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We present a consistency condition for 8D N ¼ 1 supergravity theories with nontrivial global structure
G=Z for the non-Abelian gauge group, based on an anomaly involving the Z 1-form center symmetry. The
interplay with other swampland criteria identifies the majority of 8D theories with gauge groupG=Z, which
have no string theory realization, as inconsistent quantum theories when coupled to gravity. While this
condition is equivalent to geometric properties of elliptic K3 surfaces in F-theory compactifications, it
constrains the unexplored landscape of gauge groups in other 8D string models.
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Introduction.—One of the important lessons from string
theory is that consistency conditions of quantum gravity are
highly restrictive. In the low-energy limit, they result in a
small and possibly finite subset of effective descriptions,
leaving behind a vast “swampland” of seemingly consistent
quantum field theories coupled to gravity [1]. Recent
attempts to specify the swampland’s boundary (cf. [2]
for reviews) have reinforced the idea of string universality:
Every consistent quantum gravity theory is in the string
landscape.
Prototypical examples of string universality appear in 11

and ten dimensions, where low-energy limits of M and
string theory give rise to the only consistent supergravity
theories. In ten dimensions (10D), this requires more subtle
field theoretic arguments [3], or the incorporation of
extended dynamical objects in the theory [4], to “drain”
the 10D supergravity swampland.
In lower dimensions, one observes a broader spectrum of

string-derived supergravity theories, but these nevertheless
show some intricate structures not naively expected from
field theory considerations. For example, the rank rG of
the gauge group in known string compactifications is
bounded by rG ≤ 26 − d in d dimensions and satisfies
rG ≡ 1 mod 8 and rG ≡ 2 mod 8 in d ¼ 9 and d ¼ 8,
respectively. Likewise, not all gauge algebras have string
realizations. In particular, there are no string compactifi-
cations to 8D with soð2nþ 1Þ (n ≥ 3), f4, and g2. Again,
novel swampland constraints [5,6] and refined anomaly
arguments [7] reproduce these restrictions, thus downsizing

the 9D and 8D swampland considerably. (As g2 does not
suffer similar anomalies, it remains an open question if it
truly belongs to the 8D swampland.)
The goal of this work is to provide similar constraints for

the global structure of the gauge group of 8D N ¼ 1
theories, by deriving a field theoretic consistency condition
for the gauge group to take the form G=Z, with Z ⊂ ZðGÞ a
discrete subgroup of the center of G. Taking inspiration
from F theory [8], where the gauge group structure is
encoded in the Mordell-Weil group of the elliptically
fibered compactification space [9–11], it appears that the
allowed gauge groups G=Z are heavily restricted. For
example, there are no 8D string compactifications, includ-
ing constructions beyond F theory, that have gauge group
SUðnÞ=Zn, whereas SUðnÞ groups are ubiquitous.
These restrictions are mathematically well known from

the classification of elliptic K3 surfaces [12,13] (see also
[14]). Focusing on G a simply connected non-Abelian Lie
group [more precisely, the most general gauge group is
½G×Uð1Þr=Z×Zf�, with Z ⊂ ZðGÞ, i.e., Z∩Uð1Þr¼f1g—
in this work, we consider constraints for Z exclusively,
leaving a more detailed study including Zf⊂Z½G×Uð1Þr�≅
ZðGÞ×Uð1Þr, based on Ref. [11], for future work], the
geometry restricts Z; e.g., when Z ≅ Zl, then l ≤ 8.
Moreover, for each of the cases l ¼ 7, 8, there is exactly
one elliptic K3 on which F theory compactifies to an 8D
theory withG¼SUð7Þ3=Z7 and ½SUð8Þ2×SUð4Þ×SUð2Þ�=
Z8, respectively. Analogous restrictions on gauge groups
also appear in heterotic compactifications [15].
A natural question is whether these restrictions reflect

limitations of string theory or previously unknown con-
sistency conditions of quantum gravity in 8D.
In this work, we show that the latter is the case. The key

