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ABSTRACT
We propose FNETS, a methodology for network estimation and forecasting of high-dimensional time series
exhibiting strong serial- and cross-sectional correlations. We operate under a factor-adjusted vector autore-
gressive (VAR) model which, after accounting for pervasive co-movements of the variables by common
factors, models the remaining idiosyncratic dynamic dependence between the variables as a sparse VAR
process. Network estimation of FNETS consists of three steps: (i) factor-adjustment via dynamic principal
component analysis, (ii) estimation of the latent VAR process via �1-regularized Yule-Walker estimator,
and (iii) estimation of partial correlation and long-run partial correlation matrices. In doing so, we learn
three networks underpinning the VAR process, namely a directed network representing the Granger causal
linkages between the variables, an undirected one embedding their contemporaneous relationships and
finally, an undirected network that summarizes both lead-lag and contemporaneous linkages. In addition,
FNETS provides a suite of methods for forecasting the factor-driven and the idiosyncratic VAR processes.
Under general conditions permitting tails heavier than the Gaussian one, we derive uniform consistency
rates for the estimators in both network estimation and forecasting, which hold as the dimension of the panel
and the sample size diverge. Simulation studies and real data application confirm the good performance of
FNETS.
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1. Introduction

Vector autoregressive (VAR) models are popularly adopted for
time series analysis in economics and finance. Fitting a VAR
model to the data enables inferring dynamic interdependence
between the variables as well as forecasting the future. VAR
models are particularly appealing for network analysis since
estimating the nonzero elements of the VAR parameter matrices,
a.k.a. transition matrices, recovers directed edges between the
components of vector time series in a Granger causality network.
In addition, by estimating a precision matrix (inverse of the
covariance matrix) of the VAR innovations, we can also define
a network capturing contemporaneous linear dependencies. For
the network interpretation of VAR modeling, see for example,
Dahlhaus (2000), Eichler (2007), Billio et al. (2012), Ahelegbey,
Billio, and Casarin (2016), Barigozzi and Brownlees (2019),
Guðmundsson and Brownlees (2021), and Uematsu and Yam-
agata (2023).

Estimation of VAR models quickly becomes a high-dimensional
problem as the number of parameters grows quadratically with
the dimensionality. There is a mature literature on estimation of
high-dimensional VAR models under the sparsity (Hsu, Hung,
and Chang 2008; Basu and Michailidis 2015; Han, Lu, and Liu
2015; Kock and Callot 2015; Nicholson et al. 2020; Krampe and
Paparoditis 2021; Masini, Medeiros, and Mendes 2022; Adamek,
Smeekes, and Wilms 2023) and low-rank plus sparsity (Basu, Li,
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and Michailidis 2019) assumptions, see also BańburaBańbura,
Giannone, and Reichlin (2010) for a Bayesian approach. In all
above, either explicitly or implicitly, the spectral density of the
time series is required to have eigenvalues which are uniformly
bounded over frequencies. Indeed, this condition is crucial
for controlling the deviation bounds involved in theoretical
investigation of regularized estimators.

Lin and Michailidis (2020) observe that for VAR processes,
this assumption restricts the parameters to be either dense
but small in their magnitude (which makes their estimation
using the shrinkage-based methods challenging) or highly
sparse, while Giannone, Lenza, and Primiceri (2021) note the
difficulty of identifying sparse predictive representations in
many economic applications. Moreover, some datasets typically
exhibit strong serial and cross-sectional correlations and violate
the bounded spectrum assumption. The left panel of Figure 1
provides an illustration of this phenomenon; with the increase of
dimensionality, a volatility panel dataset (see Section 5.3 for its
description) exhibits a linear increase in the leading eigenvalue
of the estimate of its spectral density matrix at frequency 0 (i.e.,
long-run covariance). The right panel visualizes the outcome
from fitting a VAR(5) model to the same dataset without making
any adjustment of the strong correlations (see the caption for
further details), from which we cannot infer meaningful, sparse
pairwise relationship.
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Figure 1. Left: The two largest eigenvalues (y-axis) of the long-run covariance matrix estimated from the volatility panel analyzed in Section 5.3 (March 2008 to March
2009, n = 252) with subsets of cross-sections randomly sampled 100 times for each given dimension p ∈ {5, . . . , 46} (x-axis). Right: logged and truncated p-values
(truncation level chosen by Bonferroni correction with the significance level 0.1) from fitting a VAR(5) model to the same dataset using ridge regression and generating
p-values corresponding to each coefficient as described in Cule, Vineis, and De Iorio (2011). For each pair of variables (corresponding tickers given in x- and y-axes), the
minimum p-value over the five lags is reported.

In this article, we propose to model high-dimensional time
series by means of a factor-adjusted VAR approach, which simul-
taneously accounts for strong serial and cross-sectional cor-
relations attributed to factors, as well as sparse, idiosyncratic
correlations among the variables that remain after factor adjust-
ment. We take the most general approach to factor modeling
based on the generalized dynamic factor model, where factors
are dynamic in the sense that they are allowed to have not only
contemporaneous but also lagged effects on the variables (Forni
et al. 2000). We propose FNETS, a suite of tools accompanying
the model for estimation and forecasting with a particular focus
on network analysis, which addresses the challenges arising
from the latency of the VAR process as well as high dimension-
ality.

We make the following methodological and theoretical con-
tributions.

(a) We propose an �1-regularized Yule-Walker estimation
method for estimating the factor-adjusted, idiosyncratic
VAR, while permitting the number of nonzero parameters
to slowly grow with the dimensionality. Estimating the VAR
parameters and the inverse of the innovation covariance,
and then combining them allow us to define three networks
underlying the latent VAR process, namely a direct network
representing Granger causal linkages, an undirected one
underpinning their contemporaneous relationships, as
well as an undirected network summarizing both. Under
general conditions permitting weak factors and heavier
tails than the sub-Gaussian one, we show the consistency
of FNETS in estimating the edge sets of these networks,
which holds uniformly over all p2 entries of the networks
(Propositions 3.3 and 3.5).

(b) We provide new consistency rates for the estimation and
forecasting approaches considered by Forni et al. (2005,
2017), which hold uniformly for the entire cross-sections

of p-dimensional time series (Propositions 4.1 and B.2). In
doing so, we establish uniform consistency of the estimators
of high-dimensional spectral density matrices of the factor-
driven and the idiosyncratic components, extending the
results of Zhang and Wu (2021) to the presence of latent
factors.

Our approach differs from the existing ones for factor-
adjusted regression problems (Fan, Ke, and Wang 2020; Fan,
Masini, and Medeiros 2021; Fan, Lou, and Yu 2023; Krampe
and Margaritella 2021), as (i) it allows for the presence of
dynamic factors, thus including all possible dynamic linear
co-dependencies, and (ii) it relies only on the estimators of
the autocovariances of the latent idiosyncratic process, and
avoids estimating the entire latent process and controlling the
errors arising from such a step, which increase with the sample
size. The price to pay for the generality of the factor modeling
in (i), is an extra term appearing in the rate of consistency
which represents the bandwidth for spectral density estimation
required for factor-adjustment in the frequency domain. We
make explicit the role played by this bandwidth in the theoretical
results, and also present the results under a more restricted
static factor model for ease of comparison. We mention two
more differences between this article and Fan, Masini, and
Medeiros (2021) and Fan, Lou, and Yu (2023). First, they
additionally consider the problem of testing hypotheses on
the idiosyncratic covariance and the adequacy of factor/sparse
regression, while we focus on network estimation. Second, their
methods accommodate models for the idiosyncratic component
other than VAR.

FNETS is another take the popular low-rank plus sparsity
modeling framework in the high-dimensional learning litera-
ture, Also, it is in line with a frequently adopted practice in
financial time series analysis where factor-driven common com-
ponents representing the systematic sources of risk, are removed
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prior to inferring a network structure via (sparse) regression
modeling and identifying the most central nodes representing
the systemic sources of risk (Diebold and Yılmaz 2014; Barigozzi
and Brownlees 2019). We provide a rigorous theoretical treat-
ment of this empirical approach by accounting for the effect of
the factor-adjustment step on the second step regression.

