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In non-interacting isolated quantum systems out of equilibrium, local subsystems typically relax
to non-thermal stationary states. In the standard framework, information on the rest of the system
is discarded, and such states are described by a Generalized Gibbs Ensemble (GGE), maximizing the
entropy while respecting the constraints imposed by the local conservation laws. Here we show that
the latter also completely characterize a recently introduced projected ensemble (PE), constructed
by performing projective measurements on the rest of the system and recording the outcomes. By
focusing on the time evolution of fermionic Gaussian states in a tight-binding chain, we put forward a
random ensemble constructed out of the local conservation laws, which we call deep GGE (dGGE).
For infinite-temperature initial states, we show that the dGGE coincides with a universal Haar
random ensemble on the manifold of Gaussian states. For both infinite and finite temperatures, we
use a Monte Carlo approach to test numerically the predictions of the dGGE against the PE. We
study in particular the k-moments of the state covariance matrix and the entanglement entropy,
finding excellent agreement. Our work provides a first step towards a systematic characterization
of projected ensembles beyond the case of chaotic systems and infinite temperatures.

I. INTRODUCTION

The established paradigm for quantum thermalization
in isolated quantum systems is extremely simple, and
yet surprisingly effective. When a system is initialized
in a short-range correlated state, it predicts, under a few
typicality assumptions, that the late-time properties of
local subsystems are described by a thermal Gibbs en-
semble [1–3]. In this framework, usually understood in
terms of the eigenstate thermalization hypothesis [4–6],
one is interested in a local subsystem, while its comple-
ment plays the role of a thermal bath which is assumed
not to be observed (i.e. measured).

Thermalization and its mechanisms have been probed
to exquisite detail in a number of cold-atomic experi-
ments [7–13]. In fact, these works fully demonstrate the
ability of current setups to keep track of both subsystems
and their complement, having access to information on
the “bath” which is discarded in the traditional setting.
Motivated by this, two recent works [14, 15] have put for-
ward a new perspective, in which one is interested in the
ensemble describing a subsystem A when its complement,
B, is observed via projective measurements. This gives
rise to an ensemble of pure states in A, called projective
ensemble (PE), which can be thought of as a particular
unraveling of the subsystem density matrix.

Based on numerical and experimental evidence,
Refs. [14, 15] found that, for chaotic dynamics and
infinite-temperature initial states, the PE approaches a
Haar-random ensemble over the set of pure states in A,
forming a quantum state design [16, 17]. From the fun-
damental standpoint, the appeal of this result lies in its
universality, as it is claimed to be independent of any
microscopic detail. Subsequent work substantiated these
findings, with rigorous results provided in Refs. [18–20]
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FIG. 1. An initial Gaussian state |Ψ0〉AB evolves according to
a quadratic Hamiltonian H. The unitary dynamics remains
within the manifold of Gaussian states MAB . After the mea-
surement, the reduced state of the system is projected onto a
pure Gaussian state |Ψ′

t(z)〉A ∈ MA depending on the out-
comes z. We are interested in the ensuing ensemble on MA.

for classes of chaotic dual-unitary quantum circuits [21–
23], while further connections between the onset of ther-
malization and quantum state designs were investigated
in Refs. [24, 25].

A natural question is how this picture is modified in
the presence of conservation laws, including in particular
integrable systems [26–28], nowadays easily realized ex-
perimentally [10, 29, 30]. In this case, local subsystems
approach a stationary state described by a generalized
Gibbs ensemble (GGE) [31], built out of all the quasi-
local conserved operators (or charges) [32–40]. GGEs
are interesting as they differ qualitatively from thermal
states, representing non-equilibrium phases with possibly
exotic features [41–45]. Accordingly, one can ask how lo-
cal conservation laws affect the PE.

In this work, we tackle this problem in the simplest
case of non-interacting systems. Focusing on the time
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evolution of fermionic Gaussian states in a tight-binding
model, we put forward a random ensemble constructed
out of the conserved charges, which we call deep GGE
(dGGE), and provide evidence of its validity based on
Monte Carlo computations. For infinite-temperature ini-
tial states, we show that the dGGE coincides with a uni-
versal Haar random ensemble on the manifold of Gaus-
sian states, while, for generic initial states, we introduce
a generalized Haar ensemble to account for the finite ex-
pectation values of the charges.

The rest of this work is organized as follows. In Sec. II
we introduce the model we study. We also briefly recall
the standard GGE and the PE. In Sec. III we put forward
our general conjecture for the deep GGE, while Sec. IV
shows how the latter leads to a universal ensemble for
infinite-temperature initial states. Finally, our conclu-
sions are consigned to Sec. V, while several appendices
provide details on the most technical parts of our work.

II. THE MODEL

We consider a chain of spinless fermions, described by
the Hamiltonian

H = −
L∑
j=1

[
c†j+1cj + c†jcj+1

]
, (1)

where cj , c
†
j are canonical operators satisfying {ci, c†j} =

δi,j . We initialize the system in a short-range correlated
state |Ψ0〉 and consider a bipartition into a region A and
its complement B, “the bath”, containing LA and LB
sites, respectively, cf. Fig. 1. In the limit LB → ∞,
the subsystem A reaches a stationary state at large time
t. Since the model is integrable, it is described by a
GGE [35]. Namely, for any observable OA supported on
A, we have limt→∞ 〈Ψt|OA|Ψt〉 = tr[ρGGEOA], where

ρGGE =
1

Z
trB [exp(−

∑
k

βkIk)]. (2)

Here βk are Lagrange multipliers fixed by the initial state,
Ik are integral of motions, [Ik, H] = 0, while Z is a nor-
malization constant. For the Hamiltonian (1), Ik can be
identified with the momentum occupation numbers [46–

49] n̂(k) = c̃†k c̃k, with c̃k the Fourier transform of cj .
In the definition of the GGE, B is traced out. Instead,

the PE [14, 15] is constructed by measuring and keeping
track of the bath. Given a pure state |Ψ〉AB on A and
B (in our case, the evolved state |Ψt〉), we consider mea-

suring n̂j = c†jcj at each of the sites in B. We denote by

zB = {z1, . . . , zLB
} the outcomes [zj = 0, 1], occurring

with probability p(zB). After the measurement, A is in
a pure state |Ψ′(zB)〉A, and the PE reads

EPE = {p(zB), |Ψ′(zB)〉A} . (3)

Averages over this ensemble coincide with expectation
values over ρA = trB [|Ψ〉 〈Ψ|], but the PE contains more

information encoded in the higher statistical moments

ρ
(k)
E =

∑
zB

p (zB) (|Ψ′ (zB)〉 〈Ψ′ (zB)|)⊗k . (4)

Refs. [14, 15], showed that the PE assumes a universal
form for chaotic Hamiltonians without conserved quan-
tities, coinciding with a uniform Haar measure over all
pure states in A. Our goal is to characterize it in the
opposite case of an integrable Hamiltonian such as (1).

