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Triviality of quantum trajectories close to a directed percolation transition
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We study quantum circuits consisting of unitary gates, projective measurements, and control operations that
steer the system toward a pure absorbing state. Two types of phase transition occur as the rate of these control
operations is increased: a measurement-induced entanglement transition, and a directed percolation transition
into the absorbing state (taken here to be a product state). In this work, we show analytically that these
transitions are generically distinct, with the quantum trajectories becoming disentangled before the absorbing
state transition is reached, and we analyze their critical properties. We introduce a simple class of models where
the measurements in each quantum trajectory define an effective tensor network (ETN)—a subgraph of the
initial spacetime graph where nontrivial time evolution takes place. By analyzing the entanglement properties
of the ETN, we show that the entanglement and absorbing-state transitions coincide only in the limit of the
infinite local Hilbert-space dimension. Focusing on a Clifford model which allows numerical simulations for
large system sizes, we verify our predictions and study the finite-size crossover between the two transitions at
large local Hilbert space dimension. We give evidence that the entanglement transition is governed by the same
fixed point as in hybrid circuits without feedback.
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I. INTRODUCTION

The competition between local interactions and local
measurements in a many-body system can give rise to a
measurement-induced phase transition (MIPT) [1,2]. In the
simplest setting, unitary quantum circuit dynamics is inter-
spersed with local projective measurements, yielding a hybrid
dynamics which is nondeterministic: different histories of the
random measurement outcomes define distinct quantum tra-
jectories. As the measurement rate is increased, the system
undergoes a transition from a phase where typical quantum
trajectories are volume-law entangled, to one in which they
are area-law entangled. This MIPT can also be understood as
a dynamical purification transition, if the system is initialized
in a maximally mixed state [3–5].

MIPTs can show various universality classes depending
on the structure of the dynamics [6,7]. An important general
question is what additional kinds of behavior are possible
when the dynamics involves feedback, i.e., control opera-
tions [8–12]. In the simplest setting, these adaptive operations
are entirely local: each measurement is followed by a local
unitary that is conditioned on that measurement outcome.
Perhaps the simplest phase transition that can be engineered
this way is a transition into an “inactive” product state, say
|00 . . . 00〉 in the computational basis (for more complex
steering protocols with nontrivial absorbing states, see, e.g.,
Refs. [13–18] and references therein). If the unitary part of
the dynamics preserves the |00 . . . 00〉 state, and if the feed-
back operations reset qudits to “0,” then this is an absorbing
state. As the rate of measurement and control operations is

increased, the system can undergo an absorbing-state tran-
sition [19–22] in the directed percolation universality class
[23–25]. See Refs. [26–28] for examples of quantum mod-
els with absorbing-state transitions, and Refs. [25,29,30] for
reviews of classical nonequilibrium phase transitions.

Recently, the question has been raised [9] (see also
Ref. [10]) of the relation between the absorbing-state tran-
sition and the MIPT, with the hope of getting around the
so-called post-selection bottleneck for experimental detection
of MIPTs [7,31,32]. This problem is also interesting per se,
allowing us to deepen our understanding of universal behavior
in monitored dynamics, and could be relevant for the imple-
mentation of absorbing-state transitions in quantum devices,
as recently reported in Ref. [33].

This work clarifies the interplay between the absorbing-
state transition and the MIPT, and analyzes the corresponding
critical properties (see also Ref. [34] for recent results in that
direction). We argue, using general properties of the statistical
mechanical descriptions of the two transitions, that they are,
in general, distinct and unrelated to each other. We design
models where the two transitions can be fit into the same
phase diagram with a single tuning parameter, and show both
theoretically and numerically that they generically occur at
different locations and are in different universality classes.

Our argument is based on two properties, which we show
microscopically for our models, and which we argue to
generalize to other models after coarse-graining. First, the
adaptive measurements in each quantum trajectory define an
effective tensor network (ETN) in which the time evolution
takes place. This ETN is a subgraph of the initial spacetime
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FIG. 1. (a) Hybrid circuit composed of local unitaries and measurements. The rectangles in the first two panels represent random
unitary gates, arranged in a brickwork pattern. Blues dots denote single-qudit projective measurements, which are performed with some
rate p. (b) Adaptive circuit defined in Sec. III A. Blues dots represent the single-qudit resetting measurements (6), while red dots represent
measurements of the operator P j (14), which are performed at each time step. In a given quantum trajectory, each P j has a definite value
0 (“inactive”) or 1 (“active”). (c) By discarding the inactive bonds, we are left with a TN formed out of the active bonds, which are each now
of dimension q, instead of q + 1.

graph, obtained by deleting bonds that are determined (by the
measurements) to be in the “trivial” inactive state. The ETN
gives a simpler picture for the entanglement dynamics than the
original quantum circuit, because of the second property: the
absorbing-state transition is also a directed percolation (DP)
transition [25] for the geometrical connectivity of the ETN.
The fact that the ETN becomes only tenuously connected
close to the percolation transition allows us to show that the
measurement transition occurs before the percolation transi-
tion. This is done by considering the minimal cut properties
of the percolation configurations and relating them to ef-
fective statistical mechanics models describing entanglement
[1,35,36].

In order to substantiate our predictions, we introduce a
simple Clifford version of the model [37–39], defining a way
of “flagging” inactive qudits in order to define the ETN.
This allows us to obtain numerical results for large system
sizes and simulation times which support the claim that the
entanglement transition is separated from the absorbing-state
transition. Instead, it occurs within the percolating phase,
where the ETN has 2D connectivity (as opposed to the fractal
connectivity associated with the percolation critical point).
The limit of infinite on-site Hilbert-space dimension is an
exception, so that for large finite Hilbert-space dimension the
two transitions are close. Going further, based on numerical
results, we show that, while the absorbing-state transition is
governed by the directed percolation fixed point, the entan-
glement MIPT appears to be in the same universality class as
in the model without feedback, at least for Clifford.

We begin in Sec. II A by recalling a few elementary facts
about entanglement and purification transitions without feed-
back. We then introduce the notion of adaptive and resetting
measurements and absorbing states for the averaged dynamics
in Sec. II B. In Sec. III, we introduce the simplified models
studied in this work, and in Sec. IV, we analyze the relation
between the absorbing-state and purification transitions the-
oretically. In Sec. V, we report our numerical study of the
Clifford model. In Sec. VI, we sketch why the main statements
are more general than the specific models studied here, and
present our conclusions.

II. ADAPTIVE HYBRID DYNAMICS

A. Hybrid dynamics and purification transitions

We consider a one-dimensional hybrid circuit acting on
a set of L qudits. We denote the local Hilbert space by H j ,
with j = 1, 2, . . . , L and dim(H j ) = q + 1. We will think of
one of these states, |0〉, as the inactive state. The circuit is
composed of nearest-neighbor unitary gates Uj, j+1 and inter-
spersed with local single-qudit measurement processes, cf.
Fig. 1(a). In general, these measurement processes are de-
scribed by a set M( j) = {M ( j)

α } of Kraus operators satisfying

∑
α

[
M ( j)

α

]†
M ( j)

α = 1, (1)

where α and j label the different outcomes and the qudit being
considered, respectively. After the measurement, the density
matrix of the system ρ is updated as (dropping the label j)

ρ �→ MαρM†
α

tr[MαρM†
α]

. (2)

Different measurement histories along the hybrid dynamics
define the ensemble of quantum trajectories.

