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Many engineering applications involve porous media and
rely on non–Newtonian working fluids. In the present pa-
per, the seepage flow of a non–Newtonian fluid saturating
a vertical porous layer is studied. The buoyant flow is
thermally driven by the boundaries of the porous layer,
which are permeable surfaces kept at different tempera-
tures. In order to model the seepage flow of both shear–
thinning (pseudoplastic) and shear–thickening (dilatant)
fluids, reference is made to the Ostwald–de Waele rheo-
logical model implemented with the power–law extended
form of Darcy’s law.
The basic stationary flow is parallel to the vertical axis
and shows a single–cell pattern, where the cell has
infinite height and can display a core–region of en-
hanced/inhibited flow according to the fluid’s rheologi-
cal behaviour. By applying small perturbations, a linear
stability analysis of the basic flow is performed to de-
termine the onset conditions for a multicellular pattern.
This analysis is carried out numerically by employing the
shooting method. The neutral stability curves and the val-
ues of the critical Rayleigh number are computed for dif-
ferent pseudoplastic and dilatant fluids. The behaviour of
a Newtonian fluid is also obtained as a limiting case.

∗Address all correspondence to this author.

NOMENCLATURE

Latin symbols
c Specific heat
ey Unit vector in the y–direction
f Eigenfunction
F Real function
g Modulus of gravitational acceleration
g Gravity vector
h Eigenfunction
k Thermal conductivity
K Permeability of the porous layer
L Layer thickness
n Power–law fluid index
p Local difference between the pressure and the

hydrostatic pressure
P Pressure perturbation
R Modified Darcy–Rayleigh number
t Time
T Temperature
T0 Reference temperature
T1 Temperature of the external reservoir in

x ≤ −L/2

T2 Temperature of the external reservoir in x ≥ L/2

u Velocity vector, (u, v, w)
U Velocity perturbation



x Position vector, (x, y, z)

Greek symbols
α Wave number
β Fluid thermal expansion coefficient
δ Smoothing parameter
∆T Temperature gap between the boundaries
ε Dimensionless perturbation parameter
η Consistency factor
Θ Temperature perturbation
λ Growth rate
µ Dynamic viscosity
ξ1, ξ2 Real parameters
ρ Density
σ Heat capacity ratio
φ Porosity
ϕ Inclination angle
χ Effective thermal diffusivity
ω Angular frequency

Subscripts
b Basic state
c Critical value
eff Effective (saturated porous medium)
f Fluid
s Solid

1 INTRODUCTION
It is widely known that the non–Newtonian rheology

of working fluids is of uttermost importance in many en-
gineering applications. The development of new ideas
for the design of heat transfer enhancement systems or
thermal energy storage devices often involve the analy-
sis of fluid saturated porous media. For instance, the use
of highly-conductive porous materials such as the metal-
lic foams turns out to improve the overall thermal con-
ductance in compact heat exchangers. The use of liquids
with a non-Newtonian behaviour can be important when
a thermal energy storage effect is sought or when the heat
transfer enhancement is pursued via nanofluids. Beyond
such applications relative to mechanical and thermal engi-
neering, there is an interest for the non-Newtonian flows
in porous media in the chemical engineering area when
polymeric liquid processing or filtration is considered.

The apparent viscosity of a fluid, namely the ra-
tio between shear stress and shear rate, can be time–
independent or time–dependent. The first class of fluids
include not only Newtonian fluids and Bingham plastics,
but also shear–thinning fluids (often referred to as pseu-
doplastic) and shear–thickening (or dilatant) fluids. New-
tonian fluids and Bingham plastics display a constant vis-
cosity and possibly a threshold finite yield stress. On the

other hand, the viscosity of pseudoplastic and dilatant flu-
ids decreases or increases as shear stress increases [1],
respectively. Moreover, there are fluids that exhibit a be-
haviour similar to the cited fluids with respect to shear
stress and whose viscosity depends also on time, such as
thixotropic and rheopectic fluids, where the shear stress
decreases or increases, respectively, with increasing time
of application of a constant shear rate [2].

