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The center-flavor symmetry of a gauge theory specifies the global form of consistent gauge and flavor
bundle background field configurations. For 6D gauge theories which arise from a tensor branch
deformation of a superconformal field theory (SCFT), we determine the global structure of such background
field configurations, including possible continuous Abelian symmetry and R-symmetry bundles. Proceeding
to the conformal fixed point, this provides a prescription for reading off the global form of the continuous
factors of the zero-form symmetry, including possible nontrivial mixing between flavor and R-symmetry. As
an application, we show that this global structure leads to a large class of 4D N ¼ 2 SCFTs obtained by
compactifying on a T2 in the presence of a topologically nontrivial flat flavor bundle characterized by an ’t
Hooft magnetic flux. The resulting “Stiefel-Whitney twisted” compactifications realize several new infinite
families of 4DN ¼ 2 SCFTs, and also furnish a 6D origin for a number of recently discovered rank one and
two 4D N ¼ 2 SCFTs.
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I. INTRODUCTION

Since their discovery [1–3], 6D superconformal field
theories (SCFTs) have been a fount of insight into the
nonperturbative structure of quantum field theory in diverse
dimensions. In particular, knowledge of the six-dimensional
theory and the compactification geometry can make hard-
to-access nonperturbative features in lower-dimensional
systems manifest. On the other hand, general arguments
indicate that such theories cannot be realized via perturba-
tions of a Gaussian fixed point, and so in this sense they are
intrinsically strongly coupled [4]. This in turn complicates
the construction and study of such theories.
A conjectural classification of all 6D SCFTs was

proposed in [5,6] (see also [7–15]). The main idea in
this classification program is to engineer such theories via
F-theory backgrounds involving a noncompact elliptically
fibered Calabi–Yau threefold with a canonical singularity.

This has led to a vast class of new theories, and a
remarkably simple unifying description of nearly all such
theories on their partial branch as generalized quiver
gauge theories. This perspective has been used to extract
a number of calculable quantities from such systems,
including, for example the anomaly polynomial [16–19],
as well as operator scaling dimensions of certain operator
subsectors [8,20–23]. Compactification of such theories to
four-dimensional systems also provides a systematic way
to generate a broad class of 4D SCFTs with varying
amounts of supersymmetry [24–58].1
In general terms, global symmetries also play an important

role in constraining correlation functions of local operators,
and also figure into the analysis of higher symmetries [60].
This is no less true in 6D SCFTs, and also plays an important
role in the study of compactifications of such systems. As a
recent example, [61] (see also [29]) demonstrated that starting
fromcertain 6DN ¼ ð1; 0Þ SCFTs, compactification on aT2

in the presence of a topologically nontrivial but flat bundle
associated with an ’t Hooft magnetic flux can be used to
generate a class of 4D N ¼ 2 SCFTs. In particular, this
requires knowing not just the global symmetry algebra of the
6D theory, but the actual group.
Our aim in this paper will be to extract the continuous

zero-form group symmetries of 6D SCFTs, and to use this in
the construction of 4D N ¼ 2 SCFTs via Stiefel-Whitney
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1A recent overview of superconformal field theories in
dimensions three to six is [59].
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twisted compactifications. Now, although the actual
method of constructing such 6D SCFTs involves the
geometry of the F-theory compactification, geometry
can sometimes obscure some of the symmetries [62].
These top down considerations can often be supplemented
by various bottom up considerations, including Higgsing
from theories with known flavor symmetry algebras
[13,63–65], and thus in many cases we know the con-
tinuous global symmetry algebra. Consequently, we can
specify a corresponding “naive” flavor symmetry G̃flavor,
where all simple non-Abelian factors are simply con-
nected, and there is no finite group action on any Uð1Þ
factors. One can also supplement this by the R-symmetry
SUð2ÞR, which is difficult to track in the F-theory
construction, but which must be present in any 6D
SCFT.2 Since we also have the gauge symmetry on the
tensor branch, there is a corresponding “naive” group of
continuous gauge and global zero-form symmetries:

G̃gauge-global ≡ G̃gauge × G̃flavor × SUð2ÞR; ð1Þ

where we have kept implicit the spacetime global sym-
metries of the field theory. This answer is “naive,” in the
sense that the matter content and effective strings (coupling
to the tensor multiplet chiral two-forms) of the effective
field theory may be neutral under some subgroup of the
center of G̃gauge-global. Consequently, the global form may
end up being quotiented by a subgroup of the center
C ⊂ G̃gauge-global:

Ggauge-global ¼ G̃gauge-global=C: ð2Þ

This quotient can also act on the spacetime symmetries
since the supercharges transform as spacetime spinors and
R-symmetry spinors. The combined action on the gauge
and flavor symmetry is often referred to as a “center-
gauge-flavor symmetry,” generalizing the notion of
“center-flavor symmetry” [66–83]. Of course, from the
perspective of the 6D SCFT, the defining data only makes
reference to the global symmetries, and the same quotient,
suitably projected, realizes the continuous part of the
global symmetry group

Gglobal ¼ G̃global=Cglobal; ð3Þ

in the obvious notation. In the conformal limit, the possible
action of Cglobal on these internal symmetries can also be
accompanied by a quotient on the conformal group. As
already implicitly mentioned, knowing the global form of
the zero-form symmetry group has important implications
for the existence and structure of higher-dimensional

defects in the theory, informing possible higher symmetry
structures.
One of our core tasks will be to present a general

algorithm for extracting Ggauge-global and Gglobal of the tensor
branch effective field theory. This also amounts (upon
projecting onto the global symmetry factors) to a prediction
for the global continuous zero-form group of the 6D SCFT.
Extracting this data directly from the corresponding F-/M-
theory background geometry [83] was recently carried out
for a number of 5D supersymmetric quantum field theories
obtained from circle reduction of the tensor branch of a 6D
SCFT, and the “bottom up” approach developed here agrees
with the “top down” results obtained in [83]. From a bottom
up perspective, we simply work on the tensor branch where
we have access to the large symmetry transformations of the
system, and the correlated response from transformations on
the chiral two-forms of the effective field theory. Such
transformations are in turn sensitive to the global topology
of background gauge/global bundle configurations [84].3

This technique has been used previously to explore some
examples of non-Abelian flavor symmetry in related sys-
tems [80,84],4 but as far as we are aware, a systematic study
of all possibilities was not previously undertaken. In
particular, we also show how to incorporate continuous
Abelian symmetries.
Moreover, our analysis also extends to the global form of

the R-symmetry, and its possible mixing with the center-
flavor symmetry. This is difficult to extract from estab-
lished index computations in the much-studied and related
case of 4D theories (as obtained by compactification on a
T2 with no background bundles switched on), since in
many cases, only specific R-charge sectors are counted.5 In
some cases, however, alternative methods have been
explored for extracting the chiral ring of the corresponding
Higgs branch [92,93], which implicitly also determines a
mod 2 constraint on the global form of the center symmetry
mixing with the R-symmetry. In these cases, we find that
our analysis agrees with these constraints.
To illustrate the utility of this approach, we show in a

number of examples how to extract the symmetry groups
Ggauge-global andGglobal. One large class of examples includes
M5-brane probes of an ADE singularity C2=ΓADE as well as

2Recall that in a supersymmetric theory, the flavor symmetry
commutes with the supercharges, whereas the R-symmetry (by
definition) does not.

3We note that, since this analysis relies solely on the effective
field theory description on the tensor branch, it can also be carried
out straightforwardly for theories constructed from frozen sin-
gularities [10,12].

4In gravitational theories where there are no global symmetries,
the same methods give constraints on the global form of gauge
symmetries [84,85], which for supergravity models in high di-
mensions are found to agree with patterns in string compactifica-
tions [86–89].

5We note that the possibility of mixing with the center of the
R-symmetry resolves some puzzles in various claimed global
forms of the flavor symmetry for certain 4DN ¼ 2 SCFTs which
have appeared in earlier work (e.g., compare [90] with [91]), a
point we comment on in more detail later on.
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their Higgs branch deformations. These flows are captured
by group-theoretic data associated with nilpotent and semi-
simple deformations of the corresponding flavor symmetry
algebras. Since the corresponding tensor branch descrip-
tions for these theories are all known, we can use our
method to extract the corresponding continuous symmetry
group, including contributions from Abelian symmetry
factors and mixing with the R-symmetry. Similar consid-
erations hold for the “orbi-instanton theories” obtained from
Higgs branch deformations of M5-branes probing an ADE
singularity C2=ΓADE wrapped by an E8 nine-brane. In this
case, deformations of the E8 flavor symmetry factor are
captured by finite group homomorphisms ΓADE → E8.
Analyzing this class of examples, we observe that many

breaking patterns wind up generating a trivial quotienting
subgroup C for the global symmetry. This occurs simply
because, in many cases, there is no common center for the
simply connected non-Abelian symmetry group factors. A
general rule of thumb for realizing a common center-gauge-
flavor symmetry is that the group-theoretic data such as a
nilpotent orbit or a finite group homomorphism must have a
sufficient multiplicity so that there is a nontrivial finite
group action on the deformation parameter itself. This
analysis also makes it clear that the vast majority of
examples with nontrivial gauge-flavor symmetry mixing
on the tensor branch will necessarily involve A-type
symmetry algebras, simply because the corresponding
Lie groups exhibit a far broader class of possible center
subgroups (e.g., SUðNÞ has center ZN), when compared
with their non-A-type counterparts.
Once the center-flavor symmetry of a 6D SCFT is

known, one can utilize it to generate a large class of
lower-dimensional theories via compactification. To illus-
trate, we primarily focus on the case of compactification on
a T2 in the presence of topologically nontrivial background
bundle configurations. The corresponding ’t Hooft mag-
netic fluxes are characterized by holonomies which com-
mute in Gflavor ¼ G̃flavor=C, but which would not commute
in G̃flavor (see [94,95]). These have been referred to as
Stiefel-Whitney twisted theories in [61]. This provides a
systematic way to generate a large class of 4D N ¼ 2
SCFTs. In particular, up to a small number of outliers, we
show that after including further Higgs branch and mass
deformations, this generates the full list of known rank two
4D N ¼ 2 SCFTs given in [96]. The list of theories we
generate in this way also has some overlap with other top-
down constructions such as those based on D3-brane
probes of N ¼ 2 S-folds (i.e., nonperturbative generaliza-
tions of an orientifold plane in the presence of a stack of
flavor seven-branes) [97–101]. While there is indeed some
overlap in 4D with suggestive evidence via string duality,
we also find that there are some cases of Stiefel-Whitney
twisted compactifications which resist a simple interpreta-
tion in terms of S-folds, an issue we leave for future
investigations.

The rest of this paper is organized as follows. We begin
by giving a brief review of the tensor branch of a 6D SCFT,
with a particular emphasis on topological terms. In Sec. III,
we study the global structure of the flavor symmetry group
of 6D (1, 0) SCFTs using the tensor branch description. In
particular, we extract the overall center-flavor symmetry,
including Abelian factors, as well as nontrivial mixing with
R-symmetry factors, illustrating with a number of exam-
ples. Section IV serves as an intermezzo between the 6D
and 4D analysis; we extract the center-flavor symmetry for
a large class of, so-called, orbi-instanton theories which we
then use in the next section. In Sec. V we turn to the
resulting 4D N ¼ 2 SCFTs generated by Stiefel-Whitney
twisted compactifications of such 6D SCFTs. This provides
us with a large class of new theories, and we also comment
on the similarities and differences with 4D N ¼ 2 S-fold
constructions. In Sec. VI, we briefly explore the DE-type
generalizations of the A-type 6D and 4D SCFTs that were
studied in Secs. IV and V. We present our conclusions and
areas of future investigation in Sec. VII. In Appendix A, we
determine the continuous symmetry group for the N ¼
ð2; 0Þ theories and the E-string theories. In Appendix B, we
show how to generate nearly all known rank two 4DN ¼ 2
SCFTs via twisted Stiefel-Whitney compactifications, and
we provide a comparison with previously obtained results
in the literature in Appendix C. Appendix D studies the
nilpotent deformations in Stiefel-Whitney twisted theories
inherited from the nilpotent deformations of their 6D parent
theory. Finally, in Appendix E, we explore the global form
of the flavor symmetry group for nilpotent deformations of
conformal matter theories.

II. TENSOR BRANCH OF 6D SCFTs

In this section, we present a brief review of the tensor
branch of a 6D SCFT, with a particular emphasis on the
topological interaction terms. Recently, much progress has
been made in constructing 6D SCFTs by recasting the
construction of such theories in terms of noncompact
elliptically fibered Calabi–Yau threefolds X → B. In this
description, one starts with a collection of curves in the
base B, and with it a corresponding elliptic fibration. We
can reach a conformal fixed point if the collection of curves
can simultaneously contract to zero size. This results in a
canonical singularity in the elliptic threefold (possibly
partially frozen), and is the most systematic known method
for realizing such theories [5,6].
The configuration of curves prior to collapse gives a

geometric realization of the so-called “tensor branch” of the
6D SCFT. In this regime, we have a collection of tensor
multiplets, the bosonic content of each one consisting of a
real scalar and an antichiral two-form potential. This
antichiral two-form couples to effective strings, with
tension controlled by the vacuum expectation value (vev)
of the scalar. We can potentially have 7-branes wrapped
over each curve, and this results in non-Abelian gauge
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symmetries on the tensor branch. Collisions of 7-branes
result in matter, which can include weakly coupled hyper-
multiplets, as well as (if we do not go to the full tensor
branch) strongly coupled generalizations known as 6D
conformal matter [7,8].
Letting Aij denote the intersection pairing matrix for

curves in the base, a concise way to denote the tensor
branch configuration is in terms of a quiverlike graph,

where each node, denoted as ni
gi , encodes the ith gauge

algebra gi, whose associated tensor has self-pairing
Aii ¼ −ni. In what follows, we shall allow for the pos-
sibility that the gauge algebra is trivial, i.e., gi ¼ ∅, in
which case no decoration is necessary. On the tensor
branch, the condition of 6D gauge anomaly cancellation
is, up to a small number of corner cases, enough to
characterize the matter content of the tensor branch theory,
including the spectrum of hypermultiplets.6

Now, the F-theory model directly specifies the gauge
symmetry, as associated with 7-branes wrapped on compact
curves of the base B, and this splits up into a collection of
simple non-Abelian gauge symmetries:

ggauge ¼ ⨁
i
gi: ð4Þ

Each factor here is a simple Lie algebra. Moreover, there are
no gauged Abelian uð1Þ factors, as follows directly from the
structure of the local F-theory models [5]. Turning next to
the flavor symmetries of the 6D SCFT, the tensor branch
description typically provides a good first approximation of
the flavor symmetries of the 6D SCFT. For example, the
hypermultiplets of the effective field theory often rotate
under a global symmetry, and this persists at the conformal
fixed point. In some cases, certain candidate flavor sym-
metries only become apparent once we approach the fixed
point. A classic example of this phenomena is the E-string
theory, namely the theory of an M5-brane probing an E8

nine-brane. From the perspective of [7,8], the E-string, as
well as other sub-configurations of matter fields can be
viewed as the tensor branch of a generalized type of matter
where the flavor symmetry is manifest, namely “conformal
matter.” All of this is to say that there is by now a general
algorithm to read off the candidate non-Abelian flavor
symmetry through a combination of the top-down F-theory
geometry, and additional strong coupling enhancements
(see, e.g., [6–8,63] for some examples of such analyses).
There is also a general algorithm for reading off candidate
uð1Þ symmetries which are free from mixed gauge
symmetry=uð1Þ anomalies, so-called Adler-Bell-Jackiw
(ABJ) anomalies [65,102]. Putting all of this together,
the flavor symmetry algebra is of the general form:

gflavor ¼ ⨁
a
ga ⊕ ⨁

f
uð1Þf; ð5Þ

where each factor ga refers to a simple non-Abelian Lie
algebra, and we have also included possible continuous
Abelian symmetry factors. As a general point of notation,
we shall distinguish the non-Abelian gauge and flavor
symmetry algebras by the respective indices i and a, while
Abelian flavor symmetry algebras are indexed by f. Indeed,
in the corresponding topological Green-Schwarz-Sagnotti-
West terms, we will have couplings to both sorts of gauge
bundle curvatures. Here, we have allowed for the possibility
of various enhancements, as captured by working with
conformal matter. Finally, there is also the R-symmetry of
the 6D SCFT, and this is also present on the tensor branch
since it is unbroken. This provides an additional suð2ÞR
global symmetry algebra. Putting all of this together, the
continuous global symmetry of the system is

ggauge-global ¼ ggauge ⊕ gflavor ⊕ suð2ÞR; ð6Þ

where we have left implicit the spacetime symmetries. We
again stress that in many cases, we can deduce the
corresponding symmetry algebra from earlier work, so
the main task reduces to determining the symmetry group,
rather than just the algebra.
To accomplish this, we will need to know more about the

topological sector of the theory. Much as in [84], we mainly
claim that it suffices to study the topological terms of the
tensor branch theory. Some of such terms are necessary for
the theory to be free of gauge symmetry anomalies in the
first place, while other terms inform us of global symmetry
anomalies. All of these are captured by couplings between
the antichiral two-forms and the Chern character of the non-
Abelian gauge field strengths, as required to satisfy 6D
anomaly cancellation via the Green-Schwarz-Sagnotti-
West mechanism [103,104]. Including background field
strengths from global symmetries, we get a set of topo-
logical couplings:

2π

Z
M6

Θi ∧ Ii; ð7Þ

where Θi refer to the antichiral two-forms of the ith
tensor multiplet (denoted as ti), and the Ii are a collection
of four-forms:

Ii ¼ −
X
j

Aijc2ðFjÞ −
X
a

Biac2ðFaÞ

þ
X
f;f0

Ci;f;f0
c1ðFfÞ ∧ c1ðF0

fÞ
2

þ yic2ðRÞ − ð2þ AiiÞ 1
4
p1ðTÞ: ð8Þ

6There are a small number of cases, such as su6 with ni ¼ 1
where the hypermultiplet spectrum is not uniquely fixed by the
gauge algebra and self-pairing.
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Here, the Fj refers to the gauge field strengths, the Fa are
the field strengths for the non-Abelian flavor symmetry
factors, and the Ff are the field strengths for Abelian
symmetry factors, all of which we have expressed in terms
of the corresponding Chern characters.7 On the second
line, we have also included the contribution from the
R-symmetry, c2ðRÞ, as well as the first Pontryagin class of
the spacetime tangent bundle. Turning next to the coef-
ficients appearing in Ii, the matrix Aij is, in our con-
ventions, negative definite, and encodes the Dirac pairing
for the effective strings, while the Bia are coefficients
determined by the cancellation of all gauge-flavor anoma-
lies, i.e., terms proportional to TrðF2

i ÞTrðF2
aÞ in the full

anomaly polynomial [16–18,105]

I8 ¼ I1-loop þ IGS ¼ I1-loop −
1

2
ðA−1ÞijIiIj: ð9Þ

As an additional comment, the only uð1Þ symmetry factors
we can include are those which are free from ABJ-
anomalies, which are encoded in the coefficients of
TrðF3

i ÞFf-terms of the anomaly polynomial. Such terms
must vanish at 1-loop for any quantum mechanically
unbroken flavor uð1Þ. For 6D SCFTs on their tensor
branch, one can determine all such flavor uð1Þs from a
bottom-up approach [65] (see also [102]). We note that, as
opposed to non-Abelian flavor symmetries, these uð1Þs are
sometimes geometrically delocalized.
The main tool at our disposal for determining the global

form of Ggauge-global will be to track the global bundle
structure of background field configurations using large
symmetry transformations. Via the Green-Schwarz-
Sagnotti-West mechanism, we know that this will also
involve a nontrivial transformation from the antichiral two-
formsΘi, and the combined effect must be such that the full
set of topological contributions remains invariant. We now
proceed to the determination of this global structure.

III. TOPOLOGYOF GLOBAL SYMMETRYGROUP
FOR 6D SCFTs

In this section, we determine the global structure of the
symmetry groups for 6DN ¼ ð1; 0Þ SCFTs, based on their
tensor branch characterization as a weakly coupled gauge
theory. In what follows, we assume that the symmetry
algebra ggauge-global has already been specified. There is a
corresponding “naive” answer for the zero-form symmetry:

G̃gauge-global ¼ G̃gauge × G̃flavor × SUð2ÞR; ð10Þ

namely, for each non-Abelian Lie algebra, we take the
corresponding simply connected Lie group, and all Abelian

factors simply lift to Uð1Þ. As before, we leave the
spacetime symmetries implicit. The answer is naive, in
the sense that this analysis does not distinguish between
symmetries acting on genuine local operators, and those
which are only defined as the endpoints of line operators
(see [81,83,106,107]). Indeed, on general grounds, we
expect that the actual zero-form symmetry group is
quotiented by a subgroup of the common center for these
factors. We shall refer to this as the gauge-global center
symmetry, writing it as:

Ggauge-global ¼ G̃gauge-global=C: ð11Þ

This leaves us with a residual center which is present in the
actual tensor branch theory. With this in hand, we also have
a candidate global symmetry for the 6D SCFT, as given by
projection onto just the global symmetries of this quotient.
Note that the group quotient specified by C has a canonical
restriction to just the global symmetries. In the obvious
notation, we then have:

Gglobal ¼ G̃global=Cglobal: ð12Þ

Our aim will be to extract Gglobal by determining the
corresponding center symmetry group C. The analysis of
this proceeds in several stages. First of all, we must require
that all matter fields, including weakly coupled hyper-
multiplets as well as generalizations such as E-strings and
conformal matter are all neutral under C. Additionally,
precisely because the group of gauge transformations in the
6D tensor branch theory also requires an accompanying
transformation of the chiral two-forms of the associated
tensor multiplets, we must also require that the correspond-
ing effective strings are neutral under C (see, e.g.,[84]).
In practical terms, what this amounts to is analyzing the
topological sector of the tensor branch theory, and the
response of the effective action under large field trans-
formations. This leads to a nontrivial correlation between
candidate 0-form symmetry bundles, which will in turn
allow us to read off Gglobal.
In the rest of this section, we spell out the steps for

extracting Gglobal directly from the tensor branch. First, we
begin by tracking the mixed gauge-flavor center symmetry
for non-Abelian symmetry factors. We then show how to
incorporate continuous Abelian symmetry factors, and then
turn to possible mixing with the R-symmetry factors. The
specific case of the R-symmetry group is particularly
subtle, since it can evade detection via other means such
as superconformal index computations. In each step, we
present some illustrative examples, which we revisit to
exhibit the full global symmetry structure.

A. Anomalies for center-flavor symmetry

We begin by considering the core example, based on
mixing between the center of the gauge groups and7In our conventions, 1

4
TrF2 ¼ c2ðFÞ and c1ðFÞ ¼

ffiffiffiffiffiffi
−1

p
F.
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non-Abelian symmetry factors. For now, we therefore
suppress the contributions from Abelian symmetry factors
as well as the R-symmetry. For a non-Abelian flavor
symmetry that rotates matter charged under a gauge
symmetry, a nontrivial global flavor symmetry structure
generally requires a center-twisted gauge bundle that
compensates the twisted flavor bundle. There is a potential
obstruction to turning on such gauge and flavor bundles,
which can be quantified from the tensor branch data [84]
and the topological couplings in Eq. (7).
Turning on a center-twisted bundle for a simple algebra g

(flavor or gauge), with simply connected group G̃ and
center ZðG̃Þ now leads to a fractionalization of c2ðFÞ
[60,77,108,109]:

1

4
TrðF2Þ ¼ c2ðFÞ≡ −αgwðFÞ ∪ wðFÞ mod Z: ð13Þ

Here, wðFÞ ∈ H2ðM6; ZðG̃ÞÞ is the ZðG̃Þ-valued charac-
teristic class (the generalized Stiefel-Whitney class, also
called the Brauer class in the mathematical literature)
measuring the obstruction to lift a G̃=ZðG̃Þ-bundle to a
G̃ bundle, and w ∪ w≡ w2 is a 4-cocycle with integer
periods.8 The fractionalization is due to the factors αg,
whose fractional values depend g (with nontrivial center
ZðG̃Þ):

g¼sunðZnÞ∶ αg¼
n−1

2n
; g¼spnðZ2Þ∶ αg¼

n
4
;

g¼ e6ðZ3Þ∶ αg¼
2

3
; g¼e7ðZ2Þ∶ αg¼

3

4
;

g¼so4nþ2ðZ4Þ∶ αg¼
2nþ1

8
; g¼so2nþ1ðZ2Þ∶ αg¼

1

2
:

ð14Þ

In the case g ¼ so4n and G̃ ¼ Spinð4nÞ with center

Zð1Þ
2 × Zð2Þ

2 , there are two contributions,

c2 ≡−
�
n
4
ðwð1Þ þwð2ÞÞ2 þ 1

2
wð1Þ ∪ wð2Þ

�
mod Z; ð15Þ

originating from the center background wðiÞ of ZðiÞ. In
general, each Zls factor of the full center

Q
i ZðG̃iÞ ×Q

a ZðG̃aÞ ¼
Q

sZls is accompanied by a background field
ws. Again, the i index refers to the gauge groups and the a
index refers to the non-Abelian flavor groups.

Because of the topological couplings in Eq. (7), a
general background w̃ ¼ ðw1;…; ws;…Þ for the centerQ

sZls
9 will lead to a fractional 4-cocycle coupling to

the tensor Θi,

X
j

Aijc2ðFjÞ þ
X
a

Biac2ðFaÞ≕
X
g

Aigc2ðFgÞ

≡ −
X

gg≠soð4nÞ
Aigαggw

2
g −

X
gg¼soð4ngÞ

Aig

�
ng
4

�
wð1Þ
g þ wð2Þ

g

�
2

þ 1

2
wð1Þ
g ∪ wð2Þ

g

�
mod Z; ð16Þ

where the index g runs over both gauge and flavor factors,
and Aig is the combined matrix of the tensor pairings Aij

and non-Abelian flavor coefficients Bia. Because of this
fractionalization, the action transforms anomalously under
a large gauge transformation of the ith two-form tensor Θi

[84], which poses an obstruction to turning on the corre-
sponding twisted bundles.
However, for subgroups Z ⊂

Q
sZls , for which the ws

are related to each other, it may be possible that different
fractional contributions cancel, so that Eq. (16) is an integer
class. Concretely, for a cyclic Znr subgroup with generator

ðkðrÞ1 ; kðrÞ2 ;…Þ ∈ Q
s Zls , the corresponding center back-

ground is parametrized by w̃ðrÞ ¼ ðkðrÞ1 wðrÞ; kðrÞ2 wðrÞ; � � �Þ,
for a single independent 2-cocycle wðrÞ. If the fractionaliza-
tions vanish for a linear combination w̃ ¼ P

r w̃
ðrÞ ¼

ðPr k
ðrÞ
1 wðrÞ;

P
r k

ðrÞ
2 wðrÞ;…Þ with generic backgrounds

wðrÞ for a subgroup Z ¼ Q
rZnr , the global structure of

the symmetry group is10

Ggauge-global ¼
Q

iG̃i ×
Q

aG̃a

Z
: ð17Þ

Note that the candidate subgroups Z of interest are in
general severely limited by requiring that the hypermultip-
let spectrum of the tensor branch theory must transform
trivially under it. Any subgroup Z of the full center which
rotates these states by a nontrivial phase φ ∈ Uð1Þ is
explicitly broken, i.e., one cannot twist the bundles by
Z, regardless of the anomaly above.
For a simple group G with ZðGÞ ¼ Zn, a center element

xðmod nZÞ ∈ Zn acts on an irreducible representation R

8To be precise, c2ðFÞ≡ αgPðwÞ mod Z, where P is the
Pontryagin square operation. If w ∈ H2ðM;ZnÞ, then for n
odd, PðwÞ≡ w ∪ w ∈ H4ðM;ZnÞ; for n even, PðwÞ ∈
H4ðM;Z2nÞ reduces to w ∪ w modulo n.

9Indexing by s the individual cyclic factors distinguishes the
two Z2 factors for a factor of G̃g ≅ Spinð4kgÞ.

10A short comment on notation: we reserve C for the full
quotienting subgroup, with Z the quotient on just the non-Abelian
symmetry factors.
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by the phase φxðRÞ ≔ ðφðRÞÞx, with the phase φðRÞ for
the generator 1 ∈ Zn computed as follows11:

(i) for G ¼ SUðnÞ, and R having a Young-tableaux
with m boxes, then φðRÞ ¼ e2πi

m
n ;

(ii) for G ¼ SpðnÞ, φðR ¼ fundÞ ¼ −1 and φðR ¼
antisymÞ ¼ 1;

(iii) for G ¼ Spinð2nþ 1Þ, φðR ¼ vectorÞ ¼ 1 and
φðR ¼ spinorÞ ¼ −1;

(iv) for G ¼ Spinð4nþ 2Þ, φðR ¼ vectorÞ ¼ −1 and
φðR ¼ spinorÞ ¼ i;

(v) for G ¼ E6, φðR ¼ fundÞ ¼ e
2πi
3 ;

(vi) for G ¼ E7, φðR ¼ fundÞ ¼ −1.
For G ¼ Spinð4nÞ with ZðGÞ ¼ Zð1Þ

2 × Zð2Þ
2 , the phases

associated with the generator (1, 0) are φð1ÞðR ¼ vectorÞ ¼
φð1ÞðR ¼ spinorÞ ¼ −1, φð1ÞðR ¼ co − spinorÞ ¼ 1, and
those associated with ð0; 1Þ ∈ ZðGÞ are φð2Þ

ðR ¼ vectorÞ ¼ φð2ÞðR ¼ co − spinorÞ ¼ −1, φð1ÞðR ¼
spinorÞ ¼ 1. For a general element ðx1; x2Þ ∈ ZðGÞ, the
phase is then φðx1;x2ÞðRÞ ¼ ðφð1ÞðRÞÞx1ðφð2ÞðRÞÞx2 .
For the center of a semisimple group

Q
g Gg ∋ x ¼ ðxgÞ,

one can analogously compute the phase from acting on a
representation R ¼⊗g Rg ≡ ðR1;R2;…Þ as φxðRÞ ¼Q

g φ
xg
g ðRÞ. Hence, for Z ⊂ ZðQg GgÞ ¼

Q
g ZðGgÞ to

leave all hypermultiplets invariant, φxðRÞ ¼ 1 for all
x ∈ Z and all representations R that appear. If, in addition,
the obstruction in Eq. (16) vanishes, we propose that it is
consistent to turn on the corresponding center twist (see also
[80]). This includes in particular the examples studied in
[61], and also agrees with expectations from explicit geo-
metric constructions, where one can show that excitations of
Bogomol'nyi—Prasad—Sommerfield (BPS)-strings are
invariant under Z [80,84,110].

1. Examples

We now turn to examples illustrating how we extract the
non-Abelian flavor symmetries. Let us also note that
recently in [83], geometric methods were developed to
directly extract the global symmetry group for 5D con-
formal matter, i.e., the circle reduction of 6D conformal
matter. Our bottom up analysis agrees with the results
found there.
Example 1: Consider the SCFT with tensor branch

description:

½suðLÞ
N � 2

suð1Þ
N

2
suð2Þ

N � � � 2
suðm−1Þ

N

2
suðmÞ

N ½suðRÞ
N �; ð18Þ

which consists of m gauge factors suðiÞ
N and has two

suðaÞ
N (a ¼ L, R) flavor factors at each end of the quiver.