To simplify the problem, we consider an initial Gaus-
sian state [50]

|Ψ0〉AB =

N∏
k=1

 L∑
j=1

Vjkc
†
j

 |Ω〉AB , (5)

where N is the number of particles, |Ω〉AB is the vacuum,
while V is a unitary operator. Since the Hamiltonian (1)
is quadratic, |Ψt〉AB remains Gaussian at all times. In
fact, the same is true for the measurement process [50],
i.e. the projected state |Ψ′t〉A is also Gaussian.

This observation allows us to simplify the analysis of
the PE. Since Gaussian states satisfy Wick’s theorem and
N is conserved, all states in the PE (3) are completely
determined by the corresponding covariance matrix

[C ′t(zB)]i,j = 〈Ψ′t(zB)|c†i cj |Ψ′t(zB)〉 , (6)

with i, j = 1, . . . LA. Thus, higher moments of the PE
are encoded in the ensemble EPE

C = {p(zB), C ′t(zB)}, and
the k-fold averaged covariance matrices

C
(k)

EPE
C

=
∑
zB

p (zB)C ′t(zB)⊗k . (7)

This is a significant simplification, as the size of covari-
ance matrices scales linearly in the system size.

More importantly, both p (zB) and C ′t(zB) can be com-
puted exploiting Gaussianity [50], allowing us to derive
exact determinant formulae which can be evaluated ef-
ficiently for large system sizes, cf. Appendix A. Still,
computation of the averages in (7) remains hard, as the
number of terms grows exponentially in LB . To over-
come this problem, we have set up a Metropolis Monte
Carlo approach, which allows us to sample p(zB) and es-
timate the averages in (7). This method, which takes as
an input the covariance matrix of the evolved state, Ct,
turned out to be very efficient, providing reliable numer-
ical data up to LB ' 400 and a relative error of order
10−2 with ∼ 105 Monte Carlo steps. We provide details
of the method in Appendix B.

III. THE DEEP GGE

Our goal is to construct a random ensemble, the
dGGE, matching the predictions of the PE in the limit
LB → ∞, t → ∞ (in this order). It is useful to imagine
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(c)

FIG. 2. (a): Difference between the averaged higher mo-
ments (7) in the PE EPE

C and in the dGGE (8) (inset (b):
log-log plot showing power law decay) from initial state (9)

(α = ei
√
5/2, breaking time-reversal symmetry). (c): space-

averaged entanglement entropy SA(t), with the corresponding
predictions given by the dGGE (horizontal black line) and the
infinite temperature ensemble (horizontal red lines). The PE
is computed at each time step ∆t = 1, using 105 samples.

that the sites in B are measured sequentially. Each mea-
surement induces a random non-linear transformation of
the covariance matrix restricted to A. For large LB ,
it is natural to assume that this causes enough scram-
bling that only a minimal amount of information on the
initial state is retained. Thus, it is crucial to identify
those features which are preserved by the measurements.
Beyond Gaussianity, we know that the dGGE should
at least feature complete information on the conserved
charges Ik, encoded in the Lagrange multipliers βk, as it
is clear considering the first moment of the PE ensem-
ble [the GGE (2)]. Following this logic, we propose the
representative-state approach. Considering a pure Gaus-
sian state |Φ〉AB , whose conserved charges match those
of the initial state |Ψ0〉AB , we may define the dGGE as
the ensemble obtained by performing projective measure-
ments on subsystem B, i.e.

EdGGE = {pΦ(zB), |Φ′(zB)〉A} . (8)

Here pΦ(zB) is the probability of obtaining zB when
measuring {n̂i}i∈LB

, while |Φ′(zB)〉A is the post-
measurement state. To see that EdGGE correctly repro-
duces the first moment of the PE (3), we invoke the gener-
alized ETH [35, 51, 52], stating 〈Φ|OA|Φ〉 = tr[ρGGEOA]
for all OA supported on A and LB →∞.

To test the validity of Eq. (8) beyond the first mo-
ment, we perform explicit numerical computations. To
be concrete, we consider the dimer initial state

|Ψ0〉 =
1

(1 + |α|2)L/4
(c†1 + αc†2) · · · (c†L−1 + αc†L)|0〉 , (9)

which is Gaussian and corresponding to a non-trivial

GGE for α 6= 0, with occupations numbers

n(k) =
1

2
+ Re

(
e−ikα

1 + |α|2
)
. (10)

For finite LB , the PE is sampled using the Monte Carlo
approach previously discussed. To sample from the
dGGE, we follow two approaches. The simplest choice
for the pure state in Eq. (8) is the single-eigenstate en-
semble: |Φ〉AB is chosen as a simultaneous eigenstate of
all conserved quantities such that the eigenvalues match
the expectation values in |Ψ0〉AB [53]. In practice, we

take an eigenstate of H, |Φ〉 = c̃†k1 . . . c̃
†
kL/2
|Ω〉, where kj

are drawn randomly according to the distribution func-
tion n(k). A second possibility is to identify |Φ〉AB with
a randomly generated correlation matrix C = UDL,NU

†,
whereDL,N is a diagonal matrix withN 1’s and L−N 0’s.
The unitary matrix U is drawn from the following distri-
bution over the appropriate Haar measure, once global
symmetries have been taken into account (see below for
an example)

P (U) =
1

Z
e−Tr[ΩFUDL,NU

†F †] . (11)

Here F is the Fourier-transform operator mapping the
quasimomentum space to the real one. We call this
the generalized Haar ensemble: the diagonal matrix
Ω = diag(ω1, ω2, . . . , ωL) contains Lagrange multipliers
enforcing the constraints 〈ΦAB |n̂(k)|ΦAB〉 = n(k) [ωk
should not to be confused with βk appearing in the GGE].
The normalization Z is the Harish-Chandra-Itzykson-
Zuber integral [54–56]. Its form is non-trivial but sev-
eral approximation tools [56–58] allow determining the
functional relation between the {ωk} and {n(k)}, as we
discuss in Appendix C.