The power–law rheology, also termed Ostwald–de
Waele, models both time–independent shear–thinning
and shear–thickening fluids through an index n. Indeed,
for n < 1 and n > 1, the pseudoplastic and dilatant be-
haviours are retrieved, respectively, whereas the limiting
case n = 1 models the Newtonian fluid. Power–law flu-
ids are adopted in a wide variety of applications, in chem-
ical and food industries, in geophysics (drilling fluids and
cements that are used for geothermal and petroleum well
construction), in buildings construction (for instance, clay
suspensions, plaster and concrete mix, usage of surfac-
tants in district and building heating and cooling systems
to allow energy savings [3]). We also mention pharma-
ceutics industry, automotive traction control and innova-
tive body armors, when mixed with Kevlar®. Thus, there
exists a wide scientific literature about heat and mass
transfer problems for such fluids [4–8].

When it comes to the stability analysis of the buoy-
ant flow in a vertical porous layer saturated by a non–
Newtonian fluid, the number of available papers is still
quite low. Starting from the pioneering work by Gill
[9], proofs exist that natural convection of a Newtonian
fluid in a vertical porous slab with impermeable walls
kept at different but uniform temperatures is always sta-
ble, in the so-called conduction regime [10–14]. Later,
Barletta and Alves [15] extended this classical stability
problem by considering a power–law fluid and concluded
that all longitudinal rolls are stable and present smaller
damping rates than oblique and transverse rolls. More-
over, they proved numerically that the transition to con-
vective instability cannot be achieved even for high values
of the Darcy–Rayleigh number. Recently, the convective
instability for the vertical buoyant flow of a viscoelastic
Oldroyd–B fluid saturating a vertical porous layer was in-
vestigated [16, 17]. In particular, Lazzari et al. [17] car-
ried out the stability analysis by assuming open bound-
aries and pointing out the destabilising effect of viscoelas-
ticity. We also mention the recent studies involving the
thermal instability and convection in Bingham-fluid satu-
rated porous media [18–20].

In the present paper, a problem similar to that dis-
cussed in [15], but with different boundary conditions is
considered. Namely, the linear stability of natural convec-
tion of a power–law fluid saturating a vertical porous slab



Fig. 1. Cross–section of the vertical porous slab in thexy–plane
with the adopted boundary conditions

which is confined by two isothermal yet permeable sur-
faces, i.e., by two open boundaries kept at different tem-
peratures. The Newtonian version of this problem was
investigated by Barletta [21]. The forthcoming analysis is
carried out numerically in order to find the neutral stabil-
ity curves for different pseudoplastic and dilatant fluids
and to obtain the critical values of the modified Darcy–
Rayleigh number that determine the flow instability. The
particular case of a Newtonian fluid is also treated as a
limiting case for benchmarking purposes.

2 MATHEMATICAL MODEL
A homogeneous isotropic vertical porous layer satu-

rated by a non–Newtonian fluid is considered. While the
layer has thickness L in the horizontal x–direction, it is
infinitely wide in the vertical y–direction as well as in the
spanwise z–direction. A sketch of the layer is shown in
Fig. 1.

The Ostwald–de Waele power–law model, where the
nonlinear relationship between stress and shear rate is
parametrised by an index n, is adopted to describe the
non–Newtonian rheology of the fluid. Darcy’s law for
Ostwald–de Waele type of fluid is written as [4]

η|u|n−1

K
u = −∇p, (1)

n = 1

n = 0.6

n = 1.4
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-2

-1
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Fig. 2. Basic velocity profile for a pseudoplastic fluid (n = 0.6),
for a Newtonian fluid (n = 1) and for a dilatant fluid (n = 1.4)

where K [mn+1] is the generalized permeability and
η [Pa sn] is the consistency factor. As can be inferred
from Eqn. (1), the Newtonian case n = 1 yields the classi-
cal Darcy’s law, while n < 1 and n > 1 describe pseudo-
plastic and dilatant behaviours, respectively.