The rest of the article is organized as follows. Section 2
introduces the factor-adjusted VAR model. Sections 3 and 4
describe the network estimation and forecasting methodologies
comprising FNETS, respectively, and provide their theoretical
consistency. In Section 5, we demonstrate the good estimation
and forecasting performance of FNETS on a panel of volatility
measures. Section 6 concludes the article, and all the proofs
and complete simulation results are presented in Supplemen-
tary Appendix. The R software fnets implementing FNETS is
available from CRAN (Barigozzi, Cho, and Owens 2023).

Notations. By I, O, and 0, we denote an identity matrix, a
matrix of zeros, and a vector of zeros whose dimensions depend
on the context. For a matrix A = [aii′ , 1 ≤ i ≤ m, 1 ≤ i′ ≤ n],
we denote by A� its transpose. The element-wise �∞, �0, �1 and
�2-norms are denoted by |A|∞ = max1≤i≤m max1≤i′≤n |aii′ |,
|A|0 = ∑m

i=1
∑n

i′=1 I{aii′ �=0}, |A|1 = ∑m
i=1

∑n
i′=1 |aii′ |

and |A|2 =
√∑m

i=1
∑n

i′=1 |aii′ |2. The Frobenius, spectral,
induced L1 and L∞-norms are denoted by ‖A‖F = |A|2,
‖A‖ = √

�max(A�A) (with �max(A) and �min(A) denoting
its largest and smallest eigenvalues in modulus), ‖A‖1 =
max1≤i′≤n

∑m
i=1 |aii′ | and ‖A‖∞ = max1≤i≤n

∑m
i′=1 |aii′ |. Let

Ai· and A·k denote the ith row and the kth column of A. For two
real numbers, set a ∨ b = max(a, b) and a ∧ b = min(a, b).
Given two sequences {an} and {bn}, we write an = O(bn) if, for
some finite constant C > 0 there exists N ∈ N0 = N ∪ {0}
such that |an||bn|−1 ≤ C for all n ≥ N; we denote by OP the
stochastic boundedness. We write an  bn when an = O(bn)
and bn = O(an). Throughout, L denotes the lag operator and
ι = √−1. Finally, IA = 1 if the event A takes place and 0
otherwise.

2. Factor-Adjusted Vector Autoregressive Model

Consider a zero-mean, second-order stationary p-variate pro-
cess Xt = (X1t , . . . , Xpt)�, 1 ≤ t ≤ n, which is decomposed
into the sum of two latent components: a factor-driven, common
component χ t = (χ1t , . . . , χpt)�, and an idiosyncratic compo-
nent ξ t = (ξ1t , . . . , ξpt)� modeled as a VAR process. That is,
Xt = χ t + ξ t where

χ t = B(L)ut =
∞∑

�=0
B�ut−� with ut = (u1t , . . . , uqt)�, and

(1)

A(L)ξ t = ξ t −
d∑

�=1
A�ξ t−� = �1/2εt with εt = (ε1t , . . . , εpt)�.

(2)

In (1), the latent random vector ut , referred to as the vector of
common factors or common shocks, is assumed to satisfy E(ut) =
0 and cov(ut) = Iq, and are loaded on each χit via square
summable, one-sided filters Bij(L) = ∑∞

�=0 B�,ijL�, where B� =

[B�,ij, 1 ≤ i ≤ p, 1 ≤ j ≤ q] ∈ R
p×q. This defines the

generalized dynamic factor model (GDFM) proposed by Forni
et al. (2000) and Forni and Lippi (2001), which provides the
most general approach to high-dimensional time series factor
modeling.

In (2), the idiosyncratic component ξ t is modeled as
a VAR(d) process for some finite positive integer d, with
innovations �1/2εt where � ∈ R

p×p is some positive definite
matrix and �1/2 its symmetric square root matrix, and E(εt) =
0 and cov(εt) = Ip. We assume that ξ t is causal (see
Assumption 2.3(i)), that is, it admits the Wold representation:

ξ t = D(L)�1/2εt =
∞∑

�=0
D��

1/2εt−� with D(L) = A−1(L),

(3)

such that �1/2εt is seen as a vector of idiosyncratic shocks loaded
on each ξit via square summable, one-sided filters Dik(L) =∑∞

�=0 D�,ikL� where D� = [D�,ik, 1 ≤ i, k ≤ p]. After account-
ing for the dominant cross-sectional dependence in the data
(both contemporaneous and lagged) by factors, it is reasonable
to assume that the dependences left in ξ t are weak and, therefore,
that the VAR structure is sufficiently sparse. Discussion on the
precise requirement on the sparsity of A�, 1 ≤ � ≤ d, and �−1

is deferred to Section 3.

Remark 2.1. A special case of the GDFM is the popularly
adopted static factor model where the factors are loaded
only contemporaneously (see e.g., Stock and Watson 2002;
Bai 2003; Fan, Liao, and Mincheva 2013). This is formalized
in Assumption 4.1, where we consider forecasting under a
static representation. A sufficient condition to obtain a static
representation from the GDFM in (1), is to assume B(L) =∑s

�=0 B�L� for some finite integer s ≥ 0. For example, if
s = 0, the model reduces to χ t = B0ut while if s > 0, it
can be written as χ t = �Ft with � = [B�, 0 ≤ � ≤ s] and
Ft = (u�

t , . . . , u�
t−s)

�. Under the static factor model, Xt admits
a factor-augmented VAR representation (see Remark 4.1).

In the remainder of this section, we list the assumptions
required for identification and estimation of (1)–(2). Since χ t
and ξ t are latent, some assumptions are required to ensure their
(asymptotic) identifiability which are made in the frequency
domain. Denote by �x(ω) the spectral density matrix of Xt at
frequency ω ∈ [−π , π ], and μx,j(ω) its dynamic eigenvalues
which are real-valued and ordered in the decreasing order. We
similarly define �χ (ω), μχ ,j(ω), �ξ (ω) and μξ ,j(ω).

Assumption 2.1. There exist a positive integer p0 ≥ 1, constants
ρj ∈ (3/4, 1] with ρ1 ≥ · · · ≥ ρq, and pairs of continuous
functions ω �→ αχ ,j(ω) and ω �→ βχ ,j(ω) for ω ∈ [−π , π ]
and 1 ≤ j ≤ q, such that for all p ≥ p0,

βχ ,1(ω) ≥ μχ ,1(ω)

pρ1
≥ αχ ,1(ω) > · · · > βχ ,q(ω)

≥ μχ ,q(ω)

pρq
≥ αχ ,q(ω) > 0.

Under the assumption, if ρj = 1 for all 1 ≤ j ≤ q, then
we are in presence of q factors that are equally pervasive for the
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whole cross-section. The left panel of Figure 1 depicts the case
when ρ1 = 1. If ρj < 1 for some j, we permit the presence of
“weak” factors and our theoretical analysis explicitly reflects this;
see, for example, Onatski (2012) and Freyaldenhoven (2021) for
static factor models permitting weak factors. When weak factors
are present, the ordering of the variables becomes important as
p → ∞, whereas the case of linearly diverging factor strengths
is compatible with completely arbitrary cross-sectional ordering.
The requirement that ρj > 3/4 is a minimal one, and generally
larger values of ρj are required as the dimensionality increases
and heavier tails are permitted as discussed later.

Assumptions 2.2 and 2.3 are made to control the serial depen-
dence in Xt .

Assumption 2.2. There exist some constants  > 0 and ς > 2
such that for all � ≥ 0,

max
1≤i≤p

|B�,i·|2 ≤ (1 + �)−ς and⎛⎝ q∑
j=1

|B�,·j|2∞
⎞⎠1/2

≤ (1 + �)−ς .

