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S U M M A R Y 

In a recent work, we applied the every earthquake a precursor according to scale (EEPAS) 
probabilistic model to the pseudo-prospective forecasting of shallow earthquakes with magni- 
tude M 5 . 0 in the Italian region. We compared the forecasting performance of EEPAS with that 
of the epidemic type aftershock sequences (ETAS) forecasting model, using the most recent 
consistenc y tests dev eloped within the collaboratory for the study of earthquake predictabil- 
ity (CSEP). The application of such models for the forecasting of Italian target earthquakes 
seems to show peculiar characteristics for each of them. In particular, the ETAS model showed 

higher performance for short-term forecasting, in contrast, the EEPAS model showed higher 
forecasting performance for the medium/long-term. In this work, we compare the performance 
of EEPAS and ETAS models with that obtained by a deterministic model based on the occur- 
rence of strong foreshocks (FORE model) using an alarm-based approach. We apply the two 

rate-based models (ETAS and EEPAS) estimating the best probability threshold above which 

we issue an alarm. The model parameters and probability thresholds for issuing the alarms are 
calibrated on a learning data set from 1990 to 2011 during which 27 target earthquakes have 
occurred within the analysis region. The pseudo-prospective forecasting performance is as- 
sessed on a validation data set from 2012 to 2021, which also comprises 27 target earthquakes. 
Tests to assess the forecasting capability demonstrate that, even if all models outperform a 
purely random method, which trivially forecast earthquake proportionally to the space–time 
occupied by alarms, the EEPAS model exhibits lower forecasting performance than ETAS 

and FORE models. In addition, the relative performance comparison of the three models 
demonstrates that the forecasting capability of the FORE model appears slightly better than 

ETAS, but the difference is not statistically significant as it remains within the uncertainty 

le vel. Howe ver, trul y prospecti ve tests are necessary to validate such results, ideally using new 

testing procedures allowing the analysis of alarm-based models, not yet available within the 
CSEP. 

Ke y words: Computational seismology; Earthquak e interaction, forecasting and prediction; 
Statistical seismology. 
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N T RO D U C T I O N  

he occurrence of earthquakes in regions, cities and densely
opulated areas poses enormous risks that can threaten na-
ional prosperity and social welfare (Jordan 2009 ). Quantify-
ng urban earthquake risk is a complex problem that requires
etailed knowledge of the environment, infrastructure and un-
erstanding of earthquake phenomena, as well as human be-
aviour in hazardous situations (MacPherson-Krutsky et al. 2023 ).
mpirical models based on earthquake clustering can provide
ethods for forecasting and predicting earthquakes that can be
C © The Author(s) 2023. Published by Oxford University Press on behalf of The Roy
seful to the decision-makers to prepare seismic risk mitiga-
ion operations (Marzocchi & Lombardi 2009 ; Azarbakht et al.
021 ). 

We follow Jordan et al. ( 2011 ) to distinguish between a prob-
bilistic forecast and a deterministic prediction using strict defini-
ions: the former is the indication of the probability that one or more
arget event will occur in a given space–time domain, whereas the
atter is the binary assertion that target events will occur or not in a
iven space–time alarm window. 

Within the ambit of the collaboratory for the study of earthquake
redictability (CSEP, Jordan 2006 ; Zechar et al. 2010b ; Michael &
al Astronomical Society. 1541 
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Werner 2018 ; Schorlemmer et al. 2018 ), to e v aluate the forecasting 
performance of probabilistic models, a suite of statistical test has 
been developed (Schorlemmer et al. 2007 ; Werner et al. 2010 ; 
Bayona et al. 2022 ), some of which are included in the pyCSEP 

package (Savran et al. 2022a , b ). 
Tests appropriate for deterministic models were developed by 

Molchan ( 1990 , 1991 ), Zechar & Jordan ( 2008 , 2010 ) and She- 
balin et al. ( 2011 ), but the y hav e not yet inte grated in the pyCSEP 

package. The two approaches are not directly compatible and hence 
a problem arises for comparing the performance of probabilistic 
versus deterministic models. 

The implementation of the probabilistic approach, to assess the 
forecasting performance of deterministic models (for example us- 
ing the CSEP tests by Savran et al. 2022a , b ) is not trivial because it 
can be difficult to associate a rate of occurrence of target earth- 
quakes with some kind of potentially precursory phenomenon. 
Conversely, probabilistic models can be easily converted to the 
deterministic approach b y simpl y choosing a threshold rate above 
which issuing a binary alarm. A similar approach had been imple- 
mented by Murru et al. ( 2009 ) and Console et al. ( 2010 ) to e v al-
uate probabilistic models applied to Italian and New Zealand seis- 
micity respecti vel y. Thus, to compare the forecasting performance 
of probabilistic and deterministic methods, the use of tests and 
procedure developed for deterministic methods is usually prefer- 
able. 