The buoyancy force is modelled by means of the
Oberbeck–Boussinesq approximation and the local en-
ergy balance equation, where no source or sink term is
considered and viscous dissipation is neglected, is em-
ployed to model the heat transfer.

The vertical boundaries of the slab are permeable and
the external environments in the regions x < −L/2 and
x > L/2 are considered as isothermal fluid reservoirs in
a motionless state, so that the pressure distribution along
the boundaries is purely hydrostatic. Since the external
fluid reservoirs are kept at different uniform temperatures
T1 and T2, where T2 > T1, the layer is subject to side
heating, as depicted in Fig. 1.

Accordingly, the governing balance equations for
mass, momentum and energy as well as the adopted
boundary conditions are given by

∇ · u = 0, (2)

η|u|n−1

K
u = −∇p+ ρf g β (T − T0) ey, (3)

σ
∂T

∂t
+ u · ∇T = χ∇2T, (4)



x = −L/2 : p = 0, T = T1,

x = +L/2 : p = 0, T = T2,
(5)

where g and ey are the modulus of g and the unit vector
along the y–direction, respectively. In Eqn. (3), the fluid
density ρf is evaluated at the reference temperature T0 =
(T1 + T2)/2, and the parameters σ, keff and χ are defined
as

σ =
φρfcf + (1− φ) ρs cs

ρf cf
,

keff = φkf + (1− φ) ks, χ =
keff

ρf cf
.

(6)

The dimensionless formulation of the problem is ob-
tained by means of the following scaling:

x

L
→ x,

χ

σL2
t → t,

K Ln−1

η χn
p → p,

L

χ
u → u,

T − T0

∆T
→ T,

L∇ → ∇, L2∇2 → ∇2,

(7)

where ∆T = T2 − T1. By substituting Eqn. (7) in
Eqns. (2)–(5), the following dimensionless governing
equations are obtained

∇ · u = 0, (8)

|u|n−1 u = −∇p+RT ey, (9)

∂T

∂t
+ u · ∇T = ∇2T, (10)

x = −1/2 : p = 0, T = −1/2,

x = +1/2 : p = 0, T = +1/2,
(11)

where the modified Darcy–Rayleigh number R is

R =
ρf g β∆T K Ln

η χn
. (12)

n=0.6

n=0.8

n=1.2

n=1.4
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Fig. 3. Trend of Rc versus ϕ for different values of n
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Fig. 4. Neutral stability curve for a pseudoplastic fluid with n =
0.6 and critical values of R and α

3 LINEAR STABILITY ANALYSIS
3.1 Basic state

The problem described by Eqns. (8)–(11) features a
stationary fully developed buoyant flow solution where
the flow is bidirectional with a vanishing net mass flow
rate. The only non–vanishing component of the seepage
velocity is vb, along the y–direction. The basic stationary



solution of Eqns. (8)–(11) is given by

ub = (0, R xF (x), 0), pb = 0, Tb = x,

where F (x) =
(
R2 x2

) 1−n
2n ,

(13)

which describes a single–cell vertical pattern where the
cell has an infinite height. Figure 2 shows the basic ve-
locity profile vb as a function of Rx for a pseudoplastic
fluid (n = 0.6), for a Newtonian fluid (n = 1) and for a
dilatant fluid (n = 1.4). In the first case (dashed line), the
flow is inhibited in the core region around the midplane
x = 0, while it is enhanced in the same region for the
last case (dotted line). Details about this behaviour can
be found in [9],[15].
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Fig. 5. Neutral stability curve for a pseudoplastic fluid with n =
0.9 and critical values of R and α

3.2 Eigenvalue problem for neutrally stable modes
The linear stability analysis of the basic flow starts

by perturbing it through small–amplitude disturbances,

u = ub + εU,

p = pb + ε P,

T = Tb + εΘ,

(14)

where ε ≪ 1. By substituting Eqn. (14) into Eqns. (8)–
(11), by neglecting O(ε2) terms and by rearranging
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Fig. 7. Neutral stability curve for a dilatant fluid with n = 1.4
and critical values of R and α

the equations to obtain a more convenient pressure–
temperature formulation, we obtain