We sample both the single-eigenstate and the canonical
Haar ensembles via the same Monte Carlo approach used
for the PE, cf. Appendices B and C. For sufficiently
large LB , we have verified that the two choices for |ΦAB〉
give indistinguishable numerical results, so that in the
following we only report data from the single-eigenstate
ensemble.

We computed the Frobenious norm [59] of the differ-
ence between the k-fold averaged covariance matrices (7)

in EPE
C and EdGGE, denoted by ∆

(k)
t . An example of our

data is reported in Fig. 2(a), convincingly showing con-
vergence as t → ∞. We see in particular a very clear

power-law decay ∆
(k)
t ∼ t−1/2 independently of k.

As a second non-trivial test, we studied the average
of the von Neumann entanglement entropy SA1

[zB] =
−trρA1

(zB) log ρA1
(zB). Here, A1, A2 are two sub-

sets of A, with A = A1 ∪ A2, while ρA1
(zB) =

trA2
[|Ψ′(zB)〉 〈Ψ′(zB)|]. Since |Ψ′t(zB)〉 is Gaussian,

SA1
[zB] can be computed from C ′t(zB) [60], allowing

us to sample it via Monte Carlo. Note that SA1
[zB]

involves all higher moments of C ′t(zB), yielding a non-
trivial benchmark. In Fig. 2(b), we report our data for
the space-averaged entanglement entropy SA(t), namely
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(c)

FIG. 3. (a): Difference between the averaged higher moments
(7) in EPE

C and in the infinite-temperature ensemble (12) (in-
set (b): log-log plot showing power law decay), from initial
state (9) with α = 0. (c): space-averaged entanglement en-
tropy SA(t). We plot the predictions given by the correct en-
semble (12) with orthogonal matrices (horizontal black line)
and one where time-reversal symmetry is not correctly en-
forced, i.e. choosing Haar-random unitary matrices (horizon-
tal red lines).

the sum of the values of the bipartite entanglement en-
tropy at each point in A, divided by LA. The plot shows
very good agreement between the numerical simulation
and the result of the ensemble (11). We stress that the
entanglement entropy under consideration is not the one
of the GGE, as this quantity is also not a linear functional
of the density matrix. Overall, our results consistently
support the equivalence between the dGGE and the PE.
This is a non-trivial statement, implying that the mere
knowledge of the conserved quantities is enough to re-
construct, not only the reduced density matrix, but also
all higher moments in (4).

IV. INFINITE-TEMPERATURE UNIVERSAL
ENSEMBLE

The dGGE necessarily contains information on Ik,
strongly depending on H. On the other hand, at infinite-
temperatures the GGE loses any information on the lat-
ter, suggesting the possibility of a universal description
of the PE. We show that this is the case. However, con-
trary to Refs. [14, 15], the PE takes the form of a uniform
measure over the manifold of fermionic Gaussian states.
Closely related ensembles appeared in a number of re-
cent works [61–67] and extend the notion of Haar-random
states to non-interacting systems.

We focus on the “Néel” state, obtained by setting
α = 0 in (9), corresponding to an infinite-temperature
state. From Eq. (10), one has n(k) = N/L = 1/2, so
that ωk = 0 in Eq. (11). It follows that an appropri-

ate correlation matrix for the whole system is obtained
by drawing a unitary matrix from the Haar measure. In
fact, additional constrains arise due to global symme-
tries. To elucidate this point, consider the change of ba-

sis Rπ/2 =
∏L
j=1 e

i(π/2)n2j . By inspection, we see that

|Φt〉AB = Rπ/2 |Ψt〉AB and the projected state |Φ′t〉A are
symmetric under time-reversal symmetry T , i.e. their

wave-function in the canonical basis defined by c†j and

|Ω〉AB is real. Therefore, the PE can only explore the sec-
tor of Gaussian states which is invariant under the joint
global symmetry T Rπ/2, and the corresponding ensem-
ble in the space of covariance matrices can be defined as

C = R†π/2ODL,NO
†Rπ/2 where O is drawn from the uni-

form measure over the orthogonal group O(L) [68]. Im-
portantly, after the projective measurements, this ensem-
ble can be reduced to one defined only on the sub-system
A. In particular, the invariance of the Haar measure un-
der left/right multiplication is preserved by the projective
measures for all orthogonal transformations restricted to
A. However, although |Ψt〉AB has a well-defined particle
number, this is not true for the subsystem A, and after
the measurement it collapses onto a pure state |Ψ′t(NA)〉
with NA particles, with some probability p(NA). One
can see that the uniform measure with a fixed particle
number N for the whole system implies that this is only
determined by an entropic factor, i.e. by the dimensions
of the corresponding sector of the Hilbert space, and a
random-matrix computation yields p(NA) =

(
LA

NA

)
2−LA ,

cf. Appendix D. We thus arrive at the following pre-
diction: the PE equals a grand canonical ensemble EGC

over different particle-number sectors each weighted with
probability p(NA). In each sector, it takes the form

ENA = {C = R†π/2ODLA,NA
O†Rπ/2} (12)

with O uniformly distributed in O(LA). EGC allows us
to obtain explicit predictions, by either numerical sam-
pling [69] or analytic formulas derived using the proper-
ties of the Haar measure, cf. Appendix C. We have tested
it against numerical sampling of the PE. As before, we

have studied ∆
(k)
t and the space-averaged entanglement

entropy SA(t). An example of our data is reported in
Fig. 3, displaying excellent agreement.