The hypermultiplet spectrum consists of bifundamentals
between each adjacent factor of SUðNÞL ×

Q
i SUðNÞðiÞ×

SUðNÞR:

Rð1Þ ¼ ðN;N;1;1;…Þ; Rð2Þ ¼ ð1;N;N;1;…Þ;� �� : ð19Þ

With the tensor pairing matrix Aij being the negative
SUðmþ 1Þ Cartan matrix, the anomalies proportional to
TrðF2

i ÞTrðF2
aÞ are canceled by a Green-Schwarz term with

BiL ¼ δi;1 and BiR ¼ δm;R. So the relevant part of the
GS-coupling in Eq. (7) is

Θi ∧ ð−c2ðFi−1Þ þ 2c2ðFiÞ − c2ðFiþ1ÞÞ; ð20Þ

where F0 ≔ FL and Fmþ1 ≔ FR.
It is easy to see that the hypermultiplet spectrum is

invariant under the diagonal center ZN with generator

ð1; 1;…Þ ∈ ZðLÞ
N ×

Y
i

ZðiÞ
N × ZðRÞ

N

¼ ZðSUðNÞL ×
Y
i

SUðNÞðiÞ × SUðNÞRÞ: ð21Þ

Since for this generator, all −c2ðFiÞ≡ N−1
2N w2 fractionalize

equally, they cancel out for each tensor multiplet ti.
Therefore, the non-Abelian symmetry group is ½SUðNÞL×Q

i SUðNÞðiÞ × SUðNÞR�=ZN , and the non-Abelian flavor
symmetry of the SCFT is ½SUðNÞL × SUðNÞR�=ZN , which
agrees with known results [36,83]. As an additional com-
ment, we note that this case also has an overall uð1Þ flavor
symmetry [36,65], so we will revisit it when we discuss
Abelian symmetry factors.
Example 2: For N ≥ 5, there is an SCFT with tensor

branch description:

1
suN

½#⋀2¼1�
½suNþ8�; ð22Þ

with a bifundamental hypermultiplet Rð1Þ ¼ ðN;Nþ 8Þ
under suN ⊕ suNþ8, and one antisymmetric Rð2Þ ¼
ðNðN−1Þ2 ; 1Þ ¼ ð⋀2; 1Þ that is uncharged under the suNþ8

flavor. The Green-Schwarz four-form for the single tensor
Θ of self-pairing −1 contains

I ⊃ c2ðFNÞ − c2ðFNþ8Þ; ð23Þ

which ensures the absence of any TrðF2
NÞTrðF2

Nþ8Þ
anomaly.
Some basic arithmetic reveals that there can be at most a

nontrivial Z2 ⊂ ZN × ZNþ8 ¼ ZðSUðNÞ × SUðN þ 8ÞÞ
that acts trivially on the hypermultiplets, and that this
can only occur when N is even. So, for N odd, there
is no center-flavor symmetry. Restricting to N even, the

11In general, any irrep R of G defines an element φðRÞ ∈
HomðZðGÞ; Uð1ÞÞ ¼ dZðGÞ ≅ ZðGÞ of the Pontryagin-dual. The
phase φxðRÞ ∈ Uð1Þ is then just the image of x under φðRÞ.
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Z2 subgroup is generated by the element ðN
2
; Nþ8

2
Þ ∈

ZN × ZNþ8. For this candidate subgroup, the center-flavor
anomaly indeed vanishes:

c2ðFNÞ− c2ðFNþ8Þ

≡
�
−
N2

4

N − 1

2N
þ ðN þ 8Þ2

4

Nþ 7

2N þ 16|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼7þ2N

�
w2 mod Z: ð24Þ

Therefore, the faithfully acting non-Abelian symmetry group
for N even is ½SUðNÞ × SUðN þ 8Þ�=Z2, and the non-
Abelian flavor symmetry of the SCFT is SUðN þ 8Þ=Z2.
Example 3: Consider next the SCFT with tensor branch

description

½suðLÞ
3 �3

e6
1 2
su2½soðRÞ7 �; ð25Þ

which has

−Aij ¼

0
B@

3 −1 0

−1 1 −1
0 −1 2

1
CA; ð26Þ

and hypermultiplets in the representations

Rð1Þ ¼ ð3; 27; 1; 1Þ; Rð2Þ ¼ 1

2
ð1; 1; 2; 8Þ; ð27Þ

under the symmetry factors su3 ⊕ e6 ⊕ su2 ⊕ so7. In the
above, the “1

2
” denotes a half-hypermultiplet, with matter in

the spinor representation of spin7 ≃ so7. Note also that
this theory contains an undecorated−1 curve, so it provides
an example where a subalgebra of the E-string theory flavor
symmetry has been gauged.
Let us now turn to the global structure of the symmetry

group. The naive answer is G̃gauge-global ¼ SUð3Þ × E6×
SUð2Þ × Spinð7Þ. Observe that the matter fields are invari-
ant under a Z3 × Z2 subgroup of the full center, where the
Z3 is the diagonal of ZðSUð3Þ × E6Þ ¼ Z3 × Z3, and
the Z2 the diagonal of ZðSUð2Þ × Spinð7ÞÞ ¼ Z2 × Z2.
Consider next the Green-Schwarz coupling to the tensor
Θ2 of the unpaired middle node. This is an E-string not
touching the flavor factors at the ends of the quiver, we find:

Θ2 ∧ ð−c2ðFe6Þ − c2ðFsu2
ÞÞ

≡ Θ2 ∧
�
2

3
w2
Z3

þ 1

4
w2
Z2

�
mod Z; ð28Þ

which would induce an anomaly for the large gauge trans-
formations of Θ2.
As explained in [84,110], the inconsistency of turning

on such a twisted background, despite the absence of
noninvariant hypermultiplets, can be also attributed to the

excitations of the E-string, which transform in E8

representations. By decomposing the adjoint under
e8 ⊃ e6 ⊕ su3 ⊃ e6 ⊕ su2,

248 → ð78; 1Þ ⊕ ð1; 8Þ ⊕ ð27; 3Þ ⊕ ð27; 3Þ
→ ð78; 1Þ ⊕ ð1; 3Þ ⊕ ð1; 2Þ⊕2 ⊕ ðð27; 2Þ
⊕ ð27; 1Þ þ c:cÞ ⊕ ð1; 1Þ; ð29Þ

we indeed find states (the fundamentals under E6 and
SUð2Þ, respectively), which break the Z3 and Z2 twists,
respectively. Therefore, the non-Abelian flavor group is
SUð3Þ × Spinð7Þ. However, as we will see below, the two
discrete twists can be compensated if we take into the
account the existence of Uð1Þ flavor factors.

B. Anomalies for center symmetries of Abelian factors

In the previous subsection we primarily focused on the
non-Abelian symmetry factors. In some cases, there can
also be continuous Abelian symmetry factors, which in
many cases are delocalized. The procedure for extracting
the global form of the center-flavor symmetry is to start
with the “naive” gauge-global symmetry G̃gauge-flavor, and to
then determine large symmetry transformations compatible
with the presence of these Uð1Þ symmetry factors. The
common center C ⊂ G̃gauge-flavor then specifies the quotient
Ggauge-flavor ¼ G̃gauge-flavor=C. Note that we will also need to
determine the overall normalization of uð1Þ charges, a
point we turn to shortly.
The analysis of the global form again relies on the same

sort of topological terms Θi ∧ Ii encountered in our
analysis of non-Abelian flavor symmetries. In the present
case with Abelian symmetries, we recall that this includes:

Ii ¼ −
X
j

Aijc2ðFjÞ −
X
a

Biac2ðFaÞ

þ
X
f;f0

Ci;f;f0
c1ðFfÞ ∧ c1ðF0

fÞ
2

: ð30Þ

If we now activate a discrete twist Zf ≅ Znf of a Uð1Þf
bundle, then c1ðFfÞ ¼ iFf acquires a fractional part, thus
affecting the large gauge transformations of the Θis. From
this, we see that the symmetry group takes the general form

½QiG̃
gauge
i ×

Q
aG̃

flavor
a �=Z ×

Q
fUð1ÞfQ

fZf
; ð31Þ

where as before, the G̃s refer to simply connected non-
Abelian factors. In particular, notice that the quotient by Z,
which we obtained in the previous subsection, just involves
the condition of neutrality under a restricted set of center-
symmetry transformations associated with the non-Abelian
symmetry factors. There can, of course, be more general
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symmetry transformations which involve the Abelian
factors, and this is accounted for by the Zfs.
Indeed, for each Θi, the fractionalizations of c2ðFiÞ,

c2ðFaÞ, and c1ðFfÞ from the twists Z and Zf must cancel.
Note in particular that the quotienting procedure worked out
for the non-Abelian symmetry factor is not contaminated by
the appearance of the Uð1Þ factors. Said differently, the
quotienting group Z may end up only being a subgroup of
the full C used to reach Ggauge-global ¼ G̃gauge-global=C.
To figure out the global quotient by Zf, we need to know

the overall normalization of the matter fields under the
Abelian symmetries. This is rather subtle, because for a
Uð1Þ factor, rescaling the charges is always a possibility.
Importantly, such rescaling effects do not end up affecting
the global form of the quotienting procedure. To demon-
strate this, we now turn to an analysis of charge normali-
zation for Abelian factors, and then illustrate how this
works for hypermultiplets and E-string theories.

1. Abelian charge normalization

To determine the overall charge normalization for
Abelian symmetry factors, as well as the contribution from
fractional Chern classes, it is instructive to consider bundles
with structure group UðNÞ ¼ ½SUðNÞ ×Uð1Þf�=ZN . One
can express aUðNÞ bundle in terms of an SUðNÞ=ZN and a
Uð1Þf bundle, with curvatures F and Ff correlated via:

c1ðFfÞ≡ 1

N
w mod Z; ð32Þ

where w is the (generalized) Stiefel-Whitney class of the
SUðNÞ=ZN bundle. In the language of generalized sym-
metries, one can think of the two 1-form center symmetries
of SUðNÞ and Uð1Þf being correlated through a single 2-

cocycle w. Namely, the background gauge field bð2Þe of the
1-form symmetry of Uð1Þf (which is itself Uð1Þ-valued),
which imposes

R
Σ2
ðc1ðFfÞ − bð2Þe Þ ∈ Z for any 2-cycle Σ2,

is tied to the value of the ZN 1-form symmetry gauge field
of SUðNÞ, which in turn fixes the Stiefel-Whitney class to
w. We can verify explicitly that the fractional parts of the
SUðNÞ=ZN bundle, c2ðFÞ≡ − N−1

2N w2 mod Z, and of the
Uð1Þf bundle, Nc1ðFfÞ2 ≡ 1

N w
2 mod Z, cancel in

c2ðUðNÞÞ ¼ c2ðFÞ þ NðN−1Þ
2

c1ðFfÞ2, which is indeed an
integer characteristic class.
Importantly, the relation in Eq. (32) holds only in a

normalization of the uð1Þ generator q̂ where the charges
span Z, i.e., the fundamental representation of uðNÞ has
charge 1 in this normalization, and representations that are
singlets under suðNÞ ⊂ uðNÞ have charges 0 mod N. In
this case, the trivially acting ZN center is generated
by ð−1; e2πiq̂=NÞ ∈ ZN × Uð1Þ ¼ ZðSUðNÞ ×Uð1ÞÞ.
More generally, once we fix the Uð1Þf charges of all

representationsRq of a group ½
Q

g G̃g ×Uð1Þf�=Zf (withR

a representation of
Q

g G̃g) to span Z, there is no ambiguity
to specify the generator of Zf as

ðk1; k2;…; e
2πiq̂

uf
lf Þ ∈

Y
g

ZðGgÞ × Uð1Þf; ð33Þ

where parameters must satisfy φðRÞðk1;k2;…Þ expð2πiq uf
lf
Þ ¼ 1

for any representation Rq of ½Qg G̃g ×Uð1Þf�=Zf. Then,
the corresponding twist of the symmetry bundle is in terms
of a 2-cocycle w:

c1ðFfÞ≡ uf
lf

w mod Z; wðFgÞ ¼ kgw; ð34Þ

with the understanding that when G̃g ≅ Spinð4mgÞ, we

have kg ≡ ðkð1Þg ; kð2Þg Þ, and wðFgÞ≡ ðwð1Þ
g ; wð2Þ

g Þ. Note that it
is c1ðFfÞc1ðFf0 Þ that enters the four-forms Ii, whose
fractional part,

c1ðFfÞc1ðFf0 Þ≡ ufuf0

lflf0
w ∪ w0 þ uf

lf
w ∪ χ0

þ uf0

lf0
w0 ∪ χ mod Z; ð35Þ

may depend on the integral parts, χ and χ0, of c1ðFfÞ and
c1ðFf0 Þ, respectively.
Now, since we are dealing with Abelian symmetry

factors, we can in principle consider rescaling the charges
of the states so that we only span a rescaled subgroup of Z,
e.g., Z → λZ. Doing so has no effect on the structure of the
topological Green-Schwarz couplings.12 Indeed, on general
grounds, the fractionality of Ci;f;f0c1ðFfÞc1ðFf0 Þ does not
depend on the normalization.13 A convenient normalization
convention for c1ðFfÞ is to first normalize Uð1Þf such that

the corresponding charges span Z (and rescale Ci;f;f0

accordingly). We can then determine the generator in
Eq. (33) of the candidate subgroup Zf that acts trivially
on all states, from which the characteristic classes in
Eq. (34) follow.
Hypermultiplets To illustrate how this works, consider

the case of weakly coupled hypermultiplets charged under
some Uð1Þs. Indeed, on the full tensor branch, the only
source of TrðF2

i ÞFfF0
f-terms in the 1-loop anomaly poly-

nomial are the hypermultiplets in representation R underQ
i G̃

gauge
i ×

Q
a G̃

flavor
a and with Uð1Þ-charge vector q⃗:

12In F-theory models there is often a “geometrically preferred”
normalization where SUðNÞ-fundamentals have charge 1

N mod Z
[111].

13From the formulas for Ci;f;f0 wewill discuss shortly, it can be
seen explicitly that the effect c1ðFfÞ → 1

λ c1ðFfÞ under a charge
rescaling qf → λqf is absorbed by Ci;f;f0.
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IhyperðRq⃗Þ ⊃
1

24
trRq⃗

ðF 4Þ ⊃
X
f;f0;i

hiðRÞ
4

TrðF2
i Þqfqf0FfFf0

¼ −
X
f;f0;i

hiðRÞqfqf0c2ðFiÞc1ðFfÞc1ðFf0 Þ; ð36Þ

where the decomposition of the curvature F of the full
symmetry bundle into those of the non-Abelian (gauge) part
(Fi) and those of theUð1Þs (Ff ¼ −ic1ðFfÞ) introduces the
index of the representation hiðRÞ.14 Much as in our analysis
of non-Abelian gauge and flavor anomalies, requiring the
Green-Schwarz contribution IGS ¼ − 1

2
ðA−1ÞijIiIj to cancel

the above terms of the 1-loop anomaly polynomial uniquely
fixes the coefficients Ci;f;f0 in the Green-Schwarz four-
forms in Eq. (30):

Ci;f;f0 ¼
X
Rq⃗

2hiðRÞqfqf0 : ð37Þ

For F-theory models (in particular, those with compact
internal geometries describing 6D supergravity), where
Uð1Þf corresponds to a rational section σf (more precisely,
the Shioda-map of a rational section) of the elliptic fibration,
the coefficientCi;f;f0 is the geometric intersection number of
the compact curve Ci carrying the gauge algebra gi with the
so-called height pairing divisor πðσf; σf0 Þ [113,114]. In
some cases, this structure persists even in local mod-
els [65,102].
E-string contributions In most cases, theUð1Þ symmetry

only acts on weakly coupled hypermultiplets. The states
from an E-string sector can also be charged under a Uð1Þ
factor embedded in the E8 flavor symmetry factor. We can
also extract the charge normalization in this case, and
thus track its contribution to the global structure of the
symmetry.
Concretely, consider a maximal embedding e8 ⊃

⨁β≥−dhβ ⊕ ⨁γuð1Þγ with simple algebras hβ, of which
the first d ≥ 1 factors hβ<0 are gauged,15 i.e., paired with
tensorsΘiϵ (ϵ ∈ f−1;…;−dg) having A{̂;iϵ ¼ 1. This leaves
the commutant, ⨁β≥0hβ ⊕ ⨁γuð1Þγ, as the flavor sym-
metry, which receives no 1-loop anomalies from hyper-
multiplets (hence, in particular, no ABJ anomaly for the
uð1Þ [65]).16 Nevertheless, besides those of other flavor
factors with labels ða; f; f0Þ in Eq. (30), there is an E-string

contribution to the Green-Schwarz four-form involving the
flavor backgrounds Fβ≥0 and Fγ, with [17,18,30],

Biβ ¼ δi;{̂lβ; Ci;γ;γ0 ¼ −
1

2
δi;{̂rγ;γ0 ; ð38Þ

associated to the decomposition of the trace

TrðF2
e8Þ →

X−1
ϵ¼−d

TrðF2
hϵ
Þ þ

X
β≥0

lβTrðF2
βÞ þ

X
γ;γ0

rγ;γ0FγFγ0

¼
X
β≥−d

lβTrðF2
βÞ þ

X
γ;γ0

rγ;γ0FγFγ0 : ð39Þ

The coefficients lβ are the Dynkin indices of hβ
associated to the embedding ⨁β≥−dhβ ⊕ ⨁γuð1Þγ ⊂ e8,
with those of the gauged subalgebras, hβ<0, necessarily
being 1.17 To compute these coefficients, we can consider
the decomposition of any representation,

R → ⨁
j
ðRðjÞ

−d;…;RðjÞ
β ; � � �Þ

qðjÞ
1
;…;qðjÞγ ;���; ð40Þ

interpreted as a decomposition of a vector bundle

V ¼ ⨁VðjÞ; with VðjÞ ¼ ⊗
β≥−d

UðjÞ
β ⊗ ⊗

γ
WðjÞ

γ ; ð41Þ

where UðjÞ
β is an hβ-bundle in the representation RðjÞ

β , and

WðjÞ
γ a uð1Þγ-bundle in the charge qðjÞγ representation. Using

the decompositions of the Chern character, chðA ⊗ BÞ ¼
chðAÞchðBÞ and chðA ⊕ BÞ ¼ chðAÞ þ chðBÞ, we have
(here ½·�2 extracts the degree-2 component of the total
Chern character)

TrðF2
e8Þ ¼

1

hðRÞ trRðF
2
e8Þ ¼ −

2

hðRÞ ½chðVÞ�2

¼ −
2

hðRÞ
X
j

½chðVðjÞÞ�2; ð42Þ

with

14For R ¼ ðRð1Þ;Rð2Þ; � � �Þ an irrep of a semisimple groupQ
g Gg, hiðRÞ ¼ Q

g≠i dimðRðgÞÞhgiðRðiÞÞ. In our normalization
of the trace, hsuN

ðNÞ ¼ 1
2
. For values of other representations R,

see [112], where these are denoted hR.
15At most two simple factors can be gauged, thus d ≤ 2 [6].
16For simplicity, we will only consider rank 1 E-strings.

However, the generalization to rank Q is straightforward with
the results from [17,18].

17For the significance of Dynkin index one embeddings in
F-theory, see [115].

HECKMAN, LAWRIE, LIN, ZHANG, and ZOCCARATO PHYS. REV. D 106, 066003 (2022)

066003-10



½chðVðjÞÞ�2
¼

X
β

½chðUðjÞ
β Þ�2 þ

�Y
β

rkðUðjÞ
β Þ

�

×

�X
γ<γ0

½chðWðjÞ
γ Þ�1½chðWðjÞ

γ0 Þ�1 þ
X
γ

½chðWðjÞ
γ Þ�2

�

¼ −
X
β

hðRðjÞ
β Þ
2

TrðF2
hÞ þ

�Y
β

dimðRðjÞ
β Þ

�

×

�X
γ<γ0

qðjÞγ qðjÞγ0 FγFγ0 þ
X
γ

ðqðjÞγ Þ2
2

F2
γ

�
: ð43Þ

We have thus derived the coefficients in Eq. (39) as

lβ ¼
X
j

hðRðjÞ
β Þ

hðRÞ ; rγ;γ0 ¼ −
X
j

Q
β dimðRðjÞ

β Þ
hðRÞ qðjÞγ qðjÞγ0 :

ð44Þ

Note that the values of lβ relevant to gaugings of hβ → e8
can be found in [30]. This result does not depend on the
chosen representation R, as long as the decomposition is
done with a fixed normalization for each uð1Þγ .
Candidate subgroups of ZðQβ H̃β ×

Q
γ Uð1ÞγÞ that can

be used to twist the symmetry bundles must leave the
representations resulting from decomposing the 248 of E8

invariant, as associated with the decomposition of the
adjoint-valued moment map operator of the E-string theory.

For this candidate subgroup, we can then verify whether the
twist induces any anomaly for the large gauge trans-
formation of the E-string tensor multiplet.

2. Examples

Having presented a general prescription for incorporat-
ing the contribution from continuous Abelian symmetries,
we now turn to some explicit examples, focusing on the
same class of examples already treated in the case of the
non-Abelian flavor symmetries. For illustrative purposes,
we only consider the background field of the center-flavor
symmetry involving the Uð1Þ flavor symmetry. In all cases,
it is straightforwardly verified that the fractionalizations
also cancel when we turn on the previously studied center
twists involving only the non-Abelian flavor factors.
Example 1: The example in Eq. (18) of a chain ofm suN

gauge nodes provides a simple example with aUð1Þf flavor
symmetry:

½suðLÞ
N � 2

suð1Þ
N

2
suð2Þ

N � � � 2
suðm−1Þ

N

2
suðmÞ

N ½suðRÞ
N �: ð45Þ

There is an overall Uð1Þ which is free from ABJ anomalies
[65]. The mþ 1 bifundamental hypermultiplets:

Rð1Þ ¼ðN;N;1;1;…Þ1; Rð2Þ ¼ð1;N;N;1;…Þ1;… ð46Þ

have equal charge q, which we normalize to 1. There are
1-loop contributions to the TrðF2

i ÞF2
f-terms that come from

the anomaly polynomial of the hypermultiplets:

IhyperðRð1ÞÞ ⊃ 1

4
NTrNðF2

1ÞF2
f ¼ −

N
2
c2ðF1Þc1ðFfÞ2;

..

.

IhyperðRðiÞÞ ⊃ 1

4
ðNTrNðF2

i−1Þ þ NTrNðF2
i ÞÞF2

f ¼ −
N
2
ðc2ðFi−1Þ þ c2ðFiÞÞc1ðFfÞ2;

..

.

IhyperðRðmþ1ÞÞ ⊃ 1

4
NTrNðF2

mÞF2
f ¼ −

N
2
c2ðFmÞc1ðFfÞ2;

⇒ Ihypers ¼
Xmþ1

i¼1

IhyperðRðmÞÞ ⊃ −N
�Xm

i¼1

c2ðFiÞ
�
c1ðFfÞ2: ð47Þ

Including the Abelian flavor backgrounds in the Green-
Schwarz four-form,

Ii ⊃
Xm
j¼1

ð−AijÞc2ðFjÞ − Bi;Lc2ðFLÞ − Bi;Rc2ðFRÞ

þ 1

2
Ci;f;fc1ðFfÞ2; ð48Þ

with Bi;L ¼ δi;1 and Bi;R ¼ δi;m, one can cancel the above
c2ðFiÞc1ðFfÞ2 terms in the full anomaly polynomial
I8 ⊃ Ihypers − 1

2
ðA−1ÞijIiIj, by fixing the coefficients

Ci;f;f to be [see Eq. (37)]

Ci;f;f ¼ 2N: ð49Þ
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Then, the Green-Schwarz mechanism couples each tensor
Θi to

Ii ⊃−c2ðFi−1Þþ 2c2ðFiÞ− c2ðFiþ1ÞþNc1ðFfÞ2; ð50Þ

again with the convention F0 ≔ FL and Fmþ1 ¼ FR being

the suðL=RÞ
N flavor backgrounds.

Before, we have seen that, with trivial c1ðFfÞ, one finds
that aZN twist is possible, leading to the non-Abelian group
structure ½SUðNÞðLÞ ×Q

i SUðNÞðiÞ × SUðNÞðRÞ�=ZN . To
extend the analysis to the Abelian flavor factor, we first
note that the hypermultiplet charges in Eq. (46) are already
properly normalized, in that the charges of all matter states
span ZN . The spectrum is invariant under the ZN center-
flavor symmetry generated by�

1; 2;…; mþ 2; e
2πi
N q̂

�
∈ ZðSUðNÞðLÞ

×
Y
i

SUðNÞðiÞ × SUðNÞðRÞ ×Uð1ÞÞ: ð51Þ

This means that the first Chern-class of the Uð1Þf=ZN-
bundle and the Stiefel-Whitney class of the SUðNÞ=ZN
bundles are correlated via a single 2-cocycle w as

c1ðFfÞ≡ 1

N
w modZ; wðFiÞ¼ðiþ1Þw ði¼0;…;mþ1Þ;

⇒c2ðFiÞ≡−ðiþ1Þ2N−1

2N
w2 modZ;

c1ðFfÞ2≡ 1

N2
w2þ 2

N
w∪χ modZ; ð52Þ

with χ an integer 2-cocycle. Plugging these into Eq. (50),
one straightforwardly verifies that the noninteger parts for
the tensor couplings vanish:

2c2ðFiÞ − c2ðFi−1Þ − c2ðFiþ1Þ þ Nc1ðFfÞ2

≡
�
ði2 − 2ðiþ 1Þ2 þ ðiþ 2Þ2ÞN − 1

2N
þ 1

N|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼1

�
w2 mod Z:

ð53Þ

Hence, the structure group admits also a ZN ≅ Zf quotient

�
SUðNÞL ×

Y
i

SUðNÞðiÞ × SUðNÞR ×Uð1Þf
�
=Zf: ð54Þ

This matches the intuition from M-theory constructions
[36], from which one expects the flavor symmetry group of
this SCFT to be S½UðNÞL ×UðNÞR�=ZN : the ZN in this
quotient is the center-flavor symmetry involving just the
SUðNÞ ⊂ UðNÞ parts, while the quotient Zf is encoded
in S½UðNÞ ×UðNÞ� ≅ ½SUðNÞ × SUðNÞ × Uð1Þ�=ZN .

Example 2: The theory with tensor branch description as
in Eq. (22):

1
suN

½#⋀2¼1�
½suNþ8�; ð55Þ

also has a flavor Uð1Þf free of ABJ anomalies [65], under
which the hypermultiplets have the following charges:

ðN;Nþ 8Þ∶q ¼ N − 4; ð⋀2; 1Þ∶q ¼ −ðN þ 8Þ: ð56Þ

By Eq. (37), the Green-Schwarz mechanism couples, to the
single tensor Θ, the four-form

I ⊃ c2ðFNÞ − c2ðFNþ8Þ þ
1

2
Ci;f;fc1ðFfÞ2; ð57Þ

with

1

2
Ci;f;f ¼ NðN − 1ÞðN þ 8Þ: ð58Þ

The conditions for an element ðk1; k2; e2πi
l q̂Þ ∈ ZN ×

ZNþ8 × Uð1Þf to act trivially on R are

R ¼ ðN;Nþ 8Þ∶ k1
N

−
k2

N þ 8
þ N − 4

l
≡ 0 mod Z;

R ¼ ð⋀2; 1Þ∶ 2k1
N

−
N þ 8

l
≡ 0 mod Z: ð59Þ

For odd N, it turns out that there is no such combined
transformation leaving the hypermultiplets invariant.
For even N, there is always a trivially acting combina-

tion, but the general solution is cumbersome, so we will
focus on an example with N ¼ 6. In this case, the solution
is ðk1; k2; lÞ ¼ ð3; 9; 14Þ, so the putative quotient is a
Z14 ≃ Z2 × Z7. Notice that the charges of the hypermul-
tiplets have a greatest common divisor of two, so, in order
to be in the proper Uð1Þ normalization, we have to divide
the charges by two, which means that the value of the
coefficient Ci;f;f is divided by four, 1

2
Ci;f;f ¼ 105. In

addition, in this normalization the twist inside the Uð1Þf
is by e2πi=7. Hence, the fractionalization of the Chern
classes for this discrete twist is

c2ðFNÞ≡−9×
5

12
w2 modZ;

c2ðFNþ8Þ≡−81×
13

28
w2 modZ;

c1ðFfÞ≡1

7
w modZ ⇒

1

2
Ci;f;f0c1ðFfÞ2

≡105

�
1

49
w2þ2

7
w∪χ

�
modZ; ð60Þ
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for an integer cocycle χ. Almost miraculously, the frac-
tional parts cancel out in I, thus verifying that the full
symmetry group is

Ggauge-flavor ¼
SUð6Þ × SUð14Þ ×Uð1Þ

Z14

: ð61Þ

The superconformal flavor symmetry group is then

Gflavor ¼
SUð14Þ ×Uð1Þ

Z14

: ð62Þ

Example 3: Finally, let us return to the example in
Eq. (25) with tensor branch configuration

½suðLÞ
3 �3

e6
1

½uð1Þf �
2
su2½suðRÞ

3 �; ð63Þ

where we now include the Abelian flavor factor. The uð1Þf
is the commutant of e6 × su2 inside e8, under which the
representations resulting from the branching in Eq. (29) of
the E8-adjoint have charges

248 → ð78; 1Þ0 ⊕ ð1; 3Þ0 ⊕ ð1; 2Þ3 ⊕ ð1; 2Þ−3
⊕ ðð27; 2Þ1 ⊕ ð27; 1Þ−2 þ c:cÞ ⊕ ð1; 1Þ0: ð64Þ

These are uncharged under the non-Abelian flavor factors
at the end of the quiver. In turn, the hypermultiplets

Rð1Þ ¼ ð3; 27; 1; 1Þ0; Rð2Þ ¼ 1

2
ð1; 1; 2; 8Þ0; ð65Þ

are uncharged underUð1Þf. From this we find that theZ3 ×
Z2 ≅ Z6 ⊂ ZðSUð3Þ × E6 × SUð2Þ × Spinð7ÞÞ considered
previously, which leaves the hypermultiplets invariant but
not the E-string states, can be compensated by a Uð1Þf
twist, such that both sectors are invariant. This combined
Z6 has generator

ð2; 2; 1; 1; e2πiq̂
6 Þ ∈ Z2

3 × Z2
2 × Uð1Þ

≅ ZðSUð3ÞL × E6 × SUð2Þ
× Spinð7ÞR × Uð1ÞfÞ; ð66Þ

with fractionalizations

c2ðFLÞ≡−
4

3
w2; c2ðFe6Þ≡−

8

3
w2;

c2ðFsu2
Þ≡−

1

4
w2; c2ðFRÞ≡−

1

2
w2;

c1ðFfÞ≡ 1

6
w⇒ c1ðFfÞ2 ≡ 1

36
w2 þ 1

3
w ∪ χ mod Z:

ð67Þ

From the above decomposition involving the Uð1Þ charges
and Eq. (44), we further find that

TrðF2
e8Þ → TrðF2

e6Þ þ TrðF2
su2

Þ − 12F2
f; ð68Þ

where the e6 and su2 are gauged on the left and right,
respectively, of the E-string. With the formulas from [30]
applied to the hypermultiplets above, this gives the flavor
anomaly coefficients

BiL ¼ 6δi;1 BiR ¼ δi;3; Ci;f ¼ 6δi;2: ð69Þ

Together with the matrix

−Aij ¼

0
B@

3 −1 0

−1 1 −1
0 −1 2

1
CA; ð70Þ

we can now verify that the above Z6 twist does not induce
any anomaly for the large gauge transformations of the
tensors:

Θ1∶ η1jIð4Þj ⊃ 3c2ðFe6Þ − 6c2ðFLÞ≡ ð−8þ 8Þw2 mod Z;

Θ2∶ η2jIð4Þj ⊃ −c2ðFe6Þ − c2ðFsu2
Þ þ 3c1ðFfÞ2 ≡

�
8

3
þ 1

4
þ 1

12|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
¼3

�
w2 mod Z;

Θ3∶ η3jIð4Þj ⊃ 2c2ðFsu2
Þ − c2ðFRÞ≡

�
−
1

2
þ 1

2

�
w2 mod Z: ð71Þ

From this, we conclude that the tensor branch gauge theory
has symmetry group:

Ggauge-flavor ¼
SUð3Þ × E6 × SUð2Þ × Spinð7Þ × Uð1Þ

Z6

;

ð72Þ

where the group action is specified by Eq. (66). This also
provides a prediction for the SCFT flavor symmetry:

Gflavor ¼
SUð3Þ × Spinð7Þ ×Uð1Þ

Z6

: ð73Þ
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C. Center twists and R-symmetry

In addition to the flavor symmetries, all 6D N ¼ ð1; 0Þ
SCFTs have an suð2ÞR symmetry. This, of course, is an
additional global symmetry which can in principle also mix
with the center of the gauge group and flavor symmetry. It
is also worth noting that this R-symmetry is not directly
manifest in the target space geometry of the corresponding
F-theory models, but is realized geometrically in various
M-theory constructions of 6D SCFTs.
Now, before getting to the case of center/R-symmetry

mixing in 6D SCFTs, it is already instructive to note that
even in the context of 4D theories, entertaining this
possibility resolves some apparent puzzles, which as far
as we are aware have not been previously addressed in the
literature.18 For example, in the context of 4D N ¼ 2
SCFTs, the E6 Minahan-Nemeschansky was argued to
have a non-Abelian E6=Z3 global symmetry [91], which is
also in accord with some superconformal index computa-
tions [116]. On the other hand, a direct analysis of BPS
states would appear to detect states in the 27 of E6 [90].
The natural resolution of this puzzle is that the center of the
E6 flavor symmetry mixes with the Uð1ÞR symmetry of an
N ¼ 2 SCFT, namely we have the global structure
½E6 ×Uð1ÞR�=Z3.

19 This also agreeswith expectations based
on the D3-brane probe of an E6 7-brane.

20

However, this cannot be the full story, since the theory
contains, for example, the supercharges which are not
charged under any flavor symmetries, but do transform
under a discrete R-symmetry twist. This twist can be
naturally canceled if we include the remaining parts of
the superconformal symmetry group [117,118]. We will
postpone a detailed analysis of this interplay in the above
4D example, and turn our attention to 6D SCFTs for now.
For these, the supercharges are in the fundamental

representation of suð2ÞR, but otherwise uncharged under
any flavor symmetry. A natural way to cancel the effects of
the Z2 ¼ ZðSUð2ÞRÞ twist would be to activate a Z2 ¼
ZðSpinð1; 5ÞÞ twist in the Lorentz group which acts on
spinors such as the supercharges. Therefore, whenever we
contemplate turning on an R-symmetry twist, the minimal
requirement for the theory to be invariant is if it is
accompanied by a Z2 twist of the Lorentz symmetry.