− F ′(x)
∂P

∂x
+

1

n
F (x)

[
R

∂Θ

∂y
−

∂2P

∂y2
− n

(
∂2P

∂x2
+

∂2P

∂z2

)]
= 0,

(15)



∂Θ

∂t
− F (x)

∂P

∂x
+RxF (x)

∂Θ

∂y
−∇2Θ = 0, (16)

x = ±1/2 : P = 0, Θ = 0. (17)

The pressure and temperature perturbations are as-
sumed to have the form of normal modes, namely

P (x, y, t) = i f(x) e(λ−i ω) t ei (α cosϕ y+α sinϕ z), (18)

Θ(x, y, t) = h(x) e(λ−i ω) t ei (α cosϕ y+α sinϕ z), (19)

where the parameters (α, ϕ, λ, ω) are real, while (f, h)
are, in general, complex functions. The angle ϕ defines
general oblique rolls. The special cases ϕ = 0 and
ϕ = π/2 describe transverse rolls and longitudinal rolls,
respectively. The growth rate λ marks the difference be-
tween stability (λ < 0) and instability (λ > 0). The
neutrally stable configuration is identified by λ = 0. In
this case, the condition of minimum R among the neu-
trally stable modes defines the critical values αc and Rc

for the onset of convective rolls.
By substituting Eqns. (18) and (19) into Eqns. (15)–

(17), the following eigenvalue problem for neutrally sta-
ble modes is obtained:

Rα cosϕF (x)h− n [f ′ F ′(x) + F (x) f ′′] +

α2 f F (x)
(
cos2 ϕ + n sin2 ϕ

)
= 0,

(20)

h′′ + i f ′ F (x)−[
α2 + λ− i ω + i α cosϕRxF (x)

]
h = 0,

(21)

x = ±1/2 : f = 0, h = 0. (22)

The solution of the ODEs given by Eqns. (20) and
(21) can be found numerically by means of the shooting
method. The associated initial value problem is solved
with the Runge–Kutta method, while Brent’s method is
adopted for the root searching procedure. The numerical
solution of the problem is here found through the built–
in functions NDSolve and FindRoot available within the
Mathematica 12.0 environment (© Wolfram Research).
Accordingly, the problem is rewritten as an initial value
problem starting from x = −1/2, namely Eqn. (22)
yields

f(−1/2) = 0 , f ′(−1/2) = ξ1 + i ξ2, (23)

h(−1/2) = 0 , h′(−1/2) = 1, (24)

where ξ1 and ξ2 are unknown real parameters to be de-
termined by the shooting method, while the last condition
on h′ is a scale–fixing condition set to break the scale in-
variance of the eigenfunctions (f, h). According to the
method, for given values of the 3 parameters (n, α, R)
one may determine iteratively the values of (λ, ω, ξ1, ξ2)
that satisfy the target conditions in x = 1/2, namely
f(1/2) = 0 , h(1/2) = 0. However, since the function
F (x) defined by Eqn. (13) has a singularity in x = 0 for
n ̸= 1, it is useful to introduce a small positive smoothing
parameter δ as a workaround against numerical issues by
redefining F (x) as follows

F (x) =
(
R2 x2 + δ

) 1−n
2n . (25)

In the following, the sensitivity of the results to the
adopted value of δ is checked, for each considered value
of n. The main requirement for an efficient solution of
Eqns. (20)–(24) through the shooting method is an accu-
rate initial guess for the eigenvalue quantities R and ω,
for a given prescribed input dataset.