Our results show that the infinite-temperature PE is
universal even for non-interacting systems, as it only de-
pends on the Gaussianity of the model and on its global
symmetries, but not on the details of the Hamiltonian.
The same kind of universality was found for instance in
Refs. [70–74], studying the averaged entanglement en-
tropy of the eigenstates of quadratic Hamiltonians.

V. CONCLUSIONS

We have studied the PE emerging at late times after
quantum quenches in non-interacting integrable systems.
We have characterized it in terms of a random ensem-
ble, the dGGE, constructed out of the initial expectation
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value of the conserved charges. We have tested our pre-
dictions against Monte Carlo sampling of the PE, find-
ing convincing agreement. From the fundamental point
of view, our work reveals that, even in non-interacting
systems, the PE is largely independent from microscopic
details. In particular, at infinite-temperature it coincides
with a universal Haar-random ensemble over the set of
Gaussian states directly formulated in the subsystem [61–
66]. This fact could be useful for realizing related ensem-
bles in practice, leveraging the intrinsic randomness of
measurements and extending the logic of quantum state
designs [14, 15]. For finite temperatures, the existence of
a finite correlation length ξ prevents the definition of a
post-measurement ensemble expressed uniquely in terms
of the charges of A. However, this could be possible for
LA � ξ. We leave this question for future work. Fi-
nally, it would be interesting to generalize our study for
interacting integrable models where an extensive number
of conserved quantities is still present but the Gaussian
structure of correlations is lost.
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Appendix A: Covariance matrix after projective
measurement of local densities

In this section we derive the transformation induced
on the covariance matrix, defined for any pure state |Ψ〉
as

Cij = 〈Ψ| c†i cj |Ψ〉 . (A1)

We will first consider the effect of measuring the density

operator n̂` = c†`c` on a given site j and subsequently
the simultaneous effect of many single-site measurements
altogether.

1. Single-site measurement

We foremost observe that after measuring the density
operator n̂`, two outcomes are possible corresponding to
the eigenvalue z = 0 (empty site) or z = 1 (occupied
site). Denoting as Pa the projector onto the correspond-
ing eigenspace, the post-measurement state can be rep-

resented as

|Ψ(z)〉 =
Πz |Ψ〉

〈ψ|Πz|ψ〉1/2
, Πz =

{
n̂` , z = 1

1− n̂` , z = 0
.

(A2)
Upon an inessential normalisation, we can always rep-
resent the projector Πz ∝ limµ→∞ e(z−1/2)µn̂` , i.e. the
exponential of a quadratic operator. This implies that
the projective measurement of a local density preserves
the Gaussianity of the state. We can thus focus on the
transformation induced on the covariance matrix Cij . We
have

Cij → Cij(z) ≡
〈Ψ|Πzc

†
i cjΠz |ψ〉

〈Ψ|Πz|Ψ〉
, Pz = 〈Ψ|Πz|Ψ〉 ,

(A3)
where Pz denotes the probability of obtaining the out-
come z after the measurement. Since after the measure-
ment the state of site ` factorises, one must have

C`,`(z) = z , Ci`(z) = C`j(z) = 0 ∀i, j 6= ` . (A4)

We can thus focus on the relevant submatrix Cij(z) with
both i, j 6= `. Let us focus for simplicity on the case
z = 1. Then, Eq. (A3) reduces to (see also e.g. [75])

Cij(z = 1) =
〈Ψ| c†i cjn` |ψ〉
〈Ψ|n`|Ψ〉

= Cij −
Ci`C`j
C``

, (A5a)

for i, j 6= ` and

P1 = C`` , (A5b)

where the last equality follows from a simple application
of Wick’s theorem. The other case z = 0 can be obtained
by a similar calculation or making use of the particle-hole
symmetry and leads to

∀i, j 6= ` Cij(z = 0) = Cij +
Ci`C`j
1− C``

, (A6a)

P0 = 1− C`` . (A6b)

We can put together (A5, A6) in the single equation

∀i, j 6= ` Cij(z) = Cij + (−1)z
Ci`C`j
Pz

, (A7a)

Pz = 1− z − (−1)zC``. (A7b)

2. Measurements on multiple sites

Now that we understood the effect of measurement on
one site, we can generalize it to multiple site measure-
ments. Following the notation of the main text, we as-
sume that the sites undergoing projective measurements
of their local densities are all in the spatial region B and
we denote as zB = {z1, . . . , zLB

}, zj ∈ {0, 1} the out-
comes of the measurements. We are interested in com-
puting the resulting covariance matrix C(z)ij for i, j ∈ A
and the joint probability of all outcomes P (z).
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a. Iterative procedure

Since the operators nj for j ∈ B all commute to one
another, it is clear that measuring all sites in B can be
performed as a sequence of single-site measurements with
outcomes zB , irrespectively of the order. In order to sim-
plify the notation, we assume that the sites are measured
from left to right and that the sites in B are the LB left-
most ones. Let us denote as z(`) = {z1, . . . , z`}, i.e. the
measurement outcomes of the ` leftmost sites in B. Then,
by making use of (A7), we have

P (z(`+1)) = P (z(`))p , (A8a)

p ≡ (1− z`+1 − (−1)z`+1C(z(`))`+1,`+1),
(A8b)

Cij(z
(`+1)) =Cij(z

(`))

+(−1)z`+1
Ci,`+1(z(`))C`+1,j(z

(`))

p
, (A8c)

and the procedure finishes when k = LB as z(LB) = zLB
.

b. Determinant form

It is possible to derive a closed determinant form which
expresses directly P (zLB

) and C(zLB
). In order to do so,

we introduce the LB × LB matrix D(zLB
) and the LB

dimensional vectors ~cj as

D(zLB
) = −


(−1)z1 0 . . . 0

0 (−1)z2 . . . 0

0 0
. . .