Assumption 2.3. (i) d is a finite positive integer and det(A(z))
�= 0 for all |z| ≤ 1.

(ii) There exist some constants 0 < mε ≤ Mε such that ‖�‖ ≤
Mε and �min(�) ≥ mε .

(iii) There exist a constant mξ > 0 such that infω∈[−π ,π ] μξ ,p(ω)

≥ mξ .
(iv) There exist some constants  > 0 and ς > 2 such that for

all � ≥ 0,

|D�,ik| ≤ Cik(1 + �)−ς with

max

⎧⎨⎩ max
1≤k≤p

p∑
i=1

Cik, max
1≤i≤p

p∑
k=1

Cik, max
1≤i≤p

√√√√ p∑
k=1

C2
ik

⎫⎬⎭ ≤ .

Assumption 2.3 (i) and (ii) are standard in the literature
(Lütkepohl 2005) and imply that ξ t is causal and has finite
and nonzero covariance. Under Assumptions 2.2 and 2.3 (iv)
(imposed on the Wold decomposition of ξ t in (3)), the serial
dependence in Xt decays at an algebraic rate. Further, we obtain
a uniform bound for μξ ,j(ω) under Assumption 2.3 (iv):

Proposition 2.1. Under Assumption 2.3, uniformly over all ω ∈
[−π , π ], there exists some constant Bξ > 0 depending only on
Mε ,  and ς , defined in Assumption 2.3 (iii) and (iv), such that
supω∈[−π ,π ] μξ ,1(ω) ≤ Bξ .

Remark 2.2. Proposition 2.1 and Assumption 2.3 (iii) jointly
establish the uniform boundedness of μξ ,1(ω) and μξ ,p(ω),
which is commonly assumed in the literature on high-
dimensional VAR estimation via �1-regularization. A sufficient

condition for Assumption 2.3 (iii) is that max
{

max1≤i≤p
∑d

�=1

|A�,i·|1, max1≤j≤p
∑d

�=1 |A�,·j|1
}

≤  for some constant

 > 0 (Basu and Michailidis 2015). Further, when for example,
d = 1, Assumption 2.3 (iv) follows if |A1|∞ ≤ γ < 1 since
max(‖D�‖1, ‖D�‖∞) ≤ γ � with D� = A�

1.

The two latent components χ t and ξ t , and the number of fac-
tors q, are identified thanks to the large gap between the eigen-
values of their spectral density matrices, which follows from
Assumption 2.1 and Proposition 2.1. Then by Weyl’s inequality,
the qth dynamic eigenvalue μx,q(ω) diverges almost everywhere
in [−π , π ] as p → ∞, whereas μx,q+1(ω) is uniformly bounded
for any p ∈ N and ω. This property is exploited in the FNETS
methodology as later described in Section 3.2. It is worth stress-
ing that Assumption 2.1 and Proposition 2.1 jointly constitute
both a necessary and sufficient condition for the process Xt to
admit the dynamic factor representation in (1), see Forni and
Lippi (2001).

Finally, we characterize the common and idiosyncratic inno-
vations.

Assumption 2.4. (i) {ut}t∈Z is a sequence of zero-mean, q-
dimensional martingale difference vectors with cov(ut) =
Iq, and uit and ujt are independent for all 1 ≤ i, j ≤ q with
i �= j and all t ∈ Z.

(ii) {εt}t∈Z is a sequence of zero-mean, p-dimensional martin-
gale difference vectors with cov(εt) = Ip, and εit and εjt are
independent for all 1 ≤ i, j ≤ p with i �= j and all t ∈ Z.

(iii) E(ujtεit′) = 0 for all 1 ≤ j ≤ q, 1 ≤ i ≤ p and t, t′ ∈ Z.
(iv) There exist some constants ν > 4 and μν > 0 such that

max
{

max1≤j≤q E(|ujt|ν), max1≤i≤p E(|εit|ν)
} ≤ μν .

Assumption 2.4 (i) and (ii) allow the common and idiosyn-
cratic innovations to be sequences of martingale differences,
relaxing the assumption of serial independence found in Forni
et al. (2017). Condition (iii) is standard in the factor modeling
literature. Under (iv), we require that the innovations have ν > 4
moments, which is considerably weaker than Gaussian or sub-
Weibull tails assumed in the literature on VAR modeling of high-
dimensional time series (Basu and Michailidis 2015; Kock and
Callot 2015; Wong, Li, and Tewari 2020; Krampe and Paparoditis
2021; Masini, Medeiros, and Mendes 2022). Similar approaches
to ours, based only on moment conditions, are found in Wu
and Wu (2016) who investigate the Lasso performance in deter-
ministic designs under functional dependence, and Adamek,
Smeekes, and Wilms (2023) who assume instead near-epoch-
dependence. In Appendix F, we separately consider the case
when ut and εt are Gaussian for the sake of comparison.

3. Network Estimation via FNETS

3.1. Networks Underpinning Factor-Adjusted VAR
Processes

Under the latent VAR model in (2), we can define three types of
networks underpinning the interconnectedness of Xt after factor
adjustment (Barigozzi and Brownlees 2019).

Let V = {1, . . . , p} denote the set of vertices representing the
p time series. First, the transition matrices A� = [A�,ii′ , 1 ≤
i, i′ ≤ p], encode the directed network NG = (V , EG) repre-
senting Granger causal linkages, with

EG = {
(i, i′) ∈ V × V : A�,ii′ �= 0 for some 1 ≤ � ≤ d

}
(4)

as the set of edges. Here, the presence of an edge (i, i′) ∈ EG

indicates that ξi′,t−� Granger causes ξit at some lag 1 ≤ � ≤ d.
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The second network contains undirected edges represent-
ing contemporaneous dependence between VAR innovations
�1/2εt , denoted by NC = (V , EC); we have (i, i′) ∈ EC iff the
partial correlation between the ith and i′th elements of �1/2εt is
nonzero. Specifically, letting �−1 = � = [δii′ , 1 ≤ i, i′ ≤ p], the
set of edges is given by

EC =
{
(i, i′) ∈ V × V : i �= i′ and − δii′√

δii · δi′i′
�= 0

}
. (5)

Finally, we summarize the aforementioned lead-lag and contem-
poraneous relations between the variables in a single, undirected
network N L = (V , EL) by means of the long-run partial
correlations of ξ t . Let 	 = [ωii′ , 1 ≤ i, i′ ≤ p] denote the long-
run partial covariance matrix of ξ t , that is 	 = (�ξ (0))−1 =
2πA�(1)�A(1) under (2). Then, the set of edges of N L is

EL =
{
(i, i′) ∈ V × V : i �= i′ and − ωii′√

ωii · ωi′i′
�= 0

}
. (6)

Generally, EL is greater than EG ∪ EC, see Appendix C for
a sufficient condition for the absence of an edge (i, i′) from
N L. In the remainder of Section 3, we describe the network
estimation methodology of FNETS which, consisting of three
steps, estimates the three networks while fully accounting for the
challenges arising from not directly observing the VAR process
ξ t , and investigate its theoretical properties.

3.2. Step 1: Factor Adjustment via Dynamic PCA

As described in Section 2, under our model (1)–(2), there exists
a large gap in μx,j(ω), the dynamic eigenvalues of the spectral
density matrix of Xt , between those attributed to the factors
(j ≤ q) and those which are not (j ≥ q + 1). With the goal
of estimating the autocovariance (ACV) matrix of the latent
VAR process ξ t , we exploit this gap in the factor-adjustment
step based on dynamic principal component analysis (PCA); see
Chapter 9 of Brillinger (1981) for the definition of dynamic PCA
and Forni et al. (2000) for its use in the estimation of GDFM.
Throughout, we treat q as known and refer to Hallin and Liška
(2007) for its consistent estimation under (1).