In this work, the probabilistic forecasting models described in 
Biondini et al. ( 2023 ) are compared with a deterministic forecasting 
method based on the occurrence of strong (fore) shocks (hereafter 
FORE method) described by Gasperini et al. ( 2021 ). The latter 
sets an alarm of duration � t every time an earthquake of magnitude 
4 . 4 ≤ M w ≤ 4 . 8 ( M w = 4 . 6 ± 0 . 2 ) occurs in a given circle of radius 
R = 30 km . The results obtained retrospecti vel y b y Gasperini et al. 
( 2021 ) show that approximately 60 and 70 per cent of earthquakes 
with magnitude M ≥ 5.0 that occurred between 1960 and 2020 
were anticipated by foreshocks in the three months and one year 
respecti vel y preceding them with space–time coverages of alarms 
less than 1 per cent. Such percentages increase by extending the 
alarm windo w, highlighting ho w the occurrence of strong shocks 
can contribute to improving stronger earthquake prediction. The 
foreshocks as precursors of strong earthquakes were pre viousl y 
studied by Jones ( 1984 , 1985 , 1994 ) and Agnew & Jones ( 1991 ) in 
California. 

The probabilistic models described by Biondini et al. ( 2023 ) 
are the every earthquake a precursor according to scale (EEPAS) 
model (Rhoades & Evison 2004 ) and the epidemic type after- 
shock sequence (ETAS) model (Ogata 1988 ). The EEPAS model 
is based on the increase in rate and in magnitude of the minor 
seismicity observed before the occurrence of major earthquakes 
( ψ-phenomenon) and each earthquake is assumed to contribute 
to the transient increment of the rate density of future seismicity 
(Rhoades & Evison 2004 ). The ETAS model considers each af- 
tershock as capable of triggering subsequent aftershocks and the 
occurrence rate for a certain t th instant of time is given by the su- 
perposition, weighted by the magnitude of the parent event, of the 
decays described by the time-shifted Omori–Utsu decay function 
(Ogata & Zhuang 2006 ). 

Their implementations to various regions of the world (Cali- 
fornia, New Zealand, Italy and Japan) w here reliab le earthquake 
catalo gues are av ailable are widel y described in the seismolo gical 
literature of the last two decades (e.g. Console et al. 2006 ; Rhoades 
2007 , 2011 ; Falcone et al. 2010 ; Lombardi & Marzocchi 2010 ; 
Mizrahi et al. 2023 ). 
S E T T I N G  U P  T H E  D E T E R M I N I S T I C  

E X P E R I M E N T  

The probabilistic models EEPAS and ETAS are fitted by Biondini 
et al. ( 2023 ) to forecast earthquakes with magnitude M ≥ 5 . 0 in the 
Italian re gion, ov er a spatial grid consisting of 177 non-ov erlapped 
square cells of side L = 30 

√ 

2 km showed in Fig. 1 . Such grid is 
assumed as application region R even for the present forecasting 
e xperiment. Ev en the FORE method, based on the occurrence of 
potential foreshocks, was adapted to this region R of analysis. Ac- 
cording to Biondini et al. ( 2023 ) such region only considers cells 
where a M w ≥ 4 earthquake occurred inland in the last four cen- 
turies. This is to avoid an overestimation of the performance of all 
forecasting methods caused by the inclusion of almost completely 
aseismic areas (like for example the Sardinia Island). To implement 
the alarm-based approach, the analysis and optimization of the rate 
thresholds for the probabilistic models and of the foreshock mag- 
nitude range for the FORE method was conducted for the period 
1990–2011, while a pseudo-prospective alarm-based forecasting ex- 
periment is conducted for the period 2012–2021. Such periods are 
the same as those used for the learning and the pseudo-prospective 
application, respecti vel y of the EEPAS and ETAS models by Bion- 
dini et al. ( 2023 ). 

Both the optimization and the pseudo-prospective forecasting 
experiment are conducted using the seismic data of the HORUS 

seismic catalogue (Lolli et al. 2020 ). As the two formulations of 
EEP AS (EEP AS-NW and EEP AS-W) and of the ET AS (ET AS-SUP 

and ETAS-SVP) described by Biondini et al. ( 2023 ) produced quite 
similar results and performances, for this experiment we only con- 
sider the EEPAS-NW and ETAS-SVP (now on simply EEPAS and 
ETAS) models, which are characterized b y slightl y better forecast- 
ing performances than the EEPAS-W and ETAS-SUP, respecti vel y. 
A summary of the characteristics of each model analysed in this 
work is given in Table 1 . 