Now, we observe that our tensor branch analysis naturally
incorporate both twists, since the topological Green-
Schwarz couplings capture the contribution from nontrivial
R-symmetry bundles, as well as the tangent bundle which is
associated to Lorentz symmetry. Indeed, the Green-Schwarz
four-form,

Ii ⊃ yic2ðRÞ − ð2þ AiiÞ 1
4
p1ðTÞ; ð74Þ

contains the second Chern-class c2ðRÞ of the R-symmetry
bundle and the first Pontryagin class p1ðTÞ of the tangent
bundle. The coefficient yi ≡ h∨gi is fixed to be the dual
Coxeter number of the i-th gauge algebra gi by requiring the
cancellation of all mixed gauge-R-symmetry anomalies; if
gi ¼ ∅ (which requires Aii ¼ −1 or −2), the coefficient is
set to be yi ¼ 1. For the R-symmetry bundle, the fraction-
alization is just as for any other SUð2Þ=Z2 gauge or flavor
bundle, c2ðRÞ≡ − 1

4
w2
R mod Z. To quantify the fraction-

alization of the tangent bundle, we will work under the
assumption that a Wick rotation to Euclidean signature does
not affect the results. Then, p1ðTÞ ¼ − 1

2
trvecðR2Þ, where

the trace over the curvature R is in the vector, or
antisymmetric representation, of Spinð6Þ ≅ SUð4Þ. For
SUð4Þ, this is the same as the 1-instanton normalized trace,
so we conclude that 1

4
p1ðTÞ ¼ − 1

2
c2ðSUð4ÞÞ. In Euclidean

signature, the corresponding Z2 twist (which leaves the
vector representation invariant) is generated by 2 ∈ Z4 ¼
ZðSUð4ÞÞ, for which the fractionalization is

1

4
p1ðTÞ¼−

1

2
c2ðSUð4ÞÞ

≡1

2
×22×

3

8
w2
R modZ≡3

4
w2
R modZ: ð75Þ

Then, a twist by a center-flavor symmetry can occur if the
fractionalization of the gauge, flavor, R-symmetry, and
tangent bundles cancel out in Ii for every i.
We present some examples of R-symmetry/spacetime

symmetry mixing for the tensor branch of the N ¼ ð2; 0Þ
and E-string SCFTs in Appendix A. These cases are a bit
special in that the tensor branch has no gauge group factors.
For the sake of illustrating this general phenomenon, we
now turn to some examples with center-flavor symmetry
mixing, and no additional Uð1Þ factors. In this case, the
gauge-global 0-form symmetry is of the general form:

Ggauge-global ¼
G̃gauge × G̃flavor × ½SUð2ÞR × Spinð1; 5Þ�

C
;

ð76Þ

where C is a suitably defined quotienting subgroup. The
global symmetry group that acts on spacetime scalars is
then

18We thank J. Distler for helpful correspondence.
19In this example we make no statement about the global

structure involving the SUð2ÞR R-symmetry.
20For the rank one theory it is possible to construct BPS states

on the Coulomb branch as junctions between an E6 stack of
7-branes and a D3-brane. In this scenario the states carry charge
under the gauge group of the D3-brane so the symmetry group is
ðE6 × Uð1ÞD3Þ=Z3. However since a Uð1ÞR transformation in
this construction is simply a rotation in the space transverse to the
7-branes it can be identified with the Uð1Þ center of mass of the
D3-brane; it is possible to identify Uð1ÞR ∼ Uð1ÞD3 with Uð1ÞR
being the symmetry that survives at the conformal point.
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Gglobal ¼
G̃flavor × SUð2ÞR

C
: ð77Þ

As a first example, consider the SCFTwith tensor branch
description

2
suN½su2N �: ð78Þ

In this case, the p1ðTÞ-term drops out of the Green-
Schwarz coupling:

Θ ∧ ð2c2ðFgaugeÞ − c2ðFflavorÞ þ Nc2ðRÞÞ; ð79Þ

which fractionalizes, for general center-twisted back-
grounds, as

Θ∧
�
−
N − 1

N
w2
g þ

2N − 1

4N
w2
f −

N
4
w2
R

�
mod Z: ð80Þ

The well-known flavor symmetry group SUð2NÞ=ZN
results from a combined twist of the gauge and flavor
factor, with trivial R-symmetry twist:

wf ¼ −2wg ¼ −2wN; wR ¼ 0; ð81Þ

which leads to an overall integer shift in the GS-coupling.
In order to turn on a Z2 twist of the R-symmetry (which,

as discussed above, is always accompanied by a Lorentz
group twist), we must first make sure that the hyper-
multiplets are invariant. Since these transform in the
fundamental of suð2ÞR, such a twist acts with a phase
(−1), which must be canceled by a suitable gauge or flavor
symmetry twist. In the present example, we can turn on the
Z2 ⊂ Z2N ¼ ZðSUð2NÞÞ simultaneously to achieve this.
More precisely, we claim that the theory is invariant under
the central subgroup with generators

ZN∶ a ¼ ð1;−2; 0Þ
Z2∶ b ¼ ð0; N; 1Þ

�
∈ ZN × Z2N × Z2 ¼ ZðSUðNÞ × SUð2NÞ × SUð2ÞRÞ: ð82Þ

At the level of background fields, these twists correspond to
the following correlations,

wg ¼ wN; wR ¼ w2; wf ¼ −2wN þNw2; ð83Þ
where wN and w2 are the background fields associated to
the ZN and the Z2 generator, respectively, in Eq. (82). This
indeed shifts the Green-Schwarz four-form by an integer
class,

−
N − 1

N
w2
g þ

2N − 1

4N
w2
f −

N
4
w2
R

¼ w2
N − ð2N − 1ÞwN ∪ wR þ NðN − 1Þ

2
w2
R ≡ 0 mod Z:

ð84Þ
To write down the global symmetry group structure, note

that for odd N, we have ZN × Z2N × Z2 ≅ ZN × ZN×
Z2 × Z2, and a generates the diagonal of the two ZN

factors, while b generates the diagonalZ2. For evenN ¼ 2n,
on the other hand, we can consider the Z2 generator
naþ b ¼ ðn; 0; 1Þ ∈ ZN × Z2N × Z2, which maps trivially
onto the Z2N factor of the flavor symmetry. Therefore, the
global symmetry group compatible with the large gauge
transformations of the tensor is

Gglobal ¼
8<
:

SUð2NÞ=ZN×SUð2ÞR
Z2

; N odd;

SUð2NÞ
ZN

× SUð2ÞR
Z2

; N even:
ð85Þ

Let us compare this with results known from the Higgs
branch chiral ring. Elements of this ring carry representations

of the global symmetry of the SCFT, so a center-flavor
symmetry must leave all combinations of flavor and R-
symmetry representations that can be found in the chiral ring
invariant. For the SCFTwith tensor branch description as in
Eq. (78), it turns out that the chiral ring generator with
nontrivial center charges has representation ð∧N;Nþ 1Þ
under SUð2NÞ × SUð2ÞR [119]. As the N-index antisym-
metric representation, ∧N, of SUð2NÞ picks up a phase (−1)
under the generator of Z2N ¼ ZðSUð2NÞÞ, this state is
clearly invariant under the ZN subgroup in Eq. (82).
Therefore, the flavor symmetry group SUð2NÞ=ZN is also
what the Higgs branch data sees. Moreover, ð∧N;Nþ 1Þ
transforms with phase ð−1ÞN underN ∈ Z2N and with phase
ð−1ÞN under 1 ∈ Z2 ¼ ZðSUð2ÞRÞ. So it is also invariant
under the second generator in Eq. (82). Hence, the global
structure in Eq. (85) is also predicted from the Higgs branch
chiral ring.
To illustrate the importance of the fractionalization of the

tangent bundle, we consider the minimal ðDk;DkÞ con-
formal matter theory, whose tensor branch gauge theory is

1
spk−4½so4k�; ð86Þ

containing a half-hypermultiplet h in the bifundamental
representation R ¼ 1

2
ð2k − 8; 4kÞ, with 4k the vector of

so4k. The hypermultiplet h also transforms as the funda-
mental of suð2ÞR. The Higgs branch chiral ring is gen-
erated by a moment map μ transforming in the ðadj; 3Þ
of the so4k ⊕ suð2ÞR, thus uncharged under the center,
and a generator μþ transforming in the ðSþ;k − 1Þ
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representation, where Sþ is one of the so4k spinor repre-
sentations [92,93],21 which we pick to be of positive
chirality for definiteness.22 Therefore, the action of an
element

ðag; ðaþ; a−Þ; aRÞ ∈ Z2 × ðZþ
2 × Z−

2 Þ × Z2

¼ ZðSpðk − 4ÞÞ × ZðSpinð4kÞÞ
× ZðSUð2ÞRÞ; ð87Þ

on the representations of h and μþ give phases

μþ∶ ð−1ÞaþþkaR ; h∶ ð−1Þagþaþþa−þaR ; ð88Þ

which must be trivial for any element ðag; ðaþ; a−Þ; aRÞ of
the quotienting subgroup C. For even k, this requires
aþ ¼ 0 mod 2, and ag þ a− þ aR ¼ 0 mod 2. This leaves
two independent generators,

ðag; ðaþ; a−Þ; aRÞ ¼ ð1; ð0; 1Þ; 0Þ and

× ð1; ð0; 0Þ; 1Þ ðk evenÞ; ð89Þ

which correspond to the diagonal Z2 of ZðSpðk − 4ÞÞ ×
Z−

2 and ZðSpðk − 4ÞÞ × ZðSUð2ÞRÞ, respectively. For
odd k, we instead have aþ þ aR ¼ 0 mod 2, and
ag þ a− ¼ 0 mod 2, which has independent solutions cor-
responding to the generators

ðag; ðaþ; a−Þ; aRÞ ¼ ð1; ð0; 1Þ; 0Þ and

× ð0; ð1; 0Þ; 1Þ ðk oddÞ; ð90Þ
of the diagonal Z2 factors of ZðSpð4 − kÞÞ × Z−

2 and
Zþ

2 × ZðSUð2ÞRÞ, respectively. Considering the gauge
invariant representations that can appear in the SCFT,
the Higgs branch therefore predicts the global symmetry
group

GHB
global¼

	
Spinð4kÞ=Z−

2 ×ðSUð2ÞR=Z2Þ if k even;

½Spinð4kÞ=Z−
2 ×SUð2ÞR�=Z2 if k odd:

ð91Þ

This agrees with the analysis from the Green-Schwarz
coupling,

Θ∧ I4≔Θ∧
�
c2ðFspÞ−c2ðFsoÞþh∨spk−4c2ðRÞ−

1

4
p1ðTÞ

�
;

ð92Þ

which, with h∨spk−4 ¼ k − 3, fractionalizes as

I4 ≡ −
k
4
w2
g þ

k
4
ðwþ þ w−Þ2 þ

1

2
wþ ∪ w−

−
k − 3

4
w2
R −

3

4
w2
R mod Z; ð93Þ

where wg, ðwþ; w−Þ, and wR are the generic background
fields for ZðSpðk − 4ÞÞ, ZðSpinð4kÞÞ, and ZðSUð2ÞRÞ,
respectively, and we have already imposed the correlation
between the R-symmetry and Lorentz group twist.
Restricting to the twists in Eqs. (89) and (90) predicted
by the Higgs branch, we find

k even∶ wg ¼ w− þ wR; wþ ¼ 0

⇒ I4 ≡ −
k
2
ðw2

R þ w− ∪ wRÞ≡ 0 mod Z;

k odd∶ wg ¼ w−; wþ ¼ wR

⇒ I4 ≡ kþ 1

2
wR ∪ w− ≡ 0 mod Z: ð94Þ

IV. INTERMEZZO: ORBI-INSTANTON THEORIES

Throughout Sec. III, we have demonstrated that, given
the quiver description of the generic point of the tensor
branch of a 6D (1, 0) SCFT, one can determine the global
structure of the flavor symmetry group. Since we also wish
to generate 4D theories via Stiefel-Whitney twisted com-
pactifications on a T2, we now turn to a rich class of
examples where we can systematically study possible
center-flavor symmetry mixing.
The theories we now consider are Higgs branch defor-

mations of the “orbi-instanton theories,” as obtained from
as obtained in M-theory terms from M5-branes probing an
ADE singularity wrapped by an E8 nine-brane [7]. Via a
process of fission and fusion, these turn out to be the
progenitors for all 6D SCFTs [13] realized in a geometric
phase of F-theory. As shown in [6], a large class of Higgs
branch deformations are captured by a nilpotent orbit
of g, σ, and a homomorphism ρ∶ Γg → E8. We denote
the resulting theories as

Ωg;Nðρ; σÞ: ð95Þ

It is natural to ask: does the pair ðρ; σÞ capture the presence
or absence of center-flavor symmetry in a straightforward
manner? We assume that N is sufficiently large that the
Higgsing by ρ and σ are uncorrelated on the tensor branch,
and in this section we will focus on the case g ¼ suK .
Furthermore, we will assume that σ is the maximal
nilpotent orbit given by the trivial embedding su2 → g.
As we see, the condition on ρ for Ωg;Nðρ; σÞ to have a
nontrivial center flavor symmetry in these cases is
straightforward.
We consider the rank N ðe8; suKÞ orbi-instanton 6D

SCFT, which has the tensor branch configuration

21Aspects of the Higgs branch of minimal ðDk;DkÞ conformal
matter have recently been explored from the perspective of the
conformal bootstrap [120].

22In this case, the choice of chirality of the spinor generator is
irrelevant, however, it can be relevant when minimal ðDk;DkÞ
conformal matter is used as a building block for other 6D
SCFTs [15].
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12 2
su2

2
su3 � � � 2

suK

2
suK � � � 2

suK|fflfflfflfflfflffl{zfflfflfflfflfflffl}
N−1

: ð96Þ

This theory can be obtained in M-theory as the world
volume theory of a stack of N M5-branes probing a C2=ZK
orbifold singularity and on top of an M9-plane [7]. The
non-Abelian part of the flavor symmetry of this theory is
generically

e8 ⊕ suK: ð97Þ
A Higgsing of the e8 flavor is specified by a choice of
homomorphism ρ∶ ΓsuK

≅ ZK → E8. Such homomor-
phisms, as explained by Kac [121], are captured by a
weighted partition of the Dynkin labels of the affine E8

Dynkin diagram into K:

ða1; a2; a3; a4; a5; a6; a40 ; a20 ; a30 Þ; ð98Þ

such that

a1 þ 2ða2 þ a20 Þ þ 3ða3 þ a30 Þ þ 4ða4 þ a40 Þ
þ 5a5 þ 6a6 ¼ K: ð99Þ

We find that Higgsing the e8 by a homomorphism,
represented by a tuple as in Eq. (98) whose nonzero entries
are faið0Þg, leads to a 6D SCFTwith center-flavor symmetry

Zl ¼ ZgcdðfigÞ: ð100Þ

As evident from Eq. (99), this Zl is always a subgroup of
ZðSUðKÞÞ, consistent with the fact that the Higgsed theory
has an suK flavor algebra. For each E8-homomorphism
specified by Eqs. (98) and (99), there exists an algorithm that
determines the tensor branch configuration [33]. These
tensor branch descriptions, for each of the putative Zl-
preserving E8-homomorphisms, are written in Table I23; in
each case one can then use the study of the large gauge
transformation anomalies to verify that there is indeed a Zl
center-flavor symmetry. As the tensor branch configurations

TABLE I. 6D SCFTs that we consider that have discrete center-flavor symmetry. In descending order, the E8-homomorphisms as in
Eq. (98), are ð0; p; 0; s; 0; u; 2tþ 1; q; 0Þ, ð0; p; 0; s; 0; u; 2t; q; 0Þ, ð0; 0; p; 0; 0; s; 0; 0; 3qþ 2Þ, ð0; 0; p; 0; 0; s; 0; 0; 3qþ 1Þ,
ð0; 0; p; 0; 0; s; 0; 0; 3qÞ, ð0; 0; 0; p; 0; 0; 2qþ 1; 0; 0Þ, ð0; 0; 0; p; 0; 0; 2q; 0; 0Þ, ð0; 0; 0; 0; p; 0; 0; 0; 0Þ, and ð0; 0; 0; 0; 0; p; 0; 0; 0Þ.
Zl Tensor branch description of the 6D (1, 0) SCFT

Z2 1
spq

2
su2qþ8

� � � 2
su2qþ8t|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

t

2
su2qþ8tþ6

� � � 2
su2qþ8tþ6u|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

u

2
su2qþ8tþ6uþ4

� � � 2
su2qþ8tþ6uþ4s|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

s

2
su2qþ8tþ6uþ4sþ2

� � � 2
su2qþ8tþ6uþ4sþ2p|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

p

2
su2qþ8tþ6uþ4sþ2p

� � � 2
su2qþ8tþ6uþ4sþ2p|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

N−1

1
su2qþ4

2
su2qþ12

� � � 2
su2qþ8tþ4|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

t

2
su2qþ8tþ10

� � � 2
su2qþ8tþ6uþ4|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

u

2
su2qþ8tþ6uþ8

� � � 2
su2qþ8tþ6uþ4sþ4|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

s

2
su2qþ8tþ6uþ4sþ6

� � � 2
su2qþ8tþ6uþ4sþ2pþ4|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

p

2
su2qþ8tþ6uþ4sþ2pþ4

� � � 2
su2qþ8tþ6uþ4sþ2pþ4|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

N−1

Z3 1
su3

2
su12 � � � 2

su9qþ3|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
q

2
su9qþ9

� � � 2
su9qþ3þ6s|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

s

2
su9qþ6sþ6

� � � 2
su9qþ6sþ3pþ3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

p

2
su9qþ6sþ3pþ3

� � � 2
su9qþ6sþ3pþ3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

N−1

1 2
su9 � � � 2

su9q|fflfflfflfflfflffl{zfflfflfflfflfflffl}
q

2
su9qþ6

� � � 2
su9qþ6s|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

s

2
su9qþ6sþ3

� � � 2
su9qþ6sþ3p|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

p

2
su9qþ6sþ3p

� � � 2
su9qþ6sþ3p|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

N−1

1
su0

6

2
su15 � � � 2

su9qþ6|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
q

2
su9qþ12

� � � 2
su9qþ6þ6s|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

s

2
su9qþ6sþ9

� � � 2
su9qþ6sþ3pþ6|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

p

2
su9qþ6sþ6sþ3pþ6

� � � 2
su9qþ6sþ3pþ6|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

N−1

Z4 1
su4

2
su12 � � � 2

su8qþ4|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
q

2
su8qþ8

� � � 2
su8qþ4pþ4|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

p

2
su8qþ4pþ4

� � � 2
su8qþ4pþ4|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

N−1

1 2
su8 � � � 2

su8q|fflfflfflfflfflffl{zfflfflfflfflfflffl}
q

2
su8qþ4

� � � 2
su8qþ4p|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

p

2
su8qþ4p

� � � 2
su8qþ4p|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

N−1

Z5 1 2
su5 � � � 2

su5p|fflfflfflfflfflffl{zfflfflfflfflfflffl}
p

2
su5p

� � � 2
su5p|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

N−1

Z6 1 2
su6 � � � 2

su6p|fflfflfflfflfflffl{zfflfflfflfflfflffl}
p

2
su6p

� � � 2
su6p|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

N−1

23In fact, when t ≠ 0, the tensor branch description on the first
line of Table I corresponds to two 6D SCFTs, depending on the
choice of θ-angle for the spq gauge algebra on the (−1)-curve.
These theories have the same central charges and flavor sym-
metries, but differ in the spectrum of local operators at large
conformal dimension. See [15,33] for more details; we suppress
this subtlety in this paper.
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are rather involved, we explicate the analysis in one
example.
The simplest example is the Higgsing induced by a

Z6p → E8 homomorphism specified by a6 ¼ p, and all
other labels being zero. The resulting tensor branch gauge
theory has the quiver description

½su3 ⊕ su2�1 2
su6

2
su12 � � � 2

su6p−6

2
su6p

½su6�
2

su6p

� � � 2
su6p|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

N−1

½su6p�: ð101Þ

Between each su gauge and flavor factor on or next to
2-nodes, there is a bifundamental hypermultiplet,

Rð1Þ ¼ ð6; 12Þ0; Rð2Þ ¼ ð12; 18Þ0;…;

Rðp−1Þ ¼ ð6p − 6; 6pÞ0;RðpÞ ¼ ð6p; 6Þ−p;
Rðpþ1Þ ¼ ð6p; 6pÞ1;…; RðpþNÞ ¼ ð6p; 6pÞ1: ð102Þ

In addition, there is a Uð1Þf flavor symmetry without
ABJ-anomalies [65], which only charges the hypermultip-
lets between the su6p factors (“the plateau”) with the
charges indicated in the subscripts. The tensor pairing is the
ðN þ pÞ × ðN þ pÞ matrix

Aij ¼

0
BBBBBB@

−1 1 0 � � �
1 −2 1 . .

.

0 1 −2 . .
.

..

. . .
. . .

. . .
.

1
CCCCCCA; ð103Þ

and the anomaly coefficients of the flavor factors are

Bi;su3 ¼Bi;su2 ¼ δi;1; Bi;su6 ¼ δi;pþ1; Bi;su6p ¼ δi;Nþp;

Ci;f;f ¼

8>><
>>:
0; i≤p;

6pðpþ1Þ; i¼pþ1;

12p; i>pþ1:

ð104Þ

Without taking into consideration theUð1Þf, one can easily
verify that there is a Z3 × Z2 × Z6 ≅ Z6

ð1Þ × Z6
ð2Þ center-

flavor symmetry that leaves all hypermultiplets invariant.
These have generators

Z6
ð1Þ∶ ½su3

1
⊕ su2

1 �1 2
su6

0

2
su12

0

� � � 2
su6p−6

0

2
su6p

0

½su6
0

�
2

su6p

0

� � � 2
su6p

0

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
N−1

½su6p

0 �;

Z6
ð2Þ∶ ½su3

0
⊕ su2

0 �1 2
su6

1

2
su12

2

� � � 2
su6p−6

p−1

2
su6p

p

½su6
1

�
2

su6p

p

� � � 2
su6p

p

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
N−1

½su6p

p �;

ð105Þ

where we have indicated the embedding kg ∈ ZðGgÞ by the
overset gg

kg
(or underset for the ½su6� flavor factor) on each

node of the quiver. However, the presence of the E-string
breaks these individual Z6 factors to the diagonal Z6, with
the fractional part of Chern classes given by24

c2ðsu3Þ≡ −
1

3
w2; c2ðsu2Þ≡ −

1

4
w2;

c2ðsu6lÞ≡ −
lð6l − 1Þ

12
w2 ðl ¼ 1;…; pÞ: ð106Þ

It is straightforward to verify that these cancel for each
tensor:

Θ1∶ − c2ðsu3Þ − c2ðsu2Þ − c2ðsu6Þ≡
�
1

3
þ 1

4
þ 5

12

�
w2 ≡ 0 mod Z;

Θ1þið1 ≤ i < pÞ∶ − c2ðsu6ði−1ÞÞ þ 2c2ðsu6iÞ − c2ðsu6ðiþ1ÞÞ

≡ ði − 1Þð6i − 7Þ − 2ið6i − 1Þ þ ðiþ 1Þð6iþ 5Þ
12

w2 ≡ 12

12
w2 ≡ 0 mod Z;

Θpþ1∶ − c2ðsu6ðp−1ÞÞ þ 2c2ðsu6pÞ − c2ðsu6pÞ − c2ðsu6Þ

≡ ðp − 1Þð6p − 7Þ − 2pð6p − 1Þ þ pð6p − 1Þ − 5

12
w2 ≡ 12ðp − 1Þ

12
w2 ≡ 0 mod Z;

Θpþið1 < i ≤ NÞ∶ − c2ðsu6pÞ þ 2c2ðsu6pÞ − c2ðsu6pÞ≡ 0 mod Z: ð107Þ
Therefore, the non-Abelian structure group is

½SUð3Þ × SUð2Þ� ×Q
i<pSUð6iÞ × SUð6pÞN × ½SUð6Þ� × ½SUð6pÞ�

Z6

; ð108Þ

24By an abuse of notation, we will write c2ðgÞ for c2ðFgÞ.
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and the non-Abelian flavor symmetry of the SCFT is

SUð3Þ × SUð2Þ × SUð6Þ × SUð6pÞ
Z6

: ð109Þ

This Z6 center-flavor symmetry will allow us to perform a Stiefel-Whitney twisted T2 compactification down to 4D, which
we will turn to in the next section.
To complete the characterization of the full symmetry structure, we include possible Uð1Þf twists, in which case the

hypermultiplets are invariant under a further center transformation of order 6p, with generator

Z6p∶ ½su3

0
⊕ su2

0 �1 2
su6

0

2
su12

0

� � � 2
su6p−6

0

2
suð0Þ

6p

0

½su6
−1

�
2

suð1Þ
6p

1

2
suð2Þ

6p

2

� � � 2
suðN−1Þ

6p

N−1

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
N−1

½suðNÞ
6p

N

� and e−
2πiq̂
6p ∈ Uð1Þf; ð110Þ

where we have enumerated, for convenience, the su6p factors. The resulting nontrivial Chern class fractionalizations are
then

c2ðsu6Þ≡ −
5

12
w2; c2ðsuðkÞ

6p Þ≡ −k2
6p − 1

12p
w2; c1ðFfÞ2 ≡ 1

36p2
w2 þ 1

3p
w ∪ χ mod Z: ð111Þ

For the tensors of the suðkÞ
6p factors with k ≥ 1, the cancellation of the fractionalizations is analogous to that appearing in

Eq. (53) for the simple A-type quiver example. For k ¼ 0, the cancellation is due to

− c2ðsu6p−6Þ þ 2c2ðsuð0Þ
6p Þ − c2ðsu6Þ − c2ðsuð1Þ

6p Þ þ 3pðpþ 1Þc1ðFfÞ2

≡
�
0þ 0þ 5

12
þ 6p − 1

12p
þ pþ 1

12p

�
w2 ≡ 0 mod Z: ð112Þ

Lastly, we also incorporate the R-symmetry. Again, the main constraint is to have the bifundamental hypermultiplets
being invariant, which all transform in the fundamental representation of suð2ÞR. To cancel the phase (−1) which these
states acquire upon a Z2 ¼ ZðSUð2ÞRÞ twist, we turn on a corresponding Z2 ⊂ ZðSUð6kÞÞ in every second su-factor.
These two a priori different twists are related by adding the Z2 subgroup of the Z6 center-flavor symmetry responsible for
the non-Abelian flavor group structure (108), so do not give rise to two new and independent center-flavor symmetries when
we include the R-symmetry, as expected. For concreteness, we take the generator that compensates the ZðSUð2ÞRÞ twist to
be

p even∶ ½su3

0
⊕ su2

0 �1 2
su6

0

2
su12

6

2
su18

0

2
su24

12

� � � 2
su6p−6

0

2
su6p

3p

½su6
0

�
2

su6p

0

2
su6p

3p

� � �|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
N−1

½su6p

� �;

p odd∶ ½su3

0
⊕ su2

0 �1 2
su6

0

2
su12

6

2
su18

0

2
su24

12

� � � 2
su6p−6

3p−3

2
su6p

0

½su6
3

�
2

su6p

3p

2
su6p

0

� � �|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
N−1

½su6p

� �; ð113Þ

where the � is either 3p if pþ N is even, or 0 if pþ N is odd. For this quiver, the tangent bundle enters only in the first
tensor multiplet t1 associated to the E-string, whose corresponding Green-Schwarz four-form contains c2ðRÞ and p1ðTÞ:

Θ1∶ − c2ðsu3Þ − c2ðsu2Þ − c2ðsu6Þ þ c2ðRÞ −
1

4
p1ðTÞ≡ −

1

4
w2 −

3

4
w2 ≡ 0 mod Z: ð114Þ

For the other tensors, the topological coupling to the R-symmetry bundle is through the term h∨c2ðRÞ, where
h∨ðsu6kÞ ¼ 6k. Since these tensors all have Aii ¼ −2, the coupling to p1ðTÞ is trivial. Let us first examine those on a
generic position on the ramp (i.e., a 2-node with su6i<6p). Here, we have
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Θ1þiði evenÞ∶ − c2ðsu6ði−1ÞÞ þ 2c2ðsu6iÞ − c2ðsu6ðiþ1ÞÞ þ 6ic2ðRÞ

≡
�
2 ×

9ið6i − 1Þ
12

þ 3

2
i

�
w2 ≡ 0 mod Z; ð115Þ

Θ1þiði oddÞ∶ − c2ðsu6ði−1ÞÞ þ 2c2ðsu6iÞ − c2ðsu6ðiþ1ÞÞ þ 6ic2ðRÞ

≡
�
−
9ði − 1Þð6i − 7Þ þ 9ðiþ 1Þð6iþ 5Þ

12
þ 3

2
i

�
w2 ≡ 0 mod Z; ð116Þ

where the fractional part of c2ðsu6ði−1ÞÞ is automatically zero for i ¼ 1. For the node that connects the ramp to the plateau
(i.e., the first node with su6p gauge algebra), we have

Θpþ1ðp evenÞ∶ − c2ðsu6p−6Þ þ 2c2ðsu6pÞ − c2ðsu6pÞ − c2ðsu6Þ þ 6pc2ðRÞ

≡
�
2 ×

9pð6p − 1Þ
12

þ 3

2
p

�
w2 ≡ 0 mod Z; ð117Þ

Θpþ1ðp oddÞ∶ − c2ðsu6p−6Þ þ 2c2ðsu6pÞ − c2ðsu6pÞ − c2ðsu6Þ þ 6pc2ðRÞ

≡
�
−
9ðp − 1Þð6p − 7Þ þ 9pð6p − 1Þ þ 9ð6 − 1Þ

12
þ 3

2
p

�
w2 ≡ 0 mod Z: ð118Þ

For the other nodes on the ramp, there is either aZ2 twist only in the corresponding gauge factor, or only in the two adjacent
gauge / flavor factors:

Θpþiðpþ i oddÞ∶ − c2ðsu6pÞ þ 2c2ðsu6pÞ − c2ðsu6pÞ þ 6pc2ðRÞ

≡
�
2 ×

9pð6p − 1Þ
12

þ 3

2
p

�
w2 ≡ 0 mod Z; ð119Þ

Θpþiðpþ i evenÞ∶ − c2ðsu6pÞ þ 2c2ðsu6pÞ − c2ðsu6pÞ þ 6pc2ðRÞ

≡
�
−2 ×

9pð6p − 1Þ
12

þ 3

2
p

�
w2 ≡ 0 mod Z: ð120Þ

Again, we omit the straightforward, but somewhat
tedious crosscheck that we can activate simultaneously
the Z6 twist in the non-Abelian flavor factors, the Z6p twist
involving the Uð1Þf flavor, and the Z2 R-symmetry twist.
From this analysis, we conclude that the 6D SCFT with
tensor branch description as in Eq. (101) has global
symmetry group

SUð3Þ × SUð2Þ × SUð6Þ × SUð6pÞ ×Uð1Þf × SUð2ÞR
Z6 × Z6p × Z2

:

ð121Þ

The analysis of the structure for the global symmetry for the
other tensor branch descriptions in Table I follows directly
from the application of the methods described in this
example.

V. 4D N = 2 SW-FOLDS

Having shown how to extract the global symmetry group
of 6D SCFTs, we now turn to a specific application in the
context of constructing 4D N ¼ 2 SCFTs. To reach such a
theory from a 6D N ¼ ð1; 0Þ SCFT, one can consider
compactification on a T2. Activating background gauge
bundle configurations with vanishing flux provides a general
template for realizing 4D N ¼ 2 SCFTs. In fact, one can
also consider compactifications which are sensitive to the
global topology of the 6D global symmetries, namely by
switching on an ’t Hooft magnetic flux [122] in the T2

directions [61].25 In [61] this was referred to as a

25One can in principle consider various generalizations, as
obtained from compactifying on a more general genus g Riemann
surface with marked points, with nontrivial contributions from the
R-symmetry bundle also switched on. In this broader setting, one
would expect to get 4DN ¼ 1 SCFTs, along the lines of [29,123]
(see also, for example, [24,26,27,35–53,55,57,58] and references
therein).
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Stiefel-Whitney (SW) twisted compactification. These are a
specific class of configurations involving background flat
bundle configurations with nontrivial holonomies which
commute in Gglobal ¼ G̃global=C, but which would not have
commuted as holonomies of bundles with structure group G̃.
Treated as a bundle with structure group G̃, we would have a
nonzero flux valued in a subgroup of C, i.e., the holonomies
commute up to a specific element of this flux. We shall
loosely speaking refer to such holonomies as being “charged
under an element of C” since this has a clear meaning when
treating these backgrounds as G̃ bundles. Owing to their
similarities with S-fold constructions, we often refer to these
theories as “SW-folds” in what follows.
We consider SW-folds obtained from the 6D theories

considered in Sec. IV, namely the theories of the form
ΩsuK;Nðρ; 1Þ, where ρ is an E8-homomorphism that leads to
a Zl center-flavor symmetry. The tensor branch descrip-
tions of such 6D (1, 0) SCFTs were given in Table I.
Compactification on a torus with a Zl Stiefel-Whitney
twist then leads to the 4D SCFTs we consider herein;
furthermore, many of the properties of the 4D theories can
be obtained from a knowledge of the 6D (1, 0) parent
theory. We emphasize that when we say we turn on a Zl
Stiefel-Whitney twist, we are turning on a noncommuting
holonomy charged under the element p of Zl such that
gcdðp;lÞ ¼ 1. All of these Stiefel-Whitney twisted theo-
ries are listed in Table II.
As a general comment, while we could in principle

extract the global symmetry group of the resulting 4D
theory, there can be additional structures which emerge
from extended objects which can now wrap on the T2

directions. For this reason, we primarily focus on just the
global symmetry algebra of the resulting 4D theories,
leaving a more complete analysis of their global structure
group to future work.
The rest of this section is organized as follows. We first

explain how to extract the central charges and flavor
symmetries for the resulting SW-fold theories. This is
followed by an extensive list of examples, as given in
Table II. As an independent cross-check, we also directly
study the Coulomb branch operator spectrum for these
theories. In some cases, there are alternative ways to
generate some of these theories.26 We discuss some
examples of this in the context of class S constructions,
as well as 4D N ¼ 2 S-folds [97–100], and we comment
on the overlap as well as differences from these other
methods of generating 4D N ¼ 2 SCFTs.

A. Central charges and flavor symmetries

Having specified a construction for an infinite family of
4D N ¼ 2, we now turn to some of their properties.