...
0 0 . . . (−1)zLB

 , ~Cj =


C1j

C2j

...
CLBj

 , (A9)

also we denote as C(B) the restriction of C to the sites in B. Then, we can set

Ci,j(zB) =
1

P (zB)
det
LB+1

(
Cij ~C†i ·D(zB)
~Cj

1−D(zLB
)

2 + C(B) ·D(zLB
)

)
, (A10)

with the associated probability

P (zB) = det
LB

(1−D(zB)

2
+ C(B)(zB)D(zB)

)
. (A11)

The equivalence between the two procedures can be verified by induction.
As a benchmark, we check that the sum over all probabilities for all possible strings zB gives 1. Using the variables

σj = 2zj − 1 we have

∑
zB

P (zB) = [

LB∏
j=1

∑
σj=±

] det[δik(1− σk) + C
(B)
ik σk] = [

LB∏
j=1

∑
σj=±

σj ] det[δik(σk − 1) + C
(B)
ik ]. (A12)

We can expand the determinant as

det[δik(σk − 1) + C
(B)
ik ] =

LB∏
i=1

[(σi − 1)/2 + C
(B)
ii ] +

∑
P 6=1

(−1)[P ]
LB∏
i=1

C
(B)
iP (i). (A13)

Summing over [
∏LB

j=1

∑
σj=± σj ] we easily notice that only the first term contribute (since the other they miss at least

one of the factors (1− σi)/2), and the only term not giving zero is [
∏LB

j=1

∑
σj=± σj ]

∏
i(σi − 1)/2 = 1.

In practice, for numerical stability and efficiency, we found it more efficient to perform the measurements over the
whole region B using the iterative procedure (A8).

Appendix B: Montecarlo sampling of the Projected
ensemble

In order to compute the PE at any time t, we time
evolve the correlations matrix using the single particle

Hamiltonian hi,j = δi,j+1 + δi,j−1

C(t) = eihtC0e
−iht (B1)
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FIG. 4. Plot of the relative error σ from (B4) for the evolution of the total entanglement entropy in LA = 4 for the dimer state

with α = 0.5ei
√
5.

with the C0 = 〈Ψ0|c†i cj |Ψ0〉 evaluated on the initial state,
and at each time step ∆t = 1 we sample the PE by Monte
Carlo procedure, namely given the correlation matrix C
at time t, we start from a random sequence z0

B of zeros
and 1, and we compute C(z0

B) and P (z0
B) using the it-

erative procedure (A8). The next Monte Carlo step is to
generate a new configuration z1

B by flipping one 0 or 1
at random within the sequence z0

B and to compute their
ratio of corresponding probabilities

r = P (z1
B)/P (z0

B), (B2)

which is to be compared with a randomly generated real
number in the interval [0, 1]. If the latter is smaller than
r the move is accepted and the new correlation matrix
is computed as C(z1

B), otherwise is rejected and the se-
quence and the correlation matrix are left unchanged.
The algorithm is then iterated on NMC steps where all
higher moments of the PE are taken as

〈C(k)〉MC = N−1
MC

NMC−1∑
g=0

C(zgB)⊗k . (B3)

In Fig. 4 we show the convergence of the von Neu-
mann entropy at different times, by plotting the stan-
dard deviation sampled with 40 different realisations of
NMC = 2500, computed as

σ =

√
〈(SA)2〉MC − 〈(SA)〉MC

〈(SA)〉MC
, (B4)

where SA is the entanglement entropy in the subsystem
summed over all sites. The average values are the data

reported in the main text. The plot shows that expected
errors on the Monte Carlo averaging at late times are of
order 10−2.

We note that for the measurements over a set of com-
muting quantities as we consider here, one can introduce
a slightly simpler procedure, which avoids any correlation
between configurations produced by the Montecarlo al-
gorithm. In practice, in exactly LB steps, one generates
an entire random sequence zB = {z1, . . . , zLB

} with the
correct probability: the sites are sequentially measured
from left to right, but choosing at each step

z` =

{
1 with probability 1− C(z(`−1))`,`
0 with probability C(z(`−1))`,`

(B5)

where the correlation matrix C(z(`−1)) is obtained after
the measurement of all sites up to `− 1 (as explained in
A 2 a). See for instance [75]. Here, we choose to use the
more general Montecarlo algorithm explained above.

Appendix C: Generalised Haar ensemble

As discussed in the main text, a simple way to gen-
erate representative states is to sample randomly from
an appropriate distribution over the Haar measure, thus
enforcing the correct average expectation of the con-
served charges. This could be constructed as follows.
Because of the conservation of the number of particles,
we can always assume that C = UDL,NU

†. However,
we want to enforce the constraint about the occupation
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number in the Fourier basis [FCF †]kk ∼ n(k), where

Fkj = e2πikj/L/
√
L performs the change of basis between

the momentum and the real space basis. This naturally

leads to the microcanonical Haar ensemble of covariance
matrices

P (C) =
1

ZMC

∫
Haar

dU δ(C − UD(L,N)U†)
∏
k

δ
( N∑
i=1

|[FU ]k,i|2 − n(k)
)
, (C1)

where ZMC is the normalization such that
∫
P (C)dC = 1. Note that for an infinite temperature ensemble, n(k) = N/L

for any k, the delta functions impose no constraints at large L and the matrices U are simply drawn from the uniform
distribution over the Haar measure. On the contrary, for generic n(k) the deltas forces a bias on the distribution of
the matrix U . For practical purposes, instead of working with (C1), it is better to replace the delta constraint with
the canonical Haar ensemble, defined by

P (C) =
1

Z[ω]

∫
Haar

dU δ(C − UDL,NU
†)e−Tr[ΩFUDL,NU

†F †] =

∫
Haar

dŨ δ(C − F †ŨDL,N Ũ
†F )e−Tr[ΩŨDL,N Ũ

†] ,

(C2)

Z[ω] =

∫
Haar

dU e−Tr[ΩFUDL,NU
†F †] =

∫
Haar

dŨ e−Tr[ΩŨDL,N Ũ
†], (C3)

where we made use of the invariance of the Haar
measure Ũ ≡ FU and introduce the diagonal matrix
Ω = diag[ω1, . . . , ωL] containing the Lagrange multipli-
ers. Their value can be fixed via

∂ωk
lnZ[ω] + n(k) = 0. (C4)

We observe that Z[ωk + c] = e−cNZ[ωk] for any constant
c. So, the solution of (C4) are always defined up to a
constant, which we fix by imposing the constraint∑

k

ωk = 0. (C5)

