ni, gi) = (−2, 0) are marked (colored) and de-
fine a subgraph, corresponding to the Dynkin diagram of the non-
abelian part of the flavor group of the 5d SCFT, GF.1 The rank of 
GF is known, as discussed shortly, and thus one can determine the 
abelian factors in GF. Vertices with (ni, gi) = (−1, 0) encode mass 
deformations.

Given a CFD a new, descendant CFD, and thereby 5d SCFT, can 
be constructed by a (CFD-)transition: remove a vertex Ci with 
(ni, gi) = (−1, 0) and update the CFD data:

n′
j = n j + m2

i, j

g′
j = g j + m2

i, j − mi, j

2
m′

j,k = m j,k + mi, jmi,k ,

(1)

for j, k �= i. A marked vertex for which n j changes becomes un-
marked after the transition. Geometrically, a transition is the col-
lapse of a curve Ci in S . In the SCFT, this corresponds to a mass 
deformation and subsequent RG-flow to the descendant SCFT. Such 
a transition is irreversible, reflecting the nature of RG-flows; one 
cannot flow “backwards” without knowing the decoupled degrees 
of freedom.

There are natural candidate starting points to construct de-
scendant SCFTs, the so-called marginal theories, whose UV fixed 
points are 6d (1, 0) SCFTs. We define associated marginal CFDs, 
which have marked vertices forming affine Dynkin diagrams. Start-
ing from such theories and their CFDs, our transition rules (1)
generate all descendant CFDs/SCFTs. Note that this generates only 
‘irreducible’ SCFTs that are not products of SCFTs.

For marginal theories, the rank of the flavor symmetry is 1 +
rank(G(6d)

F ). With each transition, i.e., mass deformation, the fla-
vor rank drops by one, thus the superconformal flavor symmetry 
algebra is fully determined.

1 We discuss here only the simply-laced case and defer the more general case to 
[14].
Fig. 1. CFD-transition tree for rank one 5d SCFTs including the superconformal flavor 
symmetries GF .

In the present letter, we consider marginal theories originating 
from 6d conformal matter (CM) theories [18]. The marginal CFD 

contains the affine Dynkin diagram of ̂G(6d)
F as a marked subgraph, 

in addition to unmarked vertices with (ni, gi) = (−1, 0).

3. Rank one theories

We now show how CFD-transitions provide an alternative 
derivation of all rank one 5d SCFTs [2,11]. The marginal theory 
is associated to the rank one E-string theory and has CFD, where 
the green nodes are the marked (−2, 0) vertices,

. (2)

Applying a transition to this marginal CFD describes the theory 
that is related by mass deformation and RG-flow. The first transi-
tion yields

, (3)

which is a CFD for a 5d SCFT with E8 flavor symmetry—the UV 
fixed point for SU (2) with N F = 7 fundamental flavors. The com-
plete tree of descendant CFDs is comprised of ten rank one 5d 
SCFTs with GF = E N F +1, as shown in Fig. 1, in agreement with [2,
11], capturing also the “E0 theory”, which lacks a gauge descrip-
tion.
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Fig. 2. CFDs for all 5d SCFTs descending from 6d (Dk, Dk) CM. Each box contains the 5d superconformal flavor symmetry, GF , and the GF representations of the spin 0 BPS 
states (right upper corner). In cases when there is a weakly coupled gauge theory description, this is noted at the bottom of each box. Connecting lines between boxes 
indicate transitions.
4. 5d SCFTs from (Dk, Dk) CM

Next we consider theories of arbitrary rank, descending from 
6d (Dk, Dk) minimal CM, whose marginal CFD is

. (4)

The marked (−2, 0)-vertices form a D̂2k affine Dynkin diagram and 
G(6d)

F = D2k . There are (k + 2)2 − 3 descendant CFDs/SCFTs, shown 
in Fig. 2, including the superconformal flavor symmetry. In the 
supplementary material we explicitly determine all descendants 
for (D9, D9).

Three dual gauge descriptions for the marginal theory are 
known

SU (k − 2)0 + 2kF , Sp(k − 3)+2kF ,

[4F] – SU (2)k−3 – [4F] , (5)

where SU (2)k−3 is the linear quiver with (k − 3) SU (2) gauge 
nodes connected by bifundamental hypermultiplets; the factors 
without flavors have θ = 0 [19,20]. Giving mass to the flavors pop-
ulates subtrees in Fig. 2.

Any of the SU (k − 2) gauge descriptions are specified by the 
number, m, of fundamental hypermultiplets and the Chern–Simons 
level, κ . Decoupling a flavor hypermultiplet shifts κ by ± 1

2 [3]. 
Moreover, SU (k − 2)κ is dual to SU (k − 2)−κ . Overall, there are 
k(k + 2) 5d SCFTs with this weakly coupled gauge description.

The CFDs predict the following flavor enhancement for theories 
with an SU (k − 2)κ + mF description:
κ SCFT Flavor Symmetry GF

k − m

2
:

⎧⎪⎨⎪⎩
S O (4k) m = 2k − 1

S O (4k − 4) × SU (2) m = 2k − 2

S O (2m) × U (1) m = 0, ...,2k − 3

k − 1 − m

2
:

⎧⎪⎨⎪⎩
SU (2k) m = 2k − 2

SU (2k − 2) × SU (2) m = 2k − 3

SU (m + 1) × U (1) m = 0, ...,2k − 4

k − 2 − m

2
:
{

SU (2k − 4) × SU (2)2 m = 2k − 4

U (m) × SU (2) m = 0, ...,2k − 5

(6)

These flavor symmetries agree with those recently obtained by in-
dependent methods in [20–22].