S E T T I N G  U P  F O R E C A S T  A S S U M P T I O N S  

A N D  T E S T I N G  P RO C E D U R E S  

The expected daily rate for the EEPAS and ETAS models is re- 
e v aluated for each cell, every time an earthquake of magnitude 
m ≥ 2 . 5 (depth < 40 km) occurs within the anal ysis pol ygon R 

(Fig. 1 ) according to the HORUS seismic catalogue. An alarm with 
duration �t , is issued in a gi ven cell, e very time the expected rate 
estimated by such models exceeds some threshold value. Similarly, 
for the FORE method, an alarm is issued whenever a strong shocks 
of magnitude within M ± �M occurs. 

A target earthquake ( M ≥ 5 . 0) is considered successfully pre- 
dicted if it occurs within one or more alarm windows of duration 
�t . On the contrary, it is considered as a failure to predict if it
occurs outside any active alarm window. According to Molchan
( 1990 , 1991 ), the miss rate ν, that is the fraction of unpredicted
earthquakes, is computed as

ν = 

N − h 

N 

, (1) 

where h is the number of target events successfully forecasted and 
N is the total number of target events. 

As well, the overall space–time duration of the alarms is com- 
puted as 

τ = 

1 

K 

K ∑ 

i= 1 

(
d ci 

T 

)
, (2)
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Figure 1. Tessellation of the Italian territory region used for the fitting of parameters and for the pseudo prospective experiment. The thick black line delimits 
the analysis region R. The cells that R comprises are only those within which at least one earthquake with M ≥ 4 . 0 from 1600 to 2021 have occurred according 
to CPTI15 catalogue (Rovida et al. 2020 ) and have 30 

√ 

2 km of side. 
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here K is the total number of cells, T is the total duration of the
orecasting experiment and d c i is the total time coverage of alarms
ithin each i th spatial cell. d c i can be computed by multiplying

he window length �t by the number n of alarms casted and then
ubtracting the sum of intersections between alarm time windows.
or more details see also Gasperini et al. ( 2021 ). The experiment
s then repeated by varying the alarm time duration �t from a few
econd to the total duration of the experiment (10 yr). 

Following Shebalin et al. ( 2011 ), we calculated the fraction of the
pace–time occupied also by weighting each alarm with the long-
er m ear thquake rate within each cell. We compute such rates using
he historical earthquakes occurred in the time period 1620–1959
ccording to the CPTI15 V4.0 catalogue (Rovida et al. 2020 , 2022 )
ollowing the procedure described in Gasperini et al. ( 2021 ). Hence
or each �t of the considered forecasting models, we compute both
eighted τw and unweighted τu space–time fractions occupied by
larms. Details of such computations for each cell are reported in
able S1 . 
The miss rate ν and the fraction of space–time occupied by alarms
are used to draw the so-called Molchan diagram (Molchan 1990 ,

991 ; Molchan & Kagan 1992 ) (e.g. Fig. 2 ). The line joining the
oints ( τ, ν) obtained b y v arying �t is called Molchan trajectory.
n a paradoxical forecasting method that does not issue any alarm, τ
 0 and it is impossible to predict any target event. This corresponds

o the point ( τ, ν) = (0, 100 per cent) in the upper left corner of
he Molchan diagram. Conversely, a prediction method that issues
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Table 1. Summary of tested forecasting models. 

Model Main features Reference

FORE Deterministic space/time-dependent
model based on the occurrence of
potential foreshocks as precursor signal.

Gasperini et al. ( 2021 )

EEPAS-NW Space/time-dependent model based on
the hypothesis that each earthquake
( M ≥ m c ) contributes to the transient 
increment of the future rate of M ≥ m T 

in its vicinity according to
ψ−predictive relations. 

Rhoades & Evison
( 2004 )

ETAS-SVP Epidemic-type aftershock model based
on the hypothesis that each earthquake
can perturb the rate of earthquakes and
generate its own Omori-like decay
sequence. The space variable Poisson
model (SVP, Console & Murru 2001 ) is
used as background model.