Denote the ACV matrices of Xt by �x(�) = E(Xt−�X�
t )

for � ≥ 0 and �x(�) = ��
x (−�) for � ≤ −1, and

analogously define �χ (�) and �ξ (�) with χ t and ξ t replacing
Xt , respectively. Then, �x(ω) and �x(�) satisfy �x(ω) =
(2π)−1 ∑∞

�=−∞ �x(�) exp(−ι�ω) for all ω ∈ [−π , π ].
Motivated by this, we estimate �x(ω) by

�̂x(ω) = 1
2π

m∑
�=−m

K
(

�

m

)
�̂x(�) exp(−ι�ω), (7)

with the sample ACV �̂x(�) = n−1 ∑n
t=�+1 Xt−�X�

t when
� ≥ 0, and �̂x(�) = �̂x(−�)� for � < 0, and the kernel
bandwidth m = �nβ� for some β ∈ (0, 1). We adopt the
Bartlett kernel as K(·) which ensures positive semi-definiteness
of �̂x(ω) (see Appendix F.2.4). Then, we evaluate �̂x(ω) at
the 2m + 1 Fourier frequencies ωk, −m ≤ k ≤ m (ωk =
2πk/(2m + 1) for 0 ≤ k ≤ m, and ωk = −ω|k| for −m ≤
k ≤ −1), and estimate �χ (ωk) by retaining the contribution
from the q largest eigenvalues and eigenvectors only. That

is, we obtain �̂χ (ωk) = ∑q
j=1 μ̂x,j(ωk)̂ex,j(ωk)(̂ex,j(ωk))

∗
(with ∗ denoting the transposed complex conjugate), where
μ̂x,1(ω) ≥ · · · ≥ μ̂x,q(ω), denote the q leading eigenvalues of
�̂x(ω) and êx,j(ω) the associated (normalized) eigenvectors.
From this, an estimator of �χ (�) at a given lag � ∈ N, is
obtained via inverse Fourier transform as �̂χ (�) = 2π(2m +
1)−1 ∑m

k=−m �̂χ (ωk) exp(ι�ωk) and finally, we estimate the
ACV matrices of ξ t with �̂ξ (�) = �̂x(�) − �̂χ (�), by virtue
of Assumption 2.4 (iii).

3.3. Step 2: Estimation of VAR Parameters and NG

Recalling the VAR(d) model in (2), let β = [A�, 1 ≤ � ≤ d]� ∈
R

(pd)×p denote the matrix collecting all the VAR parameters.
When ξ t is directly observable, �1-regularized least squares or
maximum likelihood estimators have been proposed for β , see
the references given in Introduction. In the context of factor-
adjusted regression modeling where the aim is to estimate the
regression structure in the latent idiosyncratic process, it has
been proposed to apply the �1-regularization methods after
estimating the entire latent process by, say, ξ̂ t (Fan, Ke, and
Wang 2020; Fan, Masini, and Medeiros 2021; Fan, Lou, and
Yu 2023; Krampe and Margaritella 2021). However, such an
approach possibly suffers from the lack of statistical efficiency
due to having to control the estimation errors in ξ̂ t uniformly
for all 1 ≤ t ≤ n. Instead, we make use of the Yule-Walker (YW)
equation β = G−1g, where

G =
⎡⎢⎣ �ξ (0) �ξ (−1) . . . �ξ (−d + 1)

...
...

. . .
...

�ξ (d − 1) �ξ (d − 2) . . . �ξ (0)

⎤⎥⎦ and

g =
⎡⎢⎣�ξ (1)

...
�ξ (d)

⎤⎥⎦ ,

withG being always invertible since �min(G) ≥ 2πmξ > 0 by
Assumption 2.3 (iii). We propose to estimate β as a regularized
YW estimator based on Ĝ and ĝ, which are obtained by replac-
ing �ξ (�) with �̂ξ (�) derived in Step 1 of FNETS via dynamic
PCA, in the definitions ofG and g, respectively.

To handle the high dimensionality, we consider an �1-
regularised estimator for β which solves the following �1-
penalised M-estimation problem

β̂ = arg minM∈Rpd×p tr
(

M�ĜM − 2M�ĝ
)

+ λ|M|1 (8)

with a tuning parameter λ > 0. Note that the matrix Ĝ is guar-
anteed to be positive semi-definite (see Appendix F.2.4), thus the
problem in (8) is convex with a global minimizer. We note the
similarity between (8) and the Lasso estimator, but our estimator
is specifically tailored for the problem of estimating the param-
eters for the latent VAR process ξ t by means of second-order
moments only, and thus differs fundamentally from the Lasso-
type estimators proposed for high-dimensional VAR estimation.
In Appendix A, we propose an alternative estimator based on
a constrained �1-minimization approach closely related to the
Dantzig selector (Candès and Tao 2007).
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Once the VAR parameters are estimated, we propose to esti-
mate the edge set of NG in (4) by the set of indices of the
nonzero elements of a thresholded version of β̂ , denoted by
β̂(t) = [β̂ij · I{|β̂ij|>t}], with some threshold t > 0.

3.4. Step 3: Estimation of N C and N L

Recall that the edge sets of NC and N L defined in (5)–(6), are
given by the supports of � and 	. Given β̂ in (8) which estimates
β , a natural estimator of � arises from the YW equation � =
�ξ (0) − ∑d

�=1 A��ξ (�) = �ξ (0) − β�g, as �̂ = �̂ξ (0) −
β̂

�
ĝ. Then, we propose to estimate � = �−1 via constrained

�1-minimization as

�̌ = arg minM∈Rp×p |M|1 subject to
∣∣�̂M − I

∣∣∞ ≤ η, (9)

where η > 0 is a tuning parameter. This approach has originally
been proposed for estimating the precision matrix of indepen-
dent data (Cai, Liu, and Luo 2011), which we extend to time
series settings. Since �̌ = [δ̌ii′ , 1 ≤ i, j ≤ p] is not guaranteed
to be symmetric, a symmetrization step is performed to obtain
�̂ = [̂δii′ , 1 ≤ i, i′ ≤ p] with δ̂ii′ = δ̌ii′ · I{|δ̌ii′ |≤|δ̌i′ i|} +
δ̌i′i · I{|δ̌i′ i|<|δ̌ii′ |}. Then, the edge set of NC in (5) is estimated
by the support of the thresholded estimator �̂(tδ) = [̂δii′ ·
I{|̂δii′ |>tδ}, 1 ≤ i, i′ ≤ p] with some threshold tδ > 0.

Finally, we estimate 	 = 2π(A(1))��A(1) by replacing
A(1) and � with their estimators. We adopt the thresholded
estimator β̂(t) = [Â1(t), . . . , Âd(t)]�, to obtain Â(1) = I −∑d

�=1 Â�(t) and set 	̂ = 2π(Â(1))��̂Â(1). Analogously, the
edge set of N L in (6) is obtained by thresholding 	̂ = [ω̂ii′ , 1 ≤
i, i′ ≤ p] with some threshold tω > 0, as the support of 	̂(tω) =
[ω̂ii′ · I{|ω̂ii′ |>tω}, 1 ≤ i, i′ ≤ p].

3.5. Theoretical Properties

We prove the consistency of FNETS in network estimation by
establishing the theoretical properties of each of its three steps in
Sections 3.5.1–3.5.3. Then in Section 3.5.4, we present the results
for a special case where χ t admits a static representation, n  p
and E(|Xit|ν) < ∞ for ν > 8, for ease of comparing our results
to the existing ones.

Hereafter, we define

ψn =
(

m
n1−2/ν

∨
√

m log(m)

n

)
and

ϑn,p =
(

m(np)2/ν log7/2(p)

n
∨
√

m log(mp)

n

)
, (10)

where the dependence of these quantities on ν is omitted for
simplicity.

3.5.1. Factor Adjustment via Dynamic PCA
We first establish the consistency of the dynamic PCA-based
estimator of �χ (�).

