
Citation: Lazzari, S.; Celli, M.;

Barletta, A.; Brandão, P.V. Unstable

Convection in a Vertical

Double–Layer Porous Slab. Energies

2023, 16, 4938. https://doi.org/

10.3390/en16134938

Academic Editor: Jose A.

Almendros-Ibanez

Received: 10 May 2023

Revised: 8 June 2023

Accepted: 15 June 2023

Published: 25 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Unstable Convection in a Vertical Double–Layer Porous Slab
Stefano Lazzari 1,*,† , Michele Celli 2,† , Antonio Barletta 2,† and Pedro Vayssière Brandão 2,†

1 Department of Architecture and Design, University of Genoa, Stradone S. Agostino 37, 16123 Genoa, Italy
2 Department of Industrial Engineering, Alma Mater Studiorum Università di Bologna, Viale Risorgimento 2,

40136 Bologna, Italy; michele.celli3@unibo.it (M.C.); antonio.barletta@unibo.it (A.B.);
pedro.vayssiere2@unibo.it (P.V.B.)

* Correspondence: stefano.lazzari@unige.it
† These authors contributed equally to this work.

Abstract: A convective stability analysis of the flow in a vertical fluid-saturated porous slab made
of two layers with different thermophysical properties is presented. The external boundaries are
isothermal with one of them impermeable while the other is open to an external fluid reservoir.
This study is a development of previous investigations on the onset of thermal instability in a
vertical heterogeneous porous slab where the heterogeneity may be either continuous or piecewise
as determined by a multilayer structure. The aim of this paper is investigating whether a two-layer
structure of the porous slab may lead to the onset of cellular convection patterns. The linear stability
analysis is carried out under the assumption that one porous layer has a thermal conductivity much
higher than the other layer. This assumption may be justified for the model of a heat transfer
enhancement system involving a saturated metal foam. A flow model for the natural convection
based on Darcy’s momentum transfer in a porous medium is adopted. The buoyancy-induced basic
flow state is evaluated analytically. Small-amplitude two-dimensional perturbations of the basic state
are introduced, thus leading to a linear set of governing equations for the disturbances. A normal
mode analysis allows one to formulate the stability eigenvalue problem. The numerical solution of
the stability eigenvalue problem provides the onset conditions for the thermal instability. Moreover,
the results evidence that the permeability ratio of the two layers is a key parameter for the critical
conditions of the instability.

Keywords: multilayer porous slab; linear stability; convection; buoyant flow; metal foam

1. Introduction

Studies on the stability of natural convection flow in a vertical porous slab have been
carried out for decades due to their important implications in a wide range of energy
applications, ranging from thermal insulation of buildings to low-enthalpy geothermal
systems, from filtration processes to heat transfer enhancement systems. In 1969, Gill [1]
proved that in a vertical porous slab confined by two impermeable boundaries kept at
different yet uniform temperatures, a conduction regime can be maintained, without any
instability for all values of the Darcy–Rayleigh number. This result has been found rigorous
by considering the slab saturated by a Newtonian fluid and by adopting Darcy’s law and
the Boussinesq approximation. Gill [1] pointed out “the viscous–fluid analogue of the
problem studied in this paper is of interest in connection with building insulation involving
an unventilated air gap. . . Then a cellular motion occurs which will increase the heat
transfer considerably”. Thus, the stability results for the porous slab reveal that the use
of a porous insulation material filling the air gap prevents the emergence of convection
heat transfer.

Several authors have extended Gill’s study by considering features such as the nonlin-
earity of the perturbation dynamics, momentum transfer models for the seepage flow in
the porous medium providing extensions of Darcy’s law and local thermal non-equilibrium
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models for the local energy balance [2–7]. On the other hand, some authors have investi-
gated different boundary conditions for the vertical slab and found that instabilities may
arise when the boundaries are permeable [8–12].

