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buoyant flows in a horizontal channel
A. Barletta and M. Celli

Department of Industrial Engineering, Alma Mater Studiorum Universita di Bologna,

Viale Risorgimento 2, 40136 Bologna, Italy
D. A. S. Rees

Department of Mechanical Engineering, University of Bath,

Bath BA2 7TAY, U.K.
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The stability of buoyant flows occurring in the mixed convection regime for a viscous fluid in a horizontal
plane-parallel channel with adiabatic walls is investigated. The basic flow features a parallel velocity field
under stationary state conditions. There exists a duality of flows, for every prescribed value of the mass
flow rate across the channel cross-section, caused by the combined actions of viscous dissipation and of
the buoyancy force. As pointed out in a previous study, only the primary branch of the dual solutions is
compatible with the Oberbeck-Boussinesq approximation. Thus, the stability analysis will be focussed on the
stability of such flows. The onset of the thermal instability with small-amplitude perturbations of the basic
flow is investigated by assuming a very large Prandtl number, which is equivalent to a creeping flow regime.
The neutral stability curves and the critical parametric conditions for the onset of instability are determined

numerically.

I. INTRODUCTION

The instability of stationary and fully-developed flows
in a plane channel is a classical topic discussed in a
plethora of textbooks on fluid mechanics. Among the
many, we mention Drazin and Reid! and Kundu, Co-
hen, and Dowling?. The instability arises as hydrody-
namic in nature when there is no thermal forcing on the
flow via the boundary conditions, with the critical condi-
tions for linear instability being determined through the
solution of the Orr-Sommerfeld eigenvalue problem?!-2.
A different conclusion is drawn when, even in the ab-
sence of an external temperature difference between the
plane boundary walls, the frictional heating associated
with the viscous flow is taken into account. In this case,
the thermally-induced instability acts via a temperature
coupling term in the local momentum balance equation.
Such a term can be the viscous force as the fluid viscos-
ity is temperature-dependent®?. An alternative scenario
is the buoyancy effect, where the temperature coupling
term in the momentum balance is the gravity force with a
temperature-dependent fluid density modelled according
to the Oberbeck-Boussinesq approximation®1°.

The combined effects of buoyancy and viscous heat-
ing may yield situations where the stationary flows in a
channel or duct caused by a given dynamic input, either
a prescribed pressure gradient or a prescribed mass flow
rate, are dual. The duality is usually accompanied by a
merging between the solution branches which produces a
maximum parametric condition in terms of either pres-
sure gradient or mass flow rate above which no stationary
flow is possible. This behaviour is widely documented
in the literature® 101216-18 = We mention that dual or,
more generally, multiple solutions are a consequence of
the nonlinearity of buoyant flows and their existence does

not necessarily imply the inclusion of the viscous dissi-
pation term in the local energy balance equation!%2°,
The aim of this paper is the stability analysis of the
primary branch of dual solutions found by Barletta, Celli,
and Branddo '®. In fact, these authors pointed out that
the secondary branch refers to conditions hardly compati-
ble with the Oberbeck-Boussinesq approximation scheme
underlying their determination. The flow conditions em-
ployed in this analysis involve the fully-developed regime
in a horizontal channel with thermally insulated walls.
The interplay between the buoyancy force and the vis-
cous heating of the channel flow leads to a mixed convec-
tion scenario where the velocity displays a departure from
the Poiseuille profile, with a duality of solutions for ev-
ery prescribed mass flow rate across the channel. Though
widely described in Barletta, Celli, and Brandao '®, the
main features of the dual flows are surveyed also in this
paper for self-containedness of our presentation and for a
precise definition of which basic flow we assume when
testing the transition to instability. The character of
our stability analysis reflects a similar study published
some years ago and relative to Darcy’s flow in a fluid-
saturated porous material?!. As we are interested in the
destabilising action of the viscous dissipation term in the
energy balance, we will assume high viscosity and low dif-
fusivity properties of the fluid, which means a very large
Prandtl number. This assumption simplifies the govern-
ing equations for the perturbations of the basic solution
as they are formulated for a creeping flow scheme with
the inertial term in the momentum balance turning out
to be negligible. A similar approach was followed also in
Barletta and Nield® and in Barletta, Celli, and Nield©.
The focus on the creeping flow regime makes our analy-
sis completely different from the hydrodyncombinedamic
stability analysis of the Poiseuille flow as based on the
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Orr-Sommerfeld eigenvalue problem. In fact, the hydro-
dynamic instability is relative to a condition where the in-
ertial term of the momentum balance becomes utterly im-
portant for the emergence of the flow instability so that,
in that case, the creeping flow scheme is inadequate®+2.
An important governing parameter in the forthcom-
ing analysis is the Gebhart number, Ge. This param-
eter is often employed in the literature where buoyant
flows are studied by including the effect of viscous dissi-
pation, though several authors prefer calling this param-
eter dissipation number, Di. Indeed, the definitions of
Ge and Di are the same. The former symbol is a recog-
nition of the pioneering study by Gebhart??, while the
latter is still widely employed in the literature on geo-
physical flows. Among the many studies regarding the
geophysical applications of the natural convection heat
transfer with viscous heating, we mention the interesting
papers by Kincaid and Silver ?* and by van den Berg and
Yuen?*. The paper by Kincaid and Silver?? provides
a model where the excess heat generated in the upper
part of Earth mantle during orogenesis is attributed to
a viscous dissipation contribution, envisaging also cases
where Di is as large as 6. In van den Berg and Yuen 4
the assumption Di = 0.7 is made on studying buoyant
flows in the mantle by including the effect of viscous dis-
sipation coupled also with the internal heating due to
radioactivity and the adiabatic work induced by com-
pression/decompression processes.