As each of the SW-folds we study arises from the
compactification of a 6D SCFT that is very Higgsable,
we can apply the methods from [61] to determine the
central charges and the flavor central charges.
To determine the central charges of the SW-folds we

carry out the following procedure. First we compute the
anomaly polynomial of the origin 6D SCFT, I8. Next, we
compute the 1-loop contribution on the full tensor branch
from just the vector multiplets, tensor multiplets and
hypermultiplets, and refer to this as Ifields8

27:

Ifields8 ≡ I1-loop;vector8 þ I1-loop;tensor8 þ I1-loop;hyper8 : ð122Þ

Both I8 and Ifields8 is a formal eight-form polynomial in the
characteristic classes of the symmetries of the 6D SCFT. As
required, the anomaly polynomial does not contain any
terms proportional to the characteristic classes of the gauge
symmetries on the tensor branch, as the 6D SCFT is
nonanomalous, but the quantity Ifields8 does contain such
gauge-anomalous terms. We write

I8 − Ifields8 ¼ Ap1ðTÞ2 þ Bc2ðRÞp1ðTÞ
þ
X
a

Cap1ðTÞTrF2
a þ � � � ; ð123Þ

where p1ðTÞ is the first Pontryagin class of the spacetime
tangent bundle, c2ðRÞ is the SUð2Þ R-symmetry bundle,
and TrF2

a is the curvature of the flavor symmetry bundles.
The sum is over the simple non-Abelian flavor symmetries
of the SCFT. In terms of these quantities, A, B, andCa,

28 we
can write the central charges of the SW-fold SCFTs as

a − ageneric ¼ 32

�
3

2l
−
3

4

�
A −

12

l
B;

c − cgeneric ¼ 32

�
3

l
− 1

�
A −

12

l
B;

κa − κageneric ¼
192

l
CaIa; ð124Þ

where l is the order of the Stiefel-Whitney twist, and Ia is
the Dynkin index of the embedding of the 4D flavor
symmetry as a subalgebra of the 6D flavor symmetry. Here
ageneric, cgeneric, and κageneric are the central charges and flavor
central charges of the 4D theory at the generic point of the
Coulomb branch. We can rewrite the central charges in

26A recent and detailed review of both the features of N ¼ 2
SCFTs, and of the various different constructions, is [124].

27We note that especially in the case of generalized quivers
with conformal matter one sometimes refers to this as a “1-loop”
contribution as well. Here, we are referring to the full tensor
branch, where the conformal matter has also been decomposed
into standard 6D N ¼ ð1; 0Þ supermultiplets.

28As we will not include holonomies of 6D Abelian flavor
factors, their anomaly coefficients Ci;f;f0 will not appear in the
following, and Ca will exclusively denote the coefficients in the
anomaly polynomial (123).
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terms of the numbers of vector and (full) hypermultiplets at
the generic point of the Coulomb branch as

ageneric ¼
5

24
nV þ 1

24
nH; cgeneric ¼

1

6
nV þ 1

12
nH: ð125Þ

For all SW-folds the quantities A, B, Ca and the generic
central charges can be determined from the 6D origin and
the knowledge of the Zl center-flavor symmetry. Thus we
can always determine the central charges of the SW-
fold SCFT.
In this section, we are interested in specific 6D SCFTs,

those that appear in Table I, which all have tensor branch
configurations of the form

1
g

2
sulk1

2
sulk2 � � � 2

sulkr

; ð126Þ
where the possible choices for g and the ki are specified via
their 6D origin in Table I. For each l, we summarize the

possible g, together with their below-mentioned numerical
data, in Table III. First, we will discuss the contributions to
I8 − Ifields8 for such 6D SCFTs. The result differs depending
on whether g is trivial or not. Let us first consider the
simplest case where g ≠ ∅. Then

I8 − Ifields8 ¼ IGS8 ¼ −
1

2
AijIiIj; ð127Þ

where the tensor indices i, j run over the nodes of the tensor
branch configuration in Eq. (126) from left to right.29

Recall from Eq. (7) that in the four-form Ii,

Ii ¼ 1

4
ð−AijTrF2

j −BiaTrF2
a − ð2þAiiÞp1ðTÞÞ þ yic2ðRÞ:

ð128Þ

the index i in the p1ðTÞ term is not summed over. In this
case, we have yi ¼ h∨gi , the dual Coxeter number of the
gauge algebra associated to the ith tensor. We see that the
only contributions to p1ðTÞ2 arise when i ¼ j ¼ 1, and
thus

A ¼ rþ 1

32
: ð129Þ

The c2ðRÞp1ðTÞ term is rather more involved to determine,
but it can be found to be

TABLE II. The 4DN ¼ 2 SW-folds that we consider in this paper. Each SCFT is obtained by starting with the 6D
rank N orbi-instanton SCFTof type ðe8; suKÞ, where K is as in the second column. Higgsing the e8 flavor symmetry
by the homomorphism ZK → E8, given via ða1; a2; a3; a4; a5; a6; a40 ; a20 ; a30 Þ in the third column, yields each of the
6D SCFTs in Table I, which have aZl center-flavor symmetry. Compactifying the resulting 6D SCFTon a T2 with a
Zl Stiefel-Whitney twist, where l is as in the fourth column, produces the 4D N ¼ 2 SW-fold SCFT which we
denote by the naming that appears in the first column.

SW-fold SCFT Orbi-instanton E8-Homomorphism SW Twist

SðNÞ
2 ðp; s; u; 2tþ 1; qÞ ðe8; su2qþ8tþ6uþ4sþ2pþ4Þ ð0; p; 0; s; 0; u; 2tþ 1; q; 0Þ

Z2
T ðNÞ

2 ðp; s; u; 2t; qÞ ðe8; su2qþ8tþ6uþ4sþ2pÞ ð0; p; 0; s; 0; u; 2t; q; 0Þ
RðNÞ

3 ðp; s; 3qþ 2Þ ðe8; su9qþ6sþ3pþ6Þ ð0; 0; p; 0; 0; s; 0; 0; 3qþ 2Þ
Z3SðNÞ

3 ðp; s; 3qþ 1Þ ðe8; su9qþ6sþ3pþ3Þ ð0; 0; p; 0; 0; s; 0; 0; 3qþ 1Þ
T ðNÞ

3 ðp; s; 3qÞ ðe8; su9qþ6sþ3pÞ ð0; 0; p; 0; 0; s; 0; 0; 3qÞ
SðNÞ
4 ðp; 2qþ 1Þ ðe8; su8qþ4pþ4Þ ð0; 0; 0; p; 0; 0; 2qþ 1; 0; 0Þ

Z4
T ðNÞ

4 ðp; 2qÞ ðe8; su8qþ4pÞ ð0; 0; 0; p; 0; 0; 2q; 0; 0Þ
T ðNÞ

5 ðpÞ ðe8; su5pÞ ð0; 0; 0; 0; p; 0; 0; 0; 0Þ Z5

T ðNÞ
6 ðpÞ ðe8; su6pÞ ð0; 0; 0; 0; 0; p; 0; 0; 0Þ Z6

TABLE III. The possible decorations on the (left-most) tensor
with self-pairing 1 in Eq. (126).

l g n0V n0H d0 k0

2
spq≥0 qðq−1Þ

2
qðqþ 4Þ qþ 1 q

su2qþ4≥4 q2 þ 4qþ 3 3
2
ðqþ 2Þðqþ 5Þ 2qþ 4 qþ 2

3

su0
6 3 12 6 2

su3 0 4 3 1

∅ 0 0 1 0

4
su4 0 3 4 1

∅ 0 0 1 0

5 ∅ 0 0 1 0
6 ∅ 0 0 1 0

29We emphasize that the tensor pairing matrix Aij, whose
diagonal entries are the negative of the values attached to the
nodes in Eq. (126), is negative-definite.
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B ¼ 1

4
Aijð2þ AiiÞyj

¼ −
1

4
ðrþ 1Þh∨g −

1

4
l
Xr

j¼1

ðrþ 1 − jÞkj; ð130Þ

where we again need to be careful with the sum over i, and
we emphasize that the tensor pairing matrix Aij and its
inverse Aij are both symmetric. Finally, we consider the
terms proportional to p1ðTÞTrF2

a. We find

Ca ¼ −
1

16
Aijðð2þ AiiÞBjaÞ

¼ rþ 1 − kðaÞ
16

; ð131Þ

where kðaÞ is the position of the node in the tensor branch
quiver diagram that “intersects” the flavor factor ga, i.e.,
Bja ¼ 0 for j ≠ kðaÞ.30 In all cases under consideration we
have BkðaÞa ¼ 1. Thus, we have determined A, B, and Ca
for tensor branch configurations of the form in Eq. (126)
when g ≠ ∅.
Let us now consider the slightly more complicated

configuration where g ¼ ∅, in which case the left-most
node in Eq. (126) becomes an E-string. For this configu-
ration we have

I8 − Ifields8 ¼ IE-string8 − Itensor8 þ IGS8 ; ð132Þ
where

IGS8 ¼ −
1

2
ÃijIiIj;

Ii ¼ 1

4
ð−ÃijTrF2

j − B̃iaTrF2
a

− ð2þ ÃiiÞp1ðTÞÞ þ yic2ðRÞ: ð133Þ
Here, the matrix of coefficients Ã and B̃ can be interpreted
as the contributions from a generalized quiver, where we
allow conformal matter between nodes of the quiver. In this
case, the indices now run over i; j ¼ 1;…; r. The coef-
ficients yi remain h∨sulki

, except for y1 which is now

1þ h∨sulk1
. We can see immediately that

A ¼ 1

32
þ r
32

¼ rþ 1

32
: ð134Þ

Furthermore, the c2ðRÞp1ðTÞ coefficient is

B ¼ −
1

4
þ 1

4
Ãijðð2þ ÃiiÞyjÞ

¼ −
1

4
−
1

4
ðrÞðlk1 þ 1Þ − 1

4
l
Xr
j¼2

ðrþ 1 − jÞkj

¼ −
1

4
ðrþ 1Þ − 1

4
l
Xr
j¼1

ðrþ 1 − jÞkj: ð135Þ

Finally, we need to discuss the flavor symmetry terms. The
coefficient Ca of p1ðTÞTrF2

a is

Ca ¼
rþ 1 − kðaÞ

16
; ð136Þ

where kðaÞ is the index of the quiver node that intersects the
flavor symmetry indexed by a. Further, we have again used
that, in all cases of relevance of this work, BkðaÞa ¼ 1.
While it was necessary that we do the calculation slightly

differently for the cases where g ≠ ∅ and g ¼ ∅, we see
that the resulting coefficients appearing in I8 − Ifields8

relevant for the central charges of the compactification
can be written succinctly as

A ¼ rþ 1

32
;

B ¼ −
1

4

�
ðrþ 1Þd0 þ l

Xr
j¼1

ðrþ 1 − jÞkj
�
;

Ca ¼
rþ 1 − kðaÞ

16
; ð137Þ

where d0 is as written in Table III; it is 1 if g ¼ ∅ and h∨g
otherwise.
Next, let us determine the numbers of vector and

hypermultiplets at the generic point of the 4D Coulomb
branch. We recall here how the Stiefel-Whitney twist acts
on the weakly coupled 6D spectrum on the tensor branch.
When doing a Zl Stiefel-Whitney twist, we need to know
the following 6D → 4D transformations:

sulk vector multiplet → suk vector multiplet;

sulk1 ⊕ sulk2 bifundamental hypermultiplet → suk1 ⊕ suk2 bifundamental hypermultiplet;

tensor multiplet → vector multiplet: ð138Þ

30This would not apply to baryonic su2 flavor symmetries, which we are not considering in this work. Such flavor factors are only
relevant for very specific SW-folds, which have already been worked out in [98].
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The subtleties arise from the possible “decorations” g on

the node 1
g
in Eq. (126), which we will often refer to as the

1-node of the quiver.31 How the SW-fold acts on such a
tensor with the possibilities for the gauge algebra g has
been studied in [61]. Putting all this together we see that the
number of vector multiplets and hypermultiplets at the
generic point of the Coulomb branch is

nV ¼ 1þ n0V þ
Xr
i¼1

k2i ;

nH ¼ n0H þ
Xr

i¼1

kið2ki − ki−1Þ: ð139Þ

Here, 1þ n0V is the number of vector multiplets that are
associated to g and survive the SW-fold. Similarly, k0 is the
dimension of the fundamental representation of this gauge
algebra after SW-folding, and k1 þ n0H is the total number

of surviving hypermultiplets from the 1
g
-node. These

quantities follow directly from the action of the Stiefel-
Whitney twist and they are summarized in Table III.
Finally, we determine the contribution to the flavor central
charges at the generic point of the 4D Coulomb branch. We
have

κgenerica ¼ 2kkðaÞ; ð140Þ

where, again, kðaÞ is the index of the tensor that intersects
the ath flavor factor. This follows from the existence of
the bifundamental (full) hypermultiplet after the Stiefel-
Whitney twist described in Eq. (138).32 In the case of flavor

symmetries that intersect the 1
g
-node, the value of k0 is

written in Table III; it comes from the surviving gauge
algebra on that node after the Stiefel-Whitney twist.

B. Examples

Putting everything together, we can see that the 4D
N ¼ 2 SW-fold SCFT obtained via the Stiefel-Whitney
twist of 6D (1, 0) tensor branch configuration as in
Eq. (126) has central charges a, c, and κa given as in
Eq. (124). These quantities can thus be worked out for each
of the theories listed in Table II, and we now do so. The
central charges a and c become rather lengthy expressions,
especially as one decreases the order of the Stiefel-Whitney
twist, l, which thus gives rise to more parameters

describing the discrete homomorphismZl → E8. Therefore,
we have attached a Mathematica notebook containing
these expressions to the arXiv submission of this paper for
the ease of the reader.

1. Z6 SW-folds: T ðNÞ
6 ðpÞ

We begin by studying the Z6 SW-folds: T ðNÞ
6 ðpÞ. The

6D SCFT origin, with the flavor symmetry included, is

½su3� 1
½su2�

2
su6 � � � 2

su6p

½su6�

zfflfflfflfflfflffl}|fflfflfflfflfflffl{p

2
su6p

� � � 2
su6p

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{N−1

½su6p�: ð141Þ

As we determined in Sec. IV, the non-Abelian flavor
symmetry of the 6D SCFT is generically

Gflavor ¼ ½SUð3Þ×SUð2Þ×SUð6Þ×SUð6pÞ�=Z6; ð142Þ

however in the special case where N ¼ 1, the last two
factors combine and one has

Gflavor ¼ ½SUð3Þ × SUð2Þ × SUð6ðpþ 1ÞÞ�=Z6: ð143Þ

In terms of the quiver written in Eq. (126), here we have
g ¼ ∅ and

ki ¼ ð1; 2;…; p; p;…; p|fflfflfflffl{zfflfflfflffl}
N−1

Þ: ð144Þ

In this case, we shall write each of the quantities, A, B, Ca,
nV , nH, and κgenerica necessary to determine the central
charges. After the Stiefel-Whitney twist the only surviving
flavor symmetry is either sup arising from the su6p in the
case of generic N, or supþ1 coming from the su6ðpþ1Þ
factor whenN ¼ 1; as there is only one simple non-Abelian
flavor algebra we shall drop the index a. Note, when p ¼ 1
and N > 1 there is no surviving flavor symmetry. For the
quantities determined from the 6D anomaly polynomial we
find

A ¼ pþ N
32

; B ¼ −
1

4
ðp3 þ 3Np2 þ 3N2pþ NÞ;

C ¼ 1

16
: ð145Þ

At the generic point of the 4D Coulomb branch we have

nV ¼ 1

6
ð6þ p − 3p2 þ 6Np2 þ 2p3Þ;

nH ¼ 1

3
pð2þ 3Npþ p2Þ; κgeneric ¼ 2p: ð146Þ

Plugging these values into Eq. (124), we find that the
central charges of the resulting 4D N ¼ 2 SCFTs are

31In geometric terms that describe F-theory constructions of
6D SCFTs, such a node is usually called a (−1)-curve.

32When considering the flavor algebras attached to the 1
g
-node,

the matter many not simply be a bifundamental hypermultiplet,
but some other birepresentation. In these cases, the contribution
from a generic hypermultiplet on the 4D Coulomb branch must
be worked out individually.
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a¼ 1

48
ð28p3þ84Np2−5p2þ72N2p−21pþ10Þ; ð147Þ

c ¼ 1

12
ð7p3 þ 21Np2 − p2 þ 18N2p − 5pþ 2Þ; ð148Þ

κ ¼ 12pþ 2: ð149Þ

We emphasize that, regardless of whether the residual
flavor symmetry algebra is sup or supþ1, the flavor central
charge is identical. As it is required often throughout this
section, we will explain the Dynkin indices for the special
subalgebras that we consider. We have

sulk → sul ⊕ suk; ð150Þ

such that

lk → ðl; kÞ: ð151Þ

The index of the embedding can be worked out from this
decomposition of the fundamental representation,33 and we
find that the sul factor has index k, and the suk factor has
index l.
The theory T ðNÞ

6 ðp ¼ 1Þ has been previously studied in
[100]. In that case, there is no remaining flavor symmetry
and we can see from Eq. (147) that the central charges are

a ¼ c ¼ 1

4
ð6N þ 1ÞðN þ 1Þ: ð152Þ

The result for this special case matches that found in
[100].34 In this particular case the central charges are equal
as the theory enjoys supersymmetry enhancement, either to
N ¼ 4 supersymmetry when N ¼ 1, or else to N ¼ 3
when N > 1. When p ¼ 1 and N ¼ 1 the theory is N ¼ 4
super-Yang–Mills with gauge groupG2; in this case there is
an su2 flavor symmetry and we can see that the flavor
central charge is κ ¼ 14 ¼ dimG2, as expected. In the
generic case where p > 1 there is no such supersymmetry
enhancement.

2. Z5 SW-folds: T ðNÞ
5 ðpÞ

We now study the Z5 SW-folds: T ðNÞ
5 ðpÞ. The tensor

branch configuration describing the 6D SCFT origins of
these 4D theories are

½su5�1 2
su5 � � � 2

su5p

½su5�

zfflfflfflfflfflffl}|fflfflfflfflfflffl{p

2
su5p

� � � 2
su5p

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{N−1

½su5p�: ð153Þ

We have here written the flavor algebras that exist for
generic values of p and N, however there is a flavor
symmetry enhancement when considering a single M5-
brane, N ¼ 1. The full global structure of the non-Abelian
part of the flavor symmetry group was determined in
Sec. IV and we find

Gflavor ¼
	ðSUð5Þ×SUð5ðpþ 1ÞÞÞ=Z5 when N ¼ 1;

ðSUð5Þ×SUð5Þ×SUð5pÞÞ=Z5 when N > 1:

ð154Þ

To determine the central charges we must determine the ki
when the tensor branch configuration is written in the form
in Eq. (126); observe that these ki are the same as those

appearing in Eq. (144) in the T ðNÞ
6 ðpÞ case. Using the

formula in Eq. (124) leads to the following central charges:

a ¼ 1

240
ð140p3 þ 420Np2 − 25p2

þ 360N2p − 69pþ 36N þ 50Þ; ð155Þ

c ¼ 1

60
ð35p3 þ 105Np2 − 5p2

þ 90N2p − 13pþ 12N þ 10Þ: ð156Þ

Finally, we determine the non-Abelian flavor algebra that
survives after the Stiefel-Whitney twisted compactification.
Denoting the central charges by subscripts, one finds

g4Dflavor ¼
	 ðsupþ1Þ12pþ2 when N ¼ 1;

ðsupÞ12pþ2 when N > 1:
ð157Þ

Similarly to the l ¼ 6 case, the theories that we have

T ðNÞ
5 ðp ¼ 1Þ have been previously studied in [100], where

they were referred to as the T ðrþ1Þ
∅;5 theories. As we can see,

the Z5 SW-folds that are written here constitute a broad
generalization of the hitherto known theories.

3. Z4 SW-folds: T ðNÞ
4 ðp;2qÞ and SðNÞ

4 ðp;2q + 1Þ
There are two classes of l ¼ 4 SW-folds: T ðNÞ

4 ðp; 2qÞ
and SðNÞ

4 ðp; 2qþ 1Þ. Recall that a Higgs-branch deforma-
tion by the homomorphism ZK → E8 preserves a Z4

center-flavor symmetry of the 6D SCFT only if the only
nonzero entries in Eq. (98) are a4 and a40 . The distinction
between the T and S theories depends on whether a40
is even or odd, respectively. First, we consider the

T ðNÞ
4 ðp; 2qÞ theories, which arise from 6D (1, 0) SCFTs

with tensor branch configuration

33See [115] for an explanation of the embedding indices
applicable to the special subalgebras.

34To aid in comparison, we note that our T ðNÞ
6 ðp ¼ 1Þ theory is

equivalent to the T ðrþ1Þ
∅;6 theory of [100].
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1 2
su8 � � � 2

su8q

½su4�

zfflfflfflfflfflffl}|fflfflfflfflfflffl{q

2
su8qþ4

� � � 2
su8qþ4p

½su4�

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{p

2
su8qþ4p

� � � 2
su8qþ4p

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{N−1

½su8qþ4p�: ð158Þ

In this generalized quiver, we have written the flavor algebras for generic values of the parameters p, q, and N. From the
analysis in Sec. III, we can see that the non-Abelian part of the global symmetry group is

Gflavor ¼

8>>>>>>>>><
>>>>>>>>>:

ðSUð8qþ 8ÞÞ=Z4 when p ¼ 0; q ≥ 1; N ¼ 1;

ðSUð8Þ × SUð8qÞÞ=Z4 when p ¼ 0; q ≥ 1; N > 1;

ðSpinð10Þ × SUð4pþ 4ÞÞ=Z4 when p ≥ 1; q ¼ 0; N ¼ 1;

ðSpinð10Þ × SUð4Þ × SUð4pÞÞ=Z4 when p ≥ 1; q ¼ 0; N > 1;

ðSUð4Þ × SUð8qþ 4pþ 4ÞÞ=Z4 when p ≥ 1; q ≥ 1; N ¼ 1;

ðSUð4Þ × SUð4Þ × SUð8qþ 4pÞÞ=Z4 when p ≥ 1; q ≥ 1; N > 1:

ð159Þ

We can see that if we write the models in Eq. (158) in the generic form for the tensor branch configurations that we study, as
in Eq. (126), then the ki are given by

ki ¼ ð2; 4;…; 2q|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
q

; 2qþ 1; 2qþ 2;…; 2qþ p|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
p

; 2qþ p;…; 2qþ p|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
N−1

Þ: ð160Þ

We observe that there is a steep ramp, of length q, where ki increases by 2 each step, followed by a shallower length p ramp
where the ki increases by 1, and finally a plateau of length N − 1. Although it starts to become somewhat tedious, it is
straightforward to work out the central charges using Eq. (124). We find

a ¼ 1

48
ð64q3 þ 192pq2 þ 192Nq2 − 20q2 þ 168p2qþ 336Npq − 20pq

þ 144N2q − 18qþ 28p3 þ 84Np2 − 5p2 þ 72N2p − 3pþ 18N þ 10Þ; ð161Þ

c ¼ 1

12
ð16q3 þ 48pq2 þ 48Nq2 − 4q2 þ 42p2qþ 84Npq − 4pq

þ 36N2q − 2qþ 7p3 þ 21Np2 − p2 þ 18N2pþ pþ 6N þ 2Þ: ð162Þ

To determine the flavor symmetry that survives the Stiefel-Whitney twisting procedure, it is necessary to understand how, in
the cases with q ¼ 0, the so10 flavor algebra intersecting the E-string is acted on by the Z4 center-flavor symmetry. Writing

so10 → su4 ⊕ su2 ⊕ su2; ð163Þ

we can see that the Z4 is embedded via the generator (1, 1, 0) inside of the combined Z4 × Z2 × Z2 center [100]. As such,
the only surviving subalgebra from the so10 factor is an su2, with embedding index 1. The Stiefel-Whitney twisting of the
remaining flavor symmetry factors can be determined as for the l ¼ 5, 6 cases. The flavor central charges (denoted in
subscript) can also be computed using the formula in Eq. (124); the result is

g4Dflavor ¼

8>>>>>>>>>><
>>>>>>>>>>:

ðsu2qþ2Þ4qþ12 p ¼ 0; q ≥ 1; N ¼ 1

ðsu2Þ4qþ12N ⊕ ðsu2qÞ4qþ12 p ¼ 0; q ≥ 1; N > 1

ðsu2Þ3ðpþ1Þ ⊕ ðsupþ1Þ2pþ12 p ≥ 1; q ¼ 0; N ¼ 1

ðsu2Þ3ðpþNÞ ⊕ ðsupÞ2pþ12 p ≥ 1; q ¼ 0; N > 1

ðsu2qþpþ1Þ4qþ2pþ12 p ≥ 1; q ≥ 1; N ¼ 1

ðsu2qþpÞ4qþ2pþ12 p ≥ 1; q ≥ 1; N > 1:

ð164Þ
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Again, similarly to the l ¼ 5 and l ¼ 6 SW-folds, the

theories T ðNÞ
4 ðp ¼ 1; 2q ¼ 0Þ have been studied afore in

[100], where they are called the T ðrþ1Þ
A2;4

theories.
There is another class of l ¼ 4 SW-folds, which are

obtained by starting with the 6D A-type orbi-instanton
SCFT Higgsed by a Z4 center-flavor symmetry preserving
E8-homomorphism where the embedding into a04, as in
Eq. (98), is odd. The SW-fold SCFTs obtained from the Z4

Stiefel-Whitney twist of these 6D SCFTs are referred to as

SðNÞ
l ðp; 2qþ 1Þ. The tensor branch configurations of these

6D SCFTs have the form

1
su4

2
su12 � � � 2

su8qþ4

½su4�

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{q

2
su8qþ8

� � � 2
su8qþ4pþ4

½su4�

zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{p

2
su8qþ4pþ4

� � � 2
su8qþ4pþ4

zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{N−1

× ½su8qþ4pþ4�; ð165Þ

where, as usual, the flavor symmetry can enhance when the
parameters p, q, and N obtain their limiting values. The
flavor groups, including how the Z4 quotient acts, can be

determined from the algorithm described in Sec. III.
Computing the central charges is a straightforward appli-
cation of Eq. (124):

a ¼ 1

48
ð64q3 þ 192pq2 þ 192Nq2 þ 76q2 þ 168p2q

þ 336Npqþ 172pqþ 144N2qþ 192Nq

þ 10qþ 28p3 þ 84Np2 þ 79p2 þ 72N2p

þ 168Npþ 35pþ 72N2 þ 66N þ 4Þ; ð166Þ

c¼ 1

12
ð16q3þ 48pq2þ 48Nq2þ 20q2þ 42p2qþ 84Npq

þ 44pqþ 36N2qþ 48Nqþ 6qþ 7p3þ 21Np2

þ 20p2þ 18N2pþ 42Npþ 11pþ 18N2þ 18Nþ 2Þ:
ð167Þ

Similarly, the flavor algebras that survive the Stiefel-
Whitney twist can be determined, and their flavor central
charges are again given by Eq. (124). We find

g4Dflavor ¼

8>>>>><
>>>>>:

ðsu2qþ3Þ4qþ14 p ¼ 0; q ≥ 0; N ¼ 1

ðsu2Þ4qþ12Nþ2 ⊕ ðsu2qþ1Þ4qþ14 p ¼ 0; q ≥ 0; N > 1

ðsu2qþpþ2Þ4qþ2pþ14 p ≥ 1; q ≥ 0; N ¼ 1

ðsu2qþpþ1Þ4qþ2pþ14 p ≥ 1; q ≥ 0; N > 1:

ð168Þ

The theories SðNÞ
4 ðp ¼ 0; 2qþ 1 ¼ 1Þ were studied in

[100], where they were called the SðrÞ
A2;4

theories. The
central charges and flavor symmetries that we compute
here agree with what was found in that particular limiting
case. We have similarly labeled these generalized S-fold
SCFTs by S and T to match with the notation for the
special cases that have been previously studied.
In this paper, we have mainly been concerned with the

identification of the 4D non-Abelian flavor symmetry that
descends from the 6D non-Abelian flavor symmetry. In
fact, the 6D SCFTs under consideration also contain
Abelian symmetries that arise from the ABJ-anomaly-
free combinations of the uð1Þs rotating the bifundamental
hypermultiplets. Under certain circumstances, these uð1Þs
can enhance, and then we expect a further non-Abelian
factor in the 4D flavor symmetry. This occurs when the 4D
Coulomb branch description of the SW-fold contains a
plateau of neighboring su2 gauge algebras: then the uð1Þ
enhances to an su2 under which the gauge bifundamentals
are charged. The SW-folds with this extra, enhanced,
baryonic su2 flavor symmetry are

T ðNÞ
4 ð0; 2Þ; SðNÞ

4 ð1; 1Þ; T ðNÞ
3 ð0; 1; 0Þ;

SðNÞ
3 ð1; 0; 1Þ; RðNÞ

3 ð0; 0; 2Þ; SðNÞ
2 ð0; 0; 0; 1; 0Þ

T ðNÞ
2 ð0; 0; 0; 0; 2Þ; T ðNÞ

2 ð0; 1; 0; 0; 0Þ;
T ðNÞ

2 ð2; 0; 0; 0; 0Þ; T ðNÞ
2 ð1; 0; 0; 0; 1Þ: ð169Þ

In each case, we can see that they correspond to theories
obtained from an orbi-instanton theory involving M5-
branes probing C2=Z2l; after the Zl Stiefel-Whitney
twist, the orbifold is reduced to C2=Z2, and the additional
su2 global symmetry comes from the exceptional isom-
etry of this particular orbifold. For low values of N we
expect that this baryonic su2 can combine with other non-
Abelian factors in the flavor symmetry, and cause further
enhancement. In rare cases there can also be dehancement.
We discuss some instances where this enhancement
occurs in Sec. V D 1.
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4. Z3 SW-folds: T ðNÞ
3 ðp;s;3qÞ, SðNÞ

3 ðp;s;3q + 1Þ,
and RðNÞ

3 ðp;s;3q + 2Þ
There are three distinct ways that one can construct

a Higgs-branch flow from the rank N ðe8; suKÞ orbi-
instanton theory such that the resulting SCFT has a Z3

center-flavor symmetry. From Sec. IV, we see that K must
be a multiple of three and the homomorphism ZK → E8

must be specified by the vector

ða1; a2; a3; a4; a5; a6; a40 ; a20 ; a30 Þ
¼ ð0; 0; a3; 0; 0; a6; 0; 0; a30 Þ: ð170Þ

In all cases, the resulting 6D SCFTs have tensor branch
configurations of the form in Eq. (126), however the

algebra g associated to the left-most 1-node in
Eq. (126), depends on the parity modulo three of a30 .
Respectively, we find that the 1-node has no gauge algebra;
su3 with twelve fundamental and one antisymmetric
hypermultplets; and an su6 algebra with fifteen fundamen-
tal hypermultiplets and one further hypermultiplet in the
triple-antisymmetric representation. As in Table II, we label
these theories by T , S, and R, respectively. The tensor
branch configurations for each of these configurations are
shown in Table I, and we do not repeat them here.
We begin our journey into the Z3 SW-folds with the

T ðNÞ
3 ðp; s; 3qÞ theory, whose 6D origins have g ¼ ∅ for the

1-node. The central charges can be determined straight-
forwardly from the tensor branch configuration by appli-
cation of the formulas in Eq. (124). One finds

a ¼ 1

48
ð72N2pþ 216N2qþ 144N2sþ 84Np2 þ 504Npqþ 336Nps

þ 324Nq2 þ 576Nqsþ 192Ns2 þ 36N þ 252p2qþ 168p2s

þ 28p3 − 5p2 þ 324pq2 þ 576pqs − 30pqþ 192ps2 − 20ps

þ 15pþ 324q2sþ 108q3 − 45q2 þ 288qs2 − 60qs − 9qþ 64s3 − 20s2 þ 10Þ; ð171Þ

c ¼ 1

12
ð18N2pþ 54N2qþ 36N2sþ 21Np2 þ 126Npqþ 84Nps

þ 81Nq2 þ 144Nqsþ 48Ns2 þ 12N þ 63p2qþ 42p2sþ 7p3

− p2 þ 81pq2 þ 144pqs − 6pqþ 48ps2 − 4psþ 7pþ 81q2s

þ 27q3 − 9q2 þ 72qs2 − 12qsþ 3qþ 16s3 − 4s2 þ 4sþ 2Þ: ð172Þ

To determine the flavor algebra for the theory after Stiefel-Whitney twist, we need to understand how theZ3 quotient acts
on the e6 flavor symmetry. The decomposition is

e6 → g2 ⊕ su3

27 → ð7; 3Þ ⊕ ð1; 6Þ; ð173Þ

where the Z3 acts on the su3 factor and only the g2 survives. From the decomposition of the fundamental representation in
Eq. (173), we see that the Dynkin index of the g2 subalgebra is one. Similarly, when there is an su3 ⊕ su2 flavor algebra
attached to the undecorated 1-node, we note that theZ3 acts only on the su3 factor and leaves the su2 factor untouched. The
remaining flavor factors are quotiented by the Stiefel-Whitney twist exactly as in the l > 3 cases that we have discussed. In
the end, one discovers that the flavor symmetries, and the flavor central charges of these 4D SCFTs are

q ¼ s ¼ 0; p ≥ 1; N ≥ 1∶ ðg2Þ4ðNþpÞ ⊕ ðsu1Þ12Nþ2p ⊕ ðsupÞ12þ2p

q ¼ 0; s ≥ 1; p ≥ 0; N ≥ 1∶ ðsu2Þ4ðNþpþsÞ ⊕ ðsu1Þ12ðNþpÞþ4s

⊕ ðsu1Þ12Nþ4sþ2p ⊕ ðsu2sþpÞ12þ4sþ2p

q ≥ 1; s ≥ 0; p ≥ 0; N ≥ 1∶ ðsu1Þ12ðNþpþsÞþ6q ⊕ ðsu1Þ12ðNþpÞþ6qþ4s

⊕ ðsu1Þ12Nþ6qþ4sþ2p ⊕ ðsu3qþ2sþpÞ12þ6qþ4sþ2p: ð174Þ

We have introduced a shorthand notation here as the number of combinations of p, q, s, and N where there are flavor
symmetry enhancements becomes large. In this way, if we write the flavor symmetry as ðsuk1Þκ1 ⊕ ðsuk2Þκ2 then for
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κ1 ≠ κ2 the flavor symmetry is as written, but if κ1 ¼ κ2 then there is an enhancement to ðsuk1þk2Þκ1 . Of course, if there is an
su1 factor where the flavor central charge is such that it does not combine with another flavor symmetry factor, then that
symmetry is, of course, trivial.
Next, we turn to the SðNÞ