A study carried out by Barletta [8] reconsidered the thermoconvective stability prob-
lem in a porous vertical slab formulated by Gill [1] under the assumption of isothermal,
but permeable, boundaries. Even though the change in the velocity boundary conditions
does not affect the basic natural convection flow, which remains the same stationary and
parallel flow obtained by Gill [1], it does drastically affect the stability analysis. Indeed,
the flow in the basic state becomes unstable when the Darcy–Rayleigh number is larger
than 197.081 and the normal modes selected at onset of instability are transverse rolls.

Multilayered porous media, a fascinating and versatile technology, has gained signifi-
cant attention in various industries and fields due to its wide range of applications. These
heterogeneous materials consist of multiple layers with interconnected pores, offering en-
hanced functionalities and improved performance compared to traditional single-layered
porous media. By leveraging their distinct properties, multilayered porous media open
up interesting possibilities for advancements in fields such as oil and gas, environmental
remediation, water filtration, biomedical and pharmaceutical, chemical and petrochem-
ical, construction and civil engineering, and aerospace and automotive industries. The
application of multilayered porous media is promising in numerous areas. It offers en-
hanced filtration efficiency, allowing for better separation and purification of substances
in industries such as water treatment, oil and gas reservoir engineering, and membrane
filtration systems. The ability to control fluid flow offers opportunities for improving heat
exchangers, thermal management systems, and even acoustic and vibration dampening
applications. The retention of contaminants and enhanced structural stability make it
valuable in environmental remediation efforts and construction projects where filtration
and long-term durability are crucial.

However, the practical implementation of multilayered porous media does come with
certain challenges. Manufacturing complexity, cost considerations, difficulties in customiza-
tion, and uncertainty in long-term performance are factors that need to be addressed for
widespread adoption. Furthermore, the lack of standardized testing methods and limited
understanding of design parameters pose additional hurdles. Nonetheless, ongoing re-
search and advancements in this field continue to address these challenges and propel the
development of multilayered porous media towards real-world applications.

The motivation of the research on convection in multilayered structures of a porous
slab saturated by a fluid relies on the possibility to improve the design criteria for the
optimization of the heat transfer devices. In fact, the study of the conditions for the onset of
convective cellular patterns in a vertical porous slab offers novel and important knowledge
for the development of design strategies oriented to the heat transfer enhancement and the
thermal energy storage [13]. Furthermore, the thermal behaviour of fluids or phase change
materials (PCM) saturating metallic or ceramic foams allows a significant advancement
by providing robust design rules for compact thermal storage systems and compact heat
exchangers. Another target is the engineering of buildings and, in particular, the use of
breathing walls [14].

In a recent paper [15], the study by Gill [1] has been further extended to a sandwiched
vertical porous slab with impermeable isothermal boundaries kept at different temperatures.
In detail, the authors assumed a slab made of three porous layers saturated by a Newtonian
fluid, where the two external layers are identical and with a thermal conductivity much
higher than that of the central layer. For this symmetric configuration, it is found that the
basic buoyant flow in the internal core is identical to that devised by Gill [1], namely, that it
is characterized by a stationary and purely vertical velocity field. On the other hand, when
this basic state is perturbed, the two interfaces with the external layers may allow for a
horizontal flow contribution. It is worth noting that, when the focus is on the core layer,
the sandwiched slab represents a relaxation in the original Gill problem, the impermeable
boundaries being substituted by two permeable interfaces with the external layers. The
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three-layer slab is, in fact, a horizontally heterogeneous medium with a piecewise constant
permeability, in analogy with the continuously heterogeneous slab studied by Shankar and
Shivakumara [16]. Barletta et al. [15] pointed out that a sufficiently large Darcy–Rayleigh
number can lead to flow instability and that the neutral stability condition depends on
the permeability ratio between the external layers and the core layer, as well as on the
ratio between the overall thickness of the slab and that of the core layer. Moreover, for the
limiting case where the permeability ratio tends to infinity, the condition for the onset of
the instability coincides with that predicted by Barletta [8] for a homogeneous porous layer
with permeable boundaries.