In the original setting introduced in Refs. [1,2,40], mea-
surements are performed with some finite probability p at each
time step, and are projective, i.e.,

Mα = |α〉 〈α| , (3)

where we denoted by |α〉 the basis states for the local Hilbert
space H j , with α = 0, . . . , q. As the measurement rate p is
increased, the dynamics undergoes an entanglement MIPT or,
equivalently, a dynamical purification transition [3–5]. In the
following, we will take this purification perspective, allowing
for a slightly simplified discussion. In this protocol, the sys-
tem is initialized in a maximally mixed state

ρ(0) = 1

(q + 1)L
, (4)
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and we track the dynamics of the mixed state entropy

S(t ) = −Tr{ρ(t ) ln[ρ(t )]}. (5)

Because of the measurements, the entropy S(t ) is, on average,
a decreasing function of time t , and in the limit t → ∞ (at
fixed L) the state is purified. However, the timescale for this
extraction of entropy changes radically at the measurement
transition pent

c [3–5]. For p < pent
c , the system retains an ex-

tensive entropy for a timescale that is exponentially long in
L. On times that are large compared to microscopic times, but
short compared to this exponentially long timescale, the state
retains a finite “steady-state” entropy density, s(p), so that
L−1S(t ) � s(p) [3,4,41,42]. On the other hand for p > pent

c ,
the entropy density decays exponentially to zero on an or-
der one timescale, and the steady-state entropy density s(p)
vanishes.

B. Resetting measurements and absorbing states

We wish to modify the measurement processes to allow
for local feedback operations. This adaptive dynamics may
have interesting new features compared with the above case
[8–12]. Motivated by recent work [9], we focus on resetting
operations that steer the system towards a pure fixed point.
For now we will consider the simplest possible example:
in the following section, it will be convenient to slightly
modify the model. For this example, we take the Kraus
operators to be

M̃α = |0〉 〈α| . (6)

Physically this represents a simple feedback operation, where
we first perform a projective measurement in the computa-
tional basis, and then apply a local unitary operation mapping
|α〉 into |0〉, if the outcome is α �= 0. Eq. (6) describes this
two-step process.

The resetting operation (6) steers the system towards the
trivial state

|�〉 = |0〉1 ⊗ · · · ⊗ |0〉L . (7)

In order for this to be a fixed point of the hybrid dynamics, we
need to restrict to unitary gates Uj, j+1 that act as the identity
on the state |00〉 := |0〉 j ⊗ |0〉 j+1, though they can act non-
trivially on the subspace of H j ⊗ H j+1 which is orthogonal
to |00〉. Therefore, in the two-qudit basis

B = {|00〉 , . . . , |0q〉 , |10〉 , . . . |1q〉 , . . .}, (8)

we choose gates with block-diagonal form

U =
(

1 0
0 W

)
, (9)

where W ∈ U (q(q + 2)) is a q(q + 2) × q(q + 2) unitary ma-
trix. For now we assume that W is drawn from the Haar
random distribution over U (q(q + 2)), independently for each
pair of qudits and time step.

The effect of the resetting measurement (6) can be easily
appreciated by looking at the dynamics of averaged observ-
ables

E{Tr[ρ(t )OA]} = Tr{E[ρ(t )]OA}. (10)

Here E[·] denotes the ensemble average over all the mea-
surement outcomes and unitary gates, while OA is some
observable supported over the region A. As discussed in
detail, e.g., in Ref. [6,7,43], the averaged density matrix
E[ρ(t )] undergoes a quantum-channel dynamics, where one-
and two-qudit quantum channels [44] are applied in sequence
according to a brickwork structure.

For contrast, first consider the nonadaptive dynamics in
Sec. II A. A simple projective measurement (3) corresponds
to a completely dephasing channel acting on qudit j

ρ �→ E ( j)
D [ρ] =

∑
α

j〈α|ρ|α〉 j ⊗ |α〉 〈α| j . (11)

The effect, after averaging, of a completely generic Haar uni-
tary Uj, j+1 ∈ U ((q + 1)2) is, in a more informal language, to
eliminate coherences (so that after the first layer of gates, the
averaged density matrix reduces to a “classical” probability
vector) and also to equalize the occupation probabilities of
all of the (q + 1)2 basis states for the pair of sites (8). In the
absence of measurements, such generic gates drive the av-
eraged density matrix to the infinite-temperature state. Since
E ( j)

D (1) = 1, the dephasing channel arising from measurement
does not compete with the unitary dynamics, and the averaged
quantum-channel evolution remains trivial for all values of the
measurement rate p.

On the other hand, if we choose the resetting measurements
(6) and restrict to gates of the form (9), the averaged channel
dynamics maps to a nontrivial classical stochastic process.
The restricted unitary gates (9) still eliminate coherences,
meaning that the averaged density matrix is diagonal and
again reduces to a classical probability vector for the basis
states. The application of a unitary amounts after averaging
to a Markovian update of this probability vector. However,
this update now redistributes probability only among the
(q + 1)2 − 1 states that are orthogonal to |00〉. The measure-
ment of qudit j corresponds to a channel that deactivates that
qudit,

ρ �→ E ( j)
R [ρ] =

(∑
α

j〈α|ρ|α〉 j

)
⊗ |0〉 〈0| j . (12)

This channel is not unital, i.e., ER[1] �∝ 1. In fact, we see
that |�〉 in Eq. (7) is the only state left invariant by E ( j)

R for
all j. In addition, |�〉 is also fixed by the unitary part of
the dynamics, due to the block structure of (9), making it
an absorbing state for the averaged evolution. However, the
resetting measurements compete with the unitary dynamics
which, starting from a generic initial state, would produce
an equilibrium state with a positive density of active qudits.
Accordingly, the averaged dynamics shows a transition for a
critical value of the measurement rate pabs

c , which is detected
by the order parameter

n(t ) = 1

L

L∑
j=1

Tr{E[ρ(t )]P j}, (13)

where

P j = 1 − |0〉 〈0| j (14)
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is the “occupation number” of active qudits. For p < pabs
c , the

stable steady state has

np ≡ lim
t→∞ lim

L→∞
n(t ) > 0, (15)

while for p � pabs
c this steady-state density vanishes.

Importantly, the quantum-channel dynamics does not pro-
vide full information on the entropy of quantum trajectories,
because S in (5) is a nonlinear function of ρ. The steady-
state entropy density s(p) must of course vanish in the
inactive phase (since individual trajectories, like the averaged
state, are reset to the trivial inactive state), but we expect it to
be nonzero for small p, implying an entanglement transition
at some critical value pent

c , with pent
c � pabs

c .
Below, we clarify the relation between these transitions

for a class of circuits that allows us both to develop robust
analytical arguments and to provide numerical results for large
system sizes and simulation times. We will also argue in
Sec. VI that our conclusions extend to more general models
with an absorbing state transition into a pure product state (for
example models of the type described above). The concrete
models we consider below have an additional simplification
with respect to the circuit presented in this section and to
more general types of resetting dynamics. This simplification
is that the quantum channel transition can be related very
directly to the connectivity of the ETN associated with a
typical quantum trajectory. In the following, we will consider
both Haar-random and random Clifford circuits.

III. THE MODELS

In this section, we introduce two types of models, pro-
ceeding in two steps. First we define a model in which the
“occupation number” P j is measured for every qudit in every
time step. This is the setting where the definition of the ETN
is the most straightforward. However, this model does not
have an obvious (efficiently simulable) Clifford generaliza-
tion. Therefore we next show how to define the ETN for a
slightly broader class of models, in which the experimentalist
does not measure the occupation numbers of all of the qudits.

A. The Haar-random circuit

The first model we consider is a simplification of the cir-
cuit introduced in Sec. II B and is represented pictorially in
Fig. 1(b). It is made up of the following three ingredients.

(1) We apply a brickwork pattern of two-site unitary gates
Uj, j+1 with the block structure (9). They act on qudits with
q + 1 states, and W in (9) is Haar random.

(2) After each layer of gates, independently for each site,
we perform a resetting operation (6) with probability p.

(3) Next, we measure the occupation number P j defined
in (14) for every qudit.