By decoupling stepwise the 2k fundamental hypermultiplets 
from the marginal Sp(k − 3) theory in (5), we get (2k + 1) de-
scendants, where the lowest two are Sp(k − 3)0 or Sp(k − 3)π ; 2k
have a dual SU (k − 2) gauge description. There is a unique the-
ory with only an Sp(k − 3)0 gauge description, whose classical and 
superconformal flavor symmetry is U (1).

For any k, there are six SCFTs, which have only an effective 
gauge description via the quivers

SU (2)k−4
0 − SU (2) − [mF], m = 1, ...,4

SU (2)k−4
0 − SU (2)θ , θ = 0,π .

(7)

The superconformal flavor symmetries are
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m = 4 : S O (4k − 6)

m = 3 : SU (2k − 3)

m = 2 : SU (2k − 5) × SU (2)

m = 1 : SU (2k − 6) × U (1)

m = 0, θ = 0 : SU (2k − 6)

m = 0, θ = π : SU (2k − 7) × U (1) .

(8)

Our approach using CFDs not only determines these flavor sym-
metries much more efficiently and purely combinatorially than ap-
proaches using a gauge description, we can even determine the 
flavor symmetry in cases when such a weakly coupled description 
is absent. In the present case, there are 2k − 6 SCFTs that do not 
have any known gauge description, but we determine their super-
conformal flavor symmetry to be

U (2k − 7 − i) , i = 0, · · · ,2k − 7 . (9)

These CFDs and their associated geometries [14] are evidence that 
such non-trivial 5d UV fixed points exist; these have been observed 
for rank two, k = 5, in [6,14,23].

5. 5d SCFTs from (E6, E6) CM

Another class of higher rank theories, that have thus far not 
been studied in generality, are the rank five SCFTs descending from 
(E6, E6) minimal CM. The marginal CFD is

. (10)

CFD-transitions applied to this yield 93 descendant CFDs/SCFTs, in-
cluded in the supplemental material. This predicts a large class of 
new 5d SCFTs. The only known weakly coupled description of the 
marginal theory is the quiver [18]

[2] − SU (2) −

[2]
|

SU (2)

|
SU (3)0 − SU (2) − [2] . (11)

Decoupling the flavor hypermultiplets of each SU (2), step-by-
step, yields descendants with quiver descriptions. Denote these by 
a triple (q1, q2, q3), where the qi is either the number of fun-
damentals under, or the theta angle of, each of the three SU (2)

factors. For these quivers we find the following superconformal fla-
vor symmetries:

(1F,2F,2F) : E6 × E6

(0,2F,2F), (π,2F,2F) : E6 × SU (6)

(1F,1F,2F) : S O (10)2 × U (1)

(0,1F,2F), (π,1F,2F) : S O (10) × SU (5) × U (1)

(1F,1F,1F) : S O (8)2 × U (1)2

(0,0,2F), (π,π,2F) : S O (10) × SU (4) × U (1)
(12)

(0,π,2F) : SU (5)2 × U (1)

(0,1F,1F), (π,1F,1F) : S O (8) × SU (4) × U (1)2

(0,0,1F), (π,π,1F) : S O (8) × SU (3) × U (1)2
(0,π,1F) : SU (4)2 × U (1)2

(0,0,0), (π,π,π) : S O (8) × SU (2) × U (1)2

(0,0,π), (π,π,0) : SU (4) × SU (3) × U (1)2 .

This populates only a small subtree of twelve elements in the CFD 
tree. Note that the CFDs are sensitive to the number of indepen-
dent discrete parameters; they capture dualities between theories 
with different theta angles [24,25]. It would be interesting to de-
termine the gauge theory descriptions, where they exist, for the 
remaining 81 CFD/SCFTs.

6. BPS states

BPS states, �C , arise in M-theory from wrapped M2-branes on 
holomorphic curves C in S . In CFD-terms, (n, g) = (−1, 0)-vertices 
for instance correspond to spin 0 states under the 5d massive little 
group S O (4) [26,27]. More generally, C can be a non-negative lin-
ear combination of vertices in the CFD, C = ∑

i qi Ci , qi ≥ 0, where 
the qi constrained by the decorations (n, g), which are recursively 
determined

n = (C1 + C2)
2 = C1 · C1 + C2 · C2 + 2C1 · C2 ,

g(C1 + C2) = g(C1) + g(C2) + C1 · C2 − 1 .
(13)

Each C is associated to a weight of a representation of GF, where 
the highest weights under the non-abelian subalgebra, GF,na , are 
determined through the intersection numbers between C and the 
marked curves, Fi in the CFD

C · Fi ≥ 0 , (i = 1, . . . , rk(GF,na)) . (14)

Charges under the abelian subalgebra are determined through in-
tersection with specific combinations of unmarked vertices orthog-
onal to GF,na, the U (1) generators. Applying this to rank one the-
ories reproduces the spin 0 BPS states in [28]. For the (Dk, Dk)

descendants, Fig. 2 contains the predictions for spin 0 BPS states 
in these 5d strongly coupled SCFTs.
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