Theorem 3.1. Suppose that Assumptions 2.1, 2.2, 2.3, and 2.4 are
met. Then, for any finite positive integer s ≤ d, as n, p → ∞,

max
�: |�|≤s

1
p
∥∥�̂χ (�) − �χ (�)

∥∥
F = OP

(
qp2(1−ρq)

(
ψn ∨ 1

m
∨ 1√p

))
,

max
�: |�|≤s

∣∣�̂χ (�) − �χ (�)
∣∣∞ = OP

(
qp2(1−ρq)

(
ϑn,p ∨ 1

m
∨ 1√p

))
.

Remark 3.1. (a) Theorem 3.1 is complemented by Proposi-
tion F.15 in Appendix which establishes the consistency
of the spectral density matrix estimator �̂χ (ω) uniformly
over ω ∈ [−π , π ] in both Frobenius and �∞-norms.

(b) Both ψn and ϑn,p in (10) increase with the bandwidth m. It is
possible to find m that minimizes for example, (ϑn,p ∨ m−1)
which, roughly speaking, represents the bias-variance trade-
off in the estimation of the spectral density matrix �x(ω).
For example, in light-tailed settings with large enough ν,
the choice m  (n log−1(np))1/3 leads to the minimal rate
in �∞-norm (ϑn,p ∨ m−1)  (log(np)/n)1/3 which nearly
matches the optimal nonparametric rate when using the
Bartlett kernel as in (7) (Priestley 1982, p. 463).

(c) Consistency in Frobenius norm depends on ψn which tends
to zero as n → ∞ without placing any constraint on the
relative rate of divergence between n and p. Consistency
in �∞-norm is determined by ϑn,p which depends on the
interplay between the dimensionality and the tail behavior.
Generally, the estimation error worsens as weaker factors are
permitted (ρq < 1 in Assumption 2.1) and as p grows, and
also when ν is small such that heavier tails are permitted.
Consider the case when all factors are strong (i.e., ρj = 1).
If p  n, then �∞-consistency holds with an appropriately
chosen m = nβ , β ∈ (0, 1), that leads to ϑn,p = o(1),
provided that ν > 4. When all moments of ujt and εit
exist, we achieve �∞-consistency even in the ultra high-
dimensional case where log(p) = o(n).

From Theorem 3.1, the following proposition immediately
follows.

Proposition 3.2. Suppose that the conditions in Theorem 3.1 are
met and let Assumption 2.1 hold with ρj = 1, 1 ≤ j ≤ q. Then,
P(En,p) → 1 as n, p → ∞, where

En,p =
{

max
−d≤�≤d

∣∣�̂ξ (�) − �ξ (�)
∣∣∞ ≤ Cξ

(
ϑn,p ∨ 1

m
∨ 1√p

)}
.

(11)

for some constant Cξ > 0.

From Proposition 3.2, we have �∞-consistency of �̂ξ (�) in
the presence of strong factors. Although it is possible to trace
the effect of weak factors on the estimation of �ξ (�) (see Corol-
lary F.17), we make this simplifying assumption to streamline
the presentation of the theoretical results of the subsequent
Steps 2–3 of FNETS.

Remark 3.2. In Appendix F.2.8, we show that if χ t admits
the static representation discussed in Remark 2.1, the rate in
Proposition 3.2 is further improved as
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max
�: |�|≤d

∣∣�̂ξ (�) − �ξ (�)
∣∣∞ = OP

(
ϑ̃n,p ∨ 1√p

)
with

ϑ̃n,p =
(

p2/ν log3(p)

n1−2/ν
∨
√

log(p)

n

)
. (12)

The term ϑ̃n,p comes from bounding max�: |�|≤d |�̂x(�) −
�x(�)|∞. Hence, the improved rate in (12) is comparable to
the rate attained when we directly observe ξ t apart from the
presence of p−1/2, which is due to the presence of latent factors;
similar observations are made in Theorem 3.1 of Fan, Liao, and
Mincheva (2013).

3.5.2. Estimation of VAR Parameters and N G

We measure the sparsity of β by s0,j = |β ·j|0, s0 = ∑p
j=1 s0,j and

sin = max1≤j≤p s0,j. When d = 1, the quantity sin coincides with
the maximum in-degree per node of NG.

Proposition 3.3. Suppose that Cξ sin(ϑn,p ∨ m−1 ∨ p−1/2) ≤
πmξ /16, where mξ is defined in Assumption 2.3 (iii). Also, set
λ ≥ 4Cξ (‖β‖1+1)(ϑn,p∨m−1∨p−1/2) in (8). Then, conditional
on En,p defined in (11), we have∣∣β̂ − β

∣∣∞ ≤ ∣∣β̂ − β
∣∣
2 ≤ 32√sinλ

πmξ

and
∣∣β̂ − β

∣∣
1 ≤ 8s0λ

πmξ

.

Following Loh and Wainwright (2012), the proof of Propo-
sition 3.3 proceeds by showing that, conditional on En,p, the
matrix Ĝmeets a restricted eigenvalue condition (Bickel, Ritov,
and Tsybakov 2009) and the deviation bound is controlled as
|Ĝβ − ĝ|∞ ≤ λ/4. Then, thanks to Proposition 3.2, as n, p →
∞, the estimation errors of β̂ in �∞- and �1-norms, are bounded
as in Proposition 3.3 with probability tending to one.

Remark 3.3. As noted in Remark 2.2, the boundedness of
μξ ,j(ω) follows from that of ‖β‖1 = max1≤j≤p

∑d
�=1 |A�,j·|1,

in which case ‖β‖1 appearing in the assumed lower bound
on λ, does not inflate the rate of the estimation errors. In
the light-tailed situation, with the optimal bandwidth m 
(n log−1(np))1/3 as specified in Remark 3.1(b), it is required that
sin = O((n log−1(np))1/3 ∧ √p), which still allows the number
of nonzero entries in each row of A� to grow with p. Here,
the exponent 1/3 in place of 1/2 often found in the literature,
comes from adopting the most general approach to time series
factor modeling which necessitates selecting a bandwidth for
frequency domain-based factor adjustment.

For sign consistency of the Lasso estimator, the (almost) nec-
essary and sufficient condition is the so-called irrepresentable
condition (Zhao and Yu 2006), which is known to be highly
stringent (Tardivel and Bogdan 2022). Alternatively, Medeiros
and Mendes (2016) propose an adaptive Lasso estimator with
data-driven weights for high-dimensional VAR estimation when
ξ t is directly observed. Instead, we propose to additionally
threshold β̂ and obtain β̂(t), whose support consistently
estimates the edge set of NG.

Corollary 3.4. Suppose that the conditions of Proposition 3.3 are
met. If

min
(i,j): |βij|>0

|βij| > 2t (13)

with t = 32√sinλ/(πmξ ), then we have sign(β̂(t)) = sign(β)

conditional on En,p.

3.5.3. Estimation of N C and N L

Let sδ(�) = max1≤i≤p
∑p

i′=1 |δii′ |�, � ∈ [0, 1), denote the
(weak) sparsity of � = [δii′ , 1 ≤ i, i′ ≤ p]. Also, define sout =
max1≤j≤p

∑d
�=1 |A�,·j|0 which, complementing sin, represents

the sparsity of the out-going edges of NG. Analogously as in
Proposition 3.3, we establish deterministic guarantees for �̂ and
	̂ conditional on En,p.

Proposition 3.5. Suppose that the conditions in Propositions 3.3
are met, and set η = Csin‖�‖1(‖β‖1 + 1)(ϑn,p ∨ m−1 ∨ p−1/2)
in (9), with C depending only on Cξ and mξ . Then, conditional
on En,p defined in (11), we have:

(i) |�̂−�|∞ ≤ 4‖�‖1η and ‖�̂−�‖ ≤ 12sδ(�)(4‖�‖1η)1−�.
(ii) If also soutt ≤ ‖A(1)‖1 with t chosen as in Corollary 3.4,

then,∣∣	̂ − 	
∣∣∞ ≤ 4π‖A(1)‖1 (3‖�‖soutt + 16‖A(1)‖1‖�‖1η) .