Ogata ( 1988 , 1989),
Ogata & Zhuang ( 2006 )
alarms at any time and at any location covers the entire space–time 
domain, ensuring that no target events are missed. This method is 
represented by the point ( τ, ν) = (100 per cent, 0) in the lower 
right corner of the diagram. The diagonal line connecting such two 
points (e.g. thick black diagonal line in Fig. 2 ) corresponds to a 
purely random forecasting that simply predicts target earthquakes 
proportionally to the fraction of space–time occupied by alarms. Its 
equation is given by 

ν = 1 − τ (3) 

such line divides the Molchan diagram in two regions, the skilled 
(below the line) and the unskilled (above) ones. The ratio between 
the success rate and the space–time fraction occupied by alarms 
gi ven b y 

G = 

1 − ν

τ
(4) 

represents the ‘probability gain’ with respect to the random chance 
(Kagan 2009 ). A skilled forecasting method is characterized by a 
G > 1 . 

To assess how much better (or worse) the performance of a fore- 
casting model is, compared to the random model, Zechar & Jordan 
( 2008 , 2010 ) proposed the area skill (AS) score statistic a f ( τ ) . The 
latter is defined as the integral of the success rate function 1 − ν( τ ) 
normalized to the alarm space–time coverage τ and takes the form: 

a f ( τ ) = 

1 

τ

τ

∫ 

0 
[ 1 − ν ( t ) ] dt. (5) 

The AS score is normalized so that its value ranges between 0 
and 1 and corresponds to the area above the Molchan trajectory. The 
closer the AS score to 1 the better the performance of a model. The 
AS score of a purely random method, obtained by substituting eq. 
( 3 ) in eq. ( 5 ), is 

a f ( τ ) = 

1 

τ

τ

∫ 

0 
[ 1 − ( 1 − t ) ] dt = 

τ

2 
. (6) 

Zechar & Jordan ( 2008 , 2010 ) also derived the Gaussian asymp- 
totical estimate of the variance of a f ( τ ) as σ 2 = 1 / ( 12 N ) (where 
N is the number of target shocks). Even if the AS score can be 
computed for any τ , Zechar & Jordan ( 2008 , 2010 ) argued that the 
power of the test tends to increase with increasing τ and therefore 
it is the best to use a f ( τ = 1 ) for hypothesis testing. 
O P T I M I Z AT I O N  O F  A L A R M  

T H R E S H O L D S  

To identify the optimal expected daily rate threshold for the proba- 
bilistic models EEPAS and ETAS, we varied it logarithmically from 

10 −6 to 0.5. For the FORE method, the optimal range of poten- 
tial foreshocks has been chosen by considering various magnitude 
ranges with central v alues v arying from 4.1 to 4.5 and ranges with 
respect to the central values varying from 0.1 to 0.5. Using the 
different thresholds, the various models were thus applied to retro- 
specti vel y forecast the 27 target events occurred during the learning 
period (1990–2011). 

In Gasperini et al. ( 2021 ), the maximum AS score and the mini- 
mum number of alarms were considered as criteria for selecting the 
optimal threshold v alue. Howe ver, in the present experiment, since 
the expected daily rate for EEPAS and ETAS models was estimated 
at each earthquake occurrence time, the alarms in periods of high 
seismicity are mostly overlapped. For this reason, the number of 
alarms may not be representative of the fraction of space–time oc- 
cupied by the alarms. Hence, to choose the best threshold, we used 
here only the maximum AS score criterion. 

In Figs 3 –5 we show the behaviours of the AS scores of the 
EEPAS, ETAS and FORE models respecti vel y as a function of 
the analysed alarm thresholds. Red and dark blue lines refer to the 
unweighted ( τu ) and weighted ( τw ) fractions of space–time occupied 
b y alarms, respecti vel y. In such figures we also report for reference 
with grey bars the unweighted fraction of space–time occupied 
by alarms using a �t = 3 months ( τ3 months ). In the same figures, 
the black arrowheads indicate our choices of the best probability 
thresholds or ranges: p = 3 × 10 −5 for EEPAS, p = 2 × 10 −4 for 
ETAS and 4 . 5 ± 0 . 3 for FORE. 

R E S U LT S  O F  P S E U D O - P RO S P E C T I V E  

T E S T I N G  

Using the thresholds optimized for the learning interval 1990–2011, 
the models were applied pseudo-prospecti vel y to forecast the 27 tar- 
get events with M w ≥ 5.0 that occurred in the test period 2012–2021. 
For the EEPAS model, alarms of duration �t are declared when the 
expected daily rate in a cell is larger than the chosen threshold 
p = 3 × 10 −5 . In Fig. 2 the Molchan trajectories obtained by vary- 
ing �t from a few seconds to the total duration T = 10 yr of the test 
period are reported. Red and dark blue lines refer to the unweighted 
( τu ) and weighted ( τw ) fractions of space–time occupied by alarms 
respecti vel y (see in Table S2 the numerical values of plotted curves). 
Both the red and dark blue lines in Fig. 2 lie below the Molchan 
trajectory of the purely random model (black diagonal line), indi- 
cating a better forecasting performance than the pure chance, for 
all explored �t . The model fails to predict the total number of 
target earthquakes even for � t = 10 yr, for which only 14 over 
27 (51.9 per cent) target events are predicted with a corresponding 
τu ≈ 21 per cent and τw ≈ 48 per cent . Such fraction of forecasted 
target events is reached starting from � t = 0.25 d (6 hr) with a 
corresponding τu ≈ 7 . 8 per cent and τw ≈ 19 per cent . The overall 
AS scores a f ( τ = 1 ) = 0.71 ± 0.06 and a f ( τw = 1 ) = 0.63 ± 0.06, 
based on the Student’s t -test, are larger than the expectance of a 
random method (0.5). 