4 DISCUSSION OF RESULTS
The change of the inclination angle ϕ accounts for

the transition from transverse rolls, ϕ = 0, to longitudi-
nal rolls, ϕ = π/2. Figure 3 shows the dependence of
the critical Darcy–Rayleigh number on ϕ. This figure al-
lows one to conclude, with reference to the sample cases
n = 0.6, 0.8, 1.2, 1.4, that ϕ = 0 yields the least possi-
ble value of Rc. As a consequence, we can consider the
transverse rolls as the most unstable perturbations. Thus,
in the following, we will focus our analysis only on trans-
verse rolls.
In order to investigate the onset of instability for a wide
class of power–law fluids, the behaviour of four pseudo-
plastic fluids, having n = 0.6, 0.7, 0.8, 0.9, and four di-
lantant fluids, having n = 1.1, 1.2, 1.3, 1.4, is analysed.
Moreover, the reference case of a Newtonian fluid (n =
1) is also studied. In this case, the basic velocity pro-
file given by Eqn. (13) simplifies to vb = Rx and, thus,
the study does not require the introduction of the smooth-
ing parameter δ. The critical values obtained for the case
of a Newtonian fluid are Rc = 197.081, αc = 1.0595,
which coincide with what reported in [15]. Figures 4 and
5 show the neutral stability curve for two pseudoplastic
fluids, having n = 0.6 and n = 0.9, respectively. As
can be inferred by the comparison, the pseudoplastic fluid
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Fig. 8. Dimensionless pressure (left) and temperature (right)
contour plot for the perturbations in a pseudoplastic fluid with
n = 0.6 at critical conditions

with the smaller n attains the instability for a lower value
of Rc. Similarly, in Figures 6 and 7 the neutral stability
curves of two dilatant fluids are plotted, for n = 1.1 and
n = 1.4, respectively. Again, the higher the n index, the
bigger the value of Rc that yields the transition to insta-
bility.

In order to achieve a deeper knowledge of the flow
pattern for the different cases analysed, in Figure 8 and 9
the contour plots of P and Θ are given for a pseudoplas-
tic fluid with n = 0.6 and a dilatant fluid with n = 1.4,
respectively. On the other hand, Figure 10 refers to the
limiting case of a Newtonian fluid. By looking at these
figures, the shape of the convective cells and their space
distribution along the slab can be obtained, thus allow-
ing a better understanding of the effect of the specific
rheology for the power–law fluid under exam. In detail,
when the fluid is pseudoplastic, one can see a stretched
trend of the isobaric lines close to the midplane x = 0.
This phenomenon, which becomes more evident as n gets
smaller, is due to the singularity at the midplane already
highlighted in Figure 2. Indeed, in the limit x → 0 the
function F (x) vanishes and, thus, according to Eqn. (20)
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Fig. 9. Dimensionless pressure (left) and temperature (right)
contour plot for the perturbations in a dilatant fluid with n = 1.4
at critical conditions

the second–order derivative f ′′ disappears from the eigen-
value problem.

Table 1 reports the critical values of R and α for de-
creasing values of δ, down to δ = 10−40, for two pseu-
doplastic fluids with n = 0.6 and n = 0.7, respectively.
Similarly, Table 2 reports the critical values of R and α
for the same decreasing values of δ, for two pseudoplas-
tic fluids with n = 0.8 and n = 0.9, respectively. On the
other hand, Table 3 and Table 4 report the critical values
for dilatant fluids having n = 1.1, 1.2 and n = 1.3, 1.4,
respectively. The obtained critical values of ω turn out to
be close to 0, always smaller than 10−4 and with an irreg-
ular dependence on the input data for any considered case,
thus suggesting that ωc is effectively zero. Therefore, the
values of ωc are not reported. As can be inferred from
the Tables, the critical values Rc and αc are characterised
by at least 5 stable significant figures for δ ≤ 10−20,
i.e., they undergo very small changes (practically negli-
gible) when smaller values of δ are considered. More-
over, the maximum absolute values of the relative differ-
ence in the values of Rc and αc obtained for δ = 10−1
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Fig. 10. Dimensionless pressure (left) and temperature (right)
contour plot for the perturbations in a Newtonian fluid (n = 1) at
critical conditions

and δ = 10−40, respectively, are 5.8% and 2.9%, which
proves a very good convergence of the numerical method
adopted.