Together with Assumption 2.3 (ii), Proposition 3.5(i) indi-
cates asymptotic positive definiteness of �̂ provided that � is
sufficiently sparse, as measured by ‖�‖1 and sδ(�). By defini-
tion, N L combines NG and NC and consequently, its sparsity
structure is determined by the sparsity of the other two net-
works, which is reflected in Proposition 3.5(ii). Specifically, the
term ‖A(1)‖1 is related to the out-going property of NG, and
satisfies ‖A(1)‖1 ≤ max1≤j≤p

∑d
�=1 |A�,·j|1, where the bound-

edness of the right-hand side is sufficient for the boundedness
of μξ ,j(ω) (Remark 2.2). Also, ‖�‖1 reflects the sparsity of
the edge set of NC, and the tuning parameter η depends on
the sparsity of the in-coming edges of NG through ‖β‖1 =
max1≤j≤p

∑d
�=1 |A�,j·|1 and sin.

Similarly as in Corollary 3.4, we can show the consistency of
the thresholded estimators �̂(tδ) and 	̂(tω) in estimating the
edge sets of NC and N L, respectively.

Corollary 3.6. Suppose that conditions of Proposition 3.5 are
met. Conditional on En,p:

(i) If min(i,i′): |δii′ |>0 |δii′ | > 2tδ with tδ = 4‖�‖1η, we have
sign(�̂(tδ)) = sign(�).

(ii) If min(i,i′): |ωii′ |>0 |ωii′ | > 2tω with tω = 4π‖A(1)‖1
(3‖�‖soutt + 16‖A(1)‖1‖�‖1η), we have sign(	̂(tω)) =
sign(	).

3.5.4. The Case of the Static Factor Model
For ease of comparing the performance of FNETS with the
existing results, we focus on the static factor model setting
discussed in Remark 2.1, and assume that n  p and
max(‖β‖1, ‖A(1)‖1) = O(1). Then, from Remark 3.2 and the
proof of Proposition 3.3, we obtain max1≤j≤p |̂β ·j − β ·j|2 =
OP(

√
sin log(n)/n) provided that ν > 8, such that the condition

in (13) is written with t  √
sin log(n)/n. That is, β̂ and

its thresholded counterpart proposed for the estimation of
the latent VAR process, perform as well as the benchmark
derived under independence and Gaussianity in the Lasso
literature (van de Geer, Bühlmann, and Zhou 2011). In this same
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setting, the factor-adjusted regression estimation method of Fan,
Masini, and Medeiros (2021), when applied to the problem of
VAR parameter estimation, yields an estimator β̂

FARM which
attains max1≤j≤p |̂βFARM

·j − β ·j|2 = OP(
√sinn−1/2+5/ν) under

strong mixingness, see their Theorem 3. Here, the larger OP-
bound compared to ours stems from that β̂

FARM requires the
estimation of ξit for all i and t, the error from which increases
with n as well as p. This demonstrates the efficacy of adopting
our regularised YW estimator.

Continuing with the same setting, Propositions 3.5 implies
that

∣∣�̂ − �
∣∣∞ = OP

(
‖�‖2

1sin

√
log(n)

n

)
and

∣∣	̂ − 	
∣∣∞ = OP

((
sout ∨ ‖�‖2

1
√

sin
)√ sin log(n)

n

)
.

The former is comparable (up to sin) to the results in Theorem 4
of Cai, Liu, and Luo (2011) derived for estimating a sparse
precision matrix of independent random vectors.

4. Forecasting via FNETS

4.1. Forecasting under the Static Factor Model
Representation

For given time horizon a ≥ 0, the best linear predictor of χn+a
based on χn−�, � ≥ 0, is

χn+a|n =
∞∑

�=0
B�+aun−�. (14)

under (1). Following Forni et al. (2005), we consider a forecast-
ing method for the factor-driven component which estimates
χn+a|n under a restricted GDFM that admits a static represen-
tation of finite dimension. We formalize the static factor model
discussed in Remark 2.1 in the following assumption.

Assumption 4.1. (i) There exist two finite positive integers m1
and m2 such that m1 + 1 ≥ m2, χ t = M(1)(L)ft and
ft = M(2)(L)ut where M(1)(L) = ∑m1

�=0 M(1)
� L� with

M(1) ∈ R
p×q, M(2)(L) = ∑m2

�=0 M(2)
� L� with M(2) ∈ R

q×q

and det(M(2)(z)) �= 0 for all |z| ≤ 1.
(ii) Let μχ ,j, 1 ≤ j ≤ r, denote the jth largest eigenvalue of

�χ (0). Then, there exist a positive integer p0 ≥ 1, constants
�j ∈ (7/8, 1] with �1 ≥ · · · ≥ �r , and pairs of positive
constants (αχ ,j, βχ ,j), 1 ≤ j ≤ r, such that for all p ≥ p0,

βχ ,1 ≥ μχ ,1
p�1

≥ αχ ,1 > βχ ,2 ≥ μχ ,2
p�2

≥ · · · ≥ αχ ,r−1 > βχ ,r ≥ μχ ,r
p�r

≥ αχ ,r > 0.

In part (i), χ t admits a static representation with r = q(m1 +
1) factors: χ t = �Ft , where � = [M(1)

� , 0 ≤ � ≤ m1], Ft =
(f�

t , . . . , f�
t−m1)

� and ft = M(2)(L)ut . The condition that m1 +
1 ≥ m2 is made for convenience, and the proposed estimator of
χn+a|n can be modified accordingly when it is relaxed.

Remark 4.1. Under Assumption 4.1 (i), the r-vector of static
factors, Ft , is driven by the q-dimensional common shocks ut . If
q < r, Anderson and Deistler (2008) show that Ft always admits
a VAR(h) representation: Ft = ∑h

�=1 G�Ft−� + Hut for some
finite positive integer h and H ∈ R

r×q. Then, Xt has a factor-
augmented VAR representation:

Xt = �

h∑
�=1

G�Ft−� + �Hut +
d∑

�=1
A�ξ t−� + �1/2εt

=
d∨h∑
�=1

C�Ft−� +
d∑

�=1
A�Xt−� + νt ,

with C� = �G�I{�≤h} − A��I{�≤d} and νt = �Hut + �1/2εt .
This model is a generalization of the factor augmented forecast-
ing model considered by Stock and Watson (2002) where only
the factor-driven component is present, and it is also considered
by Fan, Masini, and Medeiros (2021).

It immediately follows from Proposition 2.1 that ‖�ξ (0)‖ ≤
2πBξ . This, combined with Assumption 4.1 (ii), indicates the
presence of a large gap in the eigenvalues of �x(0), which allows
the asymptotic identification of χ t and ξ t in the time domain,
as well as that of the number of static factors r. Throughout, we
treat r as known, and refer to for example Bai and Ng (2002) and
Ahn and Horenstein (2013), for its estimation.

Let (μχ ,j, eχ ,j), 1 ≤ j ≤ r, denote the pairs of eigenvalues
and eigenvectors of �χ (0) ordered such that μχ ,1 ≥ · · · ≥ μχ ,r .
Then, �χ (0) = EχMχ E�

χ with Mχ = diag(μχ ,j, 1 ≤ j ≤ r)
and Eχ = [eχ ,j, 1 ≤ j ≤ r]. Under Assumption 4.1 (i), we have
χn+a|n in (14) satisfy χn+a|n = Proj

(
χn+a|Fn−�, � ≥ 0

) =
Proj

(
χn+a|Fn

) = �χ (−a)EχM−1
χ E�

χ χn, where Proj(·|z)
denotes the linear projection operator onto the linear space
spanned by z. When a = 0, we trivially have χ t|n = χ t for
t ≤ n. Then, a natural estimator of χn+a|n is

χ̂ res
n+a|n = �̂χ (−a)̂EχM̂

−1
χ Ê�

χ Xn, (15)

where (μ̂χ ,j, êχ ,j), 1 ≤ j ≤ r, denote the pairs of eigenvalues
and eigenvectors of �̂χ (0), and �̂χ (�), � ∈ {0, a}, are estimated
as described in Section 3.2. As a by-product, we obtain the in-
sample estimator by setting a = 0, as χ̂ res

t = Êχ Ê�
χ Xt for 1 ≤

t ≤ n.