Il. MATHEMATICAL MODEL

Let us consider a Newtonian fluid flowing in a plane-
parallel channel bounded by walls at z = 0 and z = H.
The horizontal x and y directions are unbounded, while
the uniform gravitational acceleration is given by g =
—gé., where g is the modulus of g and &, is the unit
vector of the z axis. The boundary walls are both rigid
and with a perfect thermal insulation.

A. Governing Equations

The Oberbeck-Boussinesq approximation can be em-
ployed so that the governing equations are written as,

V-u=0, (1a)
8_u+(u Viu=
ot N
1
—;Vp—t—gﬁ(T—To)éz—t-z/VZu, (1b)
oT - 9 v
§+(U~V)T7(JVT+E<I), (1c)

where p, 5, v, o and ¢ are the fluid density, thermal
expansion coefficient, kinematic viscosity, thermal diffu-
sivity and specific heat evaluated at the constant refer-
ence temperature Tp. In equations (1), u is the velocity,

p is the local difference between the pressure and the
hydrostatic pressure, T' is the temperature and ¢ is the
time. Hereafter, p is called the pressure field for brevity.
The symbol ® denotes the dissipation function which, ac-
cording to Einstein’s notation for the implicit sums over
repeated indices, can be expressed as

1 R du; — Ouy
© =57 using i = ax; + OIZ (2)

In equation (2), 7;; is the shear rate tensor, while u;
and z; denote the ith Cartesian components of the ve-
locity vector u = (u,v,w) and of the position vector
x = (2,1, 2).

The boundary conditions imposed at z = 0, H express
impermeability, no-slip and adiabaticity,

oT
0z

u=0,

=0 for z=0,H. (3)

B. Dimensionless Formulation

Dimensionless quantities can be defined through the
scaling

X 5 t Lt u

Zox, — S —

H H?/a a/H

P T -1

7 e

pav/H? P TAT

) . av
m — ®, using AT = W

— T,
(4)

On account of equation (4), equations (1) and (3) can be
rewritten in a dimensionless form as

V-u=0, (5a)
L 0—“+( V)u| =-Vp+Té, +V? (5b)
Priot YR TR : "
T
%—tJr(u-V)T:VQTJrGe(D, (5¢)
with
T
u=0, g—Z:O for z=0,1. (6)

In equations (5b) and (5c¢), the Prandtl number, Pr, and
the Gebhart number, Ge, are defined as

(7)

11l.  BASIC DUAL FLOWS

In this section, we survey the main features of the dual
adiabatic flows relying on the results conveyed in a pre-
vious study'®. Stationary solutions of equations (5) and
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FIG. 1. Plots of F(z) for either A= A_ or A= A with different values of Ge
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FIG. 2. Plots of F(z) for A = A, with different values of Ge
(6) with a parallel velocity field can be expressed as —12(A - 6)% Ge 2. (9)

up, = Pe F(2) cosp, v, =PeF(z)sing, w, =0,
Ty, = Pe F"(2) (x cos ¢ + y sinp) + Pe? G(2),
Vo, = (Pe F"(2) cosp, PeF"(z) sinp, Tb), (8)
where the subscript b indicates “basic solution”, Pe is the
Péclet number and the primes denote the derivatives with

respect to z, while functions F(z) and G(z) are polyno-
mials given by

F(z)=2z(1-2)[A-2(A-6)z],
G(Z):% —5A42Ge+20A[(A—4)Ge+A—6]2

—10[A% (4Ge+3) — 30 A (Ge + 1) + 48 Ge + 72| 2°
+12(A—6)[3(A—4)Ge+ A—6]2°

The constant A can be equal either to A_ or A, where

3Ge+ 15— /15 (15 — Ge?)

A_=2
Ge ’
3Ge+ 15+ /15 (15 — Ge?)
Ay =2 o . (10

Equations (8)-(10) describe horizontal parallel flows in
the 2y plane where the velocity field is inclined an angle
¢ to the z axis. The twofold expression of A = A1 means
that there are dual flows corresponding to the same pre-
scribed Péclet and Gebhart numbers. Such dual flows
exist if Ge < v/15 & 3.87298 and they coincide only when
Ge = /15. We note that such an upper bound for Ge is
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an extremely large value in practical cases'®. The Péclet
number is defined in terms of dimensional quantities as

pe— Do (11)
@
where the reference dimensional velocity Up is intended
as the basic average velocity in the horizontal flow direc-
tion defined by the unit vector (cos¢,sinp,0). In fact,
equation (9) yields

1
/F(z)dzzl, (12)
0

which means that the average dimensionless velocity in
the flow direction is equal to Pe.