In Fig. 6 the same plot as in Fig. 2 is showed but for the ETAS 

model using p = 2 × 10 −4 as daily rate threshold to declare the 

https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggad312#supplementary-data
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Figure 2. Molchan diagram and AS score of the EEPAS model for target shocks with M w ≥ 5.0 from 2012 to 2021. Red and dark blue lines indicate 
the forecasting performance of expected daily rate threshold 3 × 10 −5 for unweighted ( τu ) and weighted ( τw ) fractions of space–time occupied by alarms 
respecti vel y (see text). The black continuous line indicates a purely random forecasting method that separates skilled (below the line) from unskilled (above) 
forecasting methods. The light blue, violet and green lines indicate the confidence limits for α = 50, 5 and 1 per cent, respecti vel y. The black dashed lines 
indicate probability gains G = 2, 5, 10, 20 and 50. 

Figure 3. For EEPAS forecasting model, area skill (AS) score computed for targets with M w ≥ 5.0, using unweighted (red) and weighted (dark blue) fractions 
of space–time occupied by alarms, and fractions of space–time occupied by of alarms considering � t = 1 yr (bars), as a function of the expected daily rate 
threshold. The chosen threshold is indicated by the black arrowhead ( 3 × 10 −5 ). 
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larm in a cell (see Table S3 for numerical values). The perfor-
ance is definitely better than EEPAS. In particular, the Molchan

rajectories remain well below the diagonal line and, for τu and τw 

ower than 70–80 per cent, they are also below the α = 1 per cent
onfidence cur ve (g reen). As for the EEPAS, ETAS fails to predict
he total number of target earthquakes even for � t = 10 years, for
hich only 25 over 27 (92.5 per cent) target events are predicted
ith a corresponding τu ≈ 53 per cent and τw ≈ 73 per cent . Such
ercentage of predicted events is reached starting from � t = 2
r with the corresponding τu ≈ 37 per cent and τw ≈ 58 per cent .
he overall AS scores a f ( τ = 1 ) = 0.92 ± 0.06 and a f ( τw = 1 ) =
.90 ± 0.06, are higher than those obtained by EEPAS. 
In Fig. 7 it is showed the Molchan trajectory obtained by the
ORE model using M w = 4 . 5 ± 0 . 3 as magnitude range for the
oreshock events (see T able S4 T able S4 for numerical values). The
orecasting performance is better than EEPAS and slightly lower
ut substantially comparable to that of ETAS. In particular, the
olchan trajectories remain well below the diagonal line and, for τu 

nd τw lower than 70–80 per cent, they are also below the α = 1 per
ent confidence cur ve (g reen line). As for the two previous models,
ORE fails to predict the total number of target earthquakes even
or � t = 10 yr, for which only 22 over 27 (81.4 per cent) target
vents are predicted with corresponding τu ≈ 14 per cent and τw ≈
0 per cent . For all �t analysed, the FORE model is characterized
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Figure 5. Same as Fig. 2 for the FORE model. The AS score and the fraction of space–time occupied by alarms are computed as a function of the foreshock 
magnitude range. The arrowhead indicates the chosen range ( M w = 4.5 ± 0.3). 

Figure 4. Same as Fig. 2 for ETAS. The chosen threshold is indicated by the black arrowhead ( 3 × 10 −4 ). 
by lower τu and τw than those of the other models (Fig. 8 
and Tables S2, S3 and S4 ). The overall AS scores a f ( τu = 1 ) = 

0.91 ± 0.06 and a f ( τw = 1 ) = 0.89 ± 0.06, are higher than 
that obtained by EEPAS and slightly lower than that obtained by 
ETAS. 