Remark 4.2. Our proposed estimator χ̂ res
n+a|n differs from that

of Forni et al. (2005), as they estimate the factor space via gen-
eralized PCA on �̂χ (0). This in effect replaces Êχ in (15) with
the eigenvectors of W−1�̂χ (0) where W is a diagonal matrix
containing the estimators of the sample variance of ξ t . Such an
approach may gain in efficiency compared to ours in the same
way a weighted least squares estimator is more efficient than
the ordinary one in the presence of heteroscedasticity. However,
since we investigate the consistency of χ̂ res

n+a|n without deriving
its asymptotic distribution, we do not explore such approach in
this article.

In Appendix B, we present an alternative forecasting method
that operates under an unrestricted GDFM, that is it does not
require Assumption 4.1. Referred to as χ̂unr

n+a|n, we compare its
performance with that of χ̂ res

n+a|n in numerical studies.
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Once VAR parameters are estimated by β̂ = [Â1, . . . , Âd]�
as in (8), we produce a forecast of ξn+a given Xt , t ≤ n, by
estimating the best linear predictor ξn+a|n = ∑d

�=1 A�ξn+1−�|n
(with ξ t|n = ξ t for t ≤ n), as

ξ̂n+a|n =
max(1,a)−1∑

�=1
Â�̂ξn+a−�|n +

d∑
�=max(1,a)

Â�̂ξn+a−�. (16)

When a ≤ d, the in-sample estimators appearing in (16) are
obtained as ξ̂ t = Xt − χ̂ t , n + a − d ≤ t ≤ n, with either χ̂ res

t
or χ̂unr

t as χ̂ t .

4.2. Theoretical Properties

Proposition 4.1 establishes the consistency of χ̂ res
n+a|n in estimat-

ing the best linear predictor of χn+a, where we make it explicit
the effects of the presence of weak factors, both dynamic (as
measured by μχ ,j(ω) in Assumption 2.1) and static (as measured
by μχ ,j in Assumption 4.1 (ii)), and the tail behavior (through ψn
and ϑn,p defined in (10)).

Proposition 4.1. Suppose that the conditions in Theorem 3.1
are met and, in addition, we assume that Assumption 4.1 holds.
Then, for any finite a ≥ 0, we have∣∣∣χ̂ res

n+a|n − χn+a|n
∣∣∣∞

= OP

(
p4−2ρq−2�r

(
ψn ∨ p�r−1ϑn,p ∨ 1

m
∨ 1√p

))
.

As noted in Remark 3.1 (c), weaker factors and heavier tails
impose a stronger requirement on the dimensionality p. If all fac-
tors are strong (�r = 1), the rate becomes (ϑn,p ∨ m−1 ∨ p−1/2).
When a = 0, Proposition 4.1 provides in-sample estimation
consistency for any given t ≤ n. The next proposition accounts
for the irreducible error in χn+a|n, with which we conclude the
analysis of the forecasting error |χ̂ res

n+a|n − χn+a|∞ when a ≥ 1.

Proposition 4.2. Suppose that Assumptions 2.2 and 2.4 hold.
Then for any finite a ≥ 1, |χn+a|n − χn+a|∞ = OP(q1/νμ

1/ν
ν

log1/2(p)).

Recall the definition of sin given in Section 3.5. The next
proposition investigates the performance of ξ̂n+a|n when a = 1,
which can easily be extended to any finite a ≥ 2.

Proposition 4.3. Suppose that the in-sample estimator of ξ t and
β̂ satisfy∣∣∣̂ξn+1−� − ξn+1−�

∣∣∣∞ = OP
(
ζ̄n,p

)
for 1 ≤ � ≤ d and∥∥β̂ − β

∥∥
1 = OP(sinζn,p). (17)

Also, let Assumptions 2.3 and 2.4 hold. Then,∣∣∣̂ξn+1|n − ξn+1

∣∣∣∞ = OP
(
sinζn,p

(
log1/2(p)p1/νμ1/ν

ν + ζ̄n,p
)

+ ‖β‖1ζ̄n,p + p1/νμ1/ν
ν

)
.

Either of the in-sample estimators χ̂ res
t (described in Sec-

tion 4.1) or χ̂unr
t (Appendix B), can be used in place of χ̂ t .

Accordingly, the rate ζ̄n,p in (17) is inherited by that of χ̂ res
t

(given in Proposition 4.1) or χ̂unr
t (Proposition B.2 (iii)). From

the proof of Proposition 3.3, we have ζn,p  (‖β‖1 + 1)(ϑn,p ∨
m−1 ∨ p−1/2) in (17).

5. Numerical Studies

5.1. Tuning Parameter Selection

We briefly discuss the choice of the tuning parameters for
FNETS. For full details, see Owens, Cho, and Barigozzi (2023)
that accompanies its R implementation available on CRAN
(Barigozzi, Cho, and Owens 2023).

Related to χ t . We set the kernel bandwidth at m =
�4(n/ log(n))1/3� based on the case when sufficiently large
number of moments exist and n  p (Remark 3.1 (b)). In
simulation studies reported in Appendix E, we treat the number
of factors q (required for Step 1 of FNETS) known, and also
treat the number of static factors r (for generating the forecast)
as known if it is finite; when χ t does not admit a static factor
model (i.e. r = ∞), we use the value returned by the ratio-based
estimator of Ahn and Horenstein (2013). In real data analysis
reported in Section 5.3, we estimate both q and r, the former
with the estimator proposed in Hallin and Liška (2007), the
latter as in Ahn and Horenstein (2013).

Related to ξ t . We select the tuning parameter λ in (8) jointly
with the VAR order d, by adopting cross validation (CV); in
time series settings, a similar approach is explored in Wang and
Tsay (2022). For this, the data is partitioned into M consecu-
tive folds with indices Il = {nl + 1, . . . , nl+1} where nl =
min(l�n/M�, n), 0 ≤ l ≤ M, and each fold is split into I train

l =
{nl + 1, . . . , �(nl + nl+1)/2�} and I test

l = Il \ I train
l . Then

with β̂
train
l (μ, b) obtained from {Xt , t ∈ I train

l } with the tuning
parameter μ and the VAR order b, we evaluate

CV(μ, b) =
M∑

l=1
tr
(
�̂

test
ξ ,l (0) − (β̂

train
l (μ, b))�ĝtest

l (b)

− (̂gtest
l (b))�β̂

train
l (μ, b)

+(β̂
train
l (μ, b))�Ĝtest

l (b)β̂
train
l (μ, b)

)
,

where �̂
test
ξ ,l (�), Ĝtest

l (b), and ĝtest
l (b) are generated analogously

as �̂ξ (�), Ĝ, and ĝ, respectively, using the test set {Xt , t ∈ I test
l }.

The measure CV(μ, b) approximates the prediction error while
accounting for that we do not directly observe ξ t . Minimizing it
over varying μ and b, we select λ and d. In simulation studies,
we treat d as known while in real data analysis, we select it from
the set {1, . . . , 5} via CV. For selecting η in (9), we adopt the Burg
matrix divergence-based CV measure:

CV(μ) =
M∑

l=1
tr
(
�̂

train
l (μ)�̂

test
l

)
− log

∣∣∣�̂train
l (μ)�̂

test
l

∣∣∣ − p.

For both CV procedures, we set M = 1 in the numerical
results reported below. In simulation studies, we compare the
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estimators with their thresholded counterparts in estimating
the network edge sets with the thresholds t, tδ and tω selected
according to a data-driven approach motivated by Liu, Zhang,
and Liu (2021). Details are in Appendix D.