It is to be mentioned that function G(z) is defined
only up to an arbitrary additive constant which, in equa-
tion (9), has been fixed so that G(0) = 0. Such a feature
is due to the Neumann boundary conditions for the tem-
perature which leave this constant undetermined. The
temperature appears on the right hand side of equa-
tion (5b) next to the Vp term. Thus, changing the tem-
perature by an additive constant has the physical mean-
ing of changing the reference temperature value employed
for the formulation of the Oberbeck-Boussinesq approx-
imation. This change leads to a redetermination of the
hydrostatic pressure and to a resulting modification in
the dimensional field p which, by definition, is the differ-
ence between the pressure and the hydrostatic pressure.
In fact, the hydrostatic pressure is — pgz, where p is
the fluid density evaluated at the reference temperature
To. It becomes clear that altering the arbitrary addi-
tive constant in G(z) influences the basic solution only
by modifying, through an overall additive constant, the
local values of T}, and, as a consequence of equation (9),
also of dpy,/0z. On the other hand, the discussion of the
stability of the dual basic flows, to be carried out later
on, is not affected in any way by the choice of the ar-
bitrary additive constant in the expression of G(z). In
fact, it will be shown that the dynamics of perturbations
is governed by partial differential equations where Vpy
is absent and T}, is present only through its gradient.

The physical effects underlying the basic dual solutions
are the imposed horizontal flow rate causing the viscous
heating and the buoyancy force induced by the resulting
temperature gradient. Such effects become inactive when
Ge — 0, as highlighted by equation (5c), and the ba-
sic solution becomes an isothermal Poiseuille flow. This
conclusion is made evident by taking the power series
expansions of Ay and A_ at small Ge,

A =6+Ge+0(Ge?),
60 5
Ay = —+6—Ge+ 0(Ge?). (13)
Ge
Equation (13) yields A_ = 6, when Ge — 0, while A} be-
comes singular. Hence, the A -branch of the dual flows

blows up when Ge — 0, while the A_-branch yields

up = 6Pez (1 —z) cose,
v =6Pez(l—2z)sing, w,=0, T,=0,

Vo, = ( — 12 Pe cosp, —12Pe sin ¢, 0). (14)

Equation (14) represents the isothermal Poiseuille flow in
the direction defined by the unit vector (cos ¢, sin¢,0).

We note that, in every case where Ge # 0, the basic
temperature gradient is inclined to the horizontal with
constant horizontal components in the = and y direc-
tions. This feature is easily spotted by reckoning from
equation (9) that F"’(z) = 12 (A — 6).

Figures 1 and 2 illustrate the velocity profiles as
plots of F'(z) for various Gebhart numbers and for both
branches A = A_ and A = Ay. The A = A_ branch
shows very small departures from the Poiseuille profile
unless the Gebhart number becomes huge, namely, close
to its upper bound Ge = y/15. This feature is clearly visi-
ble in Fig. 1, while Fig. 2 reveals that the A = Ay branch
marks a sharp departure from the Poiseuille profile espe-
cially at small Gebhart numbers. The characteristics of
the A = A, profiles show a bidirectional nature of the
flow which arises also, albeit in a minimal way, for the
A = A_ profiles, but only when Ge is very close to its
upper bound v/15. Figure 2 also shows that, at small
Gebhart numbers, F(z) for the A = A branch scales
proportionally to Ge™!, approximately. This feature is
easily recognised on comparing the left-hand frame and
the right-hand frame of Fig. 2, and it is proved on ex-
panding F'(z) in a power series of Ge for A = A,

_8020-50-2)

Ge
+6 (1 —2) z + O(Ge). (15)

F(z)

The vertical change of the basic temperature field is il-
lustrated in Figs. 3 and 4 by plotting function G(z) with
different values of Ge for the A = A_ and A = Ay
branches. Figure 3 shows that the A = A_ branch fea-
tures a significant dependence of the temperature profiles
on Ge, despite the weak influence of the Gebhart number
on the velocity profiles as already pointed out while com-
menting on Fig. 1. Figure 4 shows that, at small Ge and
for the A = A, branch, function G(z) scales proportion-
ally to Ge™2, approximately. This behaviour is shown
through a power series expansion of G(z) with A = A,

_7202° (622 — 1524 10)

) Ge?
360 2% (1 —2)% (1222 — 122+ 5)
- Ge
+7222(42° —102% + 10z — 5) + O(Ge). (16)

A remarkable feature revealed by Fig. 3 is the unsta-
ble thermal stratification (97}/0z < 0) for the A = A_
branch occurring at the lower part of the channel. Such



AlIP
/ Publishing

A=A, Ge=38
Ge= V15

z
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FIG. 4. Plots of G(z) for A = A, with different values of Ge

an unstable thermal stratification does emerge for all
Gebhart numbers also with the A = A branch, although
it can be visualised in Fig. 4 only through the miniatures
at small values of z. Analytically, this conclusion can be
inferred by evaluating G”(0) with A = A,

G"(0) = —24Ge™! [(Ge +5)1/15 (15 — Ge?)
+Ge (15— Ge) + 75], an

The right hand side of equation (17) is evidently negative
for every Ge < 1/15. As a consequence, there always exist
regions close to z = 0 where G'(z) < 0.

The existence of a region inside the channel with a
negative z component of the basic temperature gradient
for either the A = A_ branch or the A = A, branch
discloses the possibility of a thermal instability of the
Rayleigh-Bénard type (heating from below) for the dual

basic flows. This circumstance will be explored later on.
It is to be mentioned that the vertical component of the
basic temperature gradient is not the only source of a pos-
sible thermal instability. In fact, the constant horizontal
components of VT}, may contribute possibly leading to a
thermal instability of the Hadley-type.