3 ðp; s; 3qþ 1Þ SCFTs, originating from a 6D theory with g ¼ su3. From the tensor branch
description of the 6D origin and the formulas in Eq. (124), one can determine the central charges. As these expressions are
rather lengthy, we remind the reader that they also appear in theMathematica notebook attached to the arXiv submission for
this paper. The central charges for these theories are

a ¼ 1

48
ð72N2pþ 216N2qþ 144N2sþ 72N2 þ 84Np2 þ 504Npqþ 336Npsþ 168Np

þ 324Nq2 þ 576Nqsþ 216Nqþ 192Ns2 þ 192Nsþ 72N þ 252p2qþ 168p2s

þ 28p3 þ 79p2 þ 324pq2 þ 576pqsþ 186pqþ 192ps2 þ 172psþ 41p

þ 324q2sþ 108q3 þ 63q2 þ 288qs2 þ 156qs − 3qþ 64s3 þ 76s2 þ 16sþ 6Þ; ð175Þ

c ¼ 1

12
ð18N2pþ 54N2qþ 36N2sþ 18N2 þ 21Np2 þ 126Npqþ 84Nps

þ 42Npþ 81Nq2 þ 144Nqsþ 54Nqþ 48Ns2 þ 48Nsþ 21N

þ 63p2qþ 42p2sþ 7p3 þ 20p2 þ 81pq2 þ 144pqsþ 48pqþ 48ps2 þ 44ps

þ 14pþ 81q2sþ 27q3 þ 18q2 þ 72qs2 þ 42qsþ 6qþ 16s3 þ 20s2 þ 9sþ 3Þ: ð176Þ

As expected, the generic four-dimensional flavor algebra experiences enhancement at the lower limits of the parameters
describing the E8-homomorphism, p, q, and s, and also when one has only a single M5-brane, N ¼ 1. The resulting flavor
symmetries, together with the flavor central charges, are

q; s; p ≥ 0; N ≥ 1∶ ðsu1Þ12ðNþpþsÞþ6qþ2 ⊕ ðsu1Þ12ðNþpÞþ6qþ4sþ2

⊕ ðsu1Þ12Nþ6qþ4sþ2pþ2 ⊕ ðsu3qþ2sþpþ1Þ12þ6qþ4sþ2pþ2: ð177Þ
Here, we use an F-theoretic convention for keeping track of trivial symmetry factors such as “su1” since the parameters can
sometimes conspire such that two of the su flavor factors have the same flavor central charges. In such situations, the flavor
symmetry enhances as described around Eq. (174).
Finally, we turn to the third class of l ¼ 3 SW-folds, which we refer to as the RðNÞ

3 ðp; s; 3qþ 2Þ SW-folds. The central
charges are again determined from the tensor branch configuration of the 6D SCFT of which these SW-folds are the Z3

Stiefel-Whitney twisted torus compactification. They are

a ¼ 1

48
ð72N2pþ 216N2qþ 144N2sþ 144N2 þ 84Np2 þ 504Npq

þ 336Npsþ 336Npþ 324Nq2 þ 576Nqsþ 432Nqþ 192Ns2

þ 240Nsþ 180N þ 252p2qþ 168p2sþ 28p3 þ 163p2 þ 324pq2

þ 576pqsþ 402pqþ 192ps2 þ 220psþ 139pþ 324q2sþ 108q3

þ 171q2 þ 288qs2 þ 372qsþ 75qþ 64s3 þ 100s2 þ 176sþ 16Þ; ð178Þ

c ¼ 1

12
ð18N2pþ 54N2qþ 36N2sþ 36N2 þ 21Np2 þ 126Npqþ 84Npsþ 84Np

þ 81Nq2 þ 144Nqsþ 108Nqþ 48Ns2 þ 60Nsþ 48N þ 63p2qþ 42p2s

þ 7p3 þ 41p2 þ 81pq2 þ 144pqsþ 102pqþ 48ps2 þ 56psþ 39pþ 81q2s

þ 27q3 þ 45q2 þ 72qs2 þ 96qsþ 27qþ 16s3 þ 26s2 þ 50sþ 8Þ: ð179Þ

The flavor symmetries and flavor central charges can also be worked out using Eq. (124), and we find the following result:

q; s; p ≥ 0; N ≥ 1∶ ðsu1Þ12ðNþpþsÞþ6qþ4 ⊕ ðsu1Þ12ðNþpÞþ6qþ4sþ4

⊕ ðsu1Þ12Nþ6qþ4sþ2pþ4 ⊕ ðsu3qþ2sþpþ2Þ12þ6qþ4sþ2pþ4: ð180Þ
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While the T ðNÞ
3 ðp ¼ 1; s ¼ 0; 3q ¼ 0Þ and SðNÞ

3 ðp ¼ 0;
s ¼ 0; 3qþ 1 ¼ 1Þ S-fold SCFTs have been studied before

in [100], where they are referred to as the T ðrþ1Þ
D4;3

and SðrÞ
D4;3

theories, respectively, the theories RðNÞ
3 ðp; s; 3qþ 2Þ have

not been studied in the context of S-folds before. The theory

Rð1Þ
3 ðp ¼ 0; s ¼ 0; 3qþ 2Þ has appeared previously in [61],

where the authors point out that, at the generic point of the
4D Coulomb branch, there is a half-hypermultiplet trans-
forming in the 4 of the rightmost su2 gauge algebra; this
arises from the action of the Stiefel-Whitney twist on the
triple-antisymmetric representation of the su6 associated to
the 1-node. We refer the reader to Appendix C, where we list
all of the limiting cases of the Stiefel-Whitney twists and
S-folds that have previously appeared in the literature.

5. Z2 SW-folds: T ðNÞ
2 ðp;s;u;2t;qÞ and SðNÞ

2 ðp;s;u;2t + 1;qÞ
The last class of SW-folds which we wish to consider are

those involving a Z2 Stiefel-Whitney twist. These theories
depend on five E8-homomorphism parameters, associated
to the five different nodes of the E8 Dynkin diagram with
even Dynkin label, and one positive integer counting the
number of M5-branes. This proliferation of parameters
leads to very complicated and unwieldy expressions for
the central charges, which are typically degree three poly-
nomials in these parameters. For posterity, we present these
expressions here, however, we refer the reader to the
attachedMathematica notebook for a more practical format.
We begin with the T ðNÞ

2 ðp; s; u; 2t; qÞ theories, which
arise from 6D SCFTs obtained from E8-homomorphisms of
the rank N ðe8; suKÞ orbi-instanton where the parameter

a40 , as in Eq. (98) is even. The generalized quivers describing the 6D SCFTs are depicted in Table I, and from there one can
determine the central charges using Eq. (124). We find

a ¼ 1

48
ð72N2pþ 72N2qþ 144N2sþ 288N2tþ 216N2uþ 84Np2 þ 168Npq

þ 336Npsþ 672Nptþ 504Npuþ 12Nq2 þ 192Nqsþ 240Nqtþ 216Nqu

þ 192Ns2 þ 768Nstþ 576Nsuþ 480Nt2 þ 864Ntuþ 324Nu2 þ 72N

þ 84p2qþ 168p2sþ 336p2tþ 252p2uþ 28p3 − 5p2 þ 12pq2 þ 192pqs

þ 240pqtþ 216pqu − 10pqþ 192ps2 þ 768pstþ 576psu − 20psþ 480pt2

þ 864ptu − 40ptþ 324pu2 − 30puþ 51pþ 12q2sþ 12q2tþ 12q2u − 5q2

þ 96qs2 þ 240qstþ 216qsu − 20qsþ 120qt2 þ 240qtu − 40qtþ 108qu2

− 30quþ 3qþ 384s2tþ 288s2uþ 64s3 − 20s2 þ 480st2 þ 864stu − 80st

þ 324su2 − 60suþ 36sþ 480t2uþ 160t3 − 80t2 þ 432tu2 − 120tu

þ 24tþ 108u3 − 45u2 þ 27uþ 10Þ; ð181Þ

c ¼ 1

12
ð18N2pþ 18N2qþ 36N2sþ 72N2tþ 54N2uþ 21Np2 þ 42Npqþ 84Nps

þ 168Nptþ 126Npuþ 3Nq2 þ 48Nqsþ 60Nqtþ 54Nquþ 48Ns2

þ 192Nstþ 144Nsuþ 120Nt2 þ 216Ntuþ 81Nu2 þ 24N þ 21p2qþ 42p2s

þ 84p2tþ 63p2uþ 7p3 − p2 þ 3pq2 þ 48pqsþ 60pqtþ 54pqu − 2pqþ 48ps2

þ 192pstþ 144psu − 4psþ 120pt2 þ 216ptu − 8ptþ 81pu2 − 6puþ 19p

þ 3q2sþ 3q2tþ 3q2u − q2 þ 24qs2 þ 60qstþ 54qsu − 4qsþ 30qt2 þ 60qtu

− 8qtþ 27qu2 − 6quþ 3qþ 96s2tþ 72s2uþ 16s3 − 4s2 þ 120st2 þ 216stu

− 16stþ 81su2 − 12suþ 16sþ 120t2uþ 40t3 − 16t2 þ 108tu2

− 24tuþ 16tþ 27u3 − 9u2 þ 15uþ 2Þ: ð182Þ

To determine the flavor symmetries after the Z2 Stiefel-Whitney twist, it is necessary to know how the Z2 acts on the flavor
factor that is attached to the 1-node in the description of the 6D origin. First, we consider the special case where q ¼ 0, then the
flavor symmetry attached to the undecorated 1-node (i.e., with g ¼ ∅) is either e7, so10, su3 ⊕ su2, or∅, depending on which
combinations of parameters t, u, s, p attain their lower limits, if any. When we have e7, we consider the special subalgebra
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e7 → f4 ⊕ su2; ð183Þ

where the Dynkin index of the f4 factor is one, and the Z2

acts as the center of the su2. When the flavor algebra is so10
we have the decomposition

so10 → su4 ⊕ su2 ⊕ su2

10 → ð6; 1; 1Þ ⊕ ð1; 2; 2Þ: ð184Þ

The Z2 quotient is generated by the element (2, 0, 0) of the
combined center Z4 × Z2 × Z2 Note that this is the Z2

subgroup of the Z4 discussed around Eq. (163). Thus we can
see that the surviving flavor algebra in 4D is

suð2Þ
2 ⊕ suð1Þ

2 ⊕ suð1Þ
2 ; ð185Þ

where we have written the Dynkin indices as superscripts, as
determined from the decomposition of the vector represen-
tation. We can see from the Dynkin indices and the
decomposition of the representations that the surviving flavor
algebra from the so10 after turning on this particular Z2 is

in fact the enhanced soð1Þ7 . Finally, when the 6D flavor

symmetry attached to the 1-node is su3 ⊕ su2, we are
considering the same decomposition as we did in the l ¼ 3
case; the Z2 quotient acts on the su2, and leaves the su3 as a
flavor symmetry of the Stiefel-Whitney twisted theory. When
q ≥ 1, the flavor symmetry attached to the 1-node is so4n,
where n is fixed in terms of the parameters p, q, s, t, u. The
relevant decomposition appears in [61], and we have

so4n → suðnÞ
2 ⊕ spð1Þn

4n → ð2; 2nÞ: ð186Þ

The action of the Z2 is on the su2 factor, and the flavor
symmetry left after the Stiefel-Whitney twist is spn. As we
can see, the embedding index of the surviving factor is one.
To proceed further, it is helpful to split up our analysis

into the cases q > 0 and q ¼ 0.
q > 0 We begin by studying the flavor symmetry when

q > 0. Due to the presence of the symplectic gauge
algebra the flavor symmetries surviving after the
Stiefel-Whitney twist have rather complex dependences
on the E8-homomorphism parameters. The most generic
case occurs when t > 0, and we find

ðsu1Þ12ðNþpþsþuÞþ2qþ8t ⊕ ðsu1Þ12ðNþpþsÞþ2qþ8tþ6u ⊕ ðsu1Þ12ðNþpÞþ2qþ8tþ6uþ4s

⊕ ðsu1Þ12Nþ2qþ8tþ6uþ4sþ2p ⊕ ðsuqþ4tþ3uþ2sþpÞ12þ2qþ8tþ6uþ4sþ2p: ð187Þ

When t ¼ 0, but u > 0, the flavor symmetry is

ðsp1Þ6ðNþpþsþuÞþq ⊕ ðsu1Þ12ðNþpþsÞþ2qþ6u ⊕ ðsu1Þ12ðNþpÞþ2qþ6uþ4s

⊕ ðsu1Þ12Nþ2qþ6uþ4sþ2p ⊕ ðsuqþ3uþ2sþpÞ12þ2qþ6uþ4sþ2p: ð188Þ

Next, we must consider the case where t ¼ u ¼ 0, but s > 0. The flavor symmetry becomes

ðsp2Þ6ðNþpþsÞþq ⊕ ðsu1Þ12ðNþpÞþ2qþ4s ⊕ ðsu1Þ12Nþ2qþ4sþ2p ⊕ ðsuqþ2sþpÞ12þ2qþ4sþ2p: ð189Þ

When t ¼ u ¼ s ¼ 0 and p > 0, one finds that the flavor algebra is

ðsp3Þ6ðNþpÞþq ⊕ ðsu1Þ12Nþ2qþ2p ⊕ ðsuqþpÞ12þ2qþ2p: ð190Þ

Finally, when all of the E8-homomorphism parameters, except q, vanish, the flavor is

	 ðsp4Þ6Nþq ⊕ ðsuqÞ12þ2q; when N > 1;

ðspqþ4Þ6þq; when N ¼ 1:
ð191Þ

q ¼ 0 A similar analysis can be carried out when q ¼ 0, and again one finds a variety of special cases. When t > 0 the
flavor symmetry is

ðsu1Þ12ðNþpþsþuÞþ8t ⊕ ðsu1Þ12ðNþpþsÞþ8tþ6u ⊕ ðsu1Þ12ðNþpÞþ8tþ6uþ4s

⊕ ðsu1Þ12Nþ8tþ6uþ4sþ2p ⊕ ðsu4tþ3uþ2sþpÞ12þ8tþ6uþ4sþ2p: ð192Þ

When t ¼ 0, but u > 0, the flavor symmetry is
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ðsu3Þ6ðNþuþsþpÞ ⊕ ðsu1Þ12ðNþpþsÞþ6u ⊕ ðsu1Þ12ðNþpÞþ6uþ4s

⊕ ðsu1Þ12Nþ6uþ4sþ2p ⊕ ðsu3uþ2sþpÞ12þ6uþ4sþ2p: ð193Þ

Next, we consider the case where t ¼ u ¼ 0, but s > 0. The flavor symmetry is

ðso7Þ6ðNþpþsÞ ⊕ ðsu1Þ12ðNþpÞþ4s ⊕ ðsu1Þ12Nþ4sþ2p ⊕ ðsu2sþpÞ12þ4sþ2p: ð194Þ

Finally, when t ¼ u ¼ s ¼ 0 and p > 0, one finds that the flavor algebra is

ðf4Þ6ðNþpÞ ⊕ ðsu1Þ12Nþ2p ⊕ ðsupÞ12þ2p: ð195Þ

Note that this last expression is not valid when p ¼ N ¼ 1 due to an exceptional enhancement of the associated 6D SCFT,

which we discuss below. This analysis exhausts the non-Abelian flavor symmetries of the T ðNÞ
2 ðp; s; u; 2t; qÞ SW-fold

SCFTs. In rare occasions, the flavor symmetry can be enhanced further, either because an Abelian uð1Þ flavor symmetry of
the 6D SCFT can enhance to an su2 as described around Eq. (169), or else because the 6D SCFT has a baryonic su2 flavor
symmetry, in addition to the flavor symmetries that we have considered here. We discuss this latter case at the end of this
subsection. Finally, it appears that in a small number of exceptional circumstances, there can also be flavor symmetry
dehancement; we explore these examples further in Sec. V D 1.
To conclude this subsection, we turn to the last class of SW-folds that we wish to consider. These are the Z2 SW-folds:

SðNÞ
2 ðp; s; u; 2tþ 1; qÞ. As usual, the central charges can be worked out from the formulas in Eq. (124), and one finds:

a ¼ 1

48
ð72N2pþ 72N2qþ 144N2sþ 288N2tþ 216N2uþ 144N2 þ 84Np2

þ 168Npqþ 336Npsþ 672Nptþ 504Npuþ 336Npþ 12Nq2 þ 192Nqs

þ 240Nqtþ 216Nquþ 120Nqþ 192Ns2 þ 768Nstþ 576Nsuþ 384Ns

þ 480Nt2 þ 864Ntuþ 480Ntþ 324Nu2 þ 144Nuþ 192N þ 84p2qþ 168p2s

þ 336p2tþ 252p2uþ 28p3 þ 163p2 þ 12pq2 þ 192pqsþ 240pqtþ 216pqu

þ 110pqþ 192ps2 þ 768pstþ 576psuþ 364psþ 480pt2 þ 864ptuþ 440pt

þ 324pu2 þ 114puþ 151pþ q2 þ 12q2sþ 12q2tþ 12q2uþ 96qs2 þ 240qst

þ 216qsuþ 100qsþ 120qt2 þ 240qtuþ 80qtþ 108qu2 þ 98quþ 13qþ 384s2t

þ 288s2uþ 64s3 þ 172s2 þ 480st2 þ 864stuþ 400stþ 324su2 þ 84suþ 116s

þ 480t2uþ 160t3 þ 160t2 þ 432tu2 þ 392tuþ 64tþ 108u3 þ 39u2 þ 239uþ 22Þ; ð196Þ

c ¼ 1

12

�
18N2pþ 18N2qþ 36N2sþ 72N2tþ 54N2uþ 36N2 þ 21Np2 þ 42Npq

þ 84Npsþ 168Nptþ 126Npuþ 84Npþ 3Nq2 þ 48Nqsþ 60Nqtþ 54Nqu

þ 30Nqþ 48Ns2 þ 192Nstþ 144Nsuþ 96Nsþ 120Nt2 þ 216Ntu

þ 120Ntþ 81Nu2 þ 36Nuþ 54N þ 21p2qþ 42p2sþ 84p2tþ 63p2uþ 7p3

þ 41p2 þ 3pq2 þ 48pqsþ 60pqtþ 54pquþ 28pqþ 48ps2 þ 192pstþ 144psu

þ 92psþ 120pt2 þ 216ptuþ 112ptþ 81pu2 þ 30puþ 45pþ 1

2
q2 þ 3q2sþ 3q2t

þ 3q2uþ 24qs2 þ 60qstþ 54qsuþ 26qsþ 30qt2 þ 60qtuþ 22qtþ 27qu2

þ 28quþ 13

2
qþ 96s2tþ 72s2uþ 16s3 þ 44s2 þ 120st2 þ 216stuþ 104st

þ 81su2 þ 24suþ 38sþ 120t2uþ 40t3 þ 44t2 þ 108tu2 þ 112tuþ 30tþ 27u3 þ 15u2 þ 73uþ 11

�
: ð197Þ
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With generic values for the number of M5-branes and theE8-homomorphism parameters, we find that the flavor symmetries
of the resulting 4D N ¼ 2 SCFTs are as follows:

q > 0; t; u; s; p ≥ 0;N ≥ 1∶ ðsu1Þ12ðNþpþsþuÞþ2qþ8tþ4 ⊕ ðsu1Þ12ðNþpþsÞþ2qþ8tþ6uþ4

⊕ ðsu1Þ12ðNþpÞþ2qþ8tþ6uþ4sþ4 ⊕ ðsu1Þ12Nþ2qþ8tþ6uþ4sþ2pþ4

⊕ ðsuqþ4tþ3uþ2sþpþ2Þ12þ2qþ8tþ6uþ4sþ2pþ4: ð198Þ

Again, we use a compact notation where sua ⊕ sub enhances to suaþb if the flavor central charges are identical. When
q ¼ 0 there is an additional su2 flavor symmetry in the 6D SCFT as the antisymmetric hypermultiplet attached to the su4

gauge algebra on the 1-node is pseudoreal. The Z2 center-flavor symmetry does not embed inside of this su2, and thus this
flavor factor survives the Stiefel-Whitney twist intact. We find that the non-Abelian flavor symmetry of the SW-fold in the
q ¼ 0 case is

t; u; s; p ≥ 0;N ≥ 1∶ ðsu2Þ6ðNþpþsþuþtÞþ3 ⊕ ðsu1Þ12ðNþpþsþuÞþ8tþ4

⊕ ðsu1Þ12ðNþpþsÞþ8tþ6uþ4 ⊕ ðsu1Þ12ðNþpÞþ8tþ6uþ4sþ4

⊕ ðsu1Þ12Nþ8tþ6uþ4sþ2pþ4

⊕ ðsu4tþ3uþ2sþpþ2Þ12þ8tþ6uþ4sþ2pþ4: ð199Þ

As discussed around Eq. (169), there can be further
enhancement when p ¼ s ¼ u ¼ t ¼ 0, as in those cases
it is expected that the baryonic uð1Þ global symmetry
enhances to an su2, and this factor can further combine
with the other non-Abelian factors for low values of N. We
discuss some of these baryonic enhancements further in
Sec. V D 1.
There are also two classes of Z2 SW-folds where the 6D

SCFT origin itself has a baryonic su2 flavor symmetry.
These 6D theories correspond to the tensor branch con-
figurations

1
sp1

2
su2 � � � 2

su2

; and 1 2
su2 � � � 2

su2

: ð200Þ

The Z2 center-flavor symmetry embeds trivially inside of
the center of the baryonic su2, and thus this additional non-
Abelian factor is unbroken by the Stiefel-Whitney twist. In
addition to the above flavor symmetries, these SW-folds
then have the following additional flavor algebras:

T ðN>1Þ
2 ð0; 0; 0; 0; 1Þ∶ ðsu2Þ6N2þN;

T ðN>1Þ
2 ð1; 0; 0; 0; 0Þ∶ ðsu2Þ6N2þ7Nþ1: ð201Þ

In the latter case, there is a further exceptional enhancement
when N ¼ 1.35 Let us discuss this special case of

T ð1Þ
2 ð1; 0; 0; 0; 0Þ, which arises from the 6D SCFT with

tensor branch configuration

1 2
su2

: ð202Þ

This 6D SCFT has an e7 ⊕ so7 flavor symmetry, instead of
the naively expected e7 ⊕ so8 flavor algebra. Taking into
account the embedding of the Z2 center-flavor symmetry
inside of the so7, we find that the flavor carried by the
resulting SW-fold theory is

ðf4Þ12 ⊕ ðsu2Þ7 ⊕ ðsu2Þ7: ð203Þ

The SW-folds T ðNÞ
2 ð1; 0; 0; 0; 0Þ and T ðNÞ

2 ð0; 0; 0; 0; 1Þ
have been discussed previously in [100] where they were

referred to as T ðrþ1Þ
E6;2

and SðrÞ
E6;2

, respectively.

C. Coulomb branch operator spectrum

In [61], the authors developed a heuristic method for
determining the scaling dimensions of the Coulomb branch
operators of the 4D SCFTobtained from the Stiefel-Whitney
twisted compactification of a very Higgsable 6D SCFT. In
this section, we test the consistency of the method described
therein when applied to the SW-folds. In [61], the authors
verify their method by testing that the Coulomb branch
spectrum they obtain agrees with the known spectrum from
the dual twisted-class S theory; in our cases no such class S
theory is known, and we rely on the weaker test that

4ð2a − cÞ ¼
X
i

2ΔðuiÞ − 1; ð204Þ

where the left-hand side (lhs) is determined using the
anomaly polynomial as in Sec. VA. From the anomaly
polynomial we expect that this quantity is

35For the former case, the flavor symmetry when N ¼ 1 is
captured by Eq. (191).
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4ð2a − cÞ ¼ nV − 64A −
48

l
B: ð205Þ

We find that the method in [61] is consistent with this
formula in most cases, but that it must be extended in a few
special cases beyond the ones considered in [61]. These
special cases occur for the E-type SW-folds that we discuss
in Sec. VI. We hope that this analysis will be useful in the
determination of a closed-form top-down method for under-
standing the Coulomb branch spectrum from the 6D origin.
We are interested in 6D SCFTs with tensor branch

configurations of the form given in Eq. (126). We recall
that in Eq. (126) we index the quiver nodes from 0 to r
going from left-to-right. The algorithm presented in
Appendix B of [61] for the Coulomb branch operator
dimensions of the 4D N ¼ 2 theory obtained from the Zl
Stiefel-Whitney twist of 6D SCFTs of the form in Eq. (126)

is as follows. From each node of the form 2
sulki

the spectrum
of operator dimensions is

Δi ¼ f6ðrþ 1 − iÞg ∪ f6ðrþ 1 − iÞ þ djd ¼ 2;…; kig;
ð206Þ

where i is the index of that quiver node. We can directly
work out the contribution to 4ð2a − cÞ from each of these
2-nodes:

4ð2a−cÞi ¼
X
u∈Δi

ð2u−1Þ¼ k2i þ12kiðrþ1− iÞ−2: ð207Þ

Summing over all contributions to 4ð2a − cÞ, we find

4ð2a − cÞ ¼ 4ð2a − cÞ0 þ
�
1 − n0V −

12ðrþ 1Þd0
l

�

þ nV − 64A −
48B
l

; ð208Þ

where we have used the expressions for nV, A, and B in
Eqs. (139) and (137). It remains for us to determine the
contribution from the 1-nodes in Eq. (126); there are four
distinct cases which we must consider. For each of the
following g, the Coulomb branch operator dimensions
coming from the 1-node with gauge algebra g are proposed
to be

g ¼ ∅∶
	
6ðrþ 1Þ

l

�
;

g ¼ sulk0∶ f6ðrþ 1Þg ∪ f6ðrþ 1Þ þ djd ¼ 2;…; k0g;
g ¼ sp2mþ1∶ f6ðrþ 1Þg ∪ f6ðrþ 1Þ þ 2djd ¼ 1;…; mg;
g ¼ sp2m∶ f6ðrþ 1Þg ∪ f6ðrþ 1Þ þ 2djd ¼ 1;…; m − 1g ∪ f3ðrþ 1Þ þmg; ð209Þ

where we remind the reader that the latter two options can
only occur when l ¼ 2. In each of the four cases, we can
see that

4ð2a − cÞ0 ¼
12ðrþ 1Þd0

l
þ n0V − 1; ð210Þ

and thus we see that Eq. (208) determining 4ð2a − cÞ from
the putative Coulomb branch spectrum proposed in [61]
matches the value of 4ð2a − cÞ determined in Eq. (205)
from the 6D anomaly polynomial and tensor branch
configuration.

D. Alternative constructions

In some cases, the theories we can generate via SW-folds
have alternative constructions. In this section we compare
with class S constructions, as well as methods based 4D
N ¼ 2 S-folds.

1. Exceptional twisted class S and flavor symmetry

In contrast to constructing 4D N ¼ 2 SCFTs via
compactification of 6D (1, 0) SCFTs on a T2, one can
also explore the class S construction [125,126]. This class
of theories is obtained via the twisted-compactification of
the 6D (2, 0) SCFT of type g on a punctured Riemann
surface.
It has been established in [31,32] that the 4D N ¼ 2

SCFT that arises from compactifying minimal ðe6; e6Þ
conformal matter on a T2 with Z3 Stiefel-Whitney twist
is dual to a class S theory. The latter is obtained from
compactification of the 6D (2, 0) SCFT of type so8 on a
sphere with two maximal Z3-twisted punctures and one
simple puncture. Similarly, minimal ðe7; e7Þ conformal
matter on a T2 with Z2 Stiefel-Whitney twist is dual to
the 6D (2, 0) SCFTof type e6 on a sphere with two maximal
Z2-twisted punctures and one simple puncture. In rare
limiting cases, some of the 6D SCFTs written in Table I can
also be obtained by starting from minimal ðen; enÞ con-
formal matter, with n ¼ 6, 7, and performing nilpotent
Higgs branch deformations of the g ⊕ g flavor symmetry.
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Compactifying these theories with Stiefel-Whitney twist
then gives rise to 4D N ¼ 2 SCFTs that can also be
obtained by partial closure of the maximal punctures in the
aforementioned class S construction.36

Class S theories of type so8 with Z3-twisted punctures
have been studied in [127]. Similarly, class S of type e6 with
Z2-twisted punctures has been explored in [128]. We list the
SW-fold SCFTs from Table II that can be realized in class S,
as described, in Table IV. In all cases, bar one, the flavor
symmetry determined from the dual class S construction
matches the flavor symmetry that was determined from the
Stiefel-Whitney twisted description in Sec. VA. There is

one special case, the SW-fold theory T ð1Þ
2 ð0; 1; 0; 0; 0Þ, for

which the analysis in Sec. VA predicts that the non-Abelian
flavor symmetry should be

ðso7Þ12 ⊕ ðso7Þ16; ð211Þ

but the dual class S theory has non-Abelian flavor algebra

ðso7Þ12 ⊕ ðg2Þ16: ð212Þ

This kind of dehancement occurs in the context of 6D
SCFTs when one has an su2 gauge algebra associated to a
tensor with self-pairing 2 [129]. In this case, the Coulomb
branch description of the 4D SW-fold SCFT has a single
su2 gauge algebra, and a parallel argument to that in 6D
may explain why the flavor symmetry is smaller than
expected. We would similarly suspect that the SW-fold

SCFTs T ð1Þ
4 ð0; 1Þ and T ð1Þ

3 ð0; 1; 0Þ, whose 4D Coulomb
branch descriptions also involve a single su2 gauge algebra

coming from a 2-node decorated algebra in 6D, to evince
similar dehancement. It would be interesting to understand
the physical mechanism behind this rare but curious effect.

2. Relation to 4D N = 2 S-fold theories

In the previous sections we studied the properties of 4D
N ¼ 2 SW-folds, and we also observed that in some cases,
the resulting theories can be realized via 4D N ¼ 2 S-fold
theories. In this section we discuss some suggestive hints
that such a top-down correspondence may be at work, but
leave a more complete treatment for future work.
To frame the discussion to follow, recall that an S-fold in

type IIB/F-theory backgrounds is a nonperturbative gen-
eralization of an orientifold plane in which a quotient on the
target space is combined with a group action from the
SLð2;ZÞ duality group of type IIB string theory. Now, for
such a quotient to exist we must work at specific values of
the axiodilaton compatible with this group action, e.g., τ ¼
i and τ ¼ expð2πi=6Þ. In the presence of a probe D3-brane,
this can be used to realizeN ¼ 3 SCFTs, as noted in [130]
(see also [131]). One can also introduce 7-branes provided
they are compatible with a specific value of τ, and this leads
to 4D N ¼ 2 S-folds. D3-brane probes of such systems
then realize 4D N ¼ 2 SCFTs [97–101]. As a general
comment, the global symmetry in these systems also
depends on the presence (or absence) of a torsional flux,
and this effect can be detected via open string junctions
which extend from the D3-brane to the 7-brane flavor
stack [99].
As we now explain, there are reasons to suspect that the

4D SW-fold theories considered in this paper, and 4D S-fold
theories are potentially related by a chain of dualities. To see
why, it is helpful to first consider some of the different top-
down realizations of the rankN E8 Minahan–Nemeschansky
theory [132,133]. One way is to first start with the rank

TABLE IV. Twisted punctures are usually denoted with an underline, however, since all of the punctures that we
write in this table are twisted, we have chosen to drop this notational feature. The subscripts I (interacting) and M
(mixed) denote whether the class S theory is an interacting SCFT, or whether it is coupled to free hypermultiplets,
respectively. In the latter case, the SW-fold SCFT matches the interacting part of the class S theory. In the flavor
column we write the non-Abelian flavor algebra as determined from the class S perspective.