For both pseudoplastic and dilatant fluids, the results
show that the onset of convective instability is obtained
for values of Rc that increase with n. Relatively low val-
ues of Rc can lead to instability for pseudoplastic fluids,
whereas much higher values of Rc are needed for dilatant
fluids. Moreover, the vanishingly small value of ωc in all
the considered cases suggests that the convective rolls are
stationary.

The obtained pairs of values (n,Rc) allow one to ob-
tain an interpolation curve, as plotted with a dotted line in
Figure 11. The interpolating function has the following
fifth–order polynomial expression

Rc(n) = 2298.5n5 − 8616.1n4+

13767n3 − 10963n2 + 4388.5n− 677.22,

for 0.6 ≤ n ≤ 1.4,

(26)

which leads to values of Rc very close to those obtained

Table 1. Critical values (αc, Rc) for two pseudoplastic fluids
having n = 0.6 and n = 0.7, and sensitivity of results to δ

n = 0.6 n = 0.7

δ αc Rc αc Rc

10−1 1.1287 42.273 1.1149 60.899

10−2 1.1118 43.402 1.1060 61.713

10−3 1.1058 43.942 1.1036 61.990

10−6 1.0996 44.606 1.1023 62.182

10−10 1.0975 44.831 1.1022 62.208

10−20 1.0970 44.890 1.1022 62.210

10−30 1.0970 44.891 1.1022 62.210

10−40 1.0970 44.891 1.1022 62.210

Table 2. Critical values (αc, Rc) for two pseudoplastic fluids
having n = 0.8 and n = 0.9, and sensitivity of results to δ

n = 0.8 n = 0.9

δ αc Rc αc Rc

10−1 1.0971 89.090 1.0782 131.912

10−2 1.0924 89.708 1.0762 132.315

10−3 1.0912 89.885 1.0756 132.432

10−6 1.0907 89.964 1.0754 132.479

10−10 1.0907 89.968 1.0754 132.481

10−20 1.0907 89.968 1.0754 132.481

10−30 1.0907 89.968 1.0754 132.481

10−40 1.0907 89.968 1.0754 132.481

numerically, the maximum relative discrepancy being
lower than 0.6%. The correlation given by Eqn. (26) can
be adopted with a good accuracy to determine the critical
values Rc that leads to linear instability for power–law
fluids characterised by values of the index n not present
in above Tables and within the range 0.6 ≤ n ≤ 1.4.

Finally, Figure 12 reports the obtained values (n, αc)
and their interpolating curve. The Figure shows that, in
the considered range 0.6 ≤ n ≤ 1.4, the critical wave



Table 3. Critical values (αc, Rc) for two dilatant fluids having
n = 1.1 and n = 1.2, and sensitivity of results to δ

n = 1.1 n = 1.2

δ αc Rc αc Rc

10−1 1.0417 296.444 1.0249 448.233

10−2 1.0432 295.612 1.0277 445.757

10−3 1.0438 295.320 1.0288 444.814

10−6 1.0441 295.170 1.0294 444.263

10−10 1.0441 295.163 1.0295 444.231

10−20 1.0441 295.163 1.0295 444.230

10−30 1.0441 295.163 1.0295 444.230

10−40 1.0441 295.163 1.0295 444.230

Table 4. Critical values (αc, Rc) for two dilatant fluids having
n = 1.3 and n = 1.4, and sensitivity of results to δ

n = 1.3 n = 1.4

δ αc Rc αc Rc

10−1 1.0094 680.550 0.9949 1036.774

10−2 1.0132 674.997 0.9995 1025.670

10−3 1.0147 672.720 1.0015 1020.826

10−6 1.0158 671.239 1.0030 1017.366

10−10 1.0158 671.131 1.0031 1017.057

10−20 1.0158 671.128 1.0031 1017.046

10−30 1.0158 671.128 1.0031 1017.046

10−40 1.0158 671.128 1.0031 1017.046

number αc is not a monotonic function of n, though it
undergoes only small changes with the maximum relative
difference around 9%.