It has been pointed out that the A = A, branch
can hardly be considered compatible with the Oberbeck-
Boussinesq approximate model underlying the existence
of the dual solutions'®. The reason is that the approx-
imate model requires the product between the thermal
expansion coefficient f and the maximum temperature
difference across the flow domain to be much smaller than
unity. As pointed out by Barletta, Celli, and Brandao '®,
this condition is precluded when considering the A = A
branch of the dual solutions. On account of these find-
ings, the forthcoming stability analysis will be focussed
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just on the A = A_ branch.

IV. DYNAMICS OF SMALL-AMPLITUDE
PERTURBATIONS

Let us perturb the basic dual flows,

u u, U
pl=|p|+e|P], (18)
T T (G}

where ¢ is the perturbation parameter and (U, P, ©) are
the perturbations of velocity, pressure and temperature,
respectively. The Cartesian components of U are de-
noted as (U, V,W). Let us substitute equation (18) into
equations (5) and (6) by employing equations (2) and (8),
namely

V.U=0, (19a)
1 [oU
ﬁ [g +(ub-V)U+(U-V)ub]
=-VP+08, + VU, (19b)

%Jr(ub-v)@ﬁ»(U'V)Tb

ou oW
— 2 i u
7V@+2Ge[<az+8x)ub
ov oWy
(5 %)) e
U=0, @:O for z=0,1, (19d)
0z

where terms O(e?) have been neglected in order to ac-
count for small-amplitude perturbations.

Since the basic flow direction is inclined an angle ¢
to the x direction, the x axis defines an arbitrary hori-
zontal direction, so that the normal modes of perturba-
tion can be expressed as plane waves propagating along
the z-direction. The effect of arbitrary oblique modes
can be tested by allowing a changing angle within the
range 0 < ¢ < w/2. The values ¢ = 0 and ¢ = 7/2
yield the transverse modes and the longitudinal modes,
respectively. Thus, we write

U U(z
P| =P |t (20)
© O(2)

where k is the real-valued wavenumber, while A is a
complex-valued parameter. The real and imaginary parts
of X are denoted as A = 1 — iw, with n expressing the
growth rate and w yielding the angular frequency. Linear
instability is identified with the condition 7 > 0, while
n = 0 expresses the threshold case of neutral stability.
We substitute equation (20) into equations (19), so that

we can write
ikU+W' =0, (21a)
1o
ﬁ(AU+ziml,U+Wub)
= —ikP+U" kU, (21b)
1 . . . N .
—r(,\v+z‘kubv+Wug):V/Lk2v, (21¢)

1 . R L .
o </\W+ikubW> = PO+ W -2 W, (21d)

R . 9T, 0T, . 9T
N6 +ikuy@+ 02Dy 9Ty O

ox dy 0z
:é"sz(;)JrQGe[(U’+ikW)u{,+V"le’7], (21e)

U=0, V=0, W=0
©'=0 for z=0,1, (21f)

where (U, V, W) are the Cartesian components of U.

The physically significant situation where the viscous
dissipation effect is expected to cause the instability is
when the fluid has a large kinematic viscosity combined
with a small thermal diffusivity. Roughly speaking, such
fluids are markedly susceptible to frictional heating while
the diffusion of such an internally generated heat is ineffi-
cient. This situation reasonably occurs when the Prandtl
number is extremely large.

A. Creeping Flow

A regime of creeping flow occurs when the inertial
terms in the momentum balance are negligible. This hap-
pens when the limit Pr — oo is taken for equation (19b).
As mentioned above, such a limit identifies a condition
where an extremely viscous fluid is employed having a
small thermal diffusivity. In this limit, equations (21)
simplify to

ikU+W' =0, (22a)
—ikP+U" — kU =0, (22b)
V'KV =0, (22¢)

—P O+ W —kPW =0, (22d)

. 5L 0T o 0Ty o OT)
A6 ik €00y Ty O

Ox Jdy 0z
=67 K6+ 2Ge (074 ik W) w4 V0] (220

U=0, V=0 W=0
6 =0 for z=0,1. (22f)

From equations (22¢) and (22f), one can immediately
conclude that V = 0 in the whole range 0 < z < 1. Fur-
thermore, by employing equations (22a) and (22b), one
can express U and P in terms of W and its derivatives.
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Thus, one is led to a reformulation of equations (22) in-
volving only the unknowns W and O,

W//// _9k2 W// + kAW — k2 (:) =0, (233)
o" — [k + A+ ikPeF(z)cos g 6

2GR 00 (g i)
J
; "
_iPe PRSP ir _ pe2 i)W =0, (23b)

k
W=0 W =0 0=0 for 2=0,1.  (23c)

Creeping flow is usually associated with a regime of ex-
tremely small Reynolds number, Re = Pe/Pr. From
the mathematical viewpoint, creeping flow means a sit-
uation where the limit Re — 0 is combined with the
limit Pr — oo. These limits can be taken on keeping
Pe = Re Pr ~ O(1). In the following, we will consider
the dynamics of perturbations as modelled by a creeping
flow achieved with a finite Péclet number.

The linear analysis of the instability for the basic flows
defined by equations (8)—(10) is carried out by solving
numerically the eigenvalue problem (23). The solution
is sought by fixing the input parameters (¢, Ge) and by
determining the neutral stability threshold value of Pe
versus the wavenumber k. The angular frequency, w, of
the neutrally stable modes is also determined.

