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We demonstrate a source for correlated pairs of atoms characterized by two opposite momenta and two
spatial modes forming a Bell state only involving external degrees of freedom. We characterize the state of
the emitted atom beams by observing strong number squeezing up to −10 dB in the correlated two-particle
modes of emission. We furthermore demonstrate genuine two-particle interference in the normalized
second-order correlation function gð2Þ relative to the emitted atoms.
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Correlated and entangled pairs constitute a fundamental
tool in the hands of a quantum engineer [1] with a wide
range of possible applications, from probing fundamental
questions regarding the nature of the quantum world, to
building blocks for quantum communication and quantum
computers, to sensors and development of metrological
devices [2]. Many beautiful fundamental and applied
experiments have been performed with entangled pairs
of photons [3]. In recent years huge progress was made in
creating entangled states of massive particles, most promi-
nently in the context of developing fundamental building
blocks for quantum logic operations. The interest is also
motivated by performing a Bell test using massive particles,
as in spin correlations between protons [4], electrons [5],
ions [6], Josephson phase qubits [7], and atoms [8].
The above experiments were performed for internal

states, furthermore all except the proton experiment
employed localized systems. Here we will focus on external
degrees of freedomof freely propagating pairs of atoms. The
most direct way to produce them is by collisions, which can
either be accomplished by collisional deexcitation in a
quantum degenerate sample in an excited motional state
in a trap or waveguide [9], by designing the dispersion
relation using a lattice [10–12], or by colliding two con-
densates with different momenta and looking at the scatter-
ing halo [13,14].
In this Letter, we present a source of double twin-atom

beams (DTBs): beams of atoms emitted in pairs with
opposite momenta (twin atoms) traveling in a double
waveguide potential. This has two advantages. On the

one hand, it forces the emission along the waveguide; hence
it is more efficient than experiments where the emission
happens in free space [13,15,16]. On the other hand, the
presence of two such parallel waveguides allows the
possibility for the twin pair to be emitted into either
the left waveguide (L waveguide) or into the right wave-
guide (Rwaveguide); hence an entangled state of two atoms
only involving motional degrees of freedom is possible. We
measure momentum correlations between the atoms in the
pairs and observe a fringe pattern in the normalized second-
order correlation function gð2Þ that stems from a two-particle
interference phenomenon. The fundamental idea at the basis
of this experiment is discussed in more detail in Ref. [17].
Our experiment starts with preparing a one-dimensional

(1D) quasi-Bose-Einstein Condensate (BEC) [18] of 600–
2000 atoms (T ≲ 40 nK) magnetically trapped in a tight
transverse anharmonic potential (νy;z ≃ 2 kHz) with a
shallow longitudinal harmonic confinement (νx ≃ 10 Hz)
created below an atom chip [19]. The experimental pro-
cedure to create the DTBs [Figs. 1(a) and 1(b)] begins with
splitting the 1D trapping potential into a double-well
potential [20]. The splitting ramp is designed by optimal
control to achieve state inversion, that is, the 1D quasi-BEC
is transferred to the second transversely excited state of the
double-well potential, the desired source state. In particu-
lar, a potential barrier with a time-varying height is first
created along the y axis. During a certain time interval, the
barrier height is lifted up and down symmetrically with
respect to the minima of the two wells and finally settled at
a value which determines the final double-well geometry.
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When the amplitude of the rf field is increased, the distance
between the two minima increases. The manipulation of the
transverse potential is achieved by radio-frequency
dressing [21,22]. The precise amplitude of the applied rf
field is determined by optimal-control techniques (see
Supplemental Material [23]).
The final potential along the y axis is displayed in

Fig. 1(b), together with the corresponding single-particle
eigenstates. The states are labeled jnyi with the vibrational
quantum number along the y axis ny ¼ 0, 1, 2 (since along
the other transverse direction nz ¼ 0 during the whole
experiment, we have dropped the corresponding index).
The second excited state (green) j2i has an energy ϵ=h ¼
ν2 − ν0 ≃ 1.3 kHz and represents the source state. The two
lowest eigenstates, j0i (light blue) and j1i (orange), have an
energy difference E1 − E0 ≪ minfϵ; μg, where μ is the
chemical potential [31], and thus are assumed to be
degenerate. In Fig. 1(c), the localized left- jLi and right-
well state jRi of the double-well potential are displayed
(blue and red curves ,respectively). The two basis repre-
sentations are linked by the relations j0i ¼ ðjLi þ jRiÞ= ffiffiffi