is to realize a non-simply-connected groupG=Z by gauging
the Z 1-form center symmetry [16,17]. Thus, charting the
swampland of gauge groups G=Z (in any dimension) can
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be equivalently tackled by studying consistency conditions
for gauging Z in gravitational theories. As we will discuss
below, in 8D N ¼ 1 theories, one such condition is the
absence of a mixed anomaly between the center 1-form
symmetries and gauge transformations of higher-form
supergravity fields, which would obstruct the gauging of
Z. This rules out a vast set of seemingly acceptable 8D
N ¼ 1 theories without known string constructions and, in
particular, reproduce the geometric restrictions in models
with F-theory realization, thus providing further evidence
for string universality in 8D.
The anomaly originates from a generalization of the

familiar θ term, θTrðF2Þ, in 4D. There, the fractional shift
of the instanton density TrðF2Þ, due to the presence of a
background field for the Z 1-form symmetry, breaks the 2π
periodicity of θ [16–19]. In higher dimensions, TrðF2Þ
couples to higher-form fields (e.g., to vector fields in 5D
and tensors in 6D), which themselves possess gauge
symmetries. These can lead to mixed anomalies with the
Z 1-form center symmetry [20,21]. (See also [22] for recent
treatments of higher-form symmetries in higher-dimen-
sional setups and [23] for an analysis of the global gauge
group in 6D superconformal field theories.)
The analogous coupling in 8D involves a 4-form B4.

Crucially, while such a term is absent in a pure 8D
supersymmetric gauge theory (as there are no appropriate
fields B4 in the N ¼ 1 vector multiplet), the couplingP

i miB4 ∧ TrðF2
i Þ necessarily exists if one includes a

gravity multiplet, which contains a unique tensor B2 that
is dual to B4 [24]. Supersymmetry further demands that
mi ≠ 0 [25]. A mixed anomaly involving the symmetries of
B4, whichmust begauged, and the center 1-form symmetryZ
can, therefore, obstruct the gauging of the latter. The
vanishing of this anomaly is, hence, a necessary condition
to obtain a non-simply-connected gauge group G=Z.
Remarkably, in models with mi ¼ 1, this condition turns
out to reproduce geometric properties of elliptic K3 mani-
folds. In combination with other swampland criteria that
constrain the coefficients mi, this anomaly restricts possible
combinations of simply connected G ¼ Q

i Gi and Z ⊂
ZðGÞ in 8D. With this, we can consequently “drain” large
portions of the 8D swampland and make predictions in
corners of theory space where the global gauge group
structure in corresponding stringmodels is yet to be explored.
Mixed anomaly for center symmetries in 8D

supergravity.—Let G ¼ Q
i Gi be a non-Abelian group,

where Gi are simple simply connected Lie groups with
algebra gi. In 8DN ¼ 1, the gauge potential Ai, with field
strength Fi, of the gi gauge symmetry comes in a vector
multiplet with adjoint fermions. There are no other
massless charged matter states, so at low energies one
expects a discrete ZðGÞ¼Q

iZðGiÞ 1-form symmetry [17].
Moreover, since the only massless fermions transform in a
real representation, there are no pure gauge anoma-
lies [26].

Besides the vector multiplets, 8D N ¼ 1 supergravity
contains the gravity multiplet with a 2-form gauge field B2

as one of its component fields [25]. The field strengthH3 of
this 2-form field obeys a modified Bianchi identity involv-
ing the gauge fields of the theory:

H3 ¼ dB2 þ
X
i

miCSðAiÞ: ð1Þ

Here, CSðAiÞ are the Chern-Simons functionals for the
gauge factor Gi.
The positive integers mi associated with each gauge

factor Gi, which we will refer to as the “level” of Gi, are
a priori free parameters of the supergravity theory. They
can be interpreted as the magnetic charge of gauge
instantons under B2—more apparent in the dual formu-
lation, with B2 replaced by its magnetic-dual 4-form B4.
The most general Lagrangian contains the coupling [24]

Z
M8

X
i

B4 ∧miTrðFi ∧FiÞ≕
Z
M8

X
i

B4 ∧miI4ðGiÞ; ð2Þ

where the trace is normalized such that the instanton
density I4ðGiÞ ¼ 1 for a one-instanton configuration of a
Gi-bundle on a 4-manifold M4.
The center 1-form symmetry of Gi can be coupled to

a 2-form background fieldCðiÞ
2 which takes values in ZðGiÞ.