Since P j is measured for all qudits j at each time step, the
resulting entanglement dynamics is only nontrivial for q � 2.
In a given quantum trajectory, P j has a definite value, either
0 or 1, for every link of the TN associated with the circuit,
cf. Fig. 1(b). This integer plays the role of a classical “flag,”
distinguishing active and inactive qudits. In a given quantum
trajectory, every link of the circuit that is flagged as inactive
has a projection operator |0〉 〈0| on it. These can essentially be

deleted from the tensor network: the state at time t , in a given
trajectory, is determined by a reduced tensor network in which
various bonds and unitaries are eliminated. This is illustrated
in Fig. 1(c). We defer a more detailed discussion to Sec. IV.

We note that the measurements of all the P j are not needed
in order to observe an absorbing-state or a purification transi-
tion. Next we discuss models without this step.

B. “Cliffordizable” model

Clifford circuits have played an important role in devel-
oping our understanding of entanglement transitions, see,
e.g., Refs. [45–48]. Ensembles of random Cliffords form a
2-design [38], i.e., they agree with the statistical properties of
Haar-random unitaries up to the second moment, which means
that some properties (such as the averaged quantum channel
dynamics) coincide between Clifford and Haar models. On
the other hand, they can be simulated efficiently using the
stabilizer formalism [37–39].

Therefore it will be convenient to define a hybrid Clifford
circuit displaying both an absorbing-state and a purification
transition. The model introduced in Sec. III A relied on the
possibility of writing down nontrivial unitary gates with the
block diagonal form in Eq. (9). As a consequence, this model
is not straightforwardly “cliffordized,” because Clifford uni-
taries with the block structure (9) are trivial. In order to get
around this problem, we introduce a different model with
the same underlying simplifications. This is based on the
concept of “flagged qudits’ and can be defined either with
Haar-random or random Clifford gates: because of the 2-
design property of each ensemble, the averaged quantum
channel dynamics will be the same in either case, but the en-
tanglement transition will differ. For concreteness, we restrict
to the Clifford case. Importantly, this model does not involve
a splitting of the Hilbert space H j ⊗ H j+1, which could make
it more suitable for future applications.

The idea is to introduce a flag variable for each qudit,
which labels its status as “inactive” or “active.” This piece
of information is encoded in a classical bit f j = 0, 1. We can
think of f j as expressing the experimentalist’s (partial) knowl-
edge of the state of the qudit at a given time. In the model of
Sec. III A above, f j could be set by the direct measurement of
P j at each time step. In the model below the experimentalist
does not have quite as much information, but can still assign
flags by a modified rule.

We again consider a discrete dynamics where qudits are
updated in pairs in the usual brickwork pattern. At each time
step, and for every pair of qudits to be updated, we have the
following operations.

(1) Unitary updates:
(a) given the qudits j and j + 1, we apply a unitary gate

if at least one of them is active (i.e. f j = 1 or f j+1 = 1); the
gate is chosen to be a random Clifford gate;

(b) if both of them are inactive ( f j = f j+1 = 0), then
no unitary is applied;

(c) if a unitary is applied, then both qudits are set to
“active”, f j = f j+1 = 1.
(2) Measurement process:

(a) after each row of unitaries, each qudit j undergoes
a resetting measurement (6) with probability p;
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(b) if the qudit undergoes the resetting operation, we
then set its flag to “inactive,” f j = 0.
We note that (if desired) the classical flag could be incorpo-

rated into the Hilbert-space structure, enlarging H j → H j ⊗
F j , where F j is generated by | f j〉 with f j = 0, 1. The above
rules then define a dynamics in which the state of the flags is
always “classical,” i.e., they are never in a superposition. By
definition, the initial state is taken to have f j = 1 for every
qudit.

IV. SEPARATING ABSORBING-STATE AND
PURIFICATION TRANSITIONS

We move on to analyze the models introduced in the pre-
vious section. We show that they display both an absorbing
state and a purification transition and that pent

c < pabs
c , with

pent
c = pabs

c only in the limit q → ∞. We will initially focus
on the Haar random circuit defined in Sec. III A, and then
describe at the end how the same arguments hold for the model
introduced in Sec. III B, cf. also Sec. V.

A. The directed percolation transition

We first focus on the quantum-channel dynamics and study
the evolution of the order parameter (13) or equivalently, of
its local version

n j (t ) = Tr{E[ρ(t )]P j}, (16)

where the average is over all measurement
locations/outcomes and over all unitary gates. For the
model of Sec. III A, and in a given quantum trajectory, P j has
a definite value, 0 or 1, after every round of measurements
(we will abuse notation and denote by P j both the operator
and the numerical value after a measurement). Using standard
techniques [49–53], it is easy to see that the probability for
given values of P j , after averaging over the unitaries, is
given by a simple Markov process for P j , which is defined
as follows. Consider two input qudits ( j, j + 1), undergoing
a unitary gate and subsequent measurement operations. If
P j = P j+1 = 0 for the input qudits, then the output qudits are
inactive with probability 1. Conversely, suppose at least one
of the input qudits is active. Then, denoting by p[(a, b)] the
probability that (P j,P j+1) = (a, b) after the measurements,
we have

p[(0, 0)] = p(2 + pq)

2 + q
, (17a)

p[(0, 1)] = p[(1, 0)] = (1 − p)(1 + pq)

2 + q
, (17b)

p[(1, 1)] = q(1 − p)2

2 + q
. (17c)

If we visualize the tensor network associated with the circuit
as a rotated square lattice, where unitary gates represent the
nodes, Eq. (17) define a classical Markov process in which
the degrees of freedom are occupation numbers on the bonds.
This model is a slight variation of the standard bond DP
problem, which is well studied in the classical literature [25].
In this standard model, the two outputs of an active node
are independently chosen to be inactive with probability p̃,

defining a Markov process for the bonds with output proba-
bilities analogous to (17) of the form:

p[(0, 0)] = p̃2, (18a)

p[(0, 1)] = p[(1, 0)] = p̃(1 − p̃), (18b)

p[(1, 1)] = (1 − p̃)2. (18c)

For this problem, the critical value of p̃, p̃c, is known to high
accuracy [54] and is equal to

p̃c = 0.355299814(5). (19)

It is easy to check that in the limit q → ∞ the probabilities
in (17) reduce to the form (18), with p̃ = p. Therefore, in this
limit, the Markov process describing the dynamics of n j (t )
coincides with standard bond DP, and the critical measure-
ment rate is given by (19). For finite q < ∞, the two output
bonds are correlated, but we still expect that nj (t ) displays a
DP transition. The strength of this correlation in the outputs
is of order q−2. Namely, if we neglect terms of order q−2,
then the probabilities in Eq. (17) can be written in the form
Eq. (18), with p̃ = p + (1 − p)/q. Therefore we may obtain
an estimate of the critical point in model (17) that is accurate
up to order q−1 by setting p + (1 − p)/q equal to p̃c, yielding
for the model in Sec. III A:

pabs
c � 0.3553 − 0.6447

q
+ O(q−2). (20)

We see that the effect of having a finite q < ∞ is to lower the
value of the critical measurement rate pabs

c . We have verified
that these conclusions are consistent with classical numerical
simulation of the Markov process defined by (17). In conclu-
sion, we find that the quantum-channel dynamics displays an
absorbing-state transition, in the universality class of DP.

The Clifford model of Sec. III B also undergoes a DP tran-
sition. In fact, in this model the dynamics of the flags reduces
exactly to the standard bond DP model, as we discuss towards
the end of the next section. As a result

pabs
c = p̃c, ∀q, (21)

where p̃c is defined in Eq. (19).

B. The purification transition

We now argue that the Haar-random model also displays
a purification transition for a value of pent

c < pabs
c , the two

coinciding only for q → ∞ (these conclusions then extend
to the Clifford model).