2
p

and j1i ¼ ðjLi − jRiÞ= ffiffiffi

2
p

.
A binary collision between two atoms in the source state

can lead to the emission of a pair of twin atoms (for an
extensive study of the emission process, see Ref. [32]).
Because of momentum conservation, the atoms are emitted
with opposite momenta along the shallow longitudinal
direction (x axis), which constitutes the first pair of modes
available to each indistinguishable atom. The residual
potential energy ϵ from the source state gets translated
into kinetic energy of the emitted twin pairs. This deter-
mines a selection of only two longitudinal momenta
�k0 ¼ � ffiffiffiffiffiffiffiffiffi

2mϵ
p

=ℏ. Furthermore, the presence of a dou-
ble-well potential along the tightly confined transverse

direction (y axis) defines an additional spatial degree of
freedom represented by the left jLi and right state jRi in
Fig. 1(c), thus bringing to four the total number of modes
available to each indistinguishable atom.
The twin pair is created by s-wave scattering (δ-function

interaction) between two bosonic atoms in the source state
and emitted along the symmetric double waveguide with
negligible overlap between the jLi and jRi states. For
bosonic particles the state of the atom pair is expected to be
in the maximally entangled state:

jΨDTBi ¼
1
ffiffiffi

2
p ðjLi−jLiþ þ jRi−jRiþÞ; ð1Þ

where jii−jiiþ ≡ jii−k0 ⊗ jiiþk0 and i ¼ fL; Rg (for details
on the calculation leading to this result, see the
Supplemental Material [23]). Such a two-particle state is
hereafter denoted as DTB state.
Experimental evidence will be provided hereafter in

favor of the generation of the state in Eq. (1). First, in
the so-called separation procedure we will measure the
classical correlations among the different four single-
particle modes. To do so, we quickly increase the potential
barrier separating the two waveguides before the trap is
switched off. This imparts a large and opposite transverse
momentum onto the L- and R-well states, so that they can
be counted separately. The correlation analysis then lets us
to exclude the emission of jLi−jRiþ and jRi−jLiþ pairs.
However, the same analysis cannot exclude the presence of
mixed states of jLi−jLiþ and jRi−jRiþ with no coherent
superposition. Therefore, in the so-called interference
procedure we release the atomic wave functions of the
emitted beams from the two waveguides; they transversally
expand, overlap, and interfere. A second-order correlation
analysis will then reveal coherent superposition between a

(a) (b) (c)

FIG. 1. Sketch of the experimental procedure. (a) The quasi-BEC (gray) lies initially in the transverse ground state of a single-well
potential characterized by a tightly confined direction (y axis or transverse axis) and a weakly confined direction (x axis or longitudinal
axis, potential curve along this axis not displayed). An rf field with variable amplitude is used to excite the condensate and at the same
time reach a double-well configuration along the y axis. (b) The final double-well potential with its vibrational states along the y axis: the
second-excited state (green), which constitutes the source state, the first-excited (orange), and the ground state (blue) are defined by jnyi,
where ny ¼ 0, 1, 2 is the vibrational quantum number. Two atoms from the source state can collide and decay into a twin pair (opposite
momenta along the x axis). Since the atoms in the twin pair can be emitted either in the symmetric j0i (blue) or the antisymmetric j1i
(orange) transverse state, we define the emitted two-particle state as double twin-atom beam (DTB) state. (c) The DTB state can also be
expressed in terms of the localized left- jLi (blue curve) and right-well state jRi (red curve). The gray arrows represent the process of
quickly lifting up the barrier height and pushing the well’s minima away from each other.
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pair being emitted into the L waveguide and the same pair
being emitted into the R waveguide, hence excluding the
presence of only mixed states of such twin pairs. Moreover,
the specific quantum superposition detected in this experi-
ment is consistent with the predicted zero relative phase
between the L and R twin pairs in Eq. (1).
Independently of the experimental procedure, the trap is

held for a certain holding time thold. The BEC undergoes a
free-fall stage and expands for a time of flight of 44 ms
before the atoms are detected by traversing the light sheet
of our single atom imaging detector [33]. Because of the
long time of flight, the image shows the y axis in situ
momentum distribution of the atoms (see Supplemental
Material [23]).
Separation procedure.—In order to resolve the trans-

verse states, we imprint an extra transverse acceleration.
This is done by a quick rise of the potential barrier between
the L and R well [Fig. 1(c)].
A typical image resulting from the separation procedure,

averaged over many repetitions, is plotted in Fig. 2(a). This
set of data involves an average of 75 DTB pairs produced in
each repetition. The averaged image shows the remaining
BEC at the center and four DTB zones, L−, R−, Lþ, Rþ
(black boxes), defined by the two transverse states jLi and
jRi and the two longitudinal momenta �k0. We consider
the correlations among two signals contained in any pair of
the black boxes defined in Fig. 2(a). This defines a certain
number of combinations of two DTB modes, each of which
is labeled with an index [see Fig. 2(b)]. For each combi-
nation of modes, we compute the value of the number-
squeezing parameter:

ξ2 ¼ ΔS2−
ΔbS2−

− ξ2n; ð2Þ

where ΔS2− represents the variance of the signal difference
S− between the two boxes considered, ΔbS2− denotes the

corresponding binomial variance, and ξ2n the noise con-
tribution to the squeezing parameter (see the Supplemental
Material [23]). A value of ξ2 < 1 defines a number-
squeezed emission.
In Fig. 2(c), the number-squeezing value ξ2 is displayed

as vertical bars as a function of the different combinations
of DTB modes considered (the actual values are also
expressed in Table I). We observe that the different
combinations of DTB modes can be classified in three
groups depending on the value of the number squeezing:
(a) ξ2 ≈ 0 for LL;RR; long, (b) ξ2 ≈ 1 for LR; RL;R−L−,
and (c) ξ2 ≈ 2 for trans. The group (a) refers to correlations
between atoms that have opposite longitudinal momenta
and belong to the same waveguide (LL or RR) or to any of
them (long). This characteristic defines atoms belonging to
the same twin pair [see Eq. (1)]; hence we find ξ2 < 1. The
group (b) refers to atoms that do not belong to the same
twin pair, either because these combinations of DTB modes
mix different waveguides (LR and RL) or because they
consider atoms with the same longitudinal momenta
(R−L−); hence the signals are uncorrelated and we find
ξ2 ≈ 1. The last group (c) contains the combination trans,
which compares the total signal between the L and R
waveguides. Given the state in Eq. (1), we expect twin pairs
to be detected either in the L or in the Rwaveguide, without
correlation between these two modes. However, each atom
is part of a twin pair, so the atom detection is not trans

(a) (c)(b)

FIG. 2. Intramode correlations. (a) Experimental fluorescence image averaged over 825 experimental runs obtained with the
separation procedure. Each run involves 2000–2200 total atoms, in average 150 of which are DTB atoms (75 pairs). The long time of
flight makes the initial y-axis momentum distribution accessible (see Supplemental Material [23]). The central cloud corresponds to the
source state, while the emitted DTB atoms are found at �k0. The black boxes define the regions used for the correlation analysis.
(b) Color scheme definition of the different combinations of DTB modes considered. (c) Histogram of different number-squeezing
values ξ2 for each combination of DTB modes defined in (b).

TABLE I. Number squeezing. Noise-corrected atom number
squeezing for different combinations of the four DTB modes.

thold (ms) ξ2LL ξ2RR ξ2LR ξ2RL ξ2L−R−
ξ2trans ξ2long ξ2n

0.025 0.11 0.12 1.14 1.14 1.13 2.19 0.10 0.078
0.425 0.19 0.19 1.13 1.07 1.12 2.07 0.14 0.076
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uncorrelated. In terms of the statistics of individual
atoms, we find ξ2trans ¼ 2 (see also the Supplemental
Material [23]).
These results are compatible with the generation of a

maximally entangled state as in Eq. (1), but also with a two-
particle mixed state of jLi−jLiþ and jRi−jRiþ. To exclude
this case we need to look at the two-particle interference
pattern.
Interference procedure.—In our experiment, each twin

pair can be emitted in either the L or R waveguide. These
represent two two-particle quantum paths that interfere with
equal amplitude (balanced double well) when performing
an interference measurement procedure; i.e., we avoid
imprinting an extra transverse acceleration [Fig. 1(c)].
Unlike the single-particle case where an interference
pattern is visible already in the mean density in momentum
space (one-particle property), in the two-particle case we
need to look at two-particle properties in order to extract
information on the final state [17].
If the DTB emission preserves the coherence of the

quasi-BEC, the DTB state shows two-atom interference in
the second-order correlation function gð2Þðky−; kyþÞ linking
atoms of opposite momenta:

gð2Þðky−; kyþÞ ¼
hnðky;−k0Þnðky;þk0Þi
hnðky;−k0Þihnðky;þk0Þi

; ð3Þ

where ky is the transverse wave vector and nðky;�k0Þ is the
single-particle density profile along the transverse axis at
the two longitudinal momenta �k0. The particular fringe
pattern in gð2Þðky−; kyþÞ depends on the underlying density
matrix associated to the DTB state [17]. Maximal contrast
requires identifying the partners in each atom pair. In a low-
pair emission regime, we emit an average of 10 DTB pairs