5 CONCLUSIONS
The buoyant flow of a power–law fluid saturating a

vertical porous slab has been studied. The Ostwald–de
Waele rheological model implemented via the power–law
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extended form of Darcy’s law has been adopted to model
the seepage flow of both shear–thinning (pseudoplastic)
and shear–thickening (dilatant) fluids. Dirichlet’s bound-
ary conditions for pressure and temperature have been
considered, namely the slab is assumed to be confined
by two fluid reservoirs kept at different but uniform tem-
peratures. First, the local mass, momentum and energy
balance equations have been written in a dimensionless
form and solved to determine the stationary fully devel-
oped basic flow. Then, this basic flow has been perturbed
through small–amplitude disturbances having the form of
normal modes. The resulting dimensionless governing
ODEs yield an eigenvalue problem that has been solved
numerically for different values of the power–law index
n. The technique employed to find the numerical solution
is a shooting method based on a Runge-Kutta solver for
initial value problems. In order to manage the singular
behavior of the power–law rheology at zero seepage ve-
locity, a smoothing parameter δ has been introduced and
the results have been traced in the limit δ → 0. The most



significant conclusions are the following:

• A linear instability arises for every power–law in-
dex n considered, either smaller or larger than unity;
• The transverse modes are the most unstable for both
pseudoplastic and dilatant fluids;
• Pseudoplastic fluids turned out to be more unstable
than dilatant fluids, as the critical Rayleigh number
is an increasing function of n;
• The obtained numerical data suggest that the critical
angular frequency be zero in any considered case, so
that convective rolls are stationary;
• The critical wave number is a non–monotonic func-
tion of n;
• An accurate fifth–order polynomial expression that
interpolates the obtained critical values of R is pro-
vided yielding the linear instability threshold for
power–law fluids characterised by values of n in the
range 0.6 ≤ n ≤ 1.4.

Although the study reported in this paper deals with the
linear stability analysis of the basic parallel flow, the time
growth of the convection cell amplitude becomes non-
linear after the initiation of the instability. Our results
are relevant to the prediction of the parametric conditions
leading to the formation of convection cell patterns in the
porous layer. However, the time growth of the veloc-
ity and temperature amplitude at supercritical conditions
shows up its nonlinear nature in the long time. The most
important phenomenon is the nonlinear saturation of the
growth processes, meaning that the initially exponential
growth predicted by the linear theory at late times changes
into a slower growth process with a possible asymptotic
stationary regime of convection. An example of such an
asymptotic behaviour due to nonlinearity is discussed in
Barletta [21] with reference to a Newtonian fluid. How-
ever, the main practical focus of a weakly nonlinear or
fully nonlinear study of the convection regime is on the
evaluation of the heat transfer rate across the porous slab
when the stationary cellular flow is achieved via the above
mentioned nonlinear saturation. Another important as-
pect is the possible existence of a subcritical instability,
namely the onset of convection induced by finite ampli-
tude perturbations. Subcritical instability may happen un-
der parametric conditions incompatible with the onset of
a linear instability, viz. a Rayleigh number smaller than its
critical value. The existence of such a phenomenon can
hardly be detected in a framework based on the linearised
governing equations.

As for the heat transfer performance in supercritical
conditions, we expect that the thermal energy transport in
the supercritical regime is enhanced, compared to the con-
duction regime obtained for the basic state, by the hori-

zontal flow component due to the formation of convective
cells. The rheology of the specific non-Newtonian fluid
considered might heavily affect the heat transfer rate in
the convective regime. It is reasonable to foresee that the
thermal energy transport is a decreasing function of the
power-law index n. In fact, the effective viscosity of the
fluid is an increasing function of n and, thus, for given
boundary conditions, the flow rate in the convective cells
is expected to be higher for pseudoplastic fluids compared
to Newtonian fluids and to dilatant fluids.

All these aspects are challenges for future develop-
ments of the analysis presented in this paper.
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