1. Gaussian approximation

A simple approximation for the integration over the
Haar measure is obtained assuming that all entries of
the matrix U are Gaussian distributed for large L. In the
case of Eq. (C3), for non-zero ω’s, there is a competition
between the constraint imposed by unitarity

L∑
i=1

|Ũki|2 = 1, (C6)

and the one coming from Eq. (C4). To enforce both con-
straints and a Gaussian distribution of the matrix entries,
we rather consider the measure

Z[ω, γ] =

∫
dŨe−

∑
k,i γk|Ũki|2e−

∑
k

∑N
i=1 ωk|Ũk,i|2 , (C7)

and fix the Lagrange multiplier γ’s and ω’s via the con-
ditions

∂ωk
logZ[ω, γ] + n(k) = 0, (C8)

∂γk logZ[ω, γ] + 1 = 0. (C9)

In the case of the unitary group, Ũ ∈ U(L), the entries
are Gaussian complex numbers, so that the integration
measure factorises as

dŨ →
∏
k,i

d<[Ũk,i]d=[Ũk,i], (C10)

leading to the solutions

γk = L
n(k)− n
1− n(k)

, ωk = −L n(k)− n
(1− n(k))n(k)

. (C11)

In the infinite temperature case, the filling function
n(k) = N/L, all the biases ωk = 0 consistently with
the fact that one can simply sample from the pure Haar
distribution.

In principle, one may wonder whether the additional
constraint about the normalization of columns should
also be imposed, i.e.

L∑
k=1

|Ũki|2 = 1 , ∀i = 1, . . . , L. (C12)

It is easy to verify that this constraint is automatically
satisfied by the solution above, since

E

[
L∑
k=1

|Ũki|2
]

=
∑
k

1

γk + ωk

=
1

Ln

∑
k

n(k) = 1 , i ≤ N (C13)

E

[
L∑
k=1

|Ũki|2
]

=
∑
k

1

γk

=
1

L(1− n)

∑
k

(1− n(k)) = 1 , i > N, (C14)



9

where E[. . .] indicates the average with the measure in
Eq. (C7).

A similar approximation can be obtained for other
groups, i.e. the orthogonal group, by appropriately
changing the integration measure Eq. (C10). The values
of ω’s given in Eq. (C11) provide a good approximation
when n(k) does not vary too much with k, i.e. close to
infinite temperature, but they are not exact in general.
In the next sections, we show different methods to obtain
more accurate evaluations.

2. Finite-size evaluation

The partition sum Z[ω] can actually be computed ex-
plicitly using the Harish-Chandran-Itzykson-Zuber [54,
55] formula. We recall that this formula gives the follow-

ing integral∫
Haar

dUeTrAUBU†] =
det[eλ

A
i λ

B
j ]

∆[λ(A)]∆[λ(B)]
, (C15)

where λ
(A/B)
i is the spectrum of A/B and we defined the

Vandermonde determinant of a set as

∆(λ) =
∏
i<j

(λi − λj). (C16)

Thus, if we define the diagonal matrix Ω = diag(ωk),
the integral in (C3) can be evaluated replacing A → Ω
and B → D(L,N). However, the matrix D(L,N) has
(several) degenerate eigenvalues, since its made of N ones
and L − N zeros. In this case, a limit is required to
properly compute the rhs of (C15). To regularise, we set

Dε(L,N) = diag(1− ε, 1− 2ε, . . . , 1−Nε, ε, 2ε, . . . , (L−N)ε) = diag(d
(ε)
i ), (C17)

and take the limit ε→ 0 at the end. We have clearly

∆[d(ε)] =
∏
i<j

(d
(ε)
i − d

(ε)
j ) = (−1)N(N+1)/2εN(N−1)/2+(L−N)(L−N−1)/2G(N + 1)G(L−N + 1), (C18)

where G(x) is the Barnes G function. Ignoring numerical factors which are irrelevant in the normalisation, one has
in the limit

Z[ω] =
detA[ω]

∆[ω]
, (C19)

where the matrix A[ω] takes the form

A[ω] =


1 ω1 . . . ωN−1

1 e−ω1 e−ω1ω1 . . . e−ω1ωL−N−1
1

1 ω2 . . . ωN−1
2 e−ω2 e−ω2ω2 . . . e−ω2ωL−N−1

2
...

...
...

1 ωL . . . ωN−1
L e−ωL e−ωLωL . . . e−ωLωL−N−1

L ,

 (C20)

Although exact, Eq. (C19) does not allow an efficient evaluation at large L, because as already seen in Eq. (C11), the
ω’s become large with L, thus making the exponentials in Eq. (C20) hard to evaluate numerically.

3. High-temperature expansion

The large L asymptotics of the HCIZ integral has been
investigated in several papers [57, 58], see also the intro-
ductory review [56]. One important result is that it is
possible to write down explicitly the “large temperature”
expansion of Eq. (C3) directly in the limit of large L in
terms of combinatorial quantities. First of all, we know
already from Eq. (C11) that at large L, the ω’s are going
to be scaled linearly with L. So we set

ωk = Lz(2πk/L ≡ p), (C21)

where p is the quasiparticle momentum in the thermo-
dynamic limit. With this definition, we can express the

moments of the matrix Ω as

Tr[Ωm] =

L∑
k=1

ωmk → Lm+1

∫
dp

2π
z(p)m ≡ Lm+1s(m).

(C22)
We can now introduce a free energy in the form

F [z] = − lim
L→∞

1

L2
lnZ[ω], (C23)
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which is now a functional of z(p). We have the expansion
in powers of z (see Eq.(2.10) in [56])

F [z] =

∞∑
d=1

(−1)d

d!