in each experimental run. Averaging over the pairs will
reduce the contrast in the observed interference.
In Figs. 3(a) and 3(b), we compare the simulated

unnormalized Gð2Þðky−; kyþÞ ¼ hnðky;−k0Þnðky;þk0Þi and

experimental gð2Þexptðky−; kyþÞ patterns: Fig. 3(a) shows the
theoretical fringe pattern assuming a two-particle state of
the form Eq. (1); Fig. 3(b) shows the experimental

gð2Þexptðky−; kyþÞ pattern averaged over 1498 experimental runs.
The number of visible fringes depends on the value of the
wells spacing 2y0 between the two potential waveguides. In
order to compare the theoretical pattern (a) with the
experimental one (b), we use 2y0 ¼ 1.3 μm. This value
is obtained from a simulation of the final double-well
potential that was calibrated to match with the experiment.
The white box in Fig. 3(b) defines the integration area for

the profiles in Fig. 3(c): the double arrow defines the
integration axis, while the single arrow illustrates the
transverse momentum coordinate ky [horizontal axis in
Fig. 3(c)]. The projected pattern shows clear fringes with a
period consistent with the double well and a contrast
C ¼ 0.032� 0.004. In order to ensure that the central
fringe is not originating from the envelope, we compare the
fringe profile with the mean profile obtained considering
only the product of the independently averaged profiles
hnðky;−k0Þihnðky;þk0Þi (blue dashed curve).
This fringe pattern in the measured gð2Þðky−; kyþÞ

[Figs. 3(b) and 3(c)] combined with the absence of an
interference fringe in the single-particle density is one of
the central results of our experiment and it constitutes direct
evidence for genuine two-particle interference. For a
statistical mixture of the states jLi−jLiþ and jRi−jRiþ,
one would expect a flat profile gð2Þðky−; kyþÞ ¼ 1. Combined
with the measurements of the number-squeezing correla-
tions between the four guided DTB modes in Table I and
following Ref. [17], our experiment shows that a significant

(a) (b) (c)

FIG. 3. Two-particle interference pattern. (a) Theoretical unnormalized Gð2Þðky−; kyþÞ ¼ hnðky;−k0Þnðky;þk0Þi pattern assuming a

DTB state of the form Eq. (1). (b) Experimental gð2Þexptðky−; kyþÞ pattern. This set of data involves 1498 experimental runs, where each run
contains 700–760 total atoms, 20 of which are DTB atoms (10 pairs), on average. (c) One-dimensional mean profiles obtained from

averaging along the diagonal within the white box superimposed in Fig. 3(b). The mean antidiagonal profile of gð2Þexptðky−; kyþÞ (black dots)
is compared to the mean antidiagonal profile of hnðky;−k0Þihnðky;þk0Þi (light blue curve). The red curve represents a fit of the data

from which we extract a value of the contrast of the two-atom interference C ¼ 0.032� 0.004. Units are scaled by the diagonal
ffiffiffi

2
p

factor and then normalized by the wells spacing 2y0 ¼ 1.3 μm. The shaded areas represent the standard error of the mean.
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fraction of atom pairs are emitted in the maximally
entangled state of Eq. (1). This is a “lucky” situation
where the reconstruction of the full density matrix of the
two-particle state (and hence an entanglement demonstra-
tion) is in principle possible without any phase rotation, just
by looking at the two-particle interference pattern [17]. We
attribute the low contrast of C ¼ 0.032� 0.004 in our
present experiment to the relatively large number of 10
pairs emitted on average in each measurement, thereby
washing out the interference pattern.
Our experiments show a path toward a quantitative

demonstration of entanglement for propagating atom
beams in such a system as suggested in Ref. [17]. In
order to achieve this goal we need to significantly
increase the contrast of the two-particle interference,
which will require a more detailed study of the emission
process and better control over the number of emitted
pairs, down to experiment with single pairs. A phase shift
can be applied to the propagating DTBs by tilting the
double-well potential to introduce an energy difference
between the left- and right-well states, as in Ref. [34]. As
an alternative procedure, one could implement Bragg
deflectors as in Refs. [12,16] to rotate the state after its
generation.
As a more general outlook, we see a huge potential in

exploring nonlinear matter-wave optics for atoms propa-
gating in waveguides and integrated matter-wave circuits.
The processes behind the twin-atom emission are closely
related to the matter-wave equivalents of parametric ampli-
fication and four-wave mixing. We envision the develop-
ment of nonlinear matter-wave quantum optics. The
creation of entangled atom-laser beams in twin-beam
emission above threshold would be one directly accessible
example.
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