Following Shebalin et al. ( 2011 ), the miss rates ( ν) of the analysed 
models can also be compared to another skilled reference model, 
characterized by its space–time fractions occupied by alarms ( τref ) 
and miss rates ( νref ) , instead of the purely random model. In such 
comparison, the miss rates νref of the reference model are plotted 
on the diagonal line of the Molchan diagram were τ = 1 − νref . 
Even for the other compared models, the expected miss rates ( ν) 
must be plotted versus τ = 1 − νref , but as they are computed at 
dif ferent v alues of τ than the τref of the reference model, a linear 
interpolation is required. Hence for each τref of the reference ETAS 
model, we compute the interpolated miss-rates, for both EEPAS and 
FORE models, as 

νint = 

νa − νb 

τa − τb 
( τref − τb ) + νb , (7) 

where τa and τb are the fractions occupied by alarms, of the com- 
pared models, immediately larger and smaller than τref , respecti vel y, 
and νa and νb the corresponding miss rates, respecti vel y. 

As for the Molchan diagrams showed above (Figs 2 , 6 and 7 ), 
if the miss rates of a compared model ( νint for the corresponding 
τ = 1 − νref are lower than νref , it has a better predictive ability 
than the reference model. In Figs 9 and 10 the Molchan (or bet- 
ter Molchan–Shebalin) diagrams and the AS scores for unweighted 
( τu ) and weighted ( τw ) fractions of space–time occupied by alarms 
are reported, respecti vel y (see Tables 2 and 3 for numerical v alues). 
Where the ETAS model is reported as the diagonal line (orange) 

art/ggad312_f5.eps
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Figure 6. Same as Fig. 2 for the ETAS model. 

Figure 7. Same as Fig. 2 for the FORE model. 

j  

t  

(  

t  

l  

t  

t  

fi  

e  

E  

b  

τ  

l  

p  

b  

t  

t  

t

t  

i

C

I  

c  

(  

E  

t  

a  

(  

2  

s  

e  

B  

o  

o  
oining the coordinate points ( 1 − νref , νref ) . The Molchan trajec-
ory for the EEPAS (blue) and FORE models (red) join the points
 1 − νref , νint ). In both Figs 9 and 10 the EEPAS model is charac-
erized by a Molchan trajectory well above the reference diagonal
ine showing a worse predictive performance than ETAS since for
he same τ = 1 − νref , the νint of the EEPAS is al wa ys larger than
hat of ETAS. Such worst forecasting performance is also con-
rmed by the AS scores a f ( τu = 1 ) and a f ( τw = 1 ) , which both
qual to 0.13 ± 0.06, that is smaller than that (0.5) of the reference
TAS model. On the contrary, the FORE model is characterized
y Molchan trajectories lower or close to the reference model for
< 60 per cent . For τ > 60 per cent the FORE Molchan trajectory

ies for short stretches slightly above the diagonal line. Overall, the
redictive performance is (slightly) better than the reference model
ecause the AS scores for the unweighted and weighted trajec-
ories, a f ( τu = 1 ) = 0 . 540 . 06 and a f ( τw = 1 ) = 0 . 550 . 06 , respec-
i vel y, are larger than that of the reference model ETAS. Ho wever ,

he AS score difference between FORE and ETAS is well within 
he confidence bounds and hence cannot be considered significant
n the statistical sense. 

O N C LU S I O N S  

n this work, the deterministic forecasting method based on the oc-
urrence of strong foreshocks described by Gasperini et al. ( 2021 )
called FORE) was compared with the probabilistic EEPAS and
TAS models described by Biondini et al. ( 2023 ) using the de-

er ministic alar m-based approach. The forecasting models were
pplied to pseudo-prospecti vel y forecast of shallow earthquakes
depth < 40 km) with magnitude M ≥ 5 . 0 occurred in Italy from
012 to 2021. All models were calibrated through a learning data
et from 1990 to 2011. Both the learning and testing data sets are
xtracted from the HORUS seismic catalogue (Lolli et al. 2020 ).
ased on the learning data set, various expected daily rate thresh-
lds for the EEPAS and ETAS models and various magnitude ranges
f foreshocks for the FORE model were considered to identify the

art/ggad312_f6.eps
art/ggad312_f7.eps


1548 E. Biondini and P. Gasperini

Figure 8. Behaviour of τu (squares) and τw (circles) as a function of � t for the three forecasting models. 