In order to further develop the findings presented by Barletta et al. [15], other mul-
tilayer configurations can be explored. In the present paper, a two-layer vertical porous
slab will be investigated, under the assumptions that the layers have the same width and
that one layer is a metal foam, i.e., it has an extremely high thermal conductivity. As in the
original problem faced by Gill [1], the boundaries of the slab are isothermal with different
temperatures. However, we will consider conditions where one boundary is permeable
while the other is impermeable. The basic state flow will be determined and a linear
stability analysis will be performed by assuming small-amplitude wavelike disturbances.
The threshold values of the Darcy–Rayleigh number for the onset of the instability will be
evaluated numerically. It will be shown that the transverse rolls are the most unstable. The
asymmetry in the geometrical and physical configuration leads to transverse rolls that are
non-stationary, but travelling. Moreover, the limiting cases where the ratio between the
permeability of the two layers vanishes or tends to infinity will be investigated.

2. Mathematical Model

An infinitely high vertical slab composed by two different porous layers having
the same width L is considered, as illustrated in Figure 1. The slab is saturated by a
Newtonian fluid and it is characterized by an open and isothermal boundary at x = 0
and an impermeable and isothermal boundary at x = 2L. The open boundary at x = 0 is
modeled by imposing a purely hydrostatic pressure distribution.

The mass, momentum and energy local balance equations together with the boundary
conditions employed can be written as

∇ · ui = 0,
µ

Ki
ui = −∇Pi + ρ0gβ (Ti − T0) êz,

σi
∂Ti
∂t

+ ui · ∇Ti = αi∇2Ti,

x = 0 : P1 = 0, T1 = Tl ,

x = 2L :
∂P2

∂x
= 0, T2 = Tr, (1)

where the index i = 1, 2 distinguishes between layer 1 and layer 2. In Equation (1),
u = (u, v, w) is the velocity, T is the temperature, P is the local difference between the
pressure and the hydrostatic pressure (hereafter, it will be called simply pressure for the
sake of brevity), t is the time, µ is the dynamic viscosity, K is the permeability, ρ0 is the fluid
density evaluated at the reference temperature T0, g is the modulus of the gravitational
acceleration g, êz is the unit vector along the z axis, β is the thermal expansion coefficient,
σ is the heat capacity ratio of the saturated porous medium, α is the effective thermal
diffusivity of the saturated porous medium (the weighted arithmetic mean of the solid and
fluid thermal conductivities divided by the fluid heat capacity per unit volume) and Tl is
the temperature of the left hand boundary while Tr is the temperature of the right hand
boundary. In Equation (1), Darcy’s law is adopted together with the Oberbeck–Boussinesq
approximation. The impermeability condition at x = 2L has been expressed in terms
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of pressure by employing Darcy’s law since, in the following, a pressure–temperature
formulation is used.

0 2L

L L

g

xy

z

Figure 1. Cross-section of the porous slab on a plane y = constant. The orange fill color denotes
layer 1, while the violet fill color denotes layer 2.

Accordingly, the interface conditions that define the continuity of the pressure, of the
velocity component u, of the temperature and of the heat flux density in the x–direction,
have the form

x = L : P1 = P2, K1
∂P1

∂x
= K2

∂P2

∂x
, T1 = T2, α1

∂T1

∂x
= α2

∂T2

∂x
. (2)

It is worth noting that the ratio α2/α1 coincides with the ratio between the thermal conduc-
tivities of the two porous layers since the fluid saturating both layers is the same.

Pressure–Temperature Formulation

The dimensionless problem is formulated differently for the two layers. The dimen-
sionless governing equations for layer 1 are

∇2P1 = R
∂T1

∂z
,

∂T1

∂t
−∇P1 · ∇T1 + R T1

∂T1

∂z
= ∇2T1, (3)

and, for layer 2,

∇2P2 = R
∂T2

∂z
,

τ
∂T2

∂t
− ξ∇P2 · ∇T2 + R ξ T2

∂T2

∂z
= γ∇2T2, (4)

while the boundary and interface conditions are

x = 0 : P1 = 0, T1 = η,

x = 1 : P1 = P2,
∂P1

∂x
= ξ

∂P2

∂x
, T1 = T2,

∂T1

∂x
= γ

∂T2

∂x
,

x = 2 :
∂P2

∂x
= 0, T2 = 1 + η. (5)

where η = (Tl − T0)/∆T, with ∆T = Tr − Tl . In Equations (3)–(5), the scaling
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t
σ1L2/α1