SW-fold SW twist Class S type Punctures Flavor

T ð1Þ
2 ð2; 0; 0; 0; 0Þ

Z2 e6

½0; A2�I ðf4Þ18 ⊕ ðsu3Þ16
T ð2Þ

2 ð1; 0; 0; 0; 0Þ ½0; A2 þ Ã1�I ðf4Þ18 ⊕ ðsu2Þ39
T ð1Þ

2 ð1; 0; 0; 0; 1Þ ½A2; A1�I ðsp3Þ13 ⊕ ðsu3Þ16
T ð2Þ

2 ð0; 0; 0; 0; 1Þ ½A2 þ Ã1; A1�I ðsp4Þ13 ⊕ ðsu2Þ26
T ð1Þ

2 ð0; 1; 0; 0; 0Þ ½A2; Ã1�I ðso7Þ12 ⊕ ðg2Þ16
T ð1Þ

2 ð1; 0; 0; 0; 0Þ ½A2 þ Ã1; Ã1�M ðf4Þ12 ⊕ 2ðsu2Þ7
Sð1Þ
2 ð0; 0; 0; 0; 0Þ ½A2; A1 þ Ã1�M ðsu6Þ16 ⊕ ðsu2Þ9

T ð1Þ
2 ð0; 0; 0; 0; 1Þ ½A2 þ Ã1; A1 þ Ã1�M ðsp5Þ7

T ð1Þ
3 ð1; 0; 0Þ

Z3 so8
½0; A1�I ðg2Þ8 ⊕ ðsu2Þ14

Sð1Þ
3 ð0; 0; 1Þ ½A1; A1�I ðsu4Þ14

36See [30] for an in depth analysis of the relationship between
the nilpotent Higgs branch deformations and the partial closure of
the punctures in the untwisted case.
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N E-string theory 6D SCFT. Compactification on a T2 then
yields the 4DN ¼ 2 SCFT. Observe that in M-theory, this is
engineered from the T2 compactification of N M5-branes
probing an E8 nine-brane in M-theory. On the other hand,
we can also directly relate this to type IIB/F-theory back-
grounds with N D3-branes probing an E8 seven-brane.
Intuitively, there is a generalized notion of T-duality at play
which allows us trade the E8 nine-brane of M-theory for the
E8 seven-brane of F-theory.37

There is a natural extension of this generalized T-duality
which makes any proposed correspondence quite sugges-
tive. On the M-theory side, our 6D SCFT orbi-instanton
theories were realized by small instantons probing an ADE
singularity wrapped by an E8 nine-brane. Likewise, we
note that D3-branes probing an ADE singularity wrapped by
an E8 seven-brane will give rise to 4D N ¼ 2 SCFTs. In
both cases, the world volume theory of the probe brane is
specified as an instanton solution in the directions filled by
the ambient brane. As such, we can generate a wide class of
examples by specifying the boundary data of a flat con-
nection at the boundary S3=ΓADE, which are in turn captured
by discrete group homomorphisms HomðΓADE → E8Þ [6,7].
So, from this perspective, we see that the T2 compactifica-
tion of the 6D orbi-instanton theories provides us with a
direct way to match the two sets of theories.
So far, our discussion has made no reference to switching

on an SW-fold on the orbi-instanton side of this corre-
spondence. Now, on the SW-fold side we consider a pair of
holonomies which commute in G̃ up to a flux valued in the
quotienting subgroup. These profiles make direct reference
to the T2 direction on which we have compactified the orbi-
instanton theory. To make sense of such deformations in the
D3-brane probe theories, we would need to have a notion of
generalized T-duality which extends to such configurations
as well. The fact that there are known examples where SW-
folds and S-folds produce the same conformal fixed point is
of course suggestive [98], but without a suitable generali-
zation of T-duality, it is unclear whether it should be
expected to persist for all SW-folds and S-folds, or just
some subset. Exploring this issue further would be of great
interest and would likely lead to a better understanding of
both sorts of constructions.

VI. SW-FOLDS OF TYPE DE

In Sec. IV, we have enumerated the 6D SCFTs that have
nontrivial center-flavor symmetry and arise from a
Higgsing, by homomorphisms ZK → E8, of the rank N
orbi-instanton theory of type ðe8; suKÞ. In Sec. V, we
considered the compactification of the 6D SCFTs found

in Sec. IV on a T2 together with a Stiefel-Whitney twist in
the center-flavor symmetry. We refer to the resulting 4D
N ¼ 2 SCFTs as the A-type SW-folds, due to the suK
factor in the orbi-instanton origin. In this section we
consider the rank N orbi-instanton theories of type
ðe8; gÞ, where g is any ADE Lie algebra. We consider
homomorphisms Γ → E8, where Γ is the finite ADE group
of the same type as g, and such that the Higgsed 6D SCFT
has a nontrivial center-flavor symmetry. For generic values
of N, this center-flavor symmetry can be, at most

Z4 for g ¼ so4kþ2;

Z2 × Z2 for g ¼ so4k;

Z3 for g ¼ e6;

Z2 for g ¼ e7: ð213Þ

We can now consider the T2 compactifications of these 6D
SCFTs with a nontrivial Stiefel-Whitney class inside of the
center-flavor symmetry turned on. This opens up a vast new
vista of D-type and E-type SW-folds. We will not consider
all such families of SW-folds here, but we highlight a few
choice examples; the remaining cases can be determined
straightforwardly from the methods utilized throughout this
paper.

A. E6-type SW-folds

We begin with the ðe8; e6Þ orbi-instanton, of rank N. The
tensor branch configuration has the form

12 2
su2

3
g2
15
f4
1 3
su3

16
e6
1 3
su3

16
e6
1 3
su3

1 � � � 6
e6
1 3
su3

1

zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{N−1

; ð214Þ

which has an e8 ⊕ e6 flavor symmetry, and no center-flavor
symmetry. We will consider the 6D SCFTs obtained by the
finite group homomorphism:

Γe6 → E8; ð215Þ

with ΓE6
the binary tetrahderal finite subgroup of SUð2Þ.

The Higgs branch flows induced by such homomorphisms
have been studied in [135]. There are fifty-two such
SCFTs, however we are only interested in those that have
a nontrivial center-flavor symmetry. There are only seven
such Higgsings which give rise to a center-flavor sym-
metry, which is always a Z3.

38 These correspond to the
seven tensor branch geometries37Indeed, this figures prominently in the standard Fourier–

Mukai transformation of heterotic vector bundles on an ellipti-
cally fibered Calabi–Yau threefold and their characterization in
the associated spectral cover construction for gauge theory on the
base Kähler surface (see, e.g., [134]).

38Much as in Sec. IV, we emphasize that if N ¼ 1 then many
more of the E8-homomorphisms lead to theories with center-
flavor symmetry, and it is not restricted to be Z3.
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3
su3

1 3
su3

16
e6
1 3
su3

16
e6
1 3
su3

1 � � � 6
e6
1 3
su3

1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
N−1

; ð216Þ

2
su3

2
su3

16
e6
1 3
su3

16
e6
1 3
su3

1 � � � 6
e6
1 3
su3

1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
N−1

; ð217Þ

1 3
su3

16
e6

1
1 3
su3

16
e6
1 3
su3

1 � � � 6
e6
1 3
su3

1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
N−1

; ð218Þ

2
su3

16
e6

1
1 3
su3

16
e6
1 3
su3

1 � � � 6
e6
1 3
su3

1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
N−1

; ð219Þ

16
e6
1

1
1 3
su3

16
e6
1 3
su3

1 � � � 6
e6
1 3
su3

1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
N−1

; ð220Þ

3
e6
1 3
su3

16
e6
1 3
su3

1 � � � 6
e6
1 3
su3

1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
N−1

; ð221Þ

2
su6

2
su3

16
e6
1 3
su3

1 � � � 6
e6
1 3
su3

1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
N−1

: ð222Þ

To work out the central charges of the 4DN ¼ 2 SW-folds
obtained from the Stiefel-Whitney twisted compactification
of these 6D SCFTs we will again use the formulas of [61],
which we have summarized in Eqs. (123) and (124).
We consider the compactification of the tensor branch

configuration in Eq. (216) in detail. The 6D SCFT has an
ðSUð3Þ2 × E6Þ=Z3 flavor symmetry group, and after the
Stiefel-Whitney twist there remains only a G2 subgroup of
the E6. For the 6D SCFT from which this SW-fold
originates, the relevant terms in the anomaly polynomial are

I8 ⊃
1

24

��
7N
8

þ 35

12

�
p1ðTÞ2

− ð72N2 þ 209N þ 102Þc2ðRÞp1ðTÞ
�

þ 3

16
p1ðTÞTrF2; ð223Þ

where we have only written the mixed-gravitational-flavor
anomaly for the e6 flavor algebra. Next, we find that the
contribution from the weakly coupled multiplets is

Ifields8 ⊃
�
−
17N
192

−
1

288

�
p1ðTÞ2

þ
�
−
41N
24

−
1

4

�
c2ðRÞp1ðTÞ: ð224Þ

Putting this altogether we find that

a−ageneric¼ 12N2þ27Nþ15;

c−cgeneric¼ 12N2þ28Nþ16; κ− κgeneric¼ 12; ð225Þ

where we have used that the Dynkin index of the g2 inside
of the e6 is one, as explained around Eq. (173). It remains
for us to determine what the contributions to the central
charges are from the 4D theory at the generic point of the
Coulomb branch. The Z3 Stiefel-Whitney twist breaks the
su3 gauge algebras completely, and it breaks each e6 down
to a g2. As such, at the generic point of the Coulomb branch,
we have ð4ðN − 1Þ þ 8Þ vector multiplets from the 6D
tensors, and N dimðg2Þ vector multiplets from the surviving
g2 gauge symmetries. We end up with

ageneric ¼
5

24
ð18Nþ 4Þ; cgeneric ¼

1

6
ð18Nþ 4Þ: ð226Þ

Furthermore, since there are no hypermultiplets charged
under the residual g2 flavor symmetry we find that

κgeneric ¼ 0: ð227Þ

The central charges of the SW-fold are thus:

a¼ 12N2þ123N
4

þ95

6
; c¼ 12N2þ31Nþ50

3
; ð228Þ

and the flavor symmetry and flavor central charge is

ðg2Þ12: ð229Þ

The central charges from each of the 6D SCFTs with tensor
branch descriptions given in Eqs. (216)–(222) can be
determined, and we do not belabor the computation here.
The central charges, flavor symmetries, and flavor central
charges for the seven families of E6-type Z3 SW-folds are
given in Table V.

B. Coulomb branch scaling dimensions

In Sec. V C, we determined the conformal dimensions
of the spectrum of Coulomb branch operators of the 4D
N ¼ 2 SCFTs arising from the Stiefel-Whitney twisted
torus compactifications of the (Higgsed) rank N ðe8; suKÞ
orbi-instanton theories. In such cases, the Coulomb branch
spectrum was determined by following the heuristic pro-
posal in Appendix B of [61]; therein the scaling dimensions
were determined in terms of each curve/algebra combina-

tion, m
g
, in the tensor branch description, together with the

knowledge of the residual gauge algebra after the Zl
Stiefel-Whitney twist. The contributions were proposed
on a case-by-case basis for certain combinations of ðg;lÞ,
however, theories involving ðe6; 3Þ and ðe7; 2Þ were not
explored in [61].
When studying the E-type SW-folds, as we are doing

here, it is necessary to extend the proposal of [61] to
include the ðe6; 3Þ and ðe7; 2Þ cases. We make the
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following, again heuristic, proposal for the Coulomb
branch scaling dimensions of the operators that arise in
the ðe6; 3Þ case39

6J 6J × 1þ 2 6J × 2þ 6: ð230Þ
Here, the multiplicative factors of 1 and 2 that we have
introduced are the comarks of the residual g2 gauge
algebra; furthermore, the additive factors of 2 and 6 are
the degrees of the Casimir invariants of g2.

40 Similarly,
when the 6D tensor branch contains a curve/algebra

combination of the form 8
e7
, then, after a Z2 SW-twist

one obtains a residual f4 gauge algebra on the Coulomb
branch. We propose that the contribution from this curve/
algebra combination to the 4D Coulomb branch consists of
five operators with scaling dimensions:

6J 6J×1þ2 6J×2þ6 6J×3þ8 6J×2þ12 ð231Þ
Here the multiplicative factors 1, 2, 3, and 2 are the
comarks, and 2, 6, 8, and 12 are the degrees of the Casimir
invariants, of the surviving f4 gauge algebra.41

We first consider the 6D (1, 0) SCFTwith tensor branch
configuration as given in Eq. (216). We have determined
that the central charges of the Z3 SW-twisted torus
compactification satisfy

4ð2a − cÞ ¼ 48N2 þ 122N þ 60: ð232Þ

This quantity can also be recovered from the scaling
dimensions of the Coulomb branch operators:

4ð2a − cÞ ¼
Xr
i¼1

ð2DðuiÞ − 1Þ; ð233Þ

where r is the rank of the Coulomb branch and ui are
the Coulomb branch operators. Combining the analysis
in Appendix B of [61] with our proposal in Eq. (230),
we conjecture that the Coulomb branch operators
dimensions are

6

12

8

6J 6J × 1þ 2 6J × 2þ 6

6J þ 6

12J þ 12

6J þ 8

9>>>=
>>>; J ¼ 1;…; N

6ðN þ 1Þ: ð234Þ

In this way, we find that 4ð2a − cÞ as worked out from the
anomaly, as written in Table V, matches with 4ð2a − cÞ as

TABLE V. In this table, we write the central charges, non-Abelian flavor algebras, and flavor central charges of the
E6-type SW-folds.

6D Origin a c Flavor

3
su3

1 3
su3

16
e6
1 3
su3

16
e6
1 3
su3

1 � � � 6
e6
1 3
su3

1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
N−1

12N2 þ 123N
4

þ 95
6

12N2 þ 31N þ 50
3

ðg2Þ12

2
su3

2
su3

16
e6
1 3
su3

16
e6
1 3
su3

1 � � � 6
e6
1 3
su3

1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
N−1

12N2 þ 111N
4

þ 97
8

12N2 þ 28N þ 13 ðg2Þ12

1 3
su3

16
e6

1
1 3
su3

16
e6
1 3
su3

1 � � � 6
e6
1 3
su3

1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
N−1

12N2 þ 91N
4

þ 47
6

12N2 þ 23N þ 26
3

ðg2Þ12 ⊕ ðg2Þ4Nþ8

2
su3

16
e6

1
1 3
su3

16
e6
1 3
su3

1 � � � 6
e6
1 3
su3

1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
N−1

12N2 þ 87N
4

þ 145
24

12N2 þ 22N þ 41
6

ðg2Þ12 ⊕ ðsu2Þ12Nþ20

1 6
e6
1

1
1 3
su3

16
e6
1 3
su3

1 � � � 6
e6
1 3
su3

1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
N−1

12N2 þ 75N
4

þ 23
8

12N2 þ 19N þ 7
2

ðg2Þ12

3
e6
1 3
su3

16
e6
1 3
su3

1 � � � 6
e6
1 3
su3

1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
N−1

12N2 þ 63N
4

þ 7
12

12N2 þ 16N þ 7
6

ðg2Þ12

2
su6

2
su3

16
e6
1 3
su3

1 � � � 6
e6
1 3
su3

1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
N−1

12N2 þ 27N
4

− 31
12

12N2 þ 7N − 5
3

ðg2Þ12 ⊕ ðsu3Þ12Nþ16

39The quantity J is a number associated to each curve in the
tensor branch configuration which, roughly, counts where that
curves lies in the order of blow-downs required to reach the origin
of the tensor branch. This was referred to as n in Appendix B of
[61], and we refer the reader there for the definition.

40We note that, because we are only checking the matching of
4ð2a − cÞ, which is given by Eq. (233), then 6J, 6J × 2þ 2, and
6J × 1þ 6 also work equally well.

41Again, we emphasize that the level of analysis here is
insensitive to which comark is paired with which Casimir degree.
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worked out from the Coulomb branch spectrum using
Eq. (233). In fact, this matching occurs for all of the
SW-twisted theories appearing in Table V. Unfortunately,
we do not know of any dual class S description of a 4D
N ¼ 2 SCFT obtained from a Z3 Stiefel-Whitney twist of
the 6D theory containing such an e6 algebra, and thus we
do not have any independent verification of the proposal
given in Eq. (230).
To further explore the association between the tensor

branch configuration and the dimensions of the Coulomb
branch operators of the Stiefel-Whitney twisted theory, we
now study one example of an E7-type SW-fold. The tensor
branch configuration

1 2
su2

3
so7

2
su2

18
e7

1
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

1 � � � 8
e7
1 2
su2

3
so7

2
su2

1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
N−1

;

ð235Þ

has a Z2 center-flavor symmetry, and arises via Higgsing
the e8 flavor symmetry of the rank N ðe8; e7Þ orbi-instanton
by a homomorphism Γe7 → E8. The flavor group of this 6D
SCFT is ðE7 × E7 × SUð2ÞÞ=Z2. Using the anomaly poly-
nomial of the 6D SCFT associated to this tensor branch
configuration, and the Coulomb branch theory in 4D after
Z2 Stiefel-Whitney twist, one finds from Eq. (124) that

4ð2a − cÞ ¼ 144N2 þ 316N þ 120: ð236Þ

We propose that the scaling dimensions of the Coulomb
branch operators are

9N þ 9

12N þ 12

6N þ 6 6N þ 8 3N þ 5

6N þ 12

3N þ 9

6J 6J × 1þ 2 6J × 2þ 6 6J × 3þ 8 6J × 2þ 12

12J þ 6

18J þ 6

12J 12J þ 2 6J þ 2

18J

12J

9>>>>>>>>=
>>>>>>>>;

J ¼ 1;…; N

3ðN þ 1Þ; ð237Þ

where we have written the contributions from different
curves on different lines. Here, we have used our proposal
in Eq. (231) for the curves with residual f4 gauge algebras.
We can see thatX

u

2DðuÞ − 1 ¼ 144N2 þ 316N þ 120; ð238Þ

where the sum is taken over all of the Coulomb branch
operators. As we can see, this matches the anomaly
polynomial result in Eq. (236).
A uniform expression for the Coulomb branch scaling

dimensions associated to a pair ðg;lÞ, combining the
proposals in Appendix B of [61] and Eqs. (230) and
(231), has been observed in [136].42 As discussed in [61],

when considering a Zl Stiefel-Whitney twist that breaks the
gauge algebra, g, to a residual gauge algebra, h, then the
coefficients that appear in the Coulomb branch scaling
dimensions may be expected to be some c̃i satisfying

1þ
XrankðhÞ
i¼1

c̃i ¼
h∨g
l
: ð239Þ

For a pair ðg;lÞ, such c̃i have been studied from the
perspective of the supersymmetric index of 4D N ¼ 1 pure
Yang–Mills in [137], where the mathematical results on
almost commuting holonomies for compact Lie groups [95]
were utilized, which we now review briefly.
Consider ðg;lÞ, where Zl is a subgroup of the center of

the simply connected Lie group G̃ associated to g. The
subgroup Zl can be identified with a particular graph

42We thank Y. Tachikawa for sharing this observation, and for
encouraging us to include it here.
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automorphism of the extended Dynkin diagram of g, Γ. One
can construct a second extended Dynkin diagram, Γ0, via the
action ofZl on Γ; each collection of nodes of Γ lying within
the sameZl orbit maps to the same node of Γ0. Furthermore,
each node of Γ0 has a “generalized comark,” obtained by
summing the comarks of all the nodes of Γ which map to
that particular node of Γ0. These Γ0 together with the
generalized comarks are shown explicitly in the appendix
of [95]. We refer to these generalized comarks as ci, and
then c̃i ¼ ci=l. The uniform expression for the dimensions
of the Coulomb branch operators arising from the residual
gauge algebra is then

6J ×
c1
l
þ d1 � � � 6J ×

cr
l
þ dr; ð240Þ

where di are the Casimirs of the residual gauge algebra.43

We note that, while the ci=l sometimes are identical with
the comarks of the residual gauge algebra, this is not always
the case. Equation (240) appears to produce the correct
answer in all known cases of Stiefel-Whitney twisted torus
compactifications of very Higgsable 6D (1, 0) SCFTs; we
consider it an interesting open question to understand such a
formula from a top-down perspective.

VII. CONCLUSION

The global symmetries of a quantum field theory
constitute some of its most basic data. In this paper we
have presented a general prescription for reading off the
continuous zero-form symmetry group for 6D SCFTs based
on the topological structure of the effective field theory on
the tensor branch. Using this, we have determined the
continuous part of the zero-form symmetry group on
the tensor branch, including the center-flavor symmetry,
the contribution from Abelian symmetry factors, as well as
possible mixing with R-symmetry factors. Using this data,
we have also determined the continuous zero-form sym-
metry group for a large class of orbi-instanton theories as
obtained from small instantons probing an E8 nine-brane.
Making use of this global structure, we have also shown
that such theories provide a fruitful starting point for
generating a large class of 4D N ¼ 2 SCFTs via Stiefel-
Whitney twisted compactifications on a T2. In the remain-
der of this section we discuss some avenues of future
investigation.
In this work we have primarily focused on the structure

of the global zero-form symmetries, but one can in
principle also study higher symmetries that act on extended
objects. For example, the one-form symmetries of some 6D
SCFTs were recently studied in [82,110], and the corre-
sponding 0-form, 1-form and 2-group symmetries of the 5D

theories obtained from a reduction on an S1 were recently
calculated using the geometry of the associated noncom-
pact elliptically fibered Calabi-Yau threefold [83]. Some
aspects of these issues have also been explored in
[80,138,139]. It would be interesting to use our bottom
up approach based on the effective field theory on the
tensor branch to provide an independent cross-check on
these results.
One of the operating assumptions in much of our work is

that the effective field theory on the tensor branch provides
an accurate characterization of the resulting flavor sym-
metries of an SCFT. In some cases, the SCFT may have
enhanced flavor symmetry, and in others, there can even be
a dehancement. For example, su2 gauge theory on a −2
curve with eight half hypermultiplets in the fundamental
representation has an so8 flavor symmetry algebra on the
tensor branch, but only a so7 flavor symmetry at the fixed
point (see, e.g., [6,30,32,119,129]). Similarly, when one of
the half-hypermultiplets is eaten up by a neighboring
undecorated self-pairing 2 tensor, the naive so7 flavor
symmetry is dehanced to a g2. Geometrically, this curiosity
is related to the complicated nature of the I�0 singular fiber,
which engineers so8, so7, and g2 algebras; some of the
geometric properties and subtleties in these cases have been
studied in [62,140,141]. In this paper, we have seen
evidence that 6D SCFTs of the form

� � � 2
su2l

; ð241Þ

compactified on a T2 with a Zl Stiefel-Whitney twist also
feature these type of dehancements. These observations
have mainly come from dual class S descriptions, as in
Sec. V D 1, where there are alternative methods to calculate
the exact superconformal flavor symmetry; in configura-
tions of the form in Eq. (241) without a known class S dual,
the flavor symmetry is at present not convincingly known.
It would be worthwhile to understand both the field
theoretic and the geometric origin of these rare and
exceptional dehancements directly from a 6D or F-theory
perspective.
We have explicitly shown that the global form of the

R-symmetry can potentially mix with the flavor symmetries
of a 6D SCFT. Now, in the context of compactification to
lower-dimensional spaces, a partial topological twist is
often used to correctly capture the resulting supersymme-
tries which are retained. It would be quite interesting to
track this data in the resulting compactifications of theories.
Indeed, in the broader context of generating 4D SCFTs
from compactification 6D SCFTs, it is natural to consider
Stiefel-Whitney twists on a genus g curve with marked
points. Here, we can in principle consider more than just a
single pair of holonomies which commute up to a center-
valued flux in G̃. Since we now have a large class of 6D
SCFTs which can generate such theories, it is natural to
consider this more general situation.

43Recall that there, in addition, exists a Coulomb branch
operator arising from the torus reduction of the 6D tensor
multiplet associated to each curve.
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APPENDIX A: SYMMETRIES OF E-STRING
AND N = ð2;0Þ THEORIES

In this Appendix, we examine the global symmetry
structure of the E-string and (2, 0) theories, including the
R-symmetry. As earlier, we leave implicit the action on the
spacetime symmetries, as dictated by the group action on
the supercharges of the theory.
At the level of the algebra, the symmetry of the rank

N E-string is e8 ⊕ suð2ÞL ⊕ suð2ÞR, which reduces to
e8 ⊕ suð2ÞR forN ¼ 1. Starting from the latter case, which
has the simple tensor branch configuration

½e8�1; ðA1Þ

the global symmetry is encoded in the Green-Schwarz
four-form:

I ¼ −c2ðFe8Þ þ c2ðRÞ −
1

4
p1ðTÞ; ðA2Þ

where −c2ðFe8Þ is always integer since E8 is simply
connected. Following the discussion of Sec. III C, we
can consider a Z2-twist of the R-symmetry and tangent
bundle, which indeed leads to an integer shift,

c2ðRÞ −
1

4
p1ðTÞ≡ −

1

4
w2
R −

3

4
w2
R ≡ 0 mod Z: ðA3Þ

So we conclude that the global symmetry group of the rank
1 E-string is

E8 × SOð3ÞR: ðA4Þ

Now, the additional suð2ÞL flavor symmetry of the rank
N > 1 E-string couples to all nodes of self-pairing 2 in the
quiver,

½e8�122 � � � 2|fflfflffl{zfflfflffl}
N−1

zfflfflffl}|fflfflffl{½suð2ÞL�

; ðA5Þ

but does not enter the topological coupling of the left-most
tensor multiplet, which by itself would just be a rank one
E-string. Therefore, its topological coupling is formally
identical to that in Eq. (A2), and allows a Z2 twisted
SUð2ÞR bundle. Meanwhile, the undecorated nodes of self-
pairing 2 all have topological couplings of the same form
[18],

Ii>1 ¼ c2ðLÞ − c2ðRÞ; ðA6Þ

which, when c2ðRÞ is fractional, also forces c2ðLÞ≡
c2ðFsuð2ÞLÞ to be fractional. Hence, we conclude that the
rank N E-string has global symmetry group

E8 × ½SUð2ÞL × SUð2ÞR�=Z2 ≅ E8 × SOð4Þ: ðA7Þ

An N ¼ ð2; 0Þ theory has a tensor branch quiver that
takes the form of an ADE-type Dynkin diagram, with
nodes being undecorated and having self-pairing 2. While
the SCFT has R-symmetry sp2 ≅ so5, the tensor branch
description sees only the so4 ≅ suð2ÞL ⊕ suð2ÞR sub-
algebra, where, from a (1, 0) perspective, the suð2ÞL
appears as a flavor symmetry while the suð2ÞR is the (1, 0)
R-symmetry. This is analogous to the self-pairing-2 nodes
of the rank N E-string, including the form of the Green-
Schwarz four-form in Eq. (A6), which does not couple to
p1ðTÞ. Therefore, we can naturally consider a diagonal
Z2 ⊂ ZðSUð2ÞL × SUð2ÞRÞ twist with background field w,
such that

c2ðLÞ − c2ðRÞ≡ 1

4
w2 −

1

4
w2 ≡ 0 mod Z: ðA8Þ

This would imply that the global symmetry of (2, 0)
theories on the tensor branch is

SOð4Þ ≅ ðSUð2ÞL × SUð2ÞRÞ=Z2: ðA9Þ

Since this is a subgroup of SOð5Þ, but not Spinð5Þ ≅
Spð2Þ, we predict that the (2, 0) SCFTs have SOð5Þ
R-symmetry group.

APPENDIX B: SW-FOLDS AND RANK TWO
4D N = 2 SCFTs

In this Appendix we show that SW-folds can be used to
construct nearly all of the known rank two 4D N ¼ 2
SCFTs. In recent years, there has been much progress in the
program of classifying low rank 4D N ¼ 2 SCFTs by
studying the complex geometry of the Coulomb branch
[142–151]. An enumeration and analysis of the known rank
two theories has appeared recently in [96,152–155]. As has
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been emphasized in [96], this enumeration is by no means a
classification, and there are many reasons to believe that
there remain undiscovered rank two theories. Nevertheless,
recent progress has unveiled an intricate structure to the
rank two 4D N ¼ 2 SCFT landscape.
Rank two SCFTs can be arranged into families that are

connected via renormalization group flows. Each family
possesses a collection of “parent” or “top” theories from
which all other theories in the family can be obtained by
mass deformation. We note that it is not necessary that each
SCFT in the family comes from all top theories, only that it
comes from a mass deformation of at least one top theory.
All of the “top” rank two theories of [96] are given in
Table VI. In this section, we study which of the known rank
two theories can be interpreted as arising from the Stiefel-
Whitney twisted compactifications that have formed the
topic of this paper. It is necessary only to provide an origin
for the top theories, as those theories obtained via 4D mass
deformation follow from the addition of continuous Wilson
lines, breaking the flavor symmetry, on the T2.
When considering a Stiefel-Whitney twisted compactifi-

cation, the Coulomb branch dimension of the resulting
four-dimensional theory is always at least the number of
tensor multiplets, i.e., compact curves in the geometric

construction, of the parent 6D theory. As such, the 4D
SCFTs of low rank can only come from a highly restrictive
set of 6D SCFTs. There are twoways of engineering theories
with a Coulomb branch of rank two. We can consider

1
g
=Zl; ðB1Þ

where the Zl Stiefel-Whitney quotient breaks the gauge
algebra to gub which is either

so2 or su2: ðB2Þ

In either case, the methodology of [61] allows us to
determine that the Coulomb branch operators, u and v,
have dimensions44

fΔu;Δvg ¼
8<
:

	
6; 6l þ 1

�
if gub ¼ so2

f6; 8g if gub ¼ su2:

ðB3Þ

TABLE VI. All the “top” theories from [96]. We list their Coulomb branch operator dimensions and their 6D
origin, if known. There are four theories, labeled by I–IV, for which no SW-fold description is known. The theories
marked as “Trivial SW-folds” are those which are obtained via compactification of a 6D (1, 0) SCFT on T2 without
turning on a Stiefel-Whitney twist.

Flavor algebra fΔu;Δvg ð24a; 12cÞ SW-fold

ðe8Þ24 ⊕ ðsu2Þ13 f6; 12g (263, 161)
“Trivial SW-folds”ðso20Þ16 f6; 8g (202, 124)

ðusp12Þ8 f4; 6g (130, 76) T ð1Þ
2 ð0; 0; 0; 0; 2Þ

ðusp4Þ7 ⊕ ðusp8Þ8 f4; 6g (128, 74) I
ðsu2Þ27 ⊕ ðf4Þ12 f6; 6g (156, 90) T ð1Þ

2 ð1; 0; 0; 0; 0Þ
ðsu6Þ16 ⊕ ðsu2Þ9 f6; 8g (179, 101) Sð1Þ

2 ð0; 0; 0; 1; 0Þ
ðusp14Þ9 f6; 8g (185, 107) T ð1Þ

2 ð0; 0; 0; 0; 3Þ
ðsu5Þ16 f6; 8g (170, 92) Rð1Þ

3 ð0; 0; 2Þ
ðusp8Þ13 ⊕ ðsu2Þ26 f6; 12g (232, 130) T ð2Þ

2 ð0; 0; 0; 0; 1Þ
ðsu2Þ2 ⊕ ðsu2Þ8 f3; 6g (102, 54) T ð1Þ

4 ð1; 0Þ
ðg2Þ8 ⊕ ðsu2Þ14 f4; 6g (120, 66) T ð1Þ

3 ð1; 0; 0Þ
ðsu3Þ26 ⊕ uð1Þ f6; 12g (219, 117) Sð2Þ

3 ð0; 0; 1Þ
ðsu2Þ16 ⊕ uð1Þ f6; 12g (212, 110) Sð2Þ

4 ð0; 1Þ
ðusp4Þ14 ⊕ ðsu2Þ8 f4; 6g (118, 64) II

ðsu2Þ14 f12
5
; 6g ð456

5
; 234

5
Þ T ð1Þ

5 ð1Þ
ðsu2Þ14 f2; 6g (84, 42) T ð1Þ

6 ð1Þ
ðusp12Þ11 f4; 10g (188, 110) III

∅ f2; 4g (58, 28) IV

44We do not need to worry about the subtleties with the
prescription of [61] that were highlighted in Sec. VI B, as the rank
two requirement on the Coulomb branch ensures that the gauge
algebra after Stiefel-Whitney twist is at most rank one.
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On the other hand, we can have

1
g
2
h
=Zl; ðB4Þ

where the quotient breaks the entirety of the gauge algebra.
In this case, we allow g and h to be trivial, and we also allow
l ¼ 1. We can determine that

fΔu;Δvg ¼

8><
>:

	
6; 12l

�
if g ¼ ∅

f6; 12g if g ≠ ∅:

ðB5Þ

Putting this together, and using that fact that l ¼ 1;…; 6 are
the only valid options, we find that the possible Coulomb
branch operator spectra are highly constrained. Specifically,
all rank two theories obtained by Stiefel-Whitney twisted
compactification have a Coulomb branch operator with
scaling dimension Δ ¼ 6.
In view of these restrictions on the scaling dimensions of

the Coulomb branch operators, let us consider the theories
I–IV from Table VI; that is, those that do not have a known
SW-fold description. Theories I and II have Coulomb
branch operators of dimensions f4; 6g, which are consis-
tent with them arising from a Z3 Stiefel-Whitney twisted
compactification of 6D SCFTs of the form

1
g
; or 12

g
; ðB6Þ

however, it is unclear that additional 6D SCFTs of this form
admitting a Z3 center-flavor symmetry exist. The theory
labeled III has Coulomb branch operators with dimensions
f4; 10g, which does not include the requisite dimension six
operator for it to be able to arise from a Stiefel-Whitney
twisted compactification. There are two possibilities: either
theory III is not a top theory, or else it is a theory that cannot
be obtained from a Stiefel-Whitney twisted torus compac-
tification. The analysis of [156] appears to rule out any
currently unknown theory with Coulomb branch dimen-
sions f6; 12g, which would be expected for a putative top
theory that mass deforms to a theory with Coulomb branch
operator spectrum f4; 10g, and thus we conclude that this
SCFT probably does not arise from a Stiefel-Whitney
twisted compactification.45 Finally, we turn to theory IV.
This is the Lagrangian theory with gauge algebra sp2 and a
single half-hypermultiplet in the 16 representation, and it is
also the only theory in [96] that does not have any known
construction in string theory. As emphasized therein, one
may speculate that this SCFT sits as a descendant inside of
a currently unknown family of rank two SCFTs.
At rank two it appears that almost all of the 4D N ¼ 2

SCFTs can be obtained from torus compactifications of 6D
(1, 0) SCFTs. Of the sixty-nine 4D SCFTs listed in [96],

there are only seven for which it is not known how to obtain
them in this manner. It would be interesting to understand
whether other ingredients can be included in the torus
compactifications to generate the complete list of rank two
theories, and to determine if the preponderance of Stiefel-
Whitney twists persists to higher rank 4D SCFTs.