When CðiÞ
2 is nontrivial, it twists the Gi bundle into a

Gi=ZðGiÞ bundle with second Stiefel-Whitney class

w2½Gi=ZðGiÞ� ¼ CðiÞ
2 [16,17] that contributes to Eq. (2):

I4½Gi=ZðGiÞ�≡ αGi
PðCðiÞ

2 Þ mod Z; ð3Þ

with P the Pontryagin square. This contribution is, in
general, fractional due to the coefficients αGi

derived in
Ref. [18], which we reproduce here:

Gi ZðGiÞ αGi

SUðnÞ Zn ðn − 1=2nÞ
SpðnÞ Z2 n=4
Spinð2nþ 1Þ Z2

1
2

Spinð4nþ 2Þ Z4 ð2nþ 1=8Þ
Spinð4nÞ ZðLÞ

2 × ZðRÞ
2

ðn=4; 1
2
Þ

E6 Z3
2
3

E7 Z2
3
4

Analogous to the situation in 6D [20], the coupling (2)
combines the fractional instanton configuration with a large
gauge transformation B4 → B4 þ b4, with b4 a closed

4-form with integer periods, into a phase 2πiAðb4; CðiÞ
2 Þ

for the partition function

Aðb4; CðiÞ
2 Þ ¼

X
i

miαGi

Z
M8

b4 ∪ PðCðiÞ
2 Þ: ð4Þ
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While
R
M8

b4 ∪ PðCðiÞ
2 Þ ∈ Z for arbitrary b4, the whole

expression is, in general, fractional due to αGi
. By general-

izing the arguments presented in Refs. [20,27], the electri-
cally charged objects for B4 would acquire a fractional
charge if this anomalous phase is nontrivial. Since this
violates charge quantization, the fractional shift (4) cannot
be compensated and can be understood as an anomaly
between the large gauge transformations ofB4 and the center
1-form symmetries. As the former symmetry is gauged, one

cannot allow for background fields CðiÞ
2 where Eq. (4) is

nontrivial. Similar to the 6D setting [20], we expect that the
violation of charge quantization is tied to the lack of
counterterms that could absorb this anomaly. Moreover,
we expect that arguments developed inRef. [19] suggest that
there cannot be a topological Green-Schwarz mechanism
that cancels the above anomaly. [Note that Ref. [19] dis-
cusses precisely the 4D analog of the anomaly (4) involving
the θ angle instead of B4.]
In general, while the individual centers ZðGiÞ are

anomalous, there can be a nontrivial subgroup Z ⊂Q
i ZðGiÞ that is anomaly-free. Assuming that there are

no other obstructions to switch on a background for this
subgroup Z of the center, or other breaking mechanisms,
this combination should be gauged, in line with common
lore that in quantum theories of gravity no global sym-
metries (including discrete and higher-form symmetries)
are allowed [2,28]. In turn, this leads to the gauge
group G=Z.
Condition for anomaly-free center symmetries.—In the

following, we will discuss how to determine subgroups
Zl ≅ Z ⊂ ZðGÞ, for which a 1-form symmetry background
has no fractional contribution (4)—a necessary condition to
gauge Z.
Let ZðGÞ ¼ Q

s
i¼1Zni and ðk1;…; ksÞ ∈

Q
s
i¼1Zni be the

generator for Z ≅ Zl. This means that l is the smallest
integer such that kil≡ 0mod ni for all i. The generic
background for the ZðGÞ 1-form symmetry consists of

fields CðiÞ
2 for eachZni factor of ZðGÞ. Specifying a specific

background for a subgroup then amounts to correlating the

a priori independent CðiÞ
2 ’s [18]. In particular, the back-

ground C2 for Z ≅ Zl corresponds to setting CðiÞ
2 ¼ kiC2.