Figure 9. Molchan diagram and AS score of the EEPAS and FORE models considering the ETAS model as reference and unweighted fraction of space–time 
occupied by alarms ( τu ) . The Molchan trajectory of EEPAS and FORE models are indicated by the blue and red curv es, respectiv ely. The diagonal continuous 
line (orange) indicates the miss rates of the ETAS model and separates models with higher performance (below the line) from with those with lower performance 
(above). 

infrastructure. 
optimal alarm thresholds required to implement the determinis- 
tic approach. For each analysed threshold, the miss rates and the 
fractions of space–time occupied by the alarms were estimated by 
varying the temporal extension of the alarm window � t from a frac- 
tion of a few seconds to the total duration of the learning data set (10 
yr). Following the method described by Gasperini et al. ( 2021 ), such 
fractions were also estimated by considering the different levels of 
seismic activity in the various areas of Italy, by weighting more the 
alarm times in cells where the average seismicity rate, calculated 
from the CPTI15 seismic catalogue (Rovida et al . 2016 , 2020 ) from 

1600 to 1990, is higher. The choice of the optimal alarm thresholds 
was made by considering the Area Skill score (Zechar & Jordan 
2008 ). 

The tests of performance conducted using the Molchan diagram 

(Molchan 1990 , 1991 ; Molchan & Kagan 1992 ) and the Area Skill 
score indicate that all the three models outperform a purely random 
method. In addition, following the approach suggested by Shebalin 
et al. ( 2011 ), the forecasting performances of the models were 
compared taking the ETAS as reference model. These tests show 

that for the same fractions of space–time occupied by the alarms, the 
EEPAS model presents a worse forecasting performance compared 
to the ETAS and FORE models. The FORE model shows a slightly 
better forecast performance than ETAS but the difference between 
the AS scores lies within the error bounds. An yw ay, a more careful 
analysis should be done prospectively, maybe using new method 
developed within the CSEP. 

Overall, this study highlights the potential of deterministic fore- 
casting approaches in improving earthquake forecasting in Italy. 
Our findings contribute to ongoing efforts to develop more accurate 
and reliable earthquake forecasting methods, which can ultimately 
help mitigate the impact of seismic events on communities and 
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Figure 10. Same as Fig. 9 for weighted fraction of space–time occupied by alarms ( τw ) . 

Table 2. Values of variables in Molchan–Shebalin plot of Fig. 8 for unweighted fractions of space–time occupied by 
alarms ( τu ). 

τref νref a f ( τref ) νint EEPAS a EEPAS ( τref ) νint FORE a FORE ( τref ) 

0.000 1.000 0.000 1.000 0.000 1.000 0.000 
0.074 0.926 0.037 1.000 0.000 0.913 0.043 
0.111 0.889 0.056 1.000 0.000 0.889 0.062 
0.111 0.889 0.056 1.000 0.000 0.873 0.062 
0.111 0.889 0.056 1.000 0.000 0.776 0.062 
0.185 0.815 0.093 1.000 0.000 0.684 0.145 
0.222 0.778 0.111 1.000 0.000 0.556 0.184 
0.296 0.704 0.148 1.000 0.000 0.556 0.249 
0.370 0.630 0.185 1.000 0.000 0.539 0.290 
0.481 0.519 0.241 1.000 0.000 0.482 0.336 
0.519 0.481 0.259 1.000 0.000 0.410 0.352 
0.519 0.481 0.259 1.000 0.000 0.407 0.352 
0.519 0.481 0.259 1.000 0.000 0.407 0.352 
0.556 0.444 0.278 1.000 0.000 0.381 0.369 
0.667 0.333 0.333 1.000 0.000 0.369 0.411 
0.704 0.296 0.352 1.000 0.000 0.343 0.423 
0.704 0.296 0.352 1.000 0.000 0.307 0.423 
0.741 0.259 0.370 1.000 0.000 0.287 0.437 
0.741 0.259 0.370 1.000 0.000 0.265 0.437 
0.815 0.185 0.407 0.729 0.012 0.259 0.465 
0.815 0.185 0.407 0.647 0.012 0.259 0.465 
0.815 0.185 0.407 0.555 0.012 0.259 0.465 
0.852 0.148 0.426 0.481 0.033 0.213 0.478 
0.889 0.111 0.444 0.481 0.053 0.180 0.491 
0.889 0.111 0.444 0.454 0.053 0.159 0.491 
0.926 0.074 0.463 0.385 0.074 0.135 0.506 
0.926 0.074 0.463 0.346 0.074 0.121 0.506 
0.926 0.074 0.463 0.306 0.074 0.107 0.506 
0.926 0.074 0.463 0.294 0.074 0.103 0.506 
0.926 0.074 0.463 0.290 0.074 0.102 0.506 
0.926 0.074 0.463 0.290 0.074 0.102 0.506 
0.926 0.074 0.463 0.290 0.074 0.102 0.506 
0.926 0.074 0.463 0.290 0.074 0.102 0.506 
1.000 0.000 0.500 0.000 0.132 0.000 0.539 

νref is the miss rate of the ETAS model (reference), τre the fractions of space–time occupied by alarms used to plot 
the Molchan diagram and given by 1 − νref , νref the reference miss rate, νref the interpolated miss rate, a f ( τref ) , 
a EEPAS ( τref ) and a FORE ( τref ) the area skill scores computed for the reference, EEPAS and FORE models, respecti vel y. 
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Table 3. Values of variables in Molchan–Shebalin plot of Fig. 9 for weighted fractions of space–time occupied by 
alarms ( τw ). 