First, it is important to note that the values of P j not
only determine the order parameter for the quantum-channel
transition, but they also define the effective tensor network
(TN) on which the dynamics take place. To be precise, let
us fix the total simulation time t , and focus on the output
state for a given history of the measurement outcomes, starting
from the maximally mixed initial state (4). This output state is
described by a TN, whose bonds are also labeled with 0s and
1s, depending on the values of P j . As shown in Fig. 1(c), we
may effectively erase the inactive bonds and the nodes acting
on pairs of them, because they correspond to trivial states and
operations. The resulting active bonds and nodes form an ETN
defining the nontrivial part of the output-state density matrix
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t

t = 0

FIG. 2. Schematic representation of the minimal-cut picture for
purifying dynamics. Black dots correspond to the initial infinite tem-
perature state ρ j (0) = 1 j/(q + 1). Black and gray links correspond
to active and inactive bonds, respectively. Analogously, green and
gray rectangles denote gates acting on active and inactive pairs of
qudits. At time t , the entropy S(t ) is only determined by the active
links and gates. In the limit of infinite onsite Hilbert space dimension
q → ∞, entanglement properties are dictated by the minimal-cut
picture [1,55,56], namely the entropy is proportional to the number
of active links to be cut in order to separate the top and bottom
boundaries of the ETN. The red dashed line corresponds to such a
minimal cut.

at time t . Note that this tensor network features several types
of node tensors. For instance, a node with four active bonds
is a nonunitary tensor given by a q2-dimensional block of the
original random unitary.

Crucially, the connectivity properties of this TN depend
on p, because they are described by the bond DP problem.
Consider the case p < pabs

c for a large system and large time,
with t scaling polynomially in L. We then have a cluster of
active bonds connecting the initial state with the boundary
at time t . The active cluster encloses elongated regions of
inactive bonds, whose maximal space (time) dimension is of
the order the spatial (temporal) correlation length ξ⊥ (ξ‖) [25]
(see Fig. 3). These correlation lengths diverge as pabs

c is ap-
proached, with ξ‖ ∼ ξ z

⊥ and z > 1 (see Sec. V A). Conversely,
if p > pabs

c , the bonds at time t will all be inactive.
We now wish to estimate the entropy of the output state

at such large times t (polynomially large in L) for p � pabs
c .

As a warm-up, we first consider the so-called max-entropy
S0(t ). As discussed in Refs. [1,56], this quantity is particularly
simple, as it can be obtained by an elementary “minimal-
cut” picture: S0(t ) is proportional to the minimal number of
active links which have to be cut in order to separate the
output qudits from the input ones, cf. Fig. 2. Therefore S0(t )
is uniquely determined by the connectivity properties of the
ETN, and governed by the physics of DP (or more precisely
by the min-cut properties of DP configurations). In particular,
S0(t ) undergoes a transition from volume-law to area-law at
the DP critical point pabs

c . The maximum entropy itself is
not a very physically meaningful quantity (it is not stable

FIG. 3. (Top) Typical configurations of DP with L = 200 and t � 400, as produced by the standard Markov process in Eq. (18). Here
active sites are in white, and inactive sites are in black. (Bottom) A configuration at the critical point, shown sideways, to access its shape at
long times (L = 200, t � 1600). We highlight two red bonds with red arrows.
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to infinitesimal perturbations of the state). However, in the
limit q → ∞ of infinite bond dimension, the von Neumann
and higher Rényi entropies are also given by the min-cut
result [55,56]. Therefore in the q → ∞ limit the entanglement
properties of the state are determined by the min-cut picture
applied to the ETN, and the entanglement transition occurs at
the DP critical point: as q → ∞, we have pabs

c = pent
c .

Next we wish to perturb around this limit of large q. For
finite q, the minimal-cut picture is not adequate to capture
the behavior of S(t ), but a closely related geometrical picture
can be obtained at large scales, with domain-wall degrees of
freedom taking the role of the min-cut. For hybrid dynamics,
this was shown in Refs. [4,43], extending the theory developed
for unitary circuits in Refs. [36,51,56,57] and for random
tensor networks in Refs. [35,55]. In these works, the dynamics
was mapped onto an effective statistical mechanics model, al-
lowing one to relate the entropy to a domain wall free energy,
receiving both “energetic” and “entropic” contributions. For
our purposes, we will not need the details of these construc-
tions: to determine which phase we are in, it will be sufficient
to make a comparison of energy versus entropy (analogous to
one which may be made in the nonadaptive circuit at large
q [1]) that only relies only on two facts: (1) the degrees of
freedom in the effective model are discrete, so that the domain
walls are linelike objects; and (2) the energy cost per unit
length of a domain wall is ln q (in a convention where “kBT ”
in the effective statistical mechanical model is 1).

To this end, we fix δp = pabs
c − p small, so that we are just

inside the percolating phase, and focus on a sub-region of the
TN with space and time dimensions � ∼ ξ⊥ and τ ∼ ξ‖. We
recall

ξ⊥ ∼ δp−ν⊥ , ξ‖ ∼ δp−ν‖ , (22)

where ν⊥ and ν‖ are the critical exponents of DP, which are
known numerically to high precision [25], cf. Eq. (32). Since
� and τ are chosen to be of the same order of magnitude as
the correlation lengths, the structure of the cluster of active
links within this region is similar to that of a percolating
cluster at the critical point. Such clusters have been studied in
detail in the DP literature [58]. An important result quantifies
the number Nred(t ) of the so-called red bonds, i.e., the active
links which, if removed, make all the bonds at time t inactive
[58–60]. An illustration of the red bonds is given in Fig. 3.
Using a scaling argument, it was shown that, at criticality, and
for a rectangular sample with the above geometry,

Nred(τ ) ∼ τ 1/ν‖ . (23)

Therefore the cluster inside the rectangular space-time region
of dimensions � and τ has order τ 1/ν‖ ∼ 1/|δp| bonds where
it can be cut (horizontally) so as to disconnect the top and the
bottom of the region.

We now consider the free energy cost of domain walls in
the degrees of freedom that live on the ETN in the effective
model. Consider a segment of such domain wall, oriented
roughly horizontally, that has to cut through the spacetime
patch under consideration. The minimal “energetic cost” for
the domain wall is given by passing through one of the red
bonds, and this gives a cost of ln q. On the other hand, the
domain wall has a choice of Nred(τ ) ∼ 1/|δp| locations to cut
the region, giving a configurational entropy ∼ ln Nred(τ ). This

allows us to fix the leading terms in the domain wall free
energy, coarse-grained on the scale of our spacetime patch:

F = ln q − ln(1/|δp|). (24)

We see that if q|δp| � 1, the domain wall free energy is large
and positive [1]. The effective model is then ordered, and the
hybrid dynamics is in an entangling phase with volume-law
entanglement [4,43]. In the purification protocol, the steady-
state entropy density s(p) (Sec. II A) is given by entanglement
“membrane tension” set by the free energy per unit length of
the above domain wall, s(p) ∼ F/ξ⊥.

Conversely, if q|δp| � 1, so that the above free energy
estimate is large and negative, we expect that domain walls
proliferate and the effective statistical mechanics model is
disordered, which corresponds to an area-law (or pure) phase.
Put differently, if

|δp| � 1/q, (25)

the system is in an area law phase, meaning that the purifica-
tion transition takes place at some pent

c < pabs
c . Going further,

Eq. (24) indicates that

pabs
c − pent

c ∼ 1

q
. (26)

In conclusion, we see that the absorbing-state and purification
transitions are always separated, only coinciding when q →
∞, as anticipated. The above discussion also indicates that
1/q is a relevant perturbation of the q = ∞ critical fixed point,
which will change the universality class of the entanglement
transition.