For concreteness, let G ¼ Q
s
i¼1 SUðniÞ. Then, the

anomalous phase (4) in a nontrivial C2 background of
the subgroup Z ⊂ ZðGÞ is

Aðb4; CðiÞ
2 Þ ¼

�Xs

i¼1

ni − 1

2ni
k2i mi

�Z
M8

b4 ∪ PðC2Þ; ð5Þ

where we used PðkCÞ ¼ k2PðCÞ. Thus, the anomaly
vanishes if the coefficient is integral.
Note that the anomaly contribution of non-SU groups

can be written as a sum of contributions from SUðnÞ
subgroups [18]. Therefore, by further restricting ourselves
to rank ðGÞ ≤ 18 (which is the 8D bound for the total gauge

rank [6]), we can exhaustively scan for all possible groups
G that have an anomaly-free Zl ⊂ ZðGÞ with given l, by
finding s triples of integers ðni; ki; miÞ such that

Xs
i¼1

ni − 1

2ni
k2i mi ∈ Z; with ki · l≡ 0 mod ni: ð6Þ

Clearly, the levels mi play an important role. From an
effective field theory perspective, these are free parameters
that define the theory. However, these parameters them-
selves are constrained by swampland criteria. By the
completeness hypothesis [29], the 2-form field B2 couples
to strings which carry localized degrees of freedom sensitive
to the gauge group. These left-moving, charged excitations
on the string have to cancel the world volume anomalies
arising due to anomaly inflow [4,30]. However, in d
dimension the left-moving central charge for such a string
is bounded by cL ≤ 26 − d. While each U(1) gauge factor
contributes to cL with cUð1Þ ¼ 1, each non-Abelian simple
gauge factorGi with levelmi contributes ci ¼ ½mi dimðGiÞ=
mi þ hi�, with hi the dual Coxeter number ofGi. Hence, we
have

X
i

mi dimðGiÞ
mi þ hi

þ nUð1Þ ≤ 18: ð7Þ

Combinedwith the constraint that the rank of the total gauge
group of the 8D supergravity theory can be only 2, 10, or 18
[6], the mi are considerably restricted. In particular, it is
easily shown that, in the rank-18 case, all mi must be 1 and
all non-Abelian factorsmust have simply laced algebras (see
Supplemental Material [31], Sec. A SM, for more details).
This is well known in string compactifications, wheremi are
the levels of the world sheet current algebra realizations of
spacetime gauge groups and are all mi ¼ 1 on the rank-18
branch of the N ¼ 1 moduli space. As we will see now,
the anomaly matches known geometric limitations in the
F-theory realization of 8D rank-18 theories, which restricts
the possible global gauge group structures. In the lower-rank
cases, these conditions can constrain gauge groups, whose
algebras and levels fit in constructions such as the
Chaudhuri-Hockney-Lykken (CHL) string [32] but whose
global structure is yet to be explored.
Anomaly-free centers in theories of rank 18.—All rank-

18 N ¼ 1 supergravity theories with a known string origin
have a construction via F theory [8], where physical
features, including the global gauge group structure, are
encoded in the geometry of elliptically fibered K3 surfaces
[26,33,34]. In particular, there are beautiful arithmetic
results [12] which asserts that F-theory compactifications
with non-Abelian gauge groupG=Z, whereG consists only
of SUðniÞ factors, must satisfy

Xs
i¼1

ni − 1

2ni
k2i ≡ 0 mod Z ð8Þ
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with ðk1;…; ksÞ ∈
Q

i Z½SUðniÞ� the generator of any
Zl ⊂ Z subgroup.
While we defer a more detailed explanation of the

geometric origin to this formula to Supplemental Material
[31], Sec. B SM, it is obvious that it fully agrees
with the cancellation condition for every Zl subgroup
of the center 1-form symmetry (6), as for rank-18 theories
all levels are fixed to mi ¼ 1. We therefore find a deep
connection between the mixed anomaly of the super-
gravity theory and the geometrical properties of F-theory
compactifications.
The constraint is particularly powerful when the order l