τref νref a f ( τref ) νint EEPAS a EEPAS ( τref ) νint FORE a FORE ( τref ) 

0.000 1.000 0.000 1.000 0.000 1.000 0.000 
0.074 0.926 0.037 1.000 0.000 0.912 0.044 
0.111 0.889 0.056 1.000 0.000 0.889 0.062 
0.111 0.889 0.056 1.000 0.000 0.870 0.062 
0.111 0.889 0.056 1.000 0.000 0.769 0.062 
0.185 0.815 0.093 1.000 0.000 0.673 0.149 
0.222 0.778 0.111 1.000 0.000 0.556 0.188 
0.296 0.704 0.148 1.000 0.000 0.556 0.252 
0.370 0.630 0.185 1.000 0.000 0.534 0.293 
0.481 0.519 0.241 1.000 0.000 0.468 0.340 
0.519 0.481 0.259 1.000 0.000 0.407 0.356 
0.519 0.481 0.259 1.000 0.000 0.407 0.356 
0.519 0.481 0.259 1.000 0.000 0.397 0.356 
0.556 0.444 0.278 1.000 0.000 0.370 0.374 
0.667 0.333 0.333 1.000 0.000 0.356 0.418 
0.704 0.296 0.352 1.000 0.000 0.324 0.430 
0.704 0.296 0.352 1.000 0.000 0.290 0.430 
0.741 0.259 0.370 1.000 0.000 0.270 0.445 
0.741 0.259 0.370 1.000 0.000 0.259 0.445 
0.815 0.185 0.407 0.704 0.013 0.259 0.472 
0.815 0.185 0.407 0.586 0.013 0.259 0.472 
0.815 0.185 0.407 0.540 0.013 0.259 0.472 
0.852 0.148 0.426 0.481 0.034 0.183 0.485 
0.889 0.111 0.444 0.481 0.054 0.161 0.499 
0.889 0.111 0.444 0.481 0.054 0.128 0.499 
0.926 0.074 0.463 0.386 0.075 0.096 0.515 
0.926 0.074 0.463 0.324 0.075 0.081 0.515 
0.926 0.074 0.463 0.270 0.075 0.067 0.515 
0.926 0.074 0.463 0.258 0.075 0.064 0.515 
0.926 0.074 0.463 0.255 0.075 0.064 0.515 
0.926 0.074 0.463 0.255 0.075 0.064 0.515 
0.926 0.074 0.463 0.255 0.075 0.064 0.515 
0.926 0.074 0.463 0.255 0.075 0.064 0.515 
1.000 0.000 0.500 0.000 0.134 0.000 0.548 
S U P P O RT I N G  I N F O R M AT I O N  

Supplementary data are available at GJI online. 

Table S1. List of centre coordinates of cells with side 30 
√ 

2 
km. N 4 . 5 , N 5 . 0 , N 5 . 5 , N 6 . 0 : numbers of earthquakes occurred within 
cell, according to the CPTI15 V4.0 catalogue (Rovida et al. 2020 , 
2022 ) up to year 1959, with M w ≥ 4.5, 5.0, 5.5 and 6.0, respecti vel y 
in respective time intervals of completeness. λ4 . 5 , λ5 . 0 , λ5 . 5 , λ6 . 0 : 
av erage rates (ev ents per year) of earthquakes with M w ≥ 4.0 within 
each cell computed from obser ved ear thquakes with M w ≥ 4.5, 
5.0, 5.5 and 6.0, respecti vel y, and assuming a b -v alue = 1 (see text). 
λave : average of non-null rates λ4 . 5 , λ5 . 0 , λ5 . 5 , λ6 . 0 . w = λave / 

∑ 

λave : 
overall weight of each cell ( 

∑ 

w = 1 ). 
Table S2. Values of variables in Molchan plot of Fig. 2 for the 

EEPAS model. 
Table S3. Values of variables in Molchan plot of Fig. 6 for the 

ETAS model. 
Table S4. Values of variables in Molchan plot of Fig. 7 for the 

FORE model. 
Please note: Oxford University Press is not responsible for the 

content or functionality of any supporting materials supplied by 
the authors. Any queries (other than missing material) should be 
directed to the corresponding author for the paper. 
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