5.2. Simulations

In Appendix E, we investigate the estimation and forecasting
performance of FNETS ondatasets simulated under a variety of
settings, from Gaussian innovations ut and εt with (E1) � = I
and (E2) � �= I, to (E3) heavy-tailed (t5) innovations with
� = I, and when χ t is generated from (C1) fully dynamic
or (C2) static factor models. In addition, we consider the “oracle”
setting (C0) χ t = 0 where, in the absence of the factor-driven
component, the results obtained can serve as a benchmark. For
comparison, we consider the factor-adjusted regression method
of Fan, Masini, and Medeiros (2021) and present the perfor-
mance of their estimator of VAR parameters and forecasts.

5.3. Application to a Panel of Volatility Measures

We investigate the interconnectedness in a panel of volatil-
ity measures and evaluate its out-of-sample forecasting perfor-
mance using FNETS. For this purpose, we consider a panel of
p = 46 stock prices retrieved from the Wharton Research Data
Service, of US companies which are all classified as “financials”
according to the Global Industry Classification Standard; a list of
company names and industry groups are found in Appendix G.
The dataset spans the period between January 3, 2000 and
December 31, 2012 (3267 trading days). Following Diebold and
Yılmaz (2014), we measure the volatility using the high-low
range as σ 2

it = 0.361(phigh
it − plow

it )2 where phigh
it and plow

it denote,
respectively, the maximum and the minimum log-price of stock i
on day t, and set Xit = log(σ 2

it ); Brownlees and Gallo (2010)
support this choice of volatility measure over more sophisticated
alternatives.

5.3.1. Network Analysis
We focus on the period 03/2006–02/2010 corresponding to the
Great Financial Crisis. We partition the data into four segments
of length n = 252 each (corresponding to the number of trading
days in a single year) and on each segment, we apply FNETS
to estimate the three networks NG, NC, and N L described in
Section 3.1.

Each row of Figure 2 plots the heat maps of the matrices
underlying the three networks of interest. From all four seg-
ments, the CV-based approach described in Section 5.1 returns
d = 1 from the candidate VAR order set {1, . . . , 5}. Hence in
each row, the left panel represents the estimator Â1 = β̂

�, and
the middle and the right show the (long-run) partial correlations
from the corresponding �̂ and 	̂ (with their diagonals set to
be zero). Locations of the nonzero elements estimate the edge
sets of the corresponding networks, and the hues represent the
(signed) edge weights.

Prior to March 2007, all networks exhibit a low degree of
interconnectedness but the number of edges increases consid-
erably in 03/2007–02/2008 due mainly to an overall increase in
dynamic co-dependencies and a prominent role of banks (blue

Table 1. Mean, median and standard errors of FEavg
T+1 and FEmax

T+1 on the trading
days in 2012 for X̂T+1|T (n) in comparison with AR and FarmPredict (Fan, Masini, and
Medeiros 2021) forecasts.

FNETS

χ̂ res
T+1|T (n) χ̂unr

T+1|T (n) AR FarmPredict

FEavg Mean 0.7258 0.7466 0.7572 0.7616
Median 0.6029 0.6412 0.6511 0.6243

SE 0.4929 0.3748 0.4162 0.4946
FEmax Mean 0.8433 0.8729 0.879 0.8745

Median 0.7925 0.8088 0.8437 0.8259
SE 0.2331 0.2246 0.2169 0.2337

NOTE: The smallest entry in each row is highlighted in bold.

group) not only in NG but also in NC. In 03/2008–02/2009, the
companies belonging to the insurance sector (red group) play
a central role and in 03/2009–02/2010, the companies become
highly interconnected with two particular firms having many
outgoing edges in NG. Also, while most edges in N L, which
captures the overall long-run dependence, have positive weights
across time and companies, their weights become negative in
this last segment. We highlight that FNETS is able to capture the
aforementioned group-specific activities although this informa-
tion is not supplied to the estimation method.

5.3.2. Forecasting
We perform a rolling window-based forecasting exercise on the
trading days in 2012. Starting from T = 3016 (the first trading
day in 2012), we forecast XT+1 as X̂T+1|T(n) = χ̂T+1|T(n) +
ξ̂T+1|T(n), where χ̂T+1|T(n) (resp. ξ̂T+1|T(n)) denotes the fore-
cast of χT+1 (resp. ξT+1) using the preceding n data points
{Xt , T − n + 1 ≤ t ≤ T}. We set n = 252. After the forecast
X̂T+1|T(n) is generated, we update T ← T + 1 and repeat the
above procedure until T = 3267 (the last trading day in 2012) is
reached.

For χ̂T+1|T(n), we consider the forecasting methods derived
under the static factor model (Section 4.1, denoted by χ̂ res

T+1|T(n))
and unrestricted GDFM (Appendix B, χ̂unr

T+1|T(n)). Following
the analysis in Section 5.3.1, we set d = 1 when producing
ξ̂T+1|T(n). Additionally, we report the forecasting performance
of FarmPredict (Fan, Masini, and Medeiros 2021), which first fits
an AR model to each of the p series (“AR”), projects the residuals
on their principal components, and then fits VAR models to
what remains via Lasso. Combining the three steps gives the
final forecast X̂FARM

T+1|T(n). The forecast produced by the first step
univariate AR modeling, denoted by X̂AR

T+1|T(n), is also included
for comparison.

We evaluate the performance of X̂T+1|T using two measures
of errors FEavg

T+1 = |XT+1|−2
2 · |XT+1 − X̂T+1|T |22 and FEmax

T+1 =
|XT+1|−1∞ ·|XT+1−X̂T+1|T |∞, see Table 1 for the summary of the
forecasting results. Among the forecasts generated by FNETS,
the one based on χ̂ res

T+1|T(n) performs the best in this exercise,
which outperforms X̂AR

T+1|T(n) and X̂FARM
T+1|T(n) according to both

FEavg and FEmax on average. As noted in Appendix E.2.2, the
forecast based on χ̂unr

T+1|T shows instabilities and generally is
outperformed by the one based on χ̂ res

T+1|T , but nonetheless
performs reasonably well. Given the high level of co-movements
and persistence in the data, the good performance of FNETS
is mainly attributed to the way we forecast the factor-driven
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Figure 2. Heat maps of the estimators of the VAR transition matrices Â1, partial correlations from �̂ and long-run partial correlations from 	̂ (left to right), which in turn
estimate the networks N G, N C, and N L, respectively, over three selected periods. The grouping of the companies according to their industry classifications are indicated
by the axis label colors. The heat maps in the left column are in the scale of [−0.81, 0.81] while the others are in the scale of [−1, 1], with red hues denoting large positive
values and blue hues large negative values.
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component, which is based on the estimators derived under
GFDM that fully exploit all the dynamic co-dependencies (see
also the results obtained by Barigozzi and Hallin 2017 on a
similar dataset).

6. Conclusions

We propose and study the asymptotic properties of FNETS,
a network estimation and forecasting methodology for high-
dimensional time series under a dynamic factor-adjusted VAR
model. Our estimation strategy fully takes into account the
latency of the VAR process of interest via regularized YW
estimation which, distinguished from the existing approaches,
brings in methodological simplicity as well as theoretical
benefits. We investigate the theoretical properties of FNETS
under general conditions permitting weak factors and heavier
tails than sub-Gaussianity commonly imposed in the high-
dimensional VAR literature, and provide new insights into the
interplay between various quantities determining the sparsity of
the networks underpinning VAR processes, factor strength and
tail behavior, on the estimation of those networks. Simulation
studies and an application to a panel of financial time series
show that FNETS is particularly useful for network analysis as it
is able to discover group structures as well as producing accurate
forecasts for highly co-moving and persistent time series such
as log-volatilities. The R software fnets implementing FNETS
is available from CRAN (Barigozzi, Cho, and Owens 2023).

Supplementary Materials

The supplementary materials contain the descriptions of the alternative
estimation and forecasting methods, selection of the tuning parameters
and the complete simulation results, in addition to all the proofs of the
theoretical results.
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