APPENDIX C: STIEFEL-WHITNEY TWISTS
AND THE LITERATURE

In this Appendix we present a brief survey in table format
of earlier work on Stiefel-Whitney compactifications. 4D
N ¼ 2 SCFTs have been constructed from Stiefel-Whitney
twisted torus compactifications of very Higgsable 6D (1, 0)
SCFTs in previous literature [61,97–101]. These theories
form a small subset of the landscape of Stiefel-Whitney
twisted theories that we discuss in the present paper, and we
highlight for which values of the E8-homomorphism
parameters they have been studied. These particular theories
are listed in Table VII, together with the reference to where
they were first explored.

APPENDIX D: NILPOTENT ORBITS
AND HIGGSING SW-FOLDS

In this Appendix we track the structure of a particular
class of Higgs branch flows in 6D, and their 4D descend-
ants after a SW-twist. Take the original 6D rank N orbi-
instanton SCFT of type ðe8; gÞ which can be expressed on
its partial tensor branch as

½e8�1
g
2
g
� � � 2

g
½g�: ðD1Þ

Consider, as we did in Sec. III, a Higgsing via an
E8-homomorphism Γg → E8 that leads to an SCFT with
a nontrivial center-flavor symmetry Zl. Instead of immedi-
ately compactifying it on a T2 with a Zl Stiefel-Whitney
twist, we first perform a nilpotent Higgsing in 6D of the
g flavor symmetry on the right of the tensor branch
quiver46:

μ6D∶ su2 → g: ðD2Þ
Particular choices for the nilpotent orbit lead to 6D SCFT
where the Zl center-flavor symmetry is preserved. We can
then take this Higgsed theory, and compactify it on a T2

with a Zl Stiefel-Whitney twist. In this way, we end up
with a larger family of SW-fold theories in 4D, going
beyond the scope of the theories listed in Table I.
Nonetheless, we can still analyze these extra theories by

computing their central charges and flavor central charges
as in Sec. V. We also point out that, these extra SW-fold
theories can also be obtained by taking the SW-fold

45We thank M. Martone for discussions on this point.

46Higgs branch renormalization group flows of 6D SCFTs
triggered by nilpotent deformations have been studied in great
detail in [13,15,30,63,64,157,158].
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theories that we have obtained in the main text as in Table II
and performing the following “induced” nilpotent Higgsing
in 4D:

μ4D∶ su2 → g̃ ðD3Þ

where g̃ is the flavor symmetry algebra in 4D that
descended from the g flavor symmetry on the right of
the 6D SCFT. The nilpotent orbit μ4D is then the nilpotent
deformation in 4D which can be thought of as a “folded”
version of the nilpotent deformation in 6D.

For the nilpotent Higgsings of the 6D SCFTs that
were discussed in Sec. IV, we have g ¼ suK . Nilpotent
orbits of suK are in one-to-one correspondence with
integer partitions of K. We write

P ¼ ½1n1 ; 2n2 ;…; KnK �; ðD4Þ
where ni ≥ 0 and

XK
i¼1

ini ¼ K; ðD5Þ

TABLE VII. The Stiefel-Whitney twisted 4D N ¼ 2 SCFTs that have appeared afore.

SW-fold 6D origin Zl Alternate name References

T ðrÞ
2 ð0; 0; 0; 0; 1Þ 1

su2

2
su2 � � � 2

su2|fflfflfflfflffl{zfflfflfflfflffl}
r−1

Z2 SðrÞ
E6;2

[98]

SðrÞ
3 ð0; 0; 1Þ 1

su3

2
su3 � � � 2

su3|fflfflfflfflffl{zfflfflfflfflffl}
r−1

Z3 SðrÞ
D4;3

SðrÞ
4 ð0; 1Þ 1

su4

2
su4 � � � 2

su4|fflfflfflfflffl{zfflfflfflfflffl}
r−1

Z4 SðrÞ
A2;4

T ðr−1Þ
2 ð1; 0; 0; 0; 0Þ 1 2

su2 � � � 2
su2|fflfflfflfflffl{zfflfflfflfflffl}

r−1

Z2 T ðrÞ
E6;2

T ðr−1Þ
3 ð1; 0; 0Þ 1 2

su3 � � � 2
su3|fflfflfflfflffl{zfflfflfflfflffl}

r−1

Z3 T ðrÞ
D4;3

T ðr−1Þ
4 ð1; 0Þ 1 2

su4 � � � 2
su4|fflfflfflfflffl{zfflfflfflfflffl}

r−1

Z4 T ðrÞ
A2;4

T ðr−1Þ
5 ð1Þ 1 2

su5 � � � 2
su5|fflfflfflfflffl{zfflfflfflfflffl}

r−1

Z5 T ðrÞ
∅;5

[100]

T ðr−1Þ
6 ð1Þ 1 2

su6 � � � 2
su6|fflfflfflfflffl{zfflfflfflfflffl}

r−1

Z6 T ðrÞ
∅;6

Sð1Þ
2 ð0; 0; 0; 2r − 1; n − 2Þ 1

su2n

2
su2nþ8 � � � 2

su2n−8r−8|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
r−1

Z2 …
[61]

Sð1Þ
3 ð0; 0; 3r − 2Þ 1

su3

2
su12 � � � 2

su9r−6|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
r−1

Z3 …

Rð1Þ
3 ð0; 0; 3r − 1Þ 1

su0
6

2
su15 � � � 2

su9r−3|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
r−1

Z3 …

T ð1Þ
3 ð0; 0; 3r − 3Þ 1 2

su9 � � � 2
su9r−9|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

r−1

Z3 …

Sð1Þ
4 ð0; 2r − 1Þ 1

su4

2
su12 � � � 2

su8r−4|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
r−1

Z4 …

T ð1Þ
4 ð0; 2r − 2Þ 1 2

su8 � � � 2
su8r−8|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

r−1

Z4 …

T ð1Þ
5 ðr − 1Þ 1 2

su5 � � � 2
su5r−5|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

r−1

Z5 …

T ð1Þ
6 ðr − 1Þ 1 2

su6 � � � 2
su6r−6|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

r−1

Z6 …
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to denote a partition of K. We are interested in the case
where K ¼ lK̃ and where there exists a Zl center-flavor
symmetry. The right-hand side (rhs) of the tensor branch
configurations written in Table I all have the form

� � � 2
suK

2
suK � � � 2

suK

2
suK

; ðD6Þ

and it is well known how the tensor branch configuration
is modified when Higgsing by a nilpotent orbit as in
Eq. (D4). One finds47

� � � 2
suKK

½sunK
�

2
suKK−1

½sunK−1 �
� � � 2

suK2

½sun2
�

2
suK1

½sun1
�
: ðD7Þ

The ranks of the flavor algebras are fixed by the exponents
of the partition, and the Ki are fixed from that data by
anomaly cancellation. They are each required to satisfy

2Ki − ni − Ki−1 − Kiþ1 ¼ 0; ðD8Þ

where we have defined K0 ¼ 0 and KKþ1 ¼ K. It is easy to
see that the anomaly of the large gauge transformations of
the two-forms fields, as discussed in Sec. III, rules out a Zl
center-flavor symmetry unless

ni ¼ lñi; ðD9Þ

for all i. The converse also can be shown. It is easy to see
that a partition

½1lñ1 ; 2lñ2 ;…; ðlK̃ÞlñðlK̃Þ �; ðD10Þ

of lK̃ can equivalently be written as a partition

½1ñ1 ; 2ñ2 ;…; K̃ñK̃ �; ðD11Þ

of K̃. More succinctly, Zl center-flavor symmetry pre-
serving nilpotent orbits of suK are in one-to-one corre-
spondence with nilpotent orbits of suK̃ . Physically, this
reflects the fact that one can either first perform the
nilpotent Higgsing by a (Zl-preserving) partition of K
in 6D and then compactify with Stiefel-Whitney twist to
4D, or else first perform the Stiefel-Whitney twisted
compactification to 4D and then the nilpotent Higgsing
by the associated partition of K̃; either way, one ends up
with same 4D N ¼ 2 SCFT.
The family of theories obtained by nilpotent deforma-

tions forms a partially ordered set, capturing the network of
renormalization group flows among the theories, that
follows from the partial ordering of the nilpotent orbit

inclusion: μ ≺ ν when OrbitðμÞ ⊂ OrbitðνÞ. For suK nil-
potent orbits, such partial ordering can be characterized by
the “dominant ordering” of two partitions of K; let μ ¼
½r1; � � � ; rlr �; ν ¼ ½s1; � � � sls

� be weakly-decreasing parti-

tions of K, then μ ≺ ν ⇔
Pj

i¼1 ri <
Pj

i¼1 si; 1 ≤ j ≤
maxðlr;lsÞ where the partition with fewer elements is
extended by zeroes until they are of equal length.
To be more specific, let us illustrate this construction by

analyzing the network of theories obtained by starting from
the SCFT in family T ðNÞ

3 ðp; s; 3qÞ with p ¼ s ¼ q ¼ 1.
The 6D origin of this theory is given by the tensor branch
description:

½e8�1 2
su9

½su3�
2

su15

½su3�
2

su18

½su3�
2

su18 � � � 2
su18|fflfflfflfflfflffl{zfflfflfflfflfflffl}

N−1

½su18�: ðD12Þ

We label each theory in the nilpotent network via

T ðNÞ
3 ðp; s; 3q; μ4DÞ; ðD13Þ

where μ4D ¼ ½118� corresponds to the T ðNÞ
3 ðp; s; 3qÞ SCFT

discussed in Sec. V.
We first discuss the nilpotent network formed by the Z3

center-flavor preserving nilpotent deformations of the su18

flavor symmetry. As discussed, these are specified by
partitions of eighteen such that each exponent is a multiple
of three. Exhaustively, there are eleven such partitions:

½118�; ½23;112�; ½26;16�; ½29�; ½33;19�; ½33;23;13�; ½36�; ½43;16�;
½43;23�; ½53;13�; ½63�: ðD14Þ

The nilpotent network/Higgs branch flows among the
generated 6D SCFTs is depicted in Fig. 1. Similarly, one
can consider the network formed by performing nilpotent
Higgsing of the su6 flavor algebra belonging to the 4D

T ðNÞ
3 ðp ¼ 1; s ¼ 1; 3q ¼ 3Þ SCFT. These are described by

partitions of six, and the generated nilpotent hierarchy of
these 4D theories is shown in Fig. 2. The nilpotent
Higgsing in 6D and 4D commutes when combined with
the Z3 Stiefel-Whitney twisted compactification of the
theories in Fig. 1 to the theories in Fig. 2.

1. Exceptional SW-folds and nilpotent Higgsing

In Sec. VI, we considered a generalization of the SW-
fold theories discussed in Sec. V to those obtained from the
rank N orbi-instanton theory of type ðe8; gÞ, where g is an
algebra of type DE. In particular, in Sec. VI A, we showed
that there exist seven homomorphisms Γe6 → E8 such that
Higgsing the e8 flavor symmetry of the orbi-instanton leads
to a theory with Z3 center-flavor symmetry. The 6D SCFTs
obtained by such Higgsing retain the e6 flavor symmetry on
the right of the tensor branch quiver.

47For ease of exposition, we do not focus here on the cases
where the plateau is too short and the nilpotent Higgsing starts to
correlate with the E8-homomorphism Higgsing.
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FIG. 1. The subsector of the nilpotent hierarchy of the 6D SCFT in Eq. (D12) in which each theory enjoys a Z3 center-flavor
symmetry. We listed the quiver description of the tensor branch and the partition defining the nilpotent orbit in each case. TheZ3 Stiefel-
Whitney twisted torus compactification of the theories appearing here gives rise to the 4D N ¼ 2 SCFTs whose nilpotent network is
depicted in Fig. 2.
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As in the spirit of this Appendix, the e6 flavor symmetry
can be Higgsed by a choice of nilpotent orbit of e6, and if
that nilpotent orbit is compatible then the Z3 center-flavor
symmetry can be preserved. There are only five such
nilpotent orbits, which we have listed in Table VIII.48

Similarly to the case where g is a special unitary algebra,
the e6 nilpotent orbits that are compatible with the Z3

center-flavor symmetry are in one-to-one correspondence
with the nilpotent orbits of g2. Again, the 4DN ¼ 2 SCFT
obtained by the operation of nilpotent Higgsing of the e6
flavor symmetry and then compactifying with Z3 Stiefel-
Whitney twist can alternatively be obtained by first
performing the Z3 Stiefel-Whitney twisted compactifica-
tion and then Higgsing the g2 flavor symmetry by the
appropriate nilpotent orbit.
Further, we consider the case where g ¼ e7. There are

fifteen nilpotent orbits of e7 that are compatible with a Z2

center flavor symmetry, as depicted in Table IX. The sub-
Hasse diagram formed by the subset of e7 nilpotent orbits
appears here almost matches the Hasse diagram for f4
nilpotent orbits that appears in [163]. Similarly, the flavor
symmetries surviving after the Stiefel-Whitney twist and
those of the f4 nilpotent orbits almost always match. The
one subtlety is the line denoted in red in Table IX; this
appears to be associated to one e7 nilpotent orbit, but two
f4 nilpotent orbits. This case involves the Z2 Stiefel-

Whitney twist of a 6D theory containing an 2
su4

factor. As
we discussed at the conclusion of Sec. V D 1, this leads to
curious features, similar to those that occur in six

dimensions when one has 2
su2

[129]. We expect that a
deeper understanding of these highly special configura-
tions will lead to the resolution of this subtlety in the e7
and f4 nilpotent orbits, however, we leave such a study for
future work.
One can use the same methods from the 6D perspective

to determine the central charges, flavor symmetries,
Coulomb branch operator dimensions and so forth of
the 4D N ¼ 2 SCFTs obtained from the torus compacti-
fication. A similar analysis can be carried out when

FIG. 2. The nilpotent hierarchy of 4D N ¼ 2 SCFTs obtained
from nilpotent deformations breaking the su6 flavor symmetry of

T ðNÞ
3 ð1; 1; 3Þ. The structure of the network matches that of the 6D

SCFTs in Fig. 1, and the Z3 Stiefel-Whitney twisted compacti-
fications of each of those 6D SCFTs yields the associated 4D
SCFT in this figure.

TABLE VIII. The nilpotent orbits of e6 that are consistent with
a Z3 center-flavor symmetry. The column labeled f, we write the
subalgebra of the e6 flavor symmetry that survives the nilpotent
Higgsing, and in the f̃ column, we write the remnant algebra after
the Z3 Stiefel-Whitney twisted compactification down to 4D.

Bala–Carter
Label

Weighted
Dynkin
Diagram 6D Quiver f f̃

0
000

0

00 � � � 6
e6
1 3
su3

16
e6
1 3
su3

1
e6 g2

A1
000

1

00 � � � 6
e6
1 3
su3

16
e6
1 2
su3 su6 su2

3A1
001

0

00 � � � 6
e6
1 3
su3

16
e6
12

su3 ⊕ su2 su2

A2
000

2

00 � � � 6
e6
1 3
su3

16
e6

1
1

su3 ⊕ su3 ∅

D4
002

2

00 � � � 6
e6

1
1 3
su3 su3 ∅

48We label the exceptional nilpotent orbits using the Bala–
Carter notation [159,160]; see [161] for the standard reference on
nilpotent orbits, and [162] for a useful summary for the excep-
tional Lie algebras from the perspective of nilpotent Higgsing.
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g ¼ so2k, however we leave such an enumeration to
the reader.49

APPENDIX E: FLAVOR GROUP FOR
CONFORMAL MATTER AND DEFORMATIONS

In Sec. III, we expanded upon the proposal to determine
the global structure of the global symmetry group of a 6D
(1, 0) SCFT that was put forth in [84]. This proposal is based
on the weakly coupled spectrum of the effective theory that
lives on the generic point of the tensor branch, together with
the knowledge of the Green-Schwarz couplings. In Sec. IV,
we applied this prescription to the 6D SCFTs obtained from
the Higgsing of the e8 flavor symmetry, by a choice of
E8-homomorphism ρ∶ ZK → E8, of the rank N ðe8; suKÞ

orbi-instanton; we found that the resulting global structure of
the non-Abelian part of the flavor symmetry was encoded in
a simple manner in the choice of ρ. We highlighted an
extension of this analysis to the 6D (1, 0) SCFTs obtained
via the e8 Higgsing of the rank N ðe8; gÞ orbi-instanton in
Sec. VI. Furthermore, in Appendix D, we demonstrated that,
when we consider the Higgsing of the orbi-instanton by both
an E8-homomorphism, ρ, and a nilpotent orbit of g, σ, there
is a simple prescription for the non-Abelian center-flavor
symmetry of the resulting SCFT in terms of ρ and σ.
Throughout this paper, we have focused on the 6D (1, 0)

SCFTs known as the rank N ðe8; gÞ orbi-instantons and the
theories further obtained via Higgs branch renormalization
group flows. Another broad class of 6D (1, 0) SCFTs are
those commonly referred to as the “Higgsable to (2, 0) of
type AN−1” SCFTs [32]. These include the rank N ðg; gÞ
conformal matter theories [7], corresponding to the world
volume theory on a stack of N M5-branes probing a C2=Γg

TABLE IX. The nilpotent orbits of e7 that are consistent with a Z2 center-flavor symmetry. In the f, f̃ column we write the flavor
symmetry in 6D, and the remnant subalgebra in 4D after the SW-twisted compactification. Scored-out algebras are removed by the SW-
twist. The remnant algebra, f̃ matches the flavor symmetry associated to the f4 nilpotent orbit. The bolded line is exceptional, and is
discussed in the text.

e7 Orbit f4 Orbit 6D Quiver f, f̃

0 0 � � � 8
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

1
e7 → f4 ⊕ su2

A1 A1 � � � 8
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

1
su2 so12 → sp3 ⊕ su2

2A1 Ã1 � � � 8
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

1
ðso9 → su4 ⊕ su2Þ ⊕ su2

3A0
1 A1 þ Ã1 � � � 8

e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

2
so7 ðsp3 → su2 ⊕ su2Þ ⊕ su2

A2 A2 and Ã2 � � �8
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

2
su4 su6

A2 þ 2A1 A2 þ Ã1 � � � 8
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

2
su2 su2 ⊕ su2 ⊕ su2

A3 B2 � � � 8
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7

1
1 2
su2 ðso7 → su2 ⊕ su2 ⊕ su2Þ ⊕ su2

2A2 þ A1 Ã2 þ A1 � � � 8
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7
122

su2 ⊕ su2

ðA3 þ A1Þ0 C3ða1Þ � � � 8
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7

1
12

su2 ⊕ su2 ⊕ su2

D4ða1Þ F4ða3Þ
� � � 8

e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

2
su2

18
e7

1

1

1

su2 ⊕ su2 ⊕ su2

A0
5 B3 � � � 8

e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

1 4
so9 su2 ⊕ su2

D4 C3 � � � 8
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

1
su2

4
so12 sp3 → su2 ⊕ su2

E6ða3Þ F4ða2Þ � � � 8
e7
1 2
su2

3
so7

2
su2

18
e7
1 2
su2

3
so7

1 4
so8 su2

D5 F4ða1Þ � � � 8
e7
1 2
su2

3
so7

2
su2

18
e7

1
1 2
su2

3
so7 su2 ⊕ su2

E6 F4 � � � 8
e7

1
1 2
su2

3
so7

2
su2 su2

49For g ¼ so2k there is a subtlety with the fact that two distinct
SCFTs, obtained from very even nilpotent Higgsing, are asso-
ciated to the same tensor branch description [15].
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orbifold singularity, and the theories obtained via Higgsing
of the g ⊕ g flavor symmetry of the conformal matter
theory by a pair of nilpotent orbits σL and σR of g. The
former have frequently been referred to in the literature as
T g;N , and the latter as T g;NðσL; σRÞ.50 In Sec. III A, we
determined that the non-Abelian flavor group of rank N
ðsuK; suKÞ conformal matter is

ðSUðKÞ × SUðKÞÞ=ZK: ðE1Þ

It is straightforward to see, again from the methods presented
in Sec. III, that when suK is generalized to an arbitrary ADE
Lie algebra g, the non-Abelian flavor group is

ðG̃ × G̃Þ=ZðG̃Þ; ðE2Þ

where G̃ is the simply connected group with Lie algebra g,
and ZðG̃Þ is the center of G̃.
Now we turn to the determination of the global structure

of the non-Abelian flavor symmetry after Higgsing via the
pair of nilpotent orbits ðσL; σRÞ. The nilpotent orbit σL
breaks the left g flavor algebra to the semisimple algebra
hL,

51 and we let H̃L denote the associated simply con-
nected Lie group; and similarly for the Higgsing of the
right g by σR. Both hL and hR can be read off directly from
the nilpotent orbits [63]. Similarly, it is well known how
each nilpotent Higgsing modifies the tensor branch
description, and thus one can use the analysis of
Sec. III to determine the subgroup of the center ZðG̃Þ
that is preserved after Higgsing; we refer to these sub-
groups as ZLðG̃Þ and ZRðG̃Þ for σL and σR, respectively.
For G̃ ¼ SUðKÞ, E6, and E7 these subgroups have been
discussed in Appendix D.
Putting all this together, the global structure of the non-

Abelian flavor group of the Higgsed conformal matter
theory, T g;NðσL; σRÞ, can be shown to be

ðH̃L × H̃RÞ=ðZLðG̃Þ ∩ ZRðG̃ÞÞ: ðE3Þ

Here the quotient is by the common subgroup of ZLðG̃Þ and
ZRðG̃Þ inside ZðG̃Þ. In particular, if we consider
G̃ ≠ Spinð4KÞ, then we have

ZðG̃Þ ¼ ZK; ZLðG̃Þ ¼ ZKL
; ZRðG̃Þ ¼ ZKR

; ðE4Þ

for some K, and KL, KR divisors of K. The quotient is
then by

ðZLðG̃Þ ∩ ZRðG̃ÞÞ ¼ ZgcdðKL;KRÞ: ðE5Þ

For G̃ ¼ Spinð4KÞ it is a little more technical due to the
product structure of the center.
We now make this explicit in one example. Consider the

rank N ðsu18; su18Þ conformal matter theory.52 As is by
now familiar, the tensor branch description is

2
su18

½su18�
2

su18 � � � 2
su18

2
su18

½su18�

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{N−1ð−2Þ-curves

: ðE6Þ

We consider the Higgs branch deformations triggered by
turning on vacuum expectation values associated to the
nilpotent orbits

σL ¼ ½16; 43�; σR ¼ ½16; 26�; ðE7Þ

of the su18 flavor algebras on the left and right. It is clear
from the analysis in Appendix D that σL preserves a Z3

center-flavor subgroup, as the exponents of the partition are
all multiples of three, and similarly, σR preserves a Z6

center-flavor subgroup:

ZLðSUð18ÞÞ ¼ Z3; ZRðSUð18ÞÞ ¼ Z6: ðE8Þ

After performing the nilpotent Higgsing, the renormaliza-
tion group flow ends at an interacting 6D (1, 0) SCFTwith
tensor branch description

2
su9

½su6�
2

su12

2
su15

2
su18

½su3�
2

su18 � � � 2
su18

2
su18

½su6�
2

su12

½su6�

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{N−1ð−2Þ-curves

: ðE9Þ

To determine the global structure of the non-Abelian flavor
symmetry, we can apply the procedure described in Sec. III.
From that perspective, we determine that the non-Abelian
flavor group is

ðSUð6Þ × SUð3Þ × SUð6Þ × SUð6ÞÞ=Z3; ðE10Þ

as expected from Eq. (E3).

50We emphasize that these 6D SCFTs are distinct from the 4D
SW-fold theories also labeled by T in Sec. V.

51We ignore uð1Þ factors in this Appendix.

52We assume that N > 7, as this guarantees that the specific
nilpotent deformations that we turn on, on the left and on the
right, do not start to cross-correlate.

6D SCFTs, CENTER-FLAVOR SYMMETRIES, AND STIEFEL- … PHYS. REV. D 106, 066003 (2022)

066003-49



[1] E. Witten, Some comments on string dynamics, arXiv:hep-
th/9507121.

[2] A. Strominger, Open p-branes, Phys. Lett. B 383, 44
(1996).

[3] N. Seiberg, Nontrivial fixed points of the renormalization
group in six-dimensions, Phys. Lett. B 390, 169 (1997).

[4] C. Cordova, T. T. Dumitrescu, and K. Intriligator, Defor-
mations of superconformal theories, J. High Energy Phys.
11 (2016) 135.

[5] J. J. Heckman, D. R. Morrison, and C. Vafa, On the
classification of 6D SCFTs and generalized ADE orbi-
folds, J. High Energy Phys. 05 (2014) 028; 06 (2015) 017
(E).

[6] J. J. Heckman, D. R. Morrison, T. Rudelius, and C. Vafa,
Atomic classification of 6D SCFTs, Fortschr. Phys. 63,
468 (2015).

[7] M. Del Zotto, J. J. Heckman, A. Tomasiello, and C. Vafa,
6D conformal matter, J. High Energy Phys. 02 (2015) 054.

[8] J. J. Heckman, More on the matter of 6D SCFTs, Phys.
Lett. B 747, 73 (2015); 808, 135675(E) (2020).

[9] L. Bhardwaj, Classification of 6D N ¼ ð1; 0Þ gauge
theories, J. High Energy Phys. 11 (2015) 002.

[10] Y. Tachikawa, Frozen singularities in M and F theory,
J. High Energy Phys. 06 (2016) 128.

[11] L. Bhardwaj, M. Del Zotto, J. J. Heckman, D. R. Morrison,
T. Rudelius, and C. Vafa, F-theory and the classification of
little strings, Phys. Rev. D 93, 086002 (2016).

[12] L. Bhardwaj, D. R. Morrison, Y. Tachikawa, and A.
Tomasiello, The frozen phase of F-theory, J. High Energy
Phys. 08 (2018) 138.

[13] J. J. Heckman, T. Rudelius, and A. Tomasiello, Fission,
fusion, and 6D RG flows, J. High Energy Phys. 02 (2019)
167.

[14] L. Bhardwaj, Revisiting the classifications of 6D SCFTs
and LSTs, J. High Energy Phys. 03 (2020) 171.

[15] J. Distler, M. J. Kang, and C. Lawrie, Distinguishing 6D
(1, 0) SCFTs: An extension to the geometric construction,
arXiv:2203.08829 [Phys. Rev. D (to be published)].

[16] K. Intriligator, 6D, N ¼ ð1; 0Þ Coulomb branch anomaly
matching, J. High Energy Phys. 10 (2014) 162.

[17] K. Ohmori, H. Shimizu, and Y. Tachikawa, Anomaly
polynomial of E-string theories, J. High Energy Phys.
08 (2014) 002.

[18] K. Ohmori, H. Shimizu, Y. Tachikawa, and K. Yonekura,
Anomaly polynomial of general 6D SCFTs, Prog. Theor.
Exp. Phys. 2014, 103B07 (2014).

[19] C. Córdova, T. T. Dumitrescu, and K. Intriligator, Explor-
ing 2-group global symmetries, J. High Energy Phys. 02
(2019) 184.

[20] O. Bergman, M. Fazzi, D. Rodriguez-Gomez, and A.
Tomasiello, Charges and holography in 6D (1, 0) theories,
J. High Energy Phys. 05 (2020) 138.

[21] F. Baume, J. J. Heckman, and C. Lawrie, 6D SCFTs, 4D
SCFTs, conformal matter, and spin chains, Nucl. Phys.
B967, 115401 (2021).

[22] J. J. Heckman, Qubit construction in 6D SCFTs, Phys.
Lett. B 811, 135891 (2020).

[23] F. Baume, J. J. Heckman, and C. Lawrie, Super-spin chains
for 6D SCFTs, arXiv:2208.02272.

[24] D. Gaiotto and S. S. Razamat, N ¼ 1 theories of class Sk,
J. High Energy Phys. 07 (2015) 073.

[25] M. Del Zotto, C. Vafa, and D. Xie, Geometric engineering,
mirror symmetry and 6dð1;0Þ → 4dðN¼2Þ, J. High Energy
Phys. 11 (2015) 123.

[26] S. Franco, H. Hayashi, and A. Uranga, Charting class Sk
territory, Phys. Rev. D 92, 045004 (2015).

[27] I. Coman, E. Pomoni, M. Taki, and F. Yagi, Spectral curves
of N ¼ 1 theories of class Sk, J. High Energy Phys. 06
(2017) 136.

[28] I. García-Etxebarria and D. Regalado, Exceptional N ¼ 3

theories, J. High Energy Phys. 12 (2017) 042.
[29] S. S. Razamat, C. Vafa, and G. Zafrir, 4D N ¼ 1 from 6D

(1, 0), J. High Energy Phys. 04 (2017) 064.
[30] F. Baume, M. J. Kang, and C. Lawrie, Two 6D origins of

4D SCFTs: Class S and 6D (1, 0) on a torus,
arXiv:2106.11990.

[31] K. Ohmori, H. Shimizu, Y. Tachikawa, and K. Yonekura,
6DN ¼ ð1; 0Þ theories on T2 and class S theories: Part I, J.
High Energy Phys. 07 (2015) 014.

[32] K. Ohmori, H. Shimizu, Y. Tachikawa, and K. Yonekura,
6DN ¼ ð1; 0Þ theories on S1=T2 and class S theories: Part
II, J. High Energy Phys. 12 (2015) 131.

[33] N. Mekareeya, K. Ohmori, Y. Tachikawa, and G. Zafrir, E8

instantons on type-A ALE spaces and supersymmetric
field theories, J. High Energy Phys. 09 (2017) 144.

[34] N. Mekareeya, K. Ohmori, H. Shimizu, and A. Tomasiello,
Small instanton transitions for M5 fractions, J. High
Energy Phys. 10 (2017) 055.

[35] J. J. Heckman, P. Jefferson, T. Rudelius, and C. Vafa,
Punctures for theories of class SΓ, J. High Energy Phys. 03
(2017) 171.

[36] I. Bah, A. Hanany, K. Maruyoshi, S. S. Razamat, Y.
Tachikawa, and G. Zafrir, 4D N ¼ 1 from 6D N ¼
ð1; 0Þ on a torus with fluxes, J. High Energy Phys. 06
(2017) 022.

[37] T. Bourton and E. Pomoni, Instanton counting in class Sk,
J. Phys. A 53, 165401 (2020).

[38] H.-C. Kim, S. S. Razamat, C. Vafa, and G. Zafrir, E-string
theory on Riemann surfaces, Fortschr. Phys. 66, 1700074
(2018).

[39] F. Apruzzi, J. J. Heckman, D. R. Morrison, and L. Tizzano,
4D gauge theories with conformal matter, J. High Energy
Phys. 09 (2018) 088.

[40] S. S. Razamat and E. Sabag, A freely generated ring for
N ¼ 1models in class Sk, J. High Energy Phys. 07 (2018)
150.

[41] H.-C. Kim, S. S. Razamat, C. Vafa, and G. Zafrir, Com-
pactifications of ADE conformal matter on a torus, J. High
Energy Phys. 09 (2018) 110.

[42] S. S. Razamat and G. Zafrir, Compactification of 6D
minimal SCFTs on Riemann surfaces, Phys. Rev. D 98,
066006 (2018).

[43] H.-C. Kim, S. S. Razamat, C. Vafa, and G. Zafrir, D-type
conformal matter and SU/USp quivers, J. High Energy
Phys. 06 (2018) 058.

[44] S. S. Razamat, O. Sela, and G. Zafrir, Curious patterns of
IR symmetry enhancement, J. High Energy Phys. 10
(2018) 163.