of the gauged center subgroup is the power of a prime
number. For such l ≥ 9, one can show that there are no
possible sets fðni; kiÞg for which the anomaly vanishes
with gauge groups of rank ≤ 18. For l ¼ 7, there is exactly
one configuration with three simple non-Abelian factors,
n1 ¼ n2 ¼ n3 ¼ 7 and ðk1; k2; k3Þ ¼ ð1; 2; 3Þ, correspond-
ing to an SUð7Þ3=Z7 theory. This agrees with the classi-
fications of K3 surfaces [12] for F-theory constructions
as well as possible heterotic realizations [15]. Likewise, in
the case l ¼ 8 ¼ 23, the 1-form anomaly (8) allows for
only G ¼ SUð8Þ1 × SUð8Þ2 × SUð4Þ × SUð2Þ, into which
the Z8 subcenter embeds as ðk1; k2; kSUð4Þ; kSUð2ÞÞ ¼
ð1; 3; 1; 1Þ. Furthermore, if we also take inspiration from
geometric properties of K3 surfaces—there always is one
SUðniÞ factor with l dividing nj—we can show that there
are no possible configurations ðni; kiÞ for all l ≥ 10. This
also matches the dual heterotic constructions [15].
Predictions for simple groups.—To further showcase the

constraining power of the field-theoretic anomaly argu-
ment, we use Eq. (4) to rule out 8D N ¼ 1 theories with
gauge group G=Z, where G is a simple Lie group and
Z ⊂ ZðGÞ a nontrivial subgroup. For G with m ¼ 1 and
rank ðGÞ ≤ 18, any G=Z is inconsistent except

SUð16Þ
Z2

;
SUð18Þ
Z3

;
Spinð32Þ

Z2

; ð9Þ

Spð4Þ
Z2

;
Spð8Þ
Z2

;
SUð8Þ
Z2

;
SUð9Þ
Z3

; ð10Þ

Spinð16Þ
Z2

;
Spð12Þ
Z2

;
Spð16Þ
Z2

: ð11Þ

The groups (9) indeed correspond to the only cases with
simple G realizable via F theory on elliptic K3’s. The
groups in Eq. (10) are subgroups of Sp(10), which atm ¼ 1
can be constructed from the CHL string [32]. Note that this
rules out all other SpðkÞ=Z2ðk < 10Þ theories, which
seemed consistent based on the perturbative CHL spectrum
]35 ]. As we are not aware of any systematic study of the

global gauge group structure in CHL compactifications,
we view this as a prediction based on the 1-form anomaly
(4), which is also consistent with other swampland

arguments [6]. Groups in Eq. (11) have no known 8D
string realization atm ¼ 1. However, while Spð12Þ=Z2 and
Spð16Þ=Z2 are excluded at any m due to the bound (7) [in
particular, (7) provides a physical explanation to the
limitation k ≤ 10 for spðkÞ gauge algebras known in 8D
string constructions], Spinð16Þ=Z2 does arise atm ¼ 2 as a
Wilson line reduction of the E8 CHL string.
More generally, at level m ¼ 2, the center anomaly in

conjunction with the bound (7) can rule out all G=Z
theories with simple G except for

SUð4Þ
Z2

;
SUð8Þ
Z2

;
SUð9Þ
Z3

;
Spð2Þ
Z2

;
Spð4Þ
Z2

;
E7

Z2

;

Spinð8Þ
Z2

;
Spinð16Þ

Z2

; SOð2nÞ with 2≤ n≤ 9; ð12Þ

all of which could, in principle, arise in CHL compacti-
fications [35]. We will leave an explicit verification and
analysis of the global gauge group in these types of 8D
string models for future works. Note that SOð2nÞ (n odd)
and Spð2Þ=Z2 seem to be ruled out in 8D by independent
swampland arguments [6], indicating mechanisms beyond
the anomaly (4) that break the 1-form center symmetry. It
would be interesting to find an explicit description for these
breaking mechanisms.
Discussion and outlook.—Using a mixed anomaly (4),

we have presented a necessary condition for an 8D N ¼ 1
theory with given non-Abelian gauge algebras gi at levelmi
to have a non-simply-connected gauge group ½Qi Gi�=Z. In
combination with a set of swampland criteria that restrict
the gauge rank and the levels mi, this condition rules out a
vast set of possible gauge groups for 8D theories. The
constraints are especially powerful for theories of rank 18,
where they reduce to known geometric properties of elliptic
K3 surfaces. As these properties control the global gauge
group structure in F-theory compactifications, the anomaly
provides a purely physical explanation for the intricate
patterns of realizable gauge groups in F theory. The
anomaly can further make predictions for inconsistent
models in lower-rank cases, where the global gauge group
structure in the corresponding string compactifications is
yet to be explored systematically.
We stress that the absence of the anomaly (4) is only a