→ t,
(x, y, z)

L
→ (x, y, z),

ui
α1/L

→ ui,
Pi

µα1/K1
→ Pi,

Ti − T0

∆T
→ Ti, (6)

is employed, together with the dimensionless parameters

R =
ρ0 g β ∆T K1 L

µ α1
, ξ =

K2

K1
, γ =

α2

α1
τ =

σ2

σ1
, (7)

where R is the Darcy–Rayleigh number.

3. Basic State

The basic stationary solution of the system given by Equations (3)–(5), whose stability
has to be investigated, is assumed to be a fully developed buoyant flow in the vertical
z–direction with zero net mass flow rate, namely

P1 b = 0 = P2 b, T1 b = −3γ− 4γx + 1
4(γ + 1)

, T2 b =
γ + 4x− 5
4(γ + 1)

,

u1 b = (0, 0, R T1 b), u2 b = (0, 0, R ξ T2 b), (8)

where the subscript b denotes the quantities relative to this basic state. Because of the
interface conditions, the temperature distribution inside the slab is a piecewise linear
function of x, as reported in Figure 2 for given values of γ. Equation (8) is obtained by
defining the reference temperature T0 as the average temperature of the slab, so that∫ 2

0
Tb dx = 0. (9)

The choice expressed by Equation (9) yields

η = − 3γ + 1
4(γ + 1)

. (10)

Both the limiting cases of γ→ 0 and γ→ ∞ yield a vanishing temperature gradient in one
of the two layers. From Equation (8) one can notice that the velocity has a discontinuity at
the interface except for the case ξ = 1.

γ=0,0.1,0.5,1,2,5,1000

0.0 0.5 1.0 1.5 2.0
-1.0

-0.5

0.0

0.5

1.0

x

T
b

Figure 2. Plots of Tb versus x for fixed values of γ.
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4. The Limiting Case of a Highly Conductive Porous Layer

Let us assume that the thermal conductivity of the porous layer 2 is much greater than
the thermal conductivity of the porous layer 1. This assumption yields the limiting case
γ→ ∞, which can be devised by considering layer 2 as a metal foam, for instance. For this
limiting case, the basic state given by Equation (8) reduces to

P1 b = 0 = P2 b, T1 b = x− 3
4

, T2 b =
1
4

, u1 b = (0, 0, R T1 b), u2 b = (0, 0, R ξ T2 b), (11)

while the governing Equations (3)–(5) simplify to

∇2P1 = R
∂T1

∂z
,

∂T1

∂t
−∇P1 · ∇T1 + R T1

∂T1

∂z
= ∇2T1,

∇2P2 = R
∂T2

∂z
, ∇2T2 = 0,

x = 0 : P1 = 0, T1 = −3
4

,

x = 1 : P1 = P2,
∂P1

∂x
= ξ

∂P2

∂x
, T1 = T2,

∂T2

∂x
= 0,

x = 2 :
∂P2

∂x
= 0, T2 =

1
4

. (12)

5. Linear Stability Analysis

Let us study the stability of the basic state described in Equation (11) by employing
small–amplitude disturbances in the form of normal modes, namely

Pi = Pib + ε fi(x) ei(kyy+kzz−ω t), Ti = Tib + ε hi(x) ei(kyy+kzz−ω t), i = 1, 2, (13)

where ε � 1, k =
(
0, ky, kz

)
is the wave vector, and ω = ωR + i ωI is a complex param-

eter with ωR the angular frequency and ωI the temporal growth rate. By substituting
Equation (13) into Equation (12) and linearising, one obtains

f ′′1 − k2 f1 − ikS h1 = 0,

h′′1 −
[

k2 − iω + ikS
(

x− 3
4

)]
h1 + f ′1 = 0,

f ′′2 − k2 f2 − ikS h2 = 0,

h′′2 − k2 h2 = 0,

x = 0 : f1 = 0, h1 = 0,

x = 1 : f1 = f2, f ′1 = ξ f ′2, h1 = h2, h′2 = 0,

x = 2 : f ′2 = 0, h2 = 0, (14)

where a rescaled Rayleigh number S has been employed, namely

k S = kz R. (15)