The above conclusions can be extended to the models intro-
duced in Sec. III B, as we now briefly discuss. First of all, we
can again define an ETN, by eliminating all the bonds whose
classical flag f j is equal to zero. Now, however, the order
parameter (16) is not equal to the density of nonzero flags:
while f j = 0 implies P j = 0, a bond with f j = 1 need not
have a well-defined eigenvalue of the operator P j . However,
there is a simple relation between the two quantities. Let us
define the “classical density”

ncl(t ) = 1

L

L∑
j=1

E[ f j (t )]. (27)

It is easy to show that the classical flags undergo a Markov
process, defined on the links of TN associated with the circuit.
In fact, the transition probabilities are exactly those of the
standard bond DP model: given that a node is active (i.e., that
at least one of its input qudits is active), the output transi-
tion probabilities are given by (18), after replacing p̃ with p.
Therefore the flag dynamics undergoes a DP transition, whose
critical measurement rate is pabs

c = p̃c for all values of q [with
p̃c defined in Eq. (19)], and with order parameter given by
ncl(t ). Crucially, it is easy to show

n(t ) = q

q + 1
ncl(t ), (28)

where n(t ) is defined in (13). Therefore n(t ) is determined
by the dynamics of the classical flags, which undergo an
absorbing-state transition at pabs

c .
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FIG. 4. Schematic phase diagram of the flagged Clifford circuit
showing both the purification (pent

c ) and absorbing (pabs
c ) transitions,

as a function of p and of the inverse onsite Hilbert space dimension
(q + 1)−1.

In addition, the classical flags define the effective TN in
which the dynamics take place, so we have once again that
the absorbing-state transition corresponds to a DP transition
for the geometrical connectivity of the ETN. In conclusion,
we can directly repeat all the arguments presented for the
Haar-random model.

In the next section, we will test our predictions via numer-
ical computations. We will restrict to the Clifford model of
Sec. III B, which allows us to reach large system sizes and
simulation times.

V. NUMERICAL RESULTS FOR THE FLAGGED
CLIFFORD CIRCUIT

We finally present our numerical results for the flagged
Clifford model introduced in Sec. III B. The computations are
performed using standard techniques, e.g., Refs. [45,61] for
details.

We begin with the schematic phase diagram in Fig. 4.
The two parameters of the model are the measurement rate
p, and the onsite Hilbert space dimension q + 1, respec-
tively. The absorbing transition occurs at pabs

c = p̃c � 0.3553
[cf. Eq. (19)] for all values of q + 1. The entanglement
transition coincides with the absorbing transition only at
q + 1 → ∞, and is separated from the latter for any finite
q + 1.

The phase diagram is only schematic because q + 1 is
discrete. An additional subtlety is that the universality class
of the MIPT can vary with q + 1. In Clifford circuits, it is
standard to take q + 1 = qM

0 [62], where q0 is a prime number
and M is an integer. Thus, to have a series of different q,
we could either (i) increase the value q0 while fixing M = 1,
or (ii) fix q0 and increase M. As discussed in Ref. [48,61],
the two series are not equivalent, as the symmetry group of
the associated effective statistical mechanics model—which
determines the universality class of the MIPT—depends on q0,
but not on M. This subtlety is specific to Clifford circuits: for
Haar-random circuits, the MIPT universality class is believed
to be independent of q.

From the point of view of the renormalization group, the
simplest choice would be to study the series (ii), so that all the
all examined points on the blue line in Fig. 4 correspond to
the same universality class. However, to access q + 1 = qM>1

0 ,
one needs to group M elementary qudits of dimension q0 to

form a large qudit of dimension q. Numerically, this would
reduce the largest accessible system size by a factor of M,
which is rather undesirable.

For this practical reason, we consider series (i), where we
fix q + 1 = q0 and increase the prime q0, which introduces
only minimal numerical overhead. Thus, the points on the
blue line in Fig. 4 that we examine, for different q + 1, in
fact correspond to distinct universality classes of MIPT, albeit
with broadly similar scaling properties (e.g., conformal invari-
ance). Despite this subtlety, our choice of values for q + 1
can still illustrate our main point, namely the separation of
the MIPT and absorbing transitions at finite values of q + 1,
and the crossover between the two transitions at large values
of q + 1. Previously this method was used to probe such a
crossover in MIPTs without feedback [61].

After this digression, we can now discuss numerical evi-
dence for the phase diagram in Fig. 4.

A. Absorbing transition and the q + 1 → ∞ limit

As mentioned in the previous section, the order parameter
for the absorbing transition, n = 〈P〉, is proportional to the
flag density ncl, giving the following standard scaling form
near the critical point [25]:

n(t, L, p) = t−α · F

(
t

ξ‖
,

L

ξ⊥

)
. (29)

Here, t is the time (i.e., circuit depth), L is the length of the qu-
dit chain, F is a universal function, and α is a critical exponent
of directed percolation. The variables ξ‖ and ξ⊥ are the previ-
ously introduced time and space correlation lengths, respec-
tively. As mentioned, they diverge near the critical point as

ξ‖,⊥ ∝ ∣∣p − pabs
c

∣∣−ν‖,⊥
, (30)

where

z = ν‖/ν⊥ (31)

is the dynamic exponent of DP. We have z > 1, signaling the
anisotropy of the DP cluster. For reference, the numerical
values of the critical exponents are [25]

α ≈ 0.159, ν‖ ≈ 1.733, ν⊥ ≈ 1.097, z ≈ 1.581. (32)

We may rearrange the variables in the scaling form Eq. (29)
so that

n(t ) = L−z·αF̃
((

p − pabs
c

) · L1/ν⊥ , η := t · L−z
)
, (33)

where η sets the dimensionless aspect ratio and

F̃ (0, η) ∝ η−α, as η → 0. (34)

We numerically verified Eq. (33), as shown in Fig. 5. We also
report a typical snapshot of the classical-flag dynamics in
Fig. 3, both below, at, and above the critical rate pabs

c .
As we have a good analytic understanding of the order

parameter n(t ), from now on we focus on entanglement en-
tropies averaged over trajectories, whose behavior is less
obvious. A nontrivial check of the phase diagram is the limit
q + 1 → ∞ where the MIPT and the absorbing transition
coincide, as the entanglement entropy saturates the minimal
cut of the active DP tensor network [55]. In particular, with
a maximally mixed initial state, we expect the entropy of the
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FIG. 5. Numerical results for the order parameter of the ab-
sorbing transition, n = 〈P〉, from a direct simulation of the flagged
Clifford circuit at q + 1 = 997. The two panels are different cross
sections of the scaling function F̃ in Eq. (33), at (p − pabs

c ) · L1/ν⊥ =
0 and at η = t · L−z = 4.0, respectively.

state [computed for each quantum trajectory, then averaged
over trajectories, see Eq. (5)] to obey the following scaling
form:

SQ(t, L, p) = ln(q + 1) · GDP
((

p − pent
c

) · L1/ν⊥ , t · L−z
)
,

(35)

where pent
c = pabs

c in this limit q + 1 → ∞, coinciding also
with p̃c in (19). Here the we use SQ to denote the mixed-state
entropy S from Eq. (5). The subscript Q denotes the set of all L
qudits, rather than any subset of them. We confirm this scaling
form by numerical results at q + 1 = 997, as shown in Fig. 6.
At q + 1 = 997, the distance between the two transitions,
δp = |pent

c − pabs
c |, is too small to be numerically resolvable.

B. Entanglement transition at finite q + 1

We now turn to finite values of q + 1. Recall that pabs
c in

Fig. 4 is a (q + 1)-independent constant that follows from
the standard model of DP, whereas the purification transition
pent

c is pushed away from pabs
c by 1/(q + 1) fluctuations as we

decrease q. We mostly focus on q + 1 = 2, where |pent
c − pabs

c |
is largest, so that finite-size crossover effects are negligible.
We leave discussions of large values of q and the associated
finite-size crossover to Sec. V C.

FIG. 6. Scaling collapse of the entropy SQ starting from a maxi-
mally mixed initial state, for large q + 1 = 997, using DP exponents.
We plot different cuts of the scaling function (35), with fixed x =
(p − pent

c ) · L1/ν⊥ and pent
c ≈ p̃c in Eq. (19). For q + 1 = 997, the

purification transition effectively coincides with the DP transition,
as the separation between the two cannot be resolved numerically.