necessary, but not sufficient condition for the gauge group to
be G=Z. Indeed, for F-theory constructions of the non-
simply-connected gauge groups (9), there also exist K3
surfaces that realize the simply connected versions in F
theory [13]. There are also other instances where bothG and
G=Z are realized in different compactifications; this is also
confirmed in the heterotic picture [15]. As the center Z in all
these cases is nonanomalous, this is consistent with our
findings. At the same time, it is pointing toward additional
breaking mechanisms, e.g., in terms of massive states
charged under Z. It would be interesting to investigate if
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these mechanisms are captured by an effective description
involving the 1-form center symmetry.
There are also nonanomalous cases that have no reali-

zation in known classes of 8D string models. A particular
set of such cases are products G1=Z1 ×G2=Z2 of anomaly-
free factors, which would again be anomaly-free. For
example, the anomaly-free gauge group ½SUð5Þ2=Z5� ×
½SUð2Þ4=Z2� ¼ ½SUð5Þ2 × SUð2Þ4�=Z10 as the non-
Abelian part of a rank-18 theory (and, thus, all mi ¼ 1)
has no string realization. As we have mentioned above, the
F-theory geometry would forbid this case, because there is
no SUðnÞ factor with 10 dividing n. Currently, we do not
know an adequate physical argument providing the same
restriction. In terms of identifying gauged Zl center
symmetries, one plausible possibility is the existence of
some mechanism that forces the presence of a U(1) gauge
factor into which, similarly to the hypercharge in the
standard model, that Zl embeds. Such a theory would
not be in contradiction to F-theory models, as center
symmetries embedded in U(1)’s have a different geometric
origin [11] (see [36] for direct implications for 4D particle
physics models) not subject to the restriction (8). Moreover,
in 8D F theory, there are additional sources for U(1) factors
[harmonic (1,1)-forms on K3’s that are not algebraic],
whose center mixing with non-Abelian gauge factors needs
further investigation. To complete the geometric picture
from the field-theoretic side, one must also extend the
discussion of anomalies to include U(1) gauge sectors,
which we defer to future studies.
We further suspect that other discrete symmetries of the

theory can interact nontrivially with 1-form center sym-
metries, leading to further constraints on the gauge group
structure. For example, it has been pointed out [37] that the
gauge symmetry of the E8 × E8 heterotic string should be
augmented by an outer automorphism Z2 exchanging the
E8 factors, so that the gauge group is ðE8 × E8Þ⋊Z2. In
fact, the 9D CHL string arises as the S1 reduction with
holonomies in this Z2. Such an identification would also be
possible for, e.g., ½SUð2Þ4=Z2� × ½SUð2Þ4=Z2�, all at
mi ¼ 1, which in 8D is free of the anomaly (4), but not
realized in terms of a string compactification. If one could
establish other field theory or swampland arguments for
why the Z2 outer automorphism must be gauged in this
case, there could be other mixed anomalies involving the
1-form symmetries such that only a diagonal Z2 center
survives, leading to the realizable ½SUð2Þ8�=Z2 theory.
Finally, to fully classify the global gauge group structure

in 8D N ¼ 1 theories based on the 1-form anomaly (4), it
will be important to have more stringent constraints on the
possible levels mi for given simple gauge factors Gi. While
for rank-18 theories, Eq. (7) fixes all mi ¼ 1, they cannot
be fully determined by this method alone for rank-10 or -2
theories and will require new tools and concepts to predict
these independently from concrete string realizations.
Perhaps, new ideas can arise by establishing a connection

between higher-form anomalies and the swampland ideas
[6] that also rule out certain non-simply-connected gauge
groups. These insights can hopefully lead to a complete
understanding of the global gauge group structure and
prove full string universality for non-simply-connected
groups in 8D.
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