The neutral stability threshold implies a zero growth
rate, . Additionally, for the sake of convenience, the
basic average velocity is taken into account by redefining
the angular frequency in the comoving reference frame,
namely

w=w—kPe cosp. (24)
Thus, equations (23) can be rewritten as
W — 22 W + W - k* 6 =0, (25a)
0" — |k —i& +ikPeF(2) COSLp} 6

2iGePe F'(2)cosp /=, o

LS ERE ( 2)

- [ S N s
_iPeFE) 080 1 per )y =0, (25b)

&
W=0, W=0 ©0=0 for 2=0,1, (25¢)

where F'(z) = F(z) — 1 is a function with a zero average
value over the interval 0 < z < 1, as a consequence of
equation (12). By assigning ¢ as an input datum for the
solution of equations (25), one actually defines the type
of oblique modes perturbing the flow, with the transverse
modes (¢ = 0) and the longitudinal modes (¢ = 7/2) as
limiting cases.

V. DISCUSSION OF THE RESULTS

We pointed out in Section III that the linear stabil-
ity analysis is relative to the A = A_ branch of the

dual flows. The numerical solution of the stability eigen-
value problem (25) is sought by employing the shooting
method. We do not go into the details of this numerical
technique as its use for the solution of flow stability eigen-
value problems has been widely discussed elsewhere?®26,

The software tool actually employed to implement the
shooting method is Mathematica (© Wolfram Research,
Inc.) with its functions NDSolve and FindRoot. The
former function serves to solve the initial value problem
based on equations (25), starting at z = 0, while the lat-
ter function solves the target conditions (25¢) at z = 1,
thus yielding the numerical values for the neutral stabil-
ity output data (w, Pe). The neutral stability condition is
represented by the curve in the parametric (k, Pe) plane,
with the minimum Pe point along the curve yielding the
critical condition for the onset of instability. Such a crit-
ical condition is given by k = k. and Pe = Pe., where
the subscript ¢ stands for critical value. Tracing the de-
pendence of Pe. on the inclination angle ¢ of the per-
turbation mode in different cases allows one to establish
which modes are the most effective at onset of instability.
Then, the stability analysis can be focussed just on those
modes.

A. The Most Unstable Perturbations

We start the stability analysis from high values of Ge,
namely Ge = V15 and Ge = 2. The neutral stabil-
ity curves in the (k,Pe) plane are drawn in Fig. 5 for
the transverse and the longitudinal modes. We point
out that Ge = /15 is the highest possible value of the
Gebhart number. In fact, such a value is the highest
possible according to the mathematical definition of the
dual solutions, but we stress that this value is extremely
large for physical systems. Figure 5 reveals that, both for
Ge = /15 and Ge = 2, the longitudinal modes are the
more unstable as they yield the transition to instability
with lower values of Pe for every k. The neutral stabil-
ity curves for longitudinal modes reveal also that a finite
value of Pe is achieved when & — 0. This feature has
been observed also in the study of the Rayleigh-Bénard
instability when Neumann boundary conditions for the
temperature are utilised, instead of the usual Dirichlet
temperature conditions?”. We point out that the critical
value of Pe for longitudinal modes is obtained for k£ — 0
in the case Ge = \/ﬁ, but for a nonzero k with Ge = 2
though hardly evident in Fig. 5. More precisely, one finds

ke = 0.842235, Pe. =17.4116, for Ge=2. (26)

We also note that the neutral stability curve for trans-
verse modes is disconnected in two parts when Ge = /15.
These disconnected parts join in a single curve when
Ge = 2, thus forming a local maximum of Pe versus k.
The conclusion that longitudinal modes are the most
unstable is confirmed by Fig. 6 which is relative to Ge =
1 and Ge = 0.5. For both values of Ge, the critical
condition Pe = Pe, occurs for longitudinal modes with a



AlIP
Publishing

2

70

60

Pe

20/(’0:0/
10

p=m/2
Ge =15

k

0 2 14 6 8
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¢ = m/2) modes

nonzero k.. There is a markedly different shape of the
neutral stability curves for transverse modes with Ge = 1
and Ge = 0.5 compared to that for Ge = 2 (Fig. 5). Such
a diversion is due to the very steep increase of the neutral
stability value of Pe in the limit & — 0 when Ge decreases
below 2.

A more systematic study of the effects of the inclina-
tion angle, ¢, on the instability threshold is carried out by
testing the dependence of the critical Péclet number on
this angle. Together with the huge values of Ge consid-
ered in Figs. 5 and 6, smaller and gradually more realistic
values of Ge are considered in Fig. 7. This figure shows
the change of Pe. with ¢ for oblique modes. The change
is monotonic with the case ¢ = 7/2 (longitudinal modes)
displaying the minimum value of Pe,, in all case exam-
ined. This means that the statement that longitudinal
modes are those selected at onset of instability can be
assumed of a general validity. Figure 7 reveals that the
sensitivity of Pe, to ¢ becomes stronger as Ge decreases.
Another important fact is that the critical value of Pe is
achieved with either k. = 0 or k. # 0 for different ranges
of . Indeed, such a complicated trend is a peculiarity for
those cases where Ge is very large, v/15 or 2 among the
values examined in Fig. 7. For smaller Gebhart numbers,
the critical conditions are always associated with k. # 0
for every .