With the definition (15), S turns out to be the dimensionless parameter governing the
possible transition to instability for a given k. Since kz ≤ k, with the equality holding true
for the transverse rolls (ky = 0), then the transverse rolls emerge as the perturbation modes
liable to trigger the instability in every case at the lowest values of R. Hence, the transverse
rolls are the most unstable modes. From Equation (14) one can readily find that

h2 = 0, f2 = C1 cosh[k(2− x)], (16)

where C1 is an integration constant. By substituting the solution for f2 in the interface
conditions reported in Equation (14) one obtains
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f1(1) = C1 cosh (k), f ′1(1) = −C1 ξ k sinh (k). (17)

By eliminating C1, an interface condition expressed only in terms of f1 is obtained, namely

f ′1(1) = − f1(1) ξ k tanh (k). (18)

For the limiting case γ→ ∞, the stability problem simplifies to the study of the fields inside
layer 1, namely

f ′′1 − k2 f1 − ikS h1 = 0,

h′′1 −
[

k2 − iω + ikS
(

x− 3
4

)]
h1 + f ′1 = 0,

x = 0 : f1 = 0, h1 = 0,

x = 1 : f ′1 = − f1(1) ξ k tanh (k), h1 = 0. (19)

6. Results

The stability eigenvalue problem given by Equation (19) is here solved as a boundary
value problem formulated as

f ′′1 − k2 f1 − ikS h1 = 0,

h′′1 −
[

k2 − iω + ikS
(

x− 3
4

)]
h1 + f ′1 = 0,

f1(0) = 0, f ′1(0) = 1, h1(0) = 0, h1(1) = 0, (20)

where at x = 0 we applied the scale fixing condition

f ′1(0) = 1, (21)

allowing to break the scale invariance of the solution of the otherwise homogeneous
problem (19). The boundary condition left

f ′1(1) = − f1(1) ξ k tanh (k), (22)

which is employed as a target for the root finding procedure which allows us to evaluate the
pair (ω, S) for fixed values of k and ξ. The numerical technique employed for the solution
of the stability eigenvalue problem is the shooting method. Details on the features of such
method and its accuracy can be found in the literature [17,18]. In particular, Barletta [18]
provided also a detailed description of the coding of such method by employing Octave [19].

The calculations are performed by utilizing the Mathematica software environment [20]
and, in particular, the embedded functions NDSolve and FindRoot. The function NDSolve
is used to find numerically the solution of the system of ordinary differential equations
given by Equation (20). The function FindRoot is adopted to determine the eigenvalue pair
(S, ω) for prescribed input data (k, ξ).

The neutral stability curves are reported in Figure 3 where each curve is drawn for
fixed values of the parameter ξ. The latter parameter turns out to be a destabilizing
parameter since the curves move downward as ξ increases.

The local minima of S along the curves reported in Figure 3 are, by definition, the criti-
cal values for the onset of the thermal instability. These values, Sc and ωR,c, are displayed
in Figure 4. This figure confirms the destabilizing role of the parameter ξ just highlighted
in the comment on Figure 3. One can note that the frame is cut for a particular value of
Sc and ωR,c. This choice is due to the fact that ξ has a lower threshold, ξmin = 2.57159,
below which no neutral stability curve is present and, hence, no linear instability is possible.
For this limiting value, we obtain
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Sc,max(ξmin) = 367.616, ωR,c,min(ξmin) = −40.3930. (23)

It is worth noting that ξmin identifies a minimum value of the curve ξ = ξ(S) and does
not represent an asymptotic limit. Values of ξ > ξmin yield more than one value of S: the
critical one shown in Figure 4 and another value S > 367.616, relative to branches of the
solution that are not relevant for the present linear stability analysis. Since Figure 4 reveals
that the critical values of the angular frequency are always negative, one can conclude that
the convective cells emerging at the onset of the instability drift downwards.