A notable difference between the universal properties of
the MIPT (at finite q) and of the absorbing transition is that the
former are isotropic in spacetime, with dynamical exponent
z = 1, and also conformally invariant. Here we give evidence
for this conformal invariance at p = pent

c for the value q + 1 =
2. Conformal invariance also provides strong constraints on
the functional forms of the entanglement entropies, and al-
lows us to extract critical exponents [47]. For the case of the
purification of a maximally mixed initial state with periodic
spatial boundary conditions, the entropy of the state follows
the scaling form

SQ
(
t, L, p = pent

c

) = G(q+1)
MIPT (τ ), (36)

where τ = vt/L is the aspect ratio of the circuit, where v is
a model-dependent velocity that has to be determined sepa-
rately,1 and G(q+1)

MIPT (τ ) is a universal scaling function with the
following asymptotic form as τ → 0:

G(q+1)
MIPT (τ ) = ha|b πτ−1, τ � 1. (37)

Here ha|b is a universal (boundary) critical exponent of the
MIPT. Both the scaling function G(q+1)

MIPT and the exponent ha|b
can depend on q + 1, for the reasons discusssed in Sec. V; we
do not explicitly write this dependence for ha|b.

Moreover, when t/L → ∞, so that the system is in the
steady state (which is pure), the entanglement entropy of a
subsystem A = [x1, x2] must have the following scaling form,
as also dictated by conformal invariance,

SA=[x1,x2]
(
t � L, p = pent

c

) = 2ha|b ln

(
L

π
sin

(
πx12

L

))
,

(38)
where ha|b is the same exponent appearing in Eq. (37).

1This nonuniversal velocity is a property of the bulk of the circuit,
whose value can be fixed independently of ha|b using a conformal
mapping for a circuit with variable depths and open boundary condi-
tions. We refer the reader to Ref. [47] for details.
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FIG. 7. Entanglement scaling and conformal invariance at the
MIPT (purification transition). (a) Purification of a maximally mixed
initial state with periodic spatial boundary condition in the regime
t � L. The entropy SQ of the state obeys the scaling form (37),
allowing us to extract the critical exponent ha|b ≈ 0.52. The value
is consistent with previous findings, see Ref. [47]. (b) Entanglement
entropy of a subsystem A = [x1, x2] in the steady-state t � L, obey-
ing the scaling form (38).with the same exponent ha|b. The initial
state is taken here to be a pure product state.

For q + 1 = 2, our numerical results are shown in Fig. 7.
They are in good agreement with the scaling forms (36)–(38).
Here, we estimate pent

c ≈ 0.1563 from the best fit of numerical
data to the scaling form in Eq. (38), shown in Fig. 7(b),
and v ≈ 0.59 using the method based on conformal mapping,
described in footnote 1 and Ref. [47]. Moreover, the data
appears consistent with a value of ha|b ≈ 0.52, close to that
of the q + 1 = 2 MIPT without feedback [47], suggesting that
the entanglement transitions in the adaptive and nonadaptive
models are in the same universality class.

We have also verified conformal invariance at q + 1 = 3, 5,
and find that the results are again consistent with values of ha|b
found previously [61] (data not shown).

C. Finite-size crossover behavior

When q is large but finite there is a crossover between a
regime at smaller lengthscales, where entropies are set by the
properties of directed percolation clusters, and the asymptotic
large scale regime which shows more generic MIPT behavior.

First, consider the simpler setting where q = pM
0 , with a

fixed prime p0 (see the discussion at the beginning of Sec. V).
When M is large, δp = |pent

c − pabs
c | is small. The simplest

conjecture is that there is a single lengthscale controlling the
crossover, together with the associated timescale. Then SQ is
described by the following universal crossover scaling form at
large t and L:

SQ
(
t, L, p = pent

c

) = �

(
ηt := t

ξ

‖
, ηx := L

ξ

⊥

)
, (39)

where for simplicity we have set p equal to the location
of the MIPT, and where ξ


‖,⊥ = |pent
c − pabs

c |−ν‖,⊥ are the
correlation time/length scales determined by the distance
between this point and the absorbing transition. These may
be thought of as the crossover time/length scales: assuming
that pent

c − pabs
c ∼ 1/q as in the Haar case (Sec. IV B), then

ξ

‖,⊥ ∼ qν‖,⊥ . We expect the following limiting behaviors of the

scaling function:

�(ηt , ηx ) =
{

ln(q + 1) · G̃DP
(
ηt

/
ηz

x

)
for ηt , ηx → 0,

G̃MIPT(ηt/ηx ) for ηt , ηx → ∞.

(40)

The functions G̃DP and G̃MIPT are those in Eqs. (35) and (36),
respectively, up to O(1) prefactors in the argument. They rep-
resent the different critical behaviors one expects to observe
when the size of the tensor network is below or above the
crossover scales. We note that the scaling functions � and
G̃MIPT can depend on the prime p0.

The case we are studying numerically here, where q is
a prime, is more subtle, since the infrared universality class
depends on q, but we expect a qualitatively similar crossover
between a regime with scaling exponents (for example the
dynamical exponent z) that are set by directed percolation,
and a regime with a dynamical exponent of unity. We numeri-
cally verify these limiting behaviors in Eq. (40) at q + 1 = 11
and plot the results in Fig. 8. We first locate the purifica-
tion transition pent

c by looking at larger system sizes L =
128, 256, and 512 (where ηx � 1), where we observe that SQ

collapses onto a function of the aspect ratio τ = t/L when t
is sufficiently large, as in the case q + 1 = 2. Some deviations
are seen when t is small, as expected. For the smaller system
sizes L = 16, 32, and 64 (where ηx � 1) and for short times,
we observe that SQ instead depends on the anisotropic scaling
variable t/Lz, again as in Eq. (40). The collapse breaks down
at long times (when t gets large), again as expected.

Above, we took the qudit dimension to be a fixed prime,
q + 1 = q0. It would also be interesting to set q + 1 = qM

0 and
to vary M, giving an additional tuning parameter. This would
allow us to extract the exponent μ governing the crossover
scale, ξ


⊥(q) ∼ qμ. It would also be interesting to see whether
data for different M could be collapsed using Eq. (40).

A striking difference between the two kinds of transition
is in the dynamic exponent z. The absorbing transition is
anisotropic in spacetime, with z > 1, while the MIPT at finite
q is asymptotically conformally invariant with z = 1. The
crossover scaling form Eq. (40) implies that the nonuniversal
speed v at the MIPT tends to zero as q → ∞ in this model,
but it is finite for any finite q.

224303-10



TRIVIALITY OF QUANTUM TRAJECTORIES CLOSE TO A … PHYSICAL REVIEW B 107, 224303 (2023)

FIG. 8. Numerical results for the crossover, for relatively large q,
between the DP behavior at small scales and generic MIPT behavior
at large scales (Sec. V C). We focus on q + 1 = 11, and tune to
the critical point of the purification transition, p = pent

c ≈ 0.350. For
larger system sizes L (a) and at long times, we have ηt � 1 and
ηx � 1 (with ηt := t/ξ


‖ , ηx := x/ξ

⊥). In this regime, we expect SQ �

G̃MIPT(ηt/ηx ) as supported by numerics. For smaller system sizes L
(b) and at short times, we have ηt � 1 and ηx � 1. In this regime, the
entire system behaves like a critical cluster of directed percolation,
with entanglement entropies determined by minimal cuts through the
cluster. We expect SQ = G̃DP(ηt/η

z
x ), again consistent with numerical

results. Note the distinct values for the dynamical exponent in the two
regimes.

VI. DISCUSSIONS AND GENERALIZATIONS

In this paper, we have introduced a simple class of models
exhibiting both a measurement-induced entanglement transi-
tion in quantum trajectories and an absorbing-state transition
that is in the DP universality class. Measurements in these
models define an ETN whose entanglement properties deter-
mine the purification (entanglement) transition. This allows us
to show that the entanglement and absorbing-state transitions
are generically distinct and unrelated to each other, except in
the limit of infinite onsite Hilbert space dimension. By formu-
lating a Clifford version of these models using flagged qudits,
we were able to verify those predictions and to analyze the
finite-time crossover between the two transitions numerically.