B. The Longitudinal Modes

Since we established that the longitudinal modes iden-
tify the onset of the instability, we will now restrict our
attention to these modes. Then, the stability eigenvalue

problem (25) is greatly simplified,

W —2I2W" + KW - k26 =0, (27a)

0" — (k* —iw) 6 —Pe*G'(2) W =0, (27b)
W=0, W=0 =0 for 2=0,1. (27¢)

The most important feature of equations (27) is that
neutral stability with longitudinal modes occurs with
@ = w = 0, where the equality & = w is a consequence
of the definition (24). This feature, which can be desig-
nated as a principle of exchange of stabilities, cannot be
proved rigorously though it can be inferred quite clearly
from the numerical data.

1. The Limit of Small Gebhart Numbers

A physically significant asymptotic condition is asso-
ciated with the double limit Ge — 0 and Pe — oo on
keeping Ge Pe? ~ O(1). Beyond its mathematical formu-
lation, this asymptotic behaviour means that with small
values of Ge the neutral stability threshold for Pe scales
proportionally to Ge /2.

By expanding G'(z) in a power series of Ge, on account
of equations (9) and (10) and of the choice A = A_, we
obtain

G'(2) = =36 Ge (22 — 322 + 2) + O(Ge?).  (28)
We also introduce the parameter
R = PeVGe. (29)

Thus, with Ge — 0 and R ~ O(1), equations (27) and
(28) yield
W —2B2W" + kW — k26 =0, (30a)
0"~ (K -i2)6
+36 R? (22° — 322+ 2) W =0, (30b)
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W=0 W =0 ©=0 for 2=0,1.  (30c)

‘We note that, in equations (30), Ge and Pe do not appear
separately but only through the parameter R. Hence, the
neutral stability in the limit Ge — 0 can be formulated as
a threshold condition for the parameter R. We also point
out that R? can be interpreted as a viscous dissipation
based Rayleigh number

AT,q H?
R? = gﬂid, where AT,y =
va

1UE (3

and equations (7) and (11) have been used. Here, i is the
dynamic viscosity of the fluid and x its thermal conduc-
tivity, while AT, is a dimensional temperature difference
characteristic of the viscous dissipation effect.

The numerical solution of equations (30) allows one
to obtain the neutral stability curve in the (k,R) plane
for the limiting case of small-Ge, as illustrated in Fig. 8.
An important feature is that, unlike the neutral stability
curves for finite nonzero values of Ge shown in Figs. 5
and 6, the ordinate axis k£ = 0 is a vertical asymptote for
the neutral stability curve shown in Fig. 8. In fact, the
critical data for the small-Ge asymptotic solution are

ke = 2.88872, R, = 41.8534 (32)

Equation (32) is the basis for determining the trend of
Pe, versus Ge at small values of Ge. In particular, equa-
tions (29) and (32) imply that Pe, ~ O(Ge™*/2). This
result is interesting as it differs significantly from the be-
haviour observed in the case of the adiabatic Darcy’s
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FIG. 8. Longitudinal modes: neutral stability curve in the
(k,R) plane for the asymptotic condition Ge — 0

flow in a porous medium?'. In that case, it has been

proved by Barletta and Rees?! that the small-Ge trend
of Pe,. is such that Pe. ~ O(Gcfl). In other words, for
Darcy’s flow in a porous medium, Pe, diverges to infinity
for Ge — 0 significantly faster than in the case of New-
tonian flow. The reason of the difference between these
cases relies in the derivative 97},/0z, which drives the
instability for longitudinal modes. As Ge — 0, one can
infer from equations (8), (9) and (10) with A = A_ that
ATy, /dz ~ O(GePe?). The corresponding result in the
case of Darcy’s flow is 0T;,/9z ~ O(Ge® Pe?) as demon-

strated in Barletta and Rees?!.

2. The Neutral Stability Condition for k — 0

It has been pointed out that, for every Ge # 0, the neu-
tral stability condition for longitudinal modes suggests a
finite value of Pe for infinite wavelenght modes, i.e., for
the limit & — 0. This conjectured trend can be verified
analytically by employing a power series solution of the
eigenvalue problem (27). We set @ = 0 and adopt the
expansions in even powers of k given by

W(2) = Wo(2) + Wa(z) k? + Wa(2) k* + O(K%),
O(2) = 69(2) + O2(2) k* + Ou(2) k* + O(k°),
Pe = Peg 4 Peg k2 + Pey k* + O(kﬁ). (33)

By substituting equation (33) into equations (27) we ob-
tain, to zero order in k,

Wy =0, (34a)
O —Pe2G'(2) Wy =0, (34b)

Wo(0) =0, Wg(0) =0, 6;(0) =0,
Wo(1) =0, W{(1)=0, ©p(1)=0. (34c)

10

Ge = V15,2,1,0.5,0.1,0.01

0 L L L
0 2 1 6 8

k

FIG. 9. Longitudinal modes: neutral stability curves in the
(k,R) plane for different values of Ge. The dashed neutral
stability curve indicates the asymptotic condition Ge — 0
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FIG. 10. Longitudinal modes: R. versus Ge (dark grey line)
compared with Ro versus Ge (light grey line). The black dot
denotes the transition from k. # 0 to k. = 0 occurring when
Ge is given by equation (40)

The solution of equations (34) is
Wo(2) =0, 6p(2) =1, (35)

while Peg remains yet undetermined.