HECKMAN, LAWRIE, LIN, ZHANG, and ZOCCARATO PHYS. REV. D 106, 066003 (2022)

066003-50

https://arXiv.org/abs/hep-th/9507121
https://arXiv.org/abs/hep-th/9507121
https://doi.org/10.1016/0370-2693(96)00712-5
https://doi.org/10.1016/0370-2693(96)00712-5
https://doi.org/10.1016/S0370-2693(96)01424-4
https://doi.org/10.1007/JHEP11(2016)135
https://doi.org/10.1007/JHEP11(2016)135
https://doi.org/10.1007/JHEP05(2014)028
https://doi.org/10.1002/prop.201500024
https://doi.org/10.1002/prop.201500024
https://doi.org/10.1007/JHEP02(2015)054
https://doi.org/10.1016/j.physletb.2015.05.046
https://doi.org/10.1016/j.physletb.2015.05.046
https://doi.org/10.1016/j.physletb.2020.135675
https://doi.org/10.1007/JHEP11(2015)002
https://doi.org/10.1007/JHEP06(2016)128
https://doi.org/10.1103/PhysRevD.93.086002
https://doi.org/10.1007/JHEP08(2018)138
https://doi.org/10.1007/JHEP08(2018)138
https://doi.org/10.1007/JHEP02(2019)167
https://doi.org/10.1007/JHEP02(2019)167
https://doi.org/10.1007/JHEP03(2020)171
https://arXiv.org/abs/2203.08829
https://doi.org/10.1007/JHEP10(2014)162
https://doi.org/10.1007/JHEP08(2014)002
https://doi.org/10.1007/JHEP08(2014)002
https://doi.org/10.1093/ptep/ptu140
https://doi.org/10.1093/ptep/ptu140
https://doi.org/10.1007/JHEP02(2019)184
https://doi.org/10.1007/JHEP02(2019)184
https://doi.org/10.1007/JHEP05(2020)138
https://doi.org/10.1016/j.nuclphysb.2021.115401
https://doi.org/10.1016/j.nuclphysb.2021.115401
https://doi.org/10.1016/j.physletb.2020.135891
https://doi.org/10.1016/j.physletb.2020.135891
https://arXiv.org/abs/2208.02272
https://doi.org/10.1007/JHEP07(2015)073
https://doi.org/10.1007/JHEP11(2015)123
https://doi.org/10.1007/JHEP11(2015)123
https://doi.org/10.1103/PhysRevD.92.045004
https://doi.org/10.1007/JHEP06(2017)136
https://doi.org/10.1007/JHEP06(2017)136
https://doi.org/10.1007/JHEP12(2017)042
https://doi.org/10.1007/JHEP04(2017)064
https://arXiv.org/abs/2106.11990
https://doi.org/10.1007/JHEP07(2015)014
https://doi.org/10.1007/JHEP07(2015)014
https://doi.org/10.1007/JHEP12(2015)131
https://doi.org/10.1007/JHEP09(2017)144
https://doi.org/10.1007/JHEP10(2017)055
https://doi.org/10.1007/JHEP10(2017)055
https://doi.org/10.1007/JHEP03(2017)171
https://doi.org/10.1007/JHEP03(2017)171
https://doi.org/10.1007/JHEP06(2017)022
https://doi.org/10.1007/JHEP06(2017)022
https://doi.org/10.1088/1751-8121/ab6a6d
https://doi.org/10.1002/prop.201700074
https://doi.org/10.1002/prop.201700074
https://doi.org/10.1007/JHEP09(2018)088
https://doi.org/10.1007/JHEP09(2018)088
https://doi.org/10.1007/JHEP07(2018)150
https://doi.org/10.1007/JHEP07(2018)150
https://doi.org/10.1007/JHEP09(2018)110
https://doi.org/10.1007/JHEP09(2018)110
https://doi.org/10.1103/PhysRevD.98.066006
https://doi.org/10.1103/PhysRevD.98.066006
https://doi.org/10.1007/JHEP06(2018)058
https://doi.org/10.1007/JHEP06(2018)058
https://doi.org/10.1007/JHEP10(2018)163
https://doi.org/10.1007/JHEP10(2018)163


[45] J. Chen, B. Haghighat, S. Liu, and M. Sperling, 4D N ¼ 1

from 6D D-type N ¼ ð1; 0Þ, J. High Energy Phys. 01
(2020) 152.

[46] S. Pasquetti, S. S. Razamat, M. Sacchi, and G. Zafrir, Rank
Q E-string on a torus with flux, SciPost Phys. 8, 014
(2020).

[47] O. Sela and G. Zafrir, Symmetry enhancement in 4D Spin
(n) gauge theories and compactification from 6D, J. High
Energy Phys. 12 (2019) 052.

[48] S. S. Razamat, E. Sabag, and G. Zafrir, From 6D flows to
4D flows, J. High Energy Phys. 12 (2019) 108.

[49] S. S. Razamat and E. Sabag, Sequences of 6D SCFTs on
generic Riemann surfaces, J. High Energy Phys. 01 (2020)
086.

[50] S. S. Razamat and E. Sabag, SQCD and pairs of pants,
J. High Energy Phys. 09 (2020) 028.

[51] E. Sabag, Non minimal D-type conformal matter compac-
tified on three punctured spheres, J. High Energy Phys. 10
(2020) 139.

[52] T. Bourton, A. Pini, and E. Pomoni, The Coulomb and
Higgs branches of N ¼ 1 theories of Class Sk, J. High
Energy Phys. 02 (2021) 137.

[53] B. Nazzal, A. Nedelin, and S. S. Razamat, Minimal ðD;DÞ
conformal matter and generalizations of the van Diejen
model, SciPost Phys. 12, 140 (2022).

[54] M. J. Kang, C. Lawrie, and J. Song, Infinitely many 4D
N ¼ 2 SCFTs with a ¼ c and beyond, Phys. Rev. D 104,
105005 (2021).

[55] C. Hwang, S. S. Razamat, E. Sabag, and M. Sacchi, Rank
Q E-string on spheres with flux, SciPost Phys. 11, 044
(2021).

[56] M. J. Kang, C. Lawrie, K.-H. Lee, and J. Song, Infinitely
many 4D N ¼ 1 SCFTs with a ¼ c, Phys. Rev. D 105,
126006 (2022).

[57] T. Bourton, E. Pomoni, and X. Zhang, N ¼ 1 curves on
generalized Coulomb branches of supersymmetric gauge
theories, Universe 8, 101 (2022).

[58] S. S. Razamat, E. Sabag, O. Sela, and G. Zafrir, Aspects of
4D supersymmetric dynamics and geometry, arXiv:2203
.06880.

[59] P. C. Argyres, J. J. Heckman, K. Intriligator, and M.
Martone, Snowmass white paper on SCFTs, arXiv:2202
.07683.

[60] D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett,
Generalized global symmetries, J. High Energy Phys. 02
(2015) 172.

[61] K. Ohmori, Y. Tachikawa, and G. Zafrir, Compactifications
of 6D N ¼ ð1; 0Þ SCFTs with non-trivial Stiefel-Whitney
classes, J. High Energy Phys. 04 (2019) 006.

[62] M. Bertolini, P. R. Merkx, and D. R. Morrison, On the
global symmetries of 6D superconformal field theories,
J. High Energy Phys. 07 (2016) 005.

[63] J. J. Heckman, T. Rudelius, and A. Tomasiello, 6D RG
flows and nilpotent hierarchies, J. High Energy Phys. 07
(2016) 082.

[64] F. Hassler, J. J. Heckman, T. B. Rochais, T. Rudelius, and
H. Y. Zhang, T-branes, string junctions, and 6D SCFTs,
Phys. Rev. D 101, 086018 (2020).

[65] F. Apruzzi, M. Fazzi, J. J. Heckman, T. Rudelius, and H. Y.
Zhang, General prescription for global Uð1Þ’s in 6D
SCFTs, Phys. Rev. D 101, 086023 (2020).

[66] E. Cohen and C. Gomez, A computation of Trð−1ÞF in
supersymmetric gauge theories with matter, Nucl. Phys.
B223, 183 (1983).

[67] O. Aharony, F. Benini, P.-S. Hsin, and N. Seiberg, Chern-
Simons-matter dualities with SO and USp gauge groups,
J. High Energy Phys. 02 (2017) 072.

[68] F. Benini, P.-S. Hsin, and N. Seiberg, Comments on global
symmetries, anomalies, and duality in ð2þ 1Þd, J. High
Energy Phys. 04 (2017) 135.

[69] A. Cherman, S. Sen, M. Unsal, M. L. Wagman, and L. G.
Yaffe, Order Parameters and Color-Flavor Center Sym-
metry in QCD, Phys. Rev. Lett. 119, 222001 (2017).

[70] H. Shimizu and K. Yonekura, Anomaly constraints on
deconfinement and chiral phase transition, Phys. Rev. D
97, 105011 (2018).

[71] D. Gaiotto, Z. Komargodski, and N. Seiberg, Time-reversal
breaking in QCD4, walls, and dualities in 2þ 1 dimen-
sions, J. High Energy Phys. 01 (2018) 110.

[72] Y. Tanizaki, T. Misumi, and N. Sakai, Circle compactifi-
cation and ’t Hooft anomaly, J. High Energy Phys. 12
(2017) 056.

[73] Y. Tanizaki, Y. Kikuchi, T. Misumi, and N. Sakai,
Anomaly matching for the phase diagram of massless
ZN-QCD, Phys. Rev. D 97, 054012 (2018).

[74] C. Córdova and T. T. Dumitrescu, Candidate phases for SU
(2) adjoint QCD4 with two flavors from N ¼ 2 super-
symmetric Yang-Mills theory, arXiv:1806.09592.

[75] K. Yonekura, Anomaly matching in QCD thermal phase
transition, J. High Energy Phys. 05 (2019) 062.

[76] Y. Hidaka, Y. Hirono, M. Nitta, Y. Tanizaki, and R.
Yokokura, Topological order in the color-flavor locked
phase of a (3þ 1)-dimensional U(N) gauge-Higgs system,
Phys. Rev. D 100, 125016 (2019).

[77] C. Córdova, D. S. Freed, H. T. Lam, and N. Seiberg,
Anomalies in the Space of coupling constants and their
dynamical applications II, SciPost Phys. 8, 002 (2020).

[78] M. Dierigl, P.-K. Oehlmann, and F. Ruehle, Non-simply-
connected symmetries in 6D SCFTs, J. High Energy Phys.
10 (2020) 173.

[79] F. Apruzzi, L. Bhardwaj, J. Oh, and S. Schafer-Nameki,
The global form of flavor symmetries and 2-group sym-
metries in 5D SCFTs, arXiv:2105.08724.

[80] F. Apruzzi, L. Bhardwaj, D. S. W. Gould, and S. Schafer-
Nameki, 2-group symmetries and their classification in 6D,
SciPost Phys. 12, 098 (2022).

[81] M. Del Zotto, I. García-Etxebarria, and S. Schafer-Nameki,
2-group symmetries and M-theory, arXiv:2203.10097.

[82] M. Hubner, D. R. Morrison, S. Schafer-Nameki, and Y.-N.
Wang, Generalized symmetries in F-theory and the topology
of elliptic fibrations, arXiv:2203.10022.

[83] M. Cvetič, J. J. Heckman,M. Hübner, and E. Torres, 0-form,
1-form and 2-group symmetries via cutting and gluing of
orbifolds, arXiv:2203.10102.

[84] F. Apruzzi, M. Dierigl, and L. Lin, The fate of discrete
1-form symmetries in 6D, SciPost Phys. 12, 047 (2022).

6D SCFTs, CENTER-FLAVOR SYMMETRIES, AND STIEFEL- … PHYS. REV. D 106, 066003 (2022)

066003-51

https://doi.org/10.1007/JHEP01(2020)152
https://doi.org/10.1007/JHEP01(2020)152
https://doi.org/10.21468/SciPostPhys.8.1.014
https://doi.org/10.21468/SciPostPhys.8.1.014
https://doi.org/10.1007/JHEP12(2019)052
https://doi.org/10.1007/JHEP12(2019)052
https://doi.org/10.1007/JHEP12(2019)108
https://doi.org/10.1007/JHEP01(2020)086
https://doi.org/10.1007/JHEP01(2020)086
https://doi.org/10.1007/JHEP09(2020)028
https://doi.org/10.1007/JHEP10(2020)139
https://doi.org/10.1007/JHEP10(2020)139
https://doi.org/10.1007/JHEP02(2021)137
https://doi.org/10.1007/JHEP02(2021)137
https://doi.org/10.21468/SciPostPhys.12.4.140
https://doi.org/10.1103/PhysRevD.104.105005
https://doi.org/10.1103/PhysRevD.104.105005
https://doi.org/10.21468/SciPostPhys.11.2.044
https://doi.org/10.21468/SciPostPhys.11.2.044
https://doi.org/10.1103/PhysRevD.105.126006
https://doi.org/10.1103/PhysRevD.105.126006
https://doi.org/10.3390/universe8020101
https://arXiv.org/abs/2203.06880
https://arXiv.org/abs/2203.06880
https://arXiv.org/abs/2202.07683
https://arXiv.org/abs/2202.07683
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP04(2019)006
https://doi.org/10.1007/JHEP07(2016)005
https://doi.org/10.1007/JHEP07(2016)082
https://doi.org/10.1007/JHEP07(2016)082
https://doi.org/10.1103/PhysRevD.101.086018
https://doi.org/10.1103/PhysRevD.101.086023
https://doi.org/10.1016/0550-3213(83)90100-1
https://doi.org/10.1016/0550-3213(83)90100-1
https://doi.org/10.1007/JHEP02(2017)072
https://doi.org/10.1007/JHEP04(2017)135
https://doi.org/10.1007/JHEP04(2017)135
https://doi.org/10.1103/PhysRevLett.119.222001
https://doi.org/10.1103/PhysRevD.97.105011
https://doi.org/10.1103/PhysRevD.97.105011
https://doi.org/10.1007/JHEP01(2018)110
https://doi.org/10.1007/JHEP12(2017)056
https://doi.org/10.1007/JHEP12(2017)056
https://doi.org/10.1103/PhysRevD.97.054012
https://arXiv.org/abs/1806.09592
https://doi.org/10.1007/JHEP05(2019)062
https://doi.org/10.1103/PhysRevD.100.125016
https://doi.org/10.21468/SciPostPhys.8.1.002
https://doi.org/10.1007/JHEP10(2020)173
https://doi.org/10.1007/JHEP10(2020)173
https://arXiv.org/abs/2105.08724
https://doi.org/10.21468/SciPostPhys.12.3.098
https://arXiv.org/abs/2203.10097
https://arXiv.org/abs/2203.10022
https://arXiv.org/abs/2203.10102
https://doi.org/10.21468/SciPostPhys.12.2.047


[85] M. Cvetič, M. Dierigl, L. Lin, and H. Y. Zhang, String
Universality and Non-Simply-Connected Gauge Groups in
8D, Phys. Rev. Lett. 125, 211602 (2020).

[86] A. Font, B. Fraiman, M. Graña, C. A. Núñez, and H. P. De
Freitas, Exploring the landscape of heterotic strings on Td,
J. High Energy Phys. 10 (2020) 194.

[87] A. Font, B. Fraiman, M. Graña, C. A. Núñez, and H. Parra
De Freitas, Exploring the landscape of CHL strings on Td,
J. High Energy Phys. 08 (2021) 095.

[88] M. Cvetič, M. Dierigl, L. Lin, and H. Y. Zhang, Gauge
group topology of 8D Chaudhuri-Hockney-Lykken vacua,
Phys. Rev. D 104, 086018 (2021).

[89] M. Cvetič, M. Dierigl, L. Lin, and H. Y. Zhang, One loop
to rule them all: Eight and nine dimensional string vacua
from junctions, Phys. Rev. D 106, 026007 (2022).

[90] J. Distler, M. Martone, and A. Neitzke, On the BPS
spectrum of the rank-1 Minahan-Nemeschansky theories,
J. High Energy Phys. 02 (2020) 100.

[91] L. Bhardwaj, Global form of flavor symmetry groups in 4D
N ¼ 2 theories of class S, SciPost Phys. 12, 183 (2022).

[92] G. Ferlito, A. Hanany, N. Mekareeya, and G. Zafrir, 3d
Coulomb branch and 5D Higgs branch at infinite coupling,
J. High Energy Phys. 07 (2018) 061.

[93] A. Hanany and N. Mekareeya, The small E8 instanton and
the Kraft Procesi transition, J. High Energy Phys. 07
(2018) 098.

[94] E. Witten, Toroidal compactification without vector struc-
ture, J. High Energy Phys. 02 (1998) 006.

[95] A. Borel, R. Friedman, and J. W. Morgan, Almost com-
muting elements in compact Lie groups, arXiv:math/
9907007.

[96] M. Martone, Testing our understanding of SCFTs: A
catalogue of rank-2 N ¼ 2 theories in four dimensions,
J. High Energy Phys. 07 (2022) 123.

[97] F. Apruzzi, S. Giacomelli, and S. Schäfer-Nameki, 4D
N ¼ 2 S-folds, Phys. Rev. D 101, 106008 (2020).

[98] S. Giacomelli, C. Meneghelli, and W. Peelaers, NewN ¼ 2

superconformal field theories from S-folds, J. High Energy
Phys. 01 (2021) 022.

[99] J. J. Heckman, C. Lawrie, T. B. Rochais, H. Y. Zhang, and
G. Zoccarato, S-folds, string junctions, andN ¼ 2 SCFTs,
Phys. Rev. D 103, 086013 (2021).

[100] S. Giacomelli, M. Martone, Y. Tachikawa, and G. Zafrir,
More on N ¼ 2 S-folds, J. High Energy Phys. 01 (2021)
054.

[101] A. Bourget, S. Giacomelli, J. F. Grimminger, A. Hanany, M.
Sperling, and Z. Zhong, S-fold magnetic quivers, J. High
Energy Phys. 02 (2021) 054.

[102] S.-J. Lee, D. Regalado, and T. Weigand, 6D SCFTs and U
(1) flavour symmetries, J. High Energy Phys. 11 (2018)
147.

[103] M. B. Green, J. H. Schwarz, and P. C. West, Anomaly free
chiral theories in six-dimensions, Nucl. Phys. B254, 327
(1985).

[104] A. Sagnotti, A note on the Green-Schwarz mechanism in
open string theories, Phys. Lett. B 294, 196 (1992).

[105] C. Cordova, T. T. Dumitrescu, and K. Intriligator, 2-group
global symmetries and anomalies in six-dimensional
quantum field theories, J. High Energy Phys. 04 (2021)
252.

[106] L. Bhardwaj, 2-group symmetries in class S, SciPost Phys.
12, 152 (2022).

[107] Y. Lee, K. Ohmori, and Y. Tachikawa, Matching higher
symmetries across Intriligator-Seiberg duality, J. High
Energy Phys. 10 (2021) 114.

[108] A. Kapustin and N. Seiberg, Coupling a QFT to a TQFT
and duality, J. High Energy Phys. 04 (2014) 001.

[109] D. Gaiotto, A. Kapustin, Z. Komargodski, and N. Seiberg,
Theta, time reversal, and temperature, J. High Energy
Phys. 05 (2017) 091.

[110] L. Bhardwaj and S. Schäfer-Nameki, Higher-form sym-
metries of 6D and 5D theories, J. High Energy Phys. 02
(2021) 159.

[111] M. Cvetič and L. Lin, The global gauge group structure of
F-theory compactification with U(1)s, J. High Energy
Phys. 01 (2018) 157.

[112] J. J. Heckman and T. Rudelius, Top down approach to 6D
SCFTs, J. Phys. A 52, 093001 (2019).

[113] D. S. Park, Anomaly equations and intersection theory,
J. High Energy Phys. 01 (2012) 093.

[114] D. R. Morrison and D. S. Park, F-theory and the Mordell-
Weil group of elliptically-fibered Calabi-Yau threefolds,
J. High Energy Phys. 10 (2012) 128.

[115] M. Esole and M. J. Kang, Matter representations from
geometry: Under the spell of Dynkin, arXiv:2012.13401.

[116] A. Gadde, L. Rastelli, S. S. Razamat, and W. Yan, The
superconformal index of the E6 SCFT, J. High Energy
Phys. 08 (2010) 107.

[117] J. Distler, B. Ergun, and A. Shehper, Distinguishing d ¼
4N ¼ 2 SCFTs, arXiv:2012.15249.

[118] J. Manschot and G.W. Moore, Topological correlators of
SUð2Þ, N ¼ 2� SYM on four-manifolds, arXiv:2104
.06492.

[119] A. Hanany and G. Zafrir, Discrete gauging in six dimen-
sions, J. High Energy Phys. 07 (2018) 168.

[120] F. Baume and C. Lawrie, Bootstrapping (D, D) conformal
matter, Phys. Rev. D 105, 046006 (2022).

[121] V. G. Kac, Infinite-Dimensional Lie Algebras, Progress in
Mathematics Vol. 44 (Birkhäuser Boston, Inc., Boston,
MA, 1983), 10.1007/978-1-4757-1382-4.

[122] G. ’t Hooft, A property of electric and magnetic flux in
non-Abelian gauge theories, Nucl. Phys. B153, 141
(1979).

[123] D. R. Morrison and C. Vafa, F-theory andN ¼ 1 SCFTs in
four dimensions, J. High Energy Phys. 08 (2016) 070.

[124] M. Akhond, G. Arias-Tamargo, A. Mininno, H.-Y. Sun, Z.
Sun, Y. Wang, and F. Xu, The Hitchhiker’s guide to 4D
N ¼ 2 superconformal field theories, arXiv:2112.14764.

[125] D. Gaiotto, N ¼ 2 dualities, J. High Energy Phys. 08
(2012) 034.

[126] D. Gaiotto, G. W. Moore, and A. Neitzke, Wall-crossing,
hitchin systems, and the WKB approximation, arXiv:0907
.3987.

[127] O. Chacaltana, J. Distler, and A. Trimm, Tinkertoys for the
Z3-twisted D4 theory, arXiv:1601.02077.

[128] O. Chacaltana, J. Distler, and A. Trimm, Tinkertoys for the
twisted E6 theory, J. High Energy Phys. 04 (2015) 173.

[129] D. R. Morrison and T. Rudelius, F-theory and unpaired
tensors in 6D SCFTs and LSTs, Fortschr. Phys. 64, 645
(2016).

HECKMAN, LAWRIE, LIN, ZHANG, and ZOCCARATO PHYS. REV. D 106, 066003 (2022)

066003-52

https://doi.org/10.1103/PhysRevLett.125.211602
https://doi.org/10.1007/JHEP10(2020)194
https://doi.org/10.1007/JHEP08(2021)095
https://doi.org/10.1103/PhysRevD.104.086018
https://doi.org/10.1103/PhysRevD.106.026007
https://doi.org/10.1007/JHEP02(2020)100
https://doi.org/10.21468/SciPostPhys.12.6.183
https://doi.org/10.1007/JHEP07(2018)061
https://doi.org/10.1007/JHEP07(2018)098
https://doi.org/10.1007/JHEP07(2018)098
https://doi.org/10.1088/1126-6708/1998/02/006
https://arXiv.org/abs/math/9907007
https://arXiv.org/abs/math/9907007
https://doi.org/10.1007/JHEP07(2022)123
https://doi.org/10.1103/PhysRevD.101.106008
https://doi.org/10.1007/JHEP01(2021)022
https://doi.org/10.1007/JHEP01(2021)022
https://doi.org/10.1103/PhysRevD.103.086013
https://doi.org/10.1007/JHEP01(2021)054
https://doi.org/10.1007/JHEP01(2021)054
https://doi.org/10.1007/JHEP02(2021)054
https://doi.org/10.1007/JHEP02(2021)054
https://doi.org/10.1007/JHEP11(2018)147
https://doi.org/10.1007/JHEP11(2018)147
https://doi.org/10.1016/0550-3213(85)90222-6
https://doi.org/10.1016/0550-3213(85)90222-6
https://doi.org/10.1016/0370-2693(92)90682-T
https://doi.org/10.1007/JHEP04(2021)252
https://doi.org/10.1007/JHEP04(2021)252
https://doi.org/10.21468/SciPostPhys.12.5.152
https://doi.org/10.21468/SciPostPhys.12.5.152
https://doi.org/10.1007/JHEP10(2021)114
https://doi.org/10.1007/JHEP10(2021)114
https://doi.org/10.1007/JHEP04(2014)001
https://doi.org/10.1007/JHEP05(2017)091
https://doi.org/10.1007/JHEP05(2017)091
https://doi.org/10.1007/JHEP02(2021)159
https://doi.org/10.1007/JHEP02(2021)159
https://doi.org/10.1007/JHEP01(2018)157
https://doi.org/10.1007/JHEP01(2018)157
https://doi.org/10.1088/1751-8121/aafc81
https://doi.org/10.1007/JHEP01(2012)093
https://doi.org/10.1007/JHEP10(2012)128
https://arXiv.org/abs/2012.13401
https://doi.org/10.1007/JHEP08(2010)107
https://doi.org/10.1007/JHEP08(2010)107
https://arXiv.org/abs/2012.15249
https://arXiv.org/abs/2104.06492
https://arXiv.org/abs/2104.06492
https://doi.org/10.1007/JHEP07(2018)168
https://doi.org/10.1103/PhysRevD.105.046006
https://doi.org/10.1007/978-1-4757-1382-4
https://doi.org/10.1016/0550-3213(79)90595-9
https://doi.org/10.1016/0550-3213(79)90595-9
https://doi.org/10.1007/JHEP08(2016)070
https://arXiv.org/abs/2112.14764
https://doi.org/10.1007/JHEP08(2012)034
https://doi.org/10.1007/JHEP08(2012)034
https://arXiv.org/abs/0907.3987
https://arXiv.org/abs/0907.3987
https://arXiv.org/abs/1601.02077
https://doi.org/10.1007/JHEP04(2015)173
https://doi.org/10.1002/prop.201600069
https://doi.org/10.1002/prop.201600069


[130] I. García-Etxebarria and D. Regalado, N ¼ 3 four
dimensional field theories, J. High Energy Phys. 03 (2016)
083.

[131] O. Aharony and Y. Tachikawa, S-folds and 4D N ¼ 3
superconformal field theories, J. High Energy Phys. 06
(2016) 044.

[132] J. A. Minahan and D. Nemeschansky, An N ¼ 2 super-
conformal fixed point with E(6) global symmetry, Nucl.
Phys. B482, 142 (1996).

[133] J. A. Minahan and D. Nemeschansky, Superconformal
fixed points with E(n) global symmetry, Nucl. Phys.
B489, 24 (1997).

[134] R. Donagi, B. A. Ovrut, T. Pantev, and D. Waldram,
Spectral involutions on rational elliptic surfaces, Adv.
Theor. Math. Phys. 5, 499 (2001).

[135] D. D. Frey and T. Rudelius, 6D SCFTs and the classi-
fication of homomorphisms ΓADE → E8, Adv. Theor.
Math. Phys. 24, 709 (2020).

[136] Y. Tachikawa (private communication).
[137] E. Witten, Supersymmetric index in four-dimensional

gauge theories, Adv. Theor. Math. Phys. 5, 841 (2001).
[138] M. Cvetič, M. Dierigl, L. Lin, and H. Y. Zhang, Higher-

form symmetries and their anomalies in M-/F-theory
duality, Phys. Rev. D 104, 126019 (2021).

[139] F. Apruzzi, Higher form symmetries TFT in 6D, arXiv:
2203.10063.

[140] M. Esole, R. Jagadeesan, and M. J. Kang, The geometry of
G2, spin(7), and spin(8)-models, arXiv:1709.04913.

[141] M. Esole and M. J. Kang, The geometry of the
SUð2Þ × G2-model, J. High Energy Phys. 02 (2019) 091.

[142] P. Argyres, M. Lotito, Y. Lü, and M. Martone, Geometric
constraints on the space of N ¼ 2 SCFTs. Part I: Physical
constraints on relevant deformations, J. High Energy Phys.
02 (2018) 001.

[143] P. C. Argyres, M. Lotito, Y. Lü, and M. Martone, Geo-
metric constraints on the space of N ¼ 2 SCFTs. Part II:
Construction of special Kähler geometries and RG flows,
J. High Energy Phys. 02 (2018) 002.

[144] P. C. Argyres, M. Lotito, Y. Lü, and M. Martone, Expand-
ing the landscape of N ¼ 2 rank 1 SCFTs, J. High Energy
Phys. 05 (2016) 088.

[145] P. Argyres, M. Lotito, Y. Lü, and M. Martone, Geometric
constraints on the space of N ¼ 2 SCFTs. Part III:
Enhanced Coulomb branches and central charges, J. High
Energy Phys. 02 (2018) 003.

[146] P. C. Argyres and M. Martone, 4D N ¼ 2 theories with
disconnected gauge groups, J. High Energy Phys. 03
(2017) 145.

[147] M. Caorsi and S. Cecotti, Geometric classification of 4D
N ¼ 2 SCFTs, J. High Energy Phys. 07 (2018) 138.

[148] M. Caorsi and S. Cecotti, Homological classification of 4D
N ¼ 2 QFT. Rank-1 revisited, J. High Energy Phys. 10
(2019) 013.

[149] M. Martone, Towards the classification of rank-r N ¼ 2
SCFTs. Part I. Twisted partition function and central
charge formulae, J. High Energy Phys. 12 (2020) 021.

[150] P. C. Argyres and M. Martone, Towards a classification of
rank r N ¼ 2 SCFTs. Part II. Special Kahler stratification
of the Coulomb branch, J. High Energy Phys. 12 (2020)
022.

[151] P. C. Argyres, M. Martone, and M. Ray, Dirac pairings,
one-form symmetries and Seiberg–Witten geometries,
arXiv:2204.09682.

[152] J. Kaidi and M. Martone, New rank-2 Argyres-Douglas
theory, Phys. Rev. D 104, 085004 (2021).

[153] M. Martone and G. Zafrir, On the compactification
of 5D theories to 4D, J. High Energy Phys. 08 (2021)
017.

[154] A. Bourget, J. F. Grimminger, M. Martone, and G. Zafrir,
Magnetic quivers for rank 2 theories, J. High Energy Phys.
03 (2022) 208.

[155] J. Kaidi, M. Martone, L. Rastelli, and M. Weaver, Needles
in a haystack. An algorithmic approach to the classification
of 4D N ¼ 2 SCFTs, J. High Energy Phys. 03 (2022)
210.

[156] S. Cecotti, M. Del Zotto, M. Martone, and R. Moscrop,
The characteristic dimension of four-dimensional N ¼ 2
SCFTs, arXiv:2108.10884.

[157] N. Mekareeya, T. Rudelius, and A. Tomasiello, T-branes,
anomalies and moduli spaces in 6D SCFTs, J. High Energy
Phys. 10 (2017) 158.

[158] G. B. De Luca, A. Gnecchi, G. Lo Monaco, and A.
Tomasiello, Holographic duals of 6D RG flows, J. High
Energy Phys. 03 (2019) 035.

[159] P. Bala and R.W. Carter, Classes of unipotent elements in
simple algebraic groups. I, Math. Proc. Cambridge Philos.
Soc. 79, 401 (1976).

[160] P. Bala and R.W. Carter, Classes of unipotent elements in
simple algebraic groups. II, Math. Proc. Cambridge Philos.
Soc. 80, 1 (1976).

[161] D. H. Collingwood andW.M. McGovern, Nilpotent Orbits
in Semisimple Lie Algebras, Van Nostrand Reinhold
Mathematics Series (Van Nostrand Reinhold Co., New
York, 1993).

[162] O. Chacaltana, J. Distler, and Y. Tachikawa, Nilpotent
orbits and codimension-two defects of 6D N ¼ ð2; 0Þ
theories, Int. J. Mod. Phys. A 28, 1340006 (2013).

[163] A. Hanany and R. Kalveks, Quiver theories and formulae
for nilpotent orbits of exceptional algebras, J. High Energy
Phys. 11 (2017) 126.

6D SCFTs, CENTER-FLAVOR SYMMETRIES, AND STIEFEL- … PHYS. REV. D 106, 066003 (2022)

066003-53

https://doi.org/10.1007/JHEP03(2016)083
https://doi.org/10.1007/JHEP03(2016)083
https://doi.org/10.1007/JHEP06(2016)044
https://doi.org/10.1007/JHEP06(2016)044
https://doi.org/10.1016/S0550-3213(96)00552-4
https://doi.org/10.1016/S0550-3213(96)00552-4
https://doi.org/10.1016/S0550-3213(97)00039-4
https://doi.org/10.1016/S0550-3213(97)00039-4
https://doi.org/10.4310/ATMP.2001.v5.n3.a4
https://doi.org/10.4310/ATMP.2001.v5.n3.a4
https://doi.org/10.4310/ATMP.2020.v24.n3.a4
https://doi.org/10.4310/ATMP.2020.v24.n3.a4
https://doi.org/10.4310/ATMP.2001.v5.n5.a1
https://doi.org/10.1103/PhysRevD.104.126019
https://arXiv.org/abs/2203.10063
https://arXiv.org/abs/2203.10063
https://arXiv.org/abs/1709.04913
https://doi.org/10.1007/JHEP02(2019)091
https://doi.org/10.1007/JHEP02(2018)001
https://doi.org/10.1007/JHEP02(2018)001
https://doi.org/10.1007/JHEP02(2018)002
https://doi.org/10.1007/JHEP05(2016)088
https://doi.org/10.1007/JHEP05(2016)088
https://doi.org/10.1007/JHEP02(2018)003
https://doi.org/10.1007/JHEP02(2018)003
https://doi.org/10.1007/JHEP03(2017)145
https://doi.org/10.1007/JHEP03(2017)145
https://doi.org/10.1007/JHEP07(2018)138
https://doi.org/10.1007/JHEP10(2019)013
https://doi.org/10.1007/JHEP10(2019)013
https://doi.org/10.1007/JHEP12(2020)021
https://doi.org/10.1007/JHEP12(2020)022
https://doi.org/10.1007/JHEP12(2020)022
https://arXiv.org/abs/2204.09682
https://doi.org/10.1103/PhysRevD.104.085004
https://doi.org/10.1007/JHEP08(2021)017
https://doi.org/10.1007/JHEP08(2021)017
https://doi.org/10.1007/JHEP03(2022)208
https://doi.org/10.1007/JHEP03(2022)208
https://doi.org/10.1007/JHEP03(2022)210
https://doi.org/10.1007/JHEP03(2022)210
https://arXiv.org/abs/2108.10884
https://doi.org/10.1007/JHEP10(2017)158
https://doi.org/10.1007/JHEP10(2017)158
https://doi.org/10.1007/JHEP03(2019)035
https://doi.org/10.1007/JHEP03(2019)035
https://doi.org/10.1017/S0305004100052403
https://doi.org/10.1017/S0305004100052403
https://doi.org/10.1017/S0305004100052610
https://doi.org/10.1017/S0305004100052610
https://doi.org/10.1142/S0217751X1340006X
https://doi.org/10.1007/JHEP11(2017)126
https://doi.org/10.1007/JHEP11(2017)126