∑
α,β`d

(−1)`(α)+`(β) ~H0(α, β)n`(β)

`(α)∏
i=1

s(αi),

(C24)
where the sum runs over the partitions α, β of the integer

d and ~Hg(α, β) are the monotonous Hurwitz numbers as-
sociated to the pair of partitions α, β computed at genus
g = 0 [76] and we refer to [56] for their combinatorial
definition. The constraint Eq. (C5) turns into the the
equation

δF [z]

δz(k)
=
n(k)

2π
. (C25)

Expanding up to the third order (d = 3), one has

F [z] = ns(1)− 1

2
(n− 1)n

(
s(1)2 − s(2)

)
+

1

3
(n− 1)n(2n− 1)

(
2s(1)3 − 3s(2)s(1) + s(3)

)
+O(z4). (C26)

Taking the functional derivative and constraining s(1) =
0 (consistent with (C5))

n− (1− n)nz(k)− (1− n)n(2n− 1)(z(k)2 − s(2)) = nk,
(C27)

where n = N/L is the particle density. One can easily
verify that this is solved up to the order O(nk − n)2 by

z(k) =
n(k)− n
(n− 1)n

+
(1− 2n)(n(k)− n)2

(n− 1)2n2
+A

+O
(
(n(k)− n)3

)
, (C28)

where the constant A is put to enforce the constraint
s(1) = 0. The result is consistent with the Gaussian
approximation in (C11).

However, at the next order, deviations from the Gaus-
sian approximation appear. As an example, we com-
pute them for the case of the dimer states introduced in
Eq. (9). Writing for generic α = α0e

iθ, with α0 ∈ R and

θ ∈ [0, 2π), we can write it explicitly as

nk =
1

2
+
α0 cos(k − θ)

1 + α2
0

=
1

2
+ε cos(k−θ) , ε =

α0

1 + α2
0

.

(C29)
After some manipulations, one obtains

z(k) = −4ε cos(k−θ)−8ε3 cos(k−θ) cos(2(k−θ))+O(ε4),
(C30)

which differs from the small ε expansion of the Gaussian
approximation (C11)

zGauss(k) = −4ε cos(k − θ)− 16ε3 cos3(k − θ) +O
(
ε4
)
.

(C31)
4. Montecarlo sampling from the generalised Haar

ensemble

We now suppose that the values of the ωk are known,
and we want to sample from the distribution in Eq. (C2).
The problem has been also analysed in [77], here we
discuss a straightforward implementation based on the
Metropolis–Hastings algorithm. To do so, we introduce
a random walk in the SU(L) group. We consider the
Markov process at discrete time step τ

pτ+1(Ũ) = pτ (Ũ)

+

∫
Haar

dŨ ′ [P (Ũ ′ → Ũ)pτ (Ũ ′)− P (Ũ → Ũ ′)pτ (Ũ)].

(C32)

Let us first analyse the simple case ωk = 0, where one
simply needs to sample in from the Haar distribution.
Given a certain distribution measure P (M) over hermi-
tian matrices M (that we specify later on), one can set

P0(Ũ → Ũ ′) =

∫
dM P (M)δHaar(Ũ

′ − ŨeıM ). (C33)

We stress that the δ function refers to integration via the
Haar measure, i.e., it is defined by∫

Haar

dŨδHaar(Ũ − Ũ ′)f(Ũ) = f(Ũ ′). (C34)

It is easy to verify from this definition that δHaar(Ũ −
Ũ ′Ũ0) = δHaar(Ũ

′ − Ũ Ũ†0 ). Indeed,

∫
Haar

dŨ ′δHaar(Ũ − Ũ ′Ũ0)f(Ũ ′) =

∫
Haar

dŨ ′′δHaar(Ũ − Ũ ′′)f(Ũ ′′Ũ†0 ) = f(Ũ Ũ†0 ), (C35)

where in the first equality we changed variable Ũ ′′ = Ũ0Ũ
′ and we used the invariance of the Haar measure over left

multiplication (dŨ ′ = dŨ ′′). We thus see that if we choose P (M) = P (−M), one immediately has

P0(Ũ ′ → Ũ) =

∫
dM P (M)δHaar(Ũ − Ũ ′eıM ) =

∫
dM P (M)δHaar(Ũ

′ − Ũe−ıM ) = P0(Ũ → Ũ ′). (C36)

Thus, detail balance is fulfilled with the flat measure pn(Ũ)→ pstat(Ũ) = 1.
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From this construction, it becomes clear how to modify the algorithm to obtain sampling from (C2) via the usual
Metropolis-Hastings formula. It is enough to set

P (Ũ → Ũ ′) = P0(Ũ → Ũ ′)A(Ũ , Ũ ′) , A(Ũ , Ũ ′) ≡ min
[
1, eTrΩŨ ′DŨ ′†]−TrΩŨDŨ†]

]
. (C37)

In order to do so, it is convenient to specify further
the distribution over the hermitian matrices P (M). We
choose it as rotations. In other words,

• we randomly choose a pair of distinct indices i, j
uniformly;

• we choose a direction α = x, y, z with equal proba-
bilities 1/3

• we choose a random “angle” φ ∈ [0, 2π)

• we set

M =
1

2
φσ(i,j)

α , (C38)

where σ
(i,j)
α indicates a Pauli matrix in the subspace

(i, j) and the identity elsewhere.

• accept the new unitary Ũ ′ = ŨeıM

– with probability 1 if both i, j ∈ {1, . . . , N} or
i, j ∈ {N + 1, . . . , L}, because in both these
cases eıMDe−ıM = D as the matrix D re-
stricted to (i, j) is a multiple of the identity;

– with probability 1 if α = z, because |Ũ ′ki|2 =

|Ũki|2 and |Ũ ′kj |2 = |Ũkj |2, as the transforma-
tion only adds a phase;

– with probability p = A(Ũ , Ũ ′) if i ∈ {1, . . . N}
but j ∈ {N + 1, . . . , L}. Note that A(Ũ , Ũ ′)
can be restricted to the subspace of indices
(i, j).

5. Self-improving Montecarlo method

The algorithm presented in the previous section as-
sumes that the ωk are given and allows sampling from
Eq. (C3). In reality, what is given is the density n(k) and
the parameters ωk are to be fixed from (C4). In practice,
starting from some initial estimation for the ω’s, we can
iteratively apply the MC procedure to gradually improve
such an estimation. We introduce the functional

F [ω] =
1

2

∑
k

(∂ωk
lnZ + n(k))2. (C39)

The optimal choice of the ω’s lies at the minimum of
F [ω]. We can use gradient descent to improve the current

estimation of ωk:

ω
(n+1)
k = ω

(n)
k − γ ∂F

∂ωk

= ω
(n)
k − γ

∑
k

(∂ωk
lnZ + n(k))∂ωkω`

lnZ

= ω
(n)
k − γ

∑
k

(n(k)− 〈Ũ2
k 〉)〈Ũ2

k Ũ
2
` 〉c. (C40)

where we used Ũ2
k as a shortcut for

∑N
i=1 |Ũki|2. In prac-

tice, we run a few MC steps Nit at fixed ω’s, which allow
estimating 〈Ũ2

k 〉 and 〈Ũ2
k Ũ

2
` 〉. Then one can use (C40)

to update the values of the ω’s. Note however that the
fluctuations due to finite Nit prevents from converging
to arbitrary accuracy. In practice, after a few iterations,
the algorithm cannot improve unless Nit is increased.

