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Abstract. The linear stability analysis of a mixed convection viscous flow in a vertical porous
pipe is here investigated. The contribution of viscous heating is assumed to be non negligible.
A fully developed flow regime is assumed for the basic state. The local balance equations
for this state display dual stationary solutions. The dual branches of stationary solutions are
determined numerically. Since the pipe is characterised by an isothermal lateral surface, the
viscous heating is the sole cause of the buoyancy force. In order to investigate the stability
of the basic dual solutions, small amplitude disturbances with the form of normal modes are
superposed to the basic state. The solution of the eigenvalue problem obtained allows one to
determine the growth rate associated to both the basic solution branches. The sign of the
growth rate determines whether the particular basic solution is stable or unstable.

1. Introduction
In the last decades, several papers have been published reporting stability analyses of buoyant
flows in porous media [1]. Most of these studies deal with the Rayleigh–Bénard type of
instabilities occurring in porous layers saturated by a fluid and heated from below. The
pioneering papers on this topic were authored by Horton, Rogers [2] and Lapwood [3]. Prats [4]
expanded these earlier analyses by including a stationary horizontal throughflow across the layer.
Barletta et al. [5] further extended this problem by considering the contribution of the viscous
heating. The viscous heating becomes relevant when the throughflow is sufficiently intense
and/or the fluid is characterised by high Prandtl numbers, namely it is both highly viscous
and poorly conductive. When viscous heating is considered, the basic stationary solution of the
governing equations may lose its uniqueness. More effort has been devoted to the investigation
of dual solutions for clear fluids [6, 7, 8] compared to the convection of viscous fluids saturating
porous layers [9]. Very recently, a few papers containing the stability analysis of dual stationary
solutions have been published both for clear fluids [10, 11] and fluid saturated porous media
[12]. The last paper deals with a two–dimensional flow in a plane vertical channel where the
viscous dissipation effect is taken into account.
The paper is focussed on the three–dimensional linear stability analysis of a mixed convection
flow in a vertical porous channel with circular cross–section when the contribution of viscous
heating is non–negligible. The basic state whose stability is investigated feature dual stationary
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Figure 1. Sketch of the vertical porous layer.

solutions. The analysis aims to obtain the threshold values of the governing parameters for the
onset of modal instability.

2. Mathematical model
A mixed convection in a vertical porous pipe characterised by a non–vanishing mass flow rate is
assumed. The fluid saturating the porous pipe is in a fully developed flow regime and the mass
flow rate depends on the imposed pressure gradient. The pipe has radius r0 characterised by a
uniform and constant temperature. Figure 1 displays a sketch of the porous duct.

The mass, momentum (Darcy’s law) and the energy local balance equations employed to
investigate the system just described are the following:
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(1)

where (r, ϕ, z) are the cylindrical coordinates, (u, v, w) are the cylindrical components of the
velocity vector, µ is the dynamic viscosity of the saturating fluid, K is the permeability of the
porous medium, ρ is the density of the fluid evaluated at the reference temperature T0, g is the
modulus of the gravity acceleration vector g, β is the thermal expansion coefficient of the fluid,
c the specific heat of the fluid, σ is the ratio between the average volumetric heat capacity of the
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porous medium and the volumetric heat capacity of the fluid and α is the thermal diffusivity
relative to the fluid saturated porous medium. The reference temperature T0 is the average
temperature on the pipe cross–section,

T0 =
1

π r20

∫ r0

0

∫ 2π

0
T r drdϕ. (2)

The last term of the local energy balance in Eq. (1) identifies the contribution of the viscous
dissipation when Darcy’s law is considered [1]. By employing the scaling
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the dimensionless form of Eq. (1) is obtained,
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(4)

where the Gebhart number Ge and ∆T are defined as

Ge =
g β r0
c

, ∆T =
ν α

Ge2K c
. (5)

As a consequence of Eq. (2), the dimensionless temperature satisfies the constraint∫ 1

0

∫ 2π

0
T r drdϕ = 0. (6)

3. Stationary dual solutions
The basic stationary solutions of Eq. (4) are assumed to be fully developed flows. The
basic solutions are characterised by zero radial velocity u = 0. Among all the possible fully
developed flows, stationary axisymmetric solutions with zero angular velocity v = 0 are chosen.
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Figure 2. Dual basic solutions: for a given Π we obtains two possible velocity η on the pipe
axis, r → 0.

