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Theoretical physicists studying black holes have produced a conjecture that random 
quantum circuits cannot be simplified. Now, a minimal version of this conjecture has been 
proven, reaching a milestone in quantum-circuit complexity theory. 

Take a collection of qubits initialized in a simple state and consider applying a sequence of 
random two-qubit gates. One may ask whether the same output state can be prepared using a 
substantially shorter sequence of judiciously chosen operations. Surprisingly, this question has 
arisen in the holographic description of black-hole physics, in which the growth of a wormhole's 
size has been proposed to correspond to the growth of complexity in quantum dynamics. This 
idea implies the conjecture that the answer is no, a random sequence of gates cannot be 
shortened unless its length approaches a value that is exponentially large in the number of qubits. 
Now, writing in Nature Physics,1 Jonas Haferkamp and collaborators report an unexpectedly 
simple proof of this conjecture. 

The complexity of a computation is a measure of the resources needed to perform it. For 
instance, the complexity of a classical Boolean function may be defined as the minimal number of 
elementary operations such as AND or NOT gates needed to evaluate it. This notion extends to 
the quantum domain, where it can be defined in different ways, depending on the context. 
Quantum circuits, which are sequences of elementary reversible operations (quantum gates) acting 
on pairs of qubits, provide a simple and intuitive way to do so: The quantum-circuit complexity of 
a unitary transformation or quantum state is the number of gates in the shortest quantum circuit 
that implements the unitary operation or prepares the state. 

This notion of quantum-circuit complexity has recently risen to prominence due to connections 
with the description of eternal black holes, in the context of the anti-de-Sitter-space/conformal-
field-theory (AdS/CFT) 'holographic' correspondence, which states that a gravitational theory 
defined on the anti-de Sitter space is equivalent to a conformal quantum field theory which can be 
defined at its boundary, with a 'dictionary' for translating calculations between the two theories. 
Eternal black holes are a special solution to Einstein’s equations of gravity, partitioning the space-
time into distinct regions connected by a wormhole.  Calculations of the wormhole volume show 
that it grows linearly until it reaches a maximum size that is an exponential function of the black 
hole's entropy.  

 Within the AdS/CFT correspondence, the wormhole size should therefore be dual to some 
quantity in the boundary conformal field theory. Like the wormhole, this quantity should reach an 
equilibrium value only after a time which is exponentially large in the number of degrees of 
freedom. However, all local observables are known to reach equilibrium values much faster than 
this, so they cannot be dual to the wormhole size – a conundrum known as the wormhole-growth 
paradox. As a possible resolution, it was put forward2–5 that the wormhole volume is dual to the 



quantum complexity of the boundary state. The AdS/CFT correspondence then produces a 
natural conjecture that the growth of quantum complexity in sufficiently chaotic unitary dynamics 
should, like the wormhole volume, grow linearly for a time which is exponentially large in the 
number of degrees of freedom5,6. 

In general it is difficult to analyze the evolution of large quantum systems but the conjecture 
can be stated in an elementary way using an idealized 'random circuit' toy model for chaotic black-
hole dynamics (Fig. 1). Consider using a sequence of random two-qubit gates to construct a large, 
complicated quantum operator acting on a collection of qubits. The arrangement of the gates is 
immaterial to the asymptotic behaviour, provided that the circuit displays some minimal connectiv-
ity. Brown and Susskind5,6 conjectured that the complexity of the final state grows linearly with the 
number of random gates in the circuit, saturating after exponentially many time steps. 

While this conjecture has been supported by simple counting arguments,4,7 obtaining a rigorous 
proof appeared to be quite challenging. The core difficulty is that the gates performed early in a 
circuit may partially reverse gates performed later and therefore one can rarely rule out the 
existence of a smaller 'shortcut' circuit that generates the same unitary operator. 

In their work, Haferkamp and colleagues achieved an unexpectedly short, rigorous proof of 
this conjecture, using an innovative combination of techniques from differential topology and 
elementary algebraic geometry. On a high-level, the proof shows that random circuits of a given 
size realize an ensemble of unitary operators that is too random to consist mostly of shorter 
circuits. They introduced a characterization of the unitary operators that can be generated with a 
fixed arrangement of gates, and showed that it serves as a good proxy for quantum complexity. By 
deriving strong lower bounds on this complexity measure, the authors were ultimately able to 
prove the conjecture. 

The main theorem is stated in terms of an explicit lower bound on the complexities of random 
unitary operators and states. The bound is linear in the number of gates, with a coefficient depending 
on the specific arrangement of the gates in the circuit. This theorem complements another rigorous 
insight achieved in an independent work by Brandão and collaborators,8 focusing on a more 
operational notion of complexity, for which linear growth could be proven in a limit where the gates 
act on high-dimensional quantum systems. 

Several questions remain open. Most prominently, an outstanding problem is to extend the 
result to typical, non-random time-independent Hamiltonian evolution, which would prove the 
strongest version of the conjecture by Brown and Susskind. While this problem is considerably 
more complicated, significant evidence suggests that the conjecture remains true.9,10 Overall, our 
comprehension of quantum complexity in high-energy and many-body physics is still in its 
infancy. Still, the work by Haferkamp and colleagues represents a very important step towards 
establishing its physical significance, substantiating the evidence that studying quantum-circuit 
complexity is the right approach to resolve the wormhole-growth paradox. 
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Figure 1: A quantum circuit made by random two-qubit gates (a) A random quantum circuit 
is a sequence of two-qubit gates (light rectangles) arranged to form a composite operation acting 
on many qubits. The gates need not to act on neighboring qubits, but the architecture must satisfy 
some minimal connectivity requirement. Each gate is drawn randomly from a uniform probability 
distribution in the space of two-qubit unitary operators. The size of a given circuit is the number 
of gates it contains. (b) For a system of n qubits, Haferkamp and collaborators proved that the 
complexity grows linearly under random quantum-circuit evolution until times exponential in the 
number n of qubits.

 