Our theoretical analysis relied on the simplification that, in
the models considered, the absorbing-state transition can be
directly related to the connectivity of the ETN associated with

a typical quantum trajectory. Heuristically, we now argue that
this logic extends to more general models with a DP transition
into an absorbing pure product state.

In each of the models defined in Sec. III, a simple micro-
scopic rule for “flagging” bonds was sufficient to define an
ETN with two properties: (1) the connectivity phase transition
of the ETN coincided with the physical absorbing-state transi-
tion; and (2) the ETN faithfully reproduced the true quantum
dynamics. In the first model, the flags were set by directly
measuring the occupancy of every bond. In the second model,
where the experimentalist had less measurement information,
the flags at a given time also took the previous time-step’s
flags into account.

For more general models these microscopic rules are not
sufficient. As an example, consider a model in which the
measurement and resetting operations take place only on
even-numbered sites, j ∈ 2Z. One can check that it is still
possible to have an absorbing state transition in such a model.2

But if we continued to use the same protocol as in Sec. III B
to define the ETN, then bonds with odd j would always
be flagged as active, so that the ETN would fail to show a
connectivity transition.

To rectify this, we can imagine a more coarse-grained
construction of the ETN in more general models. For con-
creteness, assume the model is such that each trajectory
involves measurements on an order-one fraction of the space-
time bonds.

Recall that if a site is measured and found to be empty, we
can eliminate the corresponding bond from the ETN. On the
other hand, an unmeasured site in general has a nonzero prob-
ability amplitude to be occupied, and so in general cannot be
eliminated from the ETN without inducing some error in the
quantum state represented by the tensor network. However,
we now argue that, close to the DP transition, the occupation
probability is exponentially small for many of the unmeasured
bonds. As a result these bonds can be eliminated from the
ETN with only a very small error. Once this is done we can
repeat (at least at a heurstic level) the argument from Sec. IV B
showing that the two transitions are separated.

When we are close to the DP transition, on the active side,
there will exist large spacetime regions (with spatial sizes up
to order ξ⊥ and temporal sizes up to order ξ‖) inside of which
all of the measured bonds are found to be empty. Generically,
an unmeasured bond has some nonzero amplitude to be active,
and some nonzero amplitude to be inactive. However, deep in
such a region, this amplitude will be exponentially small in the
distance to the active region. (We discuss this for the example
of the model with measurements on even sites in Appendix.)

2Let the probability of a given even-numbered site being reset in
a given time step be p. Let the probability that an arbitrary site
is occupied at a given time t , prior to the resetting operations, be
〈P〉t (if we take a brickwork pattern of Haar-random unitaries, this
probability is the same for even and odd j). Then by bounding 〈P〉t+1

in terms of 〈P〉t and p, we can check that for sufficiently small 1 − p
the occupation probability decays exponentially with time, implying
that the system is in the inactive phase. A more detailed discussion
and simulation of this model is given in Appendix.
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Therefore we expect that if in each trajectory we simply
eliminate these bonds from the ETN, keeping a collar of size
∼R (with 1 � R � ξ⊥) around the active regions, then we
will perturb the location of the entanglement transition only
by an amount that is exponentially small at large R. This then
gives an ETN with the key property that its directed perco-
lation transition coincides with the absorbing state transition,
allowing us to reapply the argument of Sec. IV for the sep-
aration of the two transitions. Making this argument precise
would require slightly more care, in particular in estimating
the cost of a “red bond.”3

In our work, we have considered the setting where the
absorbing state has zero entropy, so that trajectories are man-
ifestly disentangled in the inactive phase. The above analysis
does not apply to more general absorbing states with non-
trivial entanglement scaling. Let us briefly comment on some
models of this type.

It is possible to construct models with transitions that are
in the DP universality class, but where the averaged density
matrix has extensive entropy on both sides of the transition. A
trivial way to do this is to take one of the adaptive qudit chain
models discussed above and “stack” it with a nonadaptive
chain, giving a two-leg ladder geometry (weak interactions
can be switched on between the two legs so long as they
preserve the zero-occupation number state of the first leg).
Tuning both the rate of measurement/control operations in the
first leg and the rate of projective measurements in the second
leg gives a two dimensional phase diagram with both a DP
transition line and an MIPT transition line. In general, the DP
transition is unrelated to the MIPT transition, and can occur
within either the entangled or the disentangled phase.4

Finally, let us conclude with some outlook on future work.
Adaptive dynamics of the type considered here (see also
Refs. [9,12]), featuring local feedback, do not make it possible
to probe the entanglement MIPT using “conventional,” non-
post-selected measurements. The experimental observation of
the MIPT likely requires either heavy postselection [32], or
supplementary (nonlocal) classical computation and decoding
using measurement outcomes [31]—see Refs. [63–67] for
recent efforts in that direction. Indeed, quantum correlations
can be generated nonlocally along postselected trajectories
[47,68–70], whereas correlations of observables in the aver-
aged mixed state strictly obey the Lieb-Robinson bound.

However, even with only local feedback, adaptive quan-
tum dynamics may reveal other universal phenomena that
are interesting in their own right and also experimentally

3This cost should no longer be estimated simply using the min cut
formula for the ETN. The min-cut formula would give something of
order R (for R � 1), because of the collar region we have included.
This is an overestimate, because most of the bonds in the collar
region have an exponentially small amplitude to be occupied, and
so contribute negligibly to the cost of the entanglement domain wall.
The correct scaling is presumably of order R0.

4By tuning two parameters we can access a point where the two
kinds of transition cross. In this case, the critical DP configurations
can be thought of as a source of power-law correlated disorder for the
entanglement degrees of freedom, which can change the universality
class of the MIPT at this point.

accessible [33]. Adaptive operations can also arise naturally
as simplifications of the effect of an environment, mim-
icking for example the decay of an excitation (note that
the quantum automaton circuits whose MIPTs have been
studied in Refs. [71–73] also fall into the category of adaptive
dynamics).

So far in adaptive dynamics we have mostly found critical
phenomena that (if we only have access to the averaged den-
sity matrix, rather than to trajectories) are essentially classical:
that is, at large timescales they typically admit a description
in terms of a simple classical stochastic process for the slow
degrees of freedom. (Diffusion-annihilation of anyons gives
counterexamples, in the form of processes with slow degrees
of freedom that are “nonclassical” and involve long-distance
entanglement [68,74].) Finding examples of nonclassical dy-
namical phase transitions in adaptive quantum dynamics is an
interesting challenge for the future.

Note added. Recently, we became aware of a related work
which recently appeared on the arXiv [75], where the authors
analyze the interplay of absorbing-state and entanglement
transitions in Haar-random circuit models (see also Ref. [34]
for earlier related results). We also became aware of another
closely related Clifford model by Piotr Sierant and Xhek
Turkeshi, which appeared in the same arXiv posting [76].
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APPENDIX: MARKOV PROCESS FOR RESTRICTED
MEASUREMENTS

In this Appendix, we provide more details for the dis-
cussions sketched in Sec. VI, where we argued that our
conclusions are more general than the specific models intro-
duced in Sec. III. We detail in particular the model introduced
therein, cf. footnote 2, deriving the stochastic process for the
particle densities and providing visualization for the resulting
ETN. As mentioned, in this case the latter is not directly
specified by the dynamics of the classical flags, since the
measurements are only performed on a subset of qudits (in
our case the even-numbered ones, see below). In order to
define the ETN, it is necessary also to elimininate bonds with
a nonzero, but very small, occupation amplitude.