Equations (4) and (6) simplify to

ub = 0,

vb = 0,

wb = Tb +Π,

1
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0
wb rdr = Π,

(7)

where the subscript b denotes the basic state and the boundary condition dwb/dr = 0 at r = 0
can be employed because the flow is axisymmetric. One can note that the assumption u = v = 0
yields, from Eq. (4), that p depends only on z. From Eqs. (6) and (7), it can be inferred that
d2p/dz2 is zero, so that one can define the dimensionless constant Π = −dp/dz.
The basic state is obtained by solving the initial value problem
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(8)

where η is the unknown velocity at r = 0 and ε is a small cutoff ε ≪ 1, which is employed to
overcome the numerical issue introduced by the singular behaviour of the ordinary differential
equation (11) at r = 0. For any given value of the axial velocity η one may obtain a single value
of Π by employing the last of equations (7), namely∫ 1

0
wb rdr = Π. (9)
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Table 1. Values of η(Πmax) and Πmax as functions of ε.

ε η(Πmax) Πmax

10−1 8.761257 1.672008
10−2 8.529247 1.595070
10−3 8.533982 1.594218
10−4 8.534112 1.594209
10−6 8.534115 1.594209
10−8 8.534115 1.594209

The basic stationary solutions are displayed in Fig. 2: by fixing the basic imposed pressure
gradient Π, two possible values of velocity at the pipe axis, r = 0, are obtained. One can
conclude that a single value of the pressure gradient may produce more than one velocity profile.
The curve in Fig. 2 displays a maximum value of Π,

Πmax = 1.594209, η(Πmax) = 8.534115. (10)

The basic state solutions are sensitive to the values of ε employed. In Table 1 the values of
η(Πmax) and Πmax as functions on ε are reported. The values are obtained by imposing 7
effective digits of accuracy. One can conclude that a reasonable value of ε to be employed for
the computations is 10−4.

4. Linear stability analysis
The stability of the dual basic solutions are here tested by superposing small amplitude
disturbances to the basic state, namely

u = ub(r) + εU(r, ϕ, z, t), p = −Π z + εP (r, ϕ, z, t), T = Tb(r) + εΘ(r, ϕ, z, t). (11)

One may substitute Eq. (11) in Eq. (4) and then retain only terms O(ε) to linearise the equations
obtained, namely
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By employing the scaling

z Ge → z,
1

Ge2
P → P, (13)
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Eq. (12) can be rewritten as follows:
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The value of the Gebhart number is typically much less than 1 (for instance water at 20◦C
flowing inside a 10 cm radius pipe yields Ge ≈ 10−7). For the limiting case Ge → 0, the
governing equations (14) can be drastically simplified to
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where the mass balance equation is not reported since it is identically satisfied. Equation (15)
can be simplified by eliminating the presence of the temperature to obtain
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By assuming the disturbances to have the form of normal modes,

W (r, t) = h(r) cos(mϕ)eλ tei k z, (17)

one obtains
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In Eq. (17) h is a complex eigenfunction, m is a non negative integer while λ = λr − iω, λr is
the growth/damping rate, ω is the angular frequency and k is the wavenumber.
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Figure 4. Possibly unstable basic solutions, red dashed curve, against the stable basic solutions,
black dashed curve.

5. Discussion of the Results
The solutions of Eq. (18) are reported in Fig. 3. This figure displays the curves η(k) and Π(k)
obtained by fixing the growth rates λr = 0 and for the modes defined by m = 0. For the case
m = 1 and m = 2, no solutions charaterised by λr = 0 are obtained and the growth rates λr

are always negative. One can conclude that, except for the axisymmetric modes characterised
by m = 0, the other modes are stable.
The left and the right frame of Fig. 3 report the same neutral stability; they are reported
by employing either η or Π. For the interpretation of Fig. 3 is necessary to look at Fig. 4
where the basic solutions that can possibly become unstable are identified by a red dashed line.
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By comparing Fig. 3 and Fig. 4 one can conclude that the basic solutions characterised by
η < 3.436310 cannot become unstable. These solutions are, in fact, endowed with negative
growth rates. It is worth noting that right–hand frame of Fig. 3 displays a gray area for
Π > Πmax. One has to disregard this area since the parameter Π shows a maximum,
Πmax = 1.594209, in its range of variation.

6. Conclusions
The stability analysis presented in this paper aims to investigate the role of viscous dissipation
for mixed convection flows in a fluid saturated vertical porous pipe. The problem presents dual
stationary solutions whose linear stability is studied. The main conclusions one can draw from
this analysis are the following:

• The basic stationary solutions are dual: for a given value of the imposed pressure gradient,
two different possible velocity profiles exist;

• There exists a maximum value of basic pressure gradient beyond which no basic stationary
solution is obtained;

• Part of the basic stationary solutions are always linearly stable, which belong to the lower
branch of the dual flows;

• Only the axisymmetric disturbances can trigger the instability.

Acknowledgments
The authors acknowledge financial support from Grant No. PRIN 2017F7KZWS provided by
the Italian Ministero dell’Istruzione, dell’Università e della Ricerca.
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