An interesting aspect to report is the distribution of isolines of streamfunction and
temperature for the perturbed fields at a critical condition. From the definition of stream-
function

u =
∂ψ

∂z
, w = −∂ψ

∂x
, (24)

and from Equation (1) one can relate the streamfunction to the fields f1 and f2 [15]

ψ1 = − 1
i k

f ′1, ψ2 = − ξ

i k
f ′2. (25)

ξ=1000,10,5,4,3.5,3

0.0 0.5 1.0 1.5 2.0
150

200

250

300

350

k

S

Figure 3. Neutral stability curves for fixed values of ξ.

ξmin=2.57159

0 10 20 30 40
100

150

200

250

300
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ξ

S c

ξmin=2.57159

0 10 20 30 40

-60

-55

-50

-45

-40

-35

-30

ξ

ω
R
,c

Figure 4. Critical values Sc, left–hand frame, and ωR,c, right–hand frame, versus ξ.
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By employing Equation (14) together with Equation (25), in Figure 5, we obtain the
isolines of streamfunction and temperature for ξ = 5. One can note that the isotherms of
the layer 2 are absent. This behaviour is a consequence of the assumption γ → ∞, i.e., a
thermal conductivity of layer 2 much greater than that of layer 1, which allowed us to
infer that h2 = 0. Since the increment in the value of ψ between neighboring isolines is a
constant, it is also worth noting that the secondary cellular flow field in layer 1 is more
intense than that in layer 2, which is due to the higher permeability of layer 2, being ξ = 5.

Streamlines Isotherms

Figure 5. Isolines of streamfunction and temperature for critical condition at ξ = 5.

7. Conclusions

The possibility that an inhomogeneous vertical porous slab displays the emergence
of a convective instability has been studied. This study is in the wake of other investiga-
tions regarding either continuously variable thermophysical properties in the horizontal
direction or multilayer structures. In fact, previous studies have emphasised that suitable
combinations of boundary conditions and heterogeneity of the porous material can trigger
or prevent the onset of the convective cellular patterns inside the slab.

The influence of an open boundary together with the assumption of a slab made of
two different porous layers is studied. The slab is characterised by two isothermal vertical
boundaries at different temperatures: one boundary is open while the other is impermeable.
The limiting case of a porous layer much more conductive than the other is investigated.
The ratio ξ between the permeabilities of the two layers turns out to be a key parameter,
together with the choice of the temperature and velocity boundary conditions. After an
analytical determination of the basic flow state, the linear stability analysis has been carried
out numerically by employing the shooting method for differential eigenvalue problems.

The main conclusions are listed below:

• The inhomogeneous porous slab may undergo the onset of convective instability for a
sufficiently large modified Darcy–Rayleigh number, S; this result confirms that the
considered horizontal asymmetry in the geometrical and physical configuration, with
respect to the original problem solved by Gill [1], yields a possibly unstable basic state;

• An increase in the permeability ratio ξ has a destabilising effect; indeed, the critical
value of the Darcy–Rayleigh number Sc is a decreasing function of ξ;

• There is a minimum value of ξ, given by ξmin = 2.57159, beyond which no instabil-
ity arises; it is worth noting that this value does not correspond to an asymptotic
behavior, but it identifies a minimum value for the curve ξ = ξ(Sc);

• The perturbation flow field tends to be more intense in the layer characterized by a
lower thermal conductivity and permeability.

To the best of the authors’ knowledge, there are not yet studies available in the
literature showing all the possible combinations of heterogeneity and prescribed boundary
conditions that may trigger or prevent the emergence of convection cells in a vertical porous
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slab. A general formulation of a criterion for the existence of the instability can definitely
be an important opportunity for a future development of this study.
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