There is some freedom here in how to define a bond’s occu-
pation amplitude or occupation probability. For simplicity, we
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FIG. 9. Configurations for the stochastic process defined in Eqs. (A7) and (A12). The binary variable f on even sites is in black ( f = 0) or
white ( f = 1) color. The continuous variable g ∈ [0, 1] on odd sites are represented by gray levels. (a) As q → ∞, the odd, unmeasured sites
are going to be active (g = 1) with probability 1, even in the limit p = 1.0, and there is no connectivity transition (see Sec. VI). Thus, to have a
connectivity transition, we have to be look at finite q. In (b)–(d), we plot the configurations at q = 2 below, near, and above the transition. We
see that there are sites that are “gray.” There are regions in which all sites, whether directly measured or not, are inactive. (e) A configuration
close to the critical point, on the active side.

consider the expected onsite particle density at a given time
on unmeasured (odd) sites, conditioned on the observed occu-
pation numbers—a binary, discrete-valued classical flag—of
each measured (even) site after each of the previous timesteps,
but averaged over all possible trajectories that lead to the
same observed configuration of binary classical flags (includ-
ing the previous random unitary gates and also where the
resetting operations were performed). The resulting quantity
can be easily computed within a simple stochastic process,
when the previous binary classical flags are provided as input.
This expected local average density can then be viewed as
a continuous-valued classical flag. In principle, by imposing
some cutoff ε � 1 for the local density, we could use this flag
as a criterion to eliminate bonds from the ETN (see the dark
regions in Fig. 9 below). Here we simply discuss the effective
stochastic process. We believe the discussion below provides

sufficient evidence for our basic point: typically, inside a large
region where most measurements return “unoccupied,” the
occupation amplitudes of the unmeasured qudits are exponen-
tially small.

Consider a one-dimensional array with L qudits, each with
Hilbert space dimension (q + 1). The circuit evolution is simi-
lar to the model in Fig. 1(b), with block-diagonal unitary gates
arranged in a brickwork circuit, and dilute feedback opera-
tions, as well as single-site measurements of the operators
{M0 = |0〉 〈0| , M1 = P = 1 − |0〉 〈0|} in each timestep. The
only difference is that measurement and feedback operations
are only performed on even-numbered sites. If we redefine the
unit cells such that each contains two neighboring sites (an
odd and an even site), then these measurements can be thought
of as a “partial.” For convenience, in each timestep we make
the measurements of P prior to the resetting operations.
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To describe the time evolution of the particle densities, it
suffices to consider a classical Markov process with classical
variables: on each odd site we have a real number within
g j ∈ [0, 1], and on each even site we have a binary variable
f j ∈ {0, 1}. The variable g j represents the expectation value
of P on qudit j, but the measurement is never physically taken
since j is odd; and the variable f j represents the outcome of
the measurement on qudit j.

The update rules for the pair ( f j, g j+1) ( j even) can be
derived as follows.

(1) f j = 0. We write down the reduced state on qudits j
and j + 1 as

ρ j, j+1 = |0〉 〈0| ⊗ σ j+1, (A1)

where

tr(P j+1 · σ j+1) = g j+1, (A2a)

tr(|0〉 〈0| · σ j+1) = 1 − g j+1. (A2b)

We consider the average output state when a random uni-
tary as in Eq. (9) is applied, which should be diagonal

ρU
j, j+1 = EUUρ j, j+1U

† = (1 − g j+1) |00〉 〈00|
+ gj+1

q(q + 2)
(1 − |00〉 〈00|). (A3)

Following the random unitary gate, a measurement of P is
performed on qudit j. We can calculate the probabilities for
the two outcomes separately (recall that the projectors for the
measurement are {M0 = |0〉 〈0| , M1 = P = 1 − |0〉 〈0|})

pM0 = tr
[
ρU

j, j+1 · (M0) j
]

= (1 − g j+1) + q · g j+1

q(q + 2)
, (A4a)

pM1 = tr
[
ρU

j, j+1 · (M1) j
]

= q(q + 1) · gj+1

q(q + 2)
, (A4b)

and we have to update gj+1 accordingly after the state is
collapsed onto the measurement outcome,

gM0
j+1 = tr

⎡⎣P j+1 · ρU
j, j+1 · (M0) j

tr[ρU
j, j+1 · (M0) j]

⎤⎦ =
q·g j+1

q(q+2)

(1 − g j+1) + q·g j+1

q(q+2)

= g j+1

1 + (1 − g j+1)(1 + q)
, (A5a)

gM1
j+1 = tr

⎡⎣P j+1 · ρU
j, j+1 · (M1) j

tr[ρU
j, j+1 · (M1) j]

⎤⎦ =
q2·g j+1

q(q+2)
q(q+1)·g j+1

q(q+2)

= q

q + 1
. (A5b)

Recall that, after measuring M1 on qudit j, we perform with probability p a resetting operation to restore the qudit to the state
|0〉 〈0|. Summarizing, the rules are as follows:

with prob. pM0 : (0, g j+1) → (
0, gM0

j+1

)
, (A6a)

with prob. p · pM1 : (0, g j+1) → (
0, gM1

j+1

)
, (A6b)

with prob. (1 − p) · pM1 : (0, g j+1) → (
1, gM1

j+1

)
. (A6c)

To reduce the number of samples needed in the numerical simulation, we may “combine” the first two branches, i.e., average
over the two possible ways for f j to get to zero at the end of the time step:

with prob. pM0 + p · pM1 : (0, g j+1) →
(

0,
pM0 · gM0

j+1 + p · pM1 · gM1
j+1

pM0 + p · pM1

)
, (A7a)

with prob. (1 − p) · pM1 : (0, g j+1) → (
1, gM1

j+1

)
. (A7b)

If we average the new value of g j over the two branches,
weighted by their corresponding probabilities, we have
g j+1(t + 1) = q+1

q+2 g j+1(t ), that is, it is monotonically decreas-
ing when the neighboring classical flag f j = 0. This is the key
point. In an “inactive” subregion where the binary classical
flags are zero, the value of g j+1 is typically exponentially
small in the distance to the boundary of the inactive region.
In this model the scaling is simple: if the two neighbors of

site j + 1 are unoccupied for a time τ , then after this time
g j+1 � ( q+1

q+2 )τ .
(2) f j = 1. In this case, we have

ρU
j, j+1 = 1

q(q + 2)
(1 − |00〉 〈00|), (A8)
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and

pM0 = tr
[
ρU

j, j+1 · (M0) j
] = q

q(q + 2)
, (A9a)

pM1 = tr
[
ρU

j, j+1 · (M1) j
] = q(q + 1)

q(q + 2)
, (A9b)

gM0
j+1 = tr

⎡⎣P j+1 · ρU
j, j+1 · (M0) j

tr
[
ρU

j, j+1 · (M0) j
]
⎤⎦ = 1, (A10a)

gM1
j+1 = tr

⎡⎣P j+1 · ρU
j, j+1 · (M1) j

tr
[
ρU

j, j+1 · (M1) j
]
⎤⎦ = q

q + 1
. (A10b)

Recall that, after measuring M1 on qudit j we per-
form with probability p a “feedback” to restore the qu-
dit to the state |0〉 〈0|. Summarizing, the rules are as
follows:

with prob. pM0 : (1, g j ) → (
0, gM0

j+1

)
, (A11a)

with prob. p · pM1 : (1, g j ) → (
0, gM1

j+1

)
, (A11b)

with prob. (1 − p) · pM1 : (1, g j ) → (
1, gM1

j+1

)
. (A11c)

We may combine the first two processes as in the previous
f j = 0 case, in a similar manner

with prob. pM0 + p · pM1 : (1, g j+1) →
(

0,
pM0 · gM0

j+1 + p · pM1 · gM1
j+1

pM0 + p · pM1

)
, (A12a)

with prob. (1 − p) · pM1 : (1, g j+1) → (
1, gM1

j+1

)
. (A12b)

On average g j+1(t + 1) = q+1
q+2 , regardless of the value of

g j+1(t ). Thus, when the neighboring classical flag f j = 1, it
acts like a bath that puts g in a local equilibrium.

We simulate this stochastic process, starting with the initial
state f j = 1 for all even j and g j = 1 for all odd j. We plot
several configurations in Fig. 9.
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