Appendix D: Number distribution in Gaussian states

In this section we prove the formula given in the main
text about the distribution of the number of particles in
the region A. We assume that the whole system is in a
random Gaussian state |Ψ〉AB described by the ensemble
of covariance matrices

Eβ = {C = UDL,NU
† | U ∼ Haarβ} (D1)

where the parameter β indicates: i) the orthogonal group
(β = 1), ii) the unitary group β = 2. We set

p(NA) = E[〈Ψ|δN̂A,NA
|Ψ〉] (D2)

where N̂A =
∑
j∈A n̂j and the average E[. . .] is taken over

the ensemble (D1). We claim that the following formula
holds

p(NA) =

(
LA

NA

)(
L−LA

M−NA

)(
L
M

) (D3)

which has a simple combinatorial interpretation as split-
ting the M particles such that NA are in A and M −NA
are in B. Eq. (D3) can be easily proven for random states
over the whole Hilbert space [66, 78]. In the Gaussian
case, its proof is less evident.

We proceed as follows. We first of all introduce the
generating function

g(λ) =

LA∑
NA=0

eiλNAp(NA) = E[〈Ψ|eiλN̂A |Ψ〉]

= E
[
det
LA

(1 + (eiλ − 1)C(A))

]
(D4)
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where in the last equality we used Wick’s theorem to
express the expectation value in terms of a determinant
of the reduced covariance matrix to the region A, i.e.

C
(A)
ij = Cij for i, j ∈ A. From this construction, the

matrix C(A) is known to be drawn from the β Jacobi
ensemble [79]. The joint probability distribution function
of its eigenvalues λ1, . . . , λLA

takes the form

P (λ1, . . . , λLA
) =

1

Z

LA∏
i=1

λ
β/2(a+1)−1
i (1− λi)β/2(b+1)−1

∏
i<j

|λi − λj |β (D5)

where the constants a = M − LA and b = L− LA −M . Setting z = eiλ − 1, we can thus express

g(λ) =

∫
dλ1 . . . dλLA

P (λ1, . . . , λLA
)
∏
i

(1 + zλi) =

LA∑
k=0

(
LA
k

)
zkQk (D6)

where in the last equality we used the symmetry of the integral under the permutation of the eigenvalues. The
coefficients Qk can be expressed in terms of the Aomoto’s integral [80, 81] and reads

Qk =
1

Z

∫
dλ1 . . . dλLA

k∏
j=1

λj

LA∏
i=1

λ
β/2(a+1)−1
i (1− λi)β/2(b+1)−1

∏
i<j

|λi − λj |β =

=
Γ(−a− b− 2LA)Γ(−a+ k − LA)

Γ(−a− LA)Γ(−a− b+ k − 2LA)
(D7)

Plugging this last expression in Eq. (D6), we obtain the final formula

g(λ) = 2F1(−a− LA,−LA;−a− b− 2LA;−z) = 2F1(−LA,−M ;−L;−z) (D8)

Now, standard manipulations of hypergeometric func- tions can be used to show that Eqs. (D8,D4) lead to
Eq. (D3), as expected.
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and V. E. Korepin, The one-dimensional Hubbard model
(Cambridge University Press, 2005).

[28] M. Takahashi, Thermodynamics of One-Dimensional
Solvable Models (2005).

[29] N. Malvania, Y. Zhang, Y. Le, J. Dubail, M. Rigol, and
D. S. Weiss, Science 373, 1129 (2021).

[30] Q.-Q. Wang, S.-J. Tao, W.-W. Pan, Z. Chen, G. Chen,
K. Sun, J.-S. Xu, X.-Y. Xu, Y.-J. Han, C.-F. Li, and
G.-C. Guo, Light: Science & Applications 11 (2022),
10.1038/s41377-022-00887-5.

[31] M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii,
Phys. Rev. Lett. 98, 050405 (2007).

[32] E. Ilievski, J. De Nardis, B. Wouters, J.-S. Caux, F. H. L.
Essler, and T. Prosen, Phys. Rev. Lett. 115, 157201
(2015).

[33] E. Ilievski, E. Quinn, J. De Nardis, and M. Brockmann,
J. Stat. Mech. 2016, 063101 (2016).

[34] L. Vidmar and M. Rigol, J. Stat. Mech. 2016, 064007
(2016).

[35] F. H. Essler and M. Fagotti, J. Stat. Mech. 2016, 064002
(2016).

[36] E. Ilievski, M. Medenjak, T. Prosen, and L. Zadnik, J.
Stat. Mech. 2016, 064008 (2016).

[37] L. Piroli, E. Vernier, and P. Calabrese, Phys. Rev. B 94,
054313 (2016).

[38] L. Piroli, E. Vernier, P. Calabrese, and M. Rigol, Phys.
Rev. B 95, 054308 (2017).

[39] E. Ilievski, E. Quinn, and J.-S. Caux, Phys. Rev. B 95,
115128 (2017).

[40] B. Pozsgay, E. Vernier, and M. Werner, J. Stat. Mech.
2017, 093103 (2017).

[41] J. De Nardis, B. Wouters, M. Brockmann, and J.-S.
Caux, Phys. Rev. A 89, 033601 (2014).

[42] B. Wouters, J. De Nardis, M. Brockmann, D. Fioretto,
M. Rigol, and J.-S. Caux, Phys. Rev. Lett. 113, 117202
(2014).

[43] B. Pozsgay, M. Mestyán, M. A. Werner, M. Kormos,
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