Indeed, ©¢(z) could be equal to any constant value as
the original problem (27) is homogeneous. Choosing the
constant value 1 in equation (35) means getting rid of
the scale invariance for the eigenfunctions by implicitly
fixing the extra condition ©(0) = 1. The immediate con-
sequence is that én(O) = 0 for every positive integer n.
Therefore, the system obtained from equations (27) to
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second order in k is given by

Wi —1=0, (36a)
04 —1 - P G'(2) W2 =0, (36b)

Wa(0) =0, Wj(0)=0, ©(0)=0, ©5(0)=0,
Wa(1) =0, Wi(1)=0. (36¢)

There should also be an extra condition ©4(1) = 0, but it
is not needed to determine the solution of equations (36).
We do not report such a solution for the sake of brevity.
We just say that Wa(z) is a fourth-degree polynomial in
z, while (:‘)2(2) is an eleventh-degree polynomial in z.

Forcing the extra condition ©4(1) = 0 results in a re-
lation between Pey and Ge, namely

105 Ge?

(20 — Ge?) /15(15 — Ge?) + 25 Ge? — 300

(37)

P80:2

A characteristic feature of equation (37) is that Pey ~
(’)(Ge_z) in the limit Ge — 0. This feature justifies our
statement in Section VB1 that the ordinate axis k =
0 is a vertical asymptote for the neutral stability curve
when Ge — 0. Equation (37) provides also a rigorous
evaluation of the critical Péclet number in the maximum-
Ge case, i.e., for Ge = v/15. In fact, k. = 0 in this case
and

Pe,. = Peg = 2V/21 ~ 9.16515. (38)

By comparing this result with the numerical value of
Pe along the neutral stability curve (see Fig. 5) with
k = 0.01, we estimate a relative discrepancy less than
0.01%. Such a discrepancy is extremely satisfactory,
given that the numerical shooting-method solver em-
ployed for the eigenvalue problem (27) yields the smallest
accuracy when k is close to 0.

By considering the system obtained from equa-
tions (27) to fourth order in k, one obtains

Wy — 2 Wy — 6y =0, (39a)
01— 6, (Peg Wi + 2 Peg Pes Wz) G'(z) =0, (39D)
Wi(0) =0, Wi(0)=0, 64(0)=0, 6}(0)=0,

Wy(1) =0, Wi1)=0. (39c)

The extra condition (1) = 0 yields a relation between
Pey and Ge. We do not report the analytical expression
of Pes, but we just note that it can be used to detect
the threshold for k. to change from zero to nonzero as
Ge increases. We already pointed out that the neutral
stability curve for longitudinal modes with Ge = 2 has
ke # 0, while that for Ge = /15 has k. = 0. The
threshold value of Ge where k. changes from a nonzero to
a zero value can be detected as that value corresponding
to a change in the concavity of the neutral stability curve

11

Ge ke Pe. Re Peg Ro
0 2.88872 oo 41.8534 00 o)
0.01 |2.88237 417.4493 41.7449 3549.6464 354.9646
0.1 2.82398 128.9560 40.7795 354.9500 112.2450
0.2 ]2.75634 88.8359 39.7286 177.4528 79.3593
0.3 ]2.68571 70.6563 38.7001 118.2772 64.7831
0.4 [2.61199 59.5981 37.6932  88.6819 56.0874
0.5 [2.53508 51.9123 36.7076  70.9188 50.1472
0.8 ]2.28435 37.8763 33.8776  44.2515 39.5797
1 2.09952 32.0986 32.0986  35.3470 35.3470
1.2 1.89924 27.7601 30.4097  29.4002 32.2063
1.5 1.56474 229062 28.0543  23.4372 28.7045
1.8 1.17077 19.3205 25.9212  19.4448 26.0879
2 0.84224 17.4116 24.6237  17.4397 24.6634
2.2 [0.31397 15.7919 23.4232  15.7924 23.4239
2.23397 0 15.5412 23.2286  15.5412 23.2286

V15 0 91652 18.0369  9.1652 18.0369

TABLE I. Values of k., Pec, R¢, Peo, Ro versus Ge

at £ = 0. Such a change in concavity corresponds to a
change of sign for Pes. In fact, the condition Pes = 0
yields

Ge = 2.23397. (40)

3. The Neutral Stability Curves and the Critical Values

The neutral stability curves for longitudinal modes rep-
resented in the (k,R) plane are reported in Fig. 9 for
decreasing values of Ge ranging from its maximum, v/15,
to 0.01. The neutral stability curve for the asymptotic
case Ge — 0 (dashed line) is reported for comparison.
The first impression is that the neutral stability curve
for Ge = 0.01 matches almost perfectly that for Ge — 0.
However, by employing equation (37), one should keep in
mind that the neutral stability curve for Ge = 0.01 yields
a finite, though very large, value of R in the limit £ — 0,
i.e. R = 354.967, while the neutral stability curve for
the asymptotic case Ge — 0 has a vertical asymptote at
k=0.

Figure 10 displays a comparison between the critical
value of R and the & — 0 limiting value of R versus Ge.
In fact, for a given Ge, we define

Re =Pe.VGe, Rg= PeyVGe. (41)

A dark grey line is employed for R. and a light grey
line for Ry. The latter line almost overlaps the former
when Ge is greater than 2, while the exact overlapping oc-
curs when Ge exceeds the threshold value given by equa-
tion (40) and identified in Fig. 10 by a black dot. The
reason is that the difference between R. and Ry becomes
very small when Ge is so large. When Ge — 0, the value
of R. agrees with that given by equation (32). When
Ge = V15 ~ 3.87298, both the lines come to an end as
this value of Ge is the maximum possible for the exis-
tence of the basic state. Although hardly significant for
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a physical system, the range of Ge very close to its maxi-
mum shows a diversion from the general decreasing trend
of both R. and Ry versus Ge with a minimum which can
be accurately evaluated for Ry by using equation (37),

5
RU,min =34/21 5 = 17.2869,

2
Gemin = 6\/; ~ 3.79473. (42)

Table I reports the critical data for the parameters k, Pe
and R for several Gebhart numbers, together with the
corresponding values of Pe and R obtained by employing
the k& — 0 asymptotic solution equation (37). The first
row of this table, for Ge = 0, is relative to the asymptotic
solution discussed in Section VB 1. We note that the
discrepancy between the asymptotic case Ge — 0 and
the case Ge = 0.01 is less than 0.3 % both in terms of
ke and R.. This means that, for practical purposes, the
asymptotic solution for Ge — 0 can be safely employed
for all cases with Ge < 0.01. In Table I, we also reported
the threshold value of Ge defined by equation (40) above
which k. = 0.

Even if we declared that the focus of our stability anal-
ysis is on the A = A_ branch, a sample comparison
between the stability characteristics of dual flows for a
given Gebhart number could be interesting. Thus, we
have selected a case, Ge = 3.8, very close to the maxi-
mum, Ge = \/ﬁ, so that the dual branches are not too
different. We recall that the basic dual flows for Ge = 3.8
are illustrated in Figs. 1 and 3 and commented on in Sec-
tion III. The neutral stability curves relative to both the
dual branches with Ge = 3.8 are displayed in Fig. 11 for
transverse modes and for longitudinal modes. In both
dual branches, the longitudinal modes are the most un-
stable. However, the A = A_ branch displays a critical

value of Pe smaller than the critical value for the A = A4
branch. Then, the A = A_ is more unstable than the
A = Ay branch in this case. This outcome is not sur-
prising as a similar behaviour was observed in a similar
previous studies dealing with Darcy’s flow in a porous
channel®’. A minor aspect clearly visible in Fig. 11 is
that the onset of instability with longitudinal modes, for
the A = A, branch, happens with a nonzero wavenum-
ber mode, On the other hand, k. = 0 for the A = A_
branch.

VI. CONCLUSIONS

The onset of convective instability for the buoyant par-
allel flows in a horizontal plane channel with adiabatic
walls has been studied. The action of buoyancy and the
unstable behaviour are induced by the viscous dissipation
for a flow with a given mass flow rate.

The main features and, in particular, the duality of
the basic parallel flows have been surveyed. The sta-
bility analysis has been focussed on the lower branch of
the dual flows, as the higher branch turned out to dis-
play features utterly incompatible with the Oberbeck-
Boussinesq approximation. The governing dimensionless
parameters for the dual flows are the Gebhart number,
Ge, also known as the dissipation number, and the Péclet
number, Pe.

The stability analysis has been formulated by evalu-
ating the neutrally stable value of Pe for a given Ge.
Since the dual flows are mathematically defined only with
Ge < /15, this whole parametric range has been ex-
plored. However, it has been also mentioned that values
of Ge as large as its maximum are hardly significant for
any real-world application, even over length scales of geo-
physical interest Barletta, Celli, and Brandao 8.
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The linear stability analysis has been formulated by
assuming creeping flow, which means an infinite Prandtl
number. Such an analysis has been carried out through
a numerical solution of the stability eigenvalue problem
obtained by the shooting method. The main results of
the stability analysis can be summarised as follows:

e The preferred perturbation modes causing the tran-
sition to instability are longitudinal, for every value
of Ge. The reaction of the base flows to arbi-
trary oblique perturbation modes has been tested
by defining the inclination angle ¢ between the base
flow direction and the wave vector corresponding
to the oblique modes. Then, the inclination an-
gle has been varied in the range 0 < ¢ < 7/2,
with ¢ = 0 identifying the transverse modes and
¢ = m/2 defining the longitudinal modes. The
value ¢ = /2 always yields the least stable condi-
tion.

The analysis of the neutral stability condition for
the longitudinal modes reveals that such modes
are non-travelling as their angular frequency and,
hence, their phase velocity is always zero. The
critical values of either Pe or the parameter R =
Pev/Ge are generally decreasing functions of Ge,
except for a very narrow range close to the maxi-
mum Ge = /15. The longitudinal modes with a
zero wavenumber, or an infinite wavelength, have a
finite neutrally stable value of Pe for any nonzero
Ge. This regime has been studied via an analytical
asymptotic solution.

A physically important situation is one where Ge
is negligibly small, the Péclet number is very large,
but the parameter R remains finite. For this limit-
ing case, the critical condition for the onset of the
instability has been evaluated as R, = 41.8534.

The study of the instability induced by the viscous dis-
sipation has been carried out in this paper by assuming
conditions of creeping flow where the Prandtl number
is prescribed to be extremely large though maintaining a
finite Péclet number. With this scenario in mind, the vis-
cous dissipation instability is one emerging at very small
Reynolds numbers and, hence, has likely no interrelation
with the hydrodynamic instability analysed through the
solution of the Orr-Sommerfeld problem. The extension
of our study to a hybrid parametric domain where a finite
Prandtl number is assumed can be a challenge for future
investigations. Such a development can offer a chance to
test the interplay between the viscous dissipation insta-
bility and the Orr-Sommerfeld hydrodynamic instability
in a plane parallel channel.
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