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Abstract: The present work analyzes the thermal instability of mixed convection in a horizontal
porous channel that is saturated by a shear-thinning fluid following Ellis’ rheology. The fluid layer
is heated from below by a constant heat flux and cooled from above by the same heat flux. The
instability of such a system is investigated by means of a small-disturbances analysis and the resulting
eigenvalue problem is solved numerically by means of a shooting method. It is demonstrated that
the most unstable modes on the instability threshold are those with infinite wavelength and an
analytical expression for such conditions is derived from an asymptotic analysis. Results show that
the non-Newtonian character of the fluid has a destabilizing role.

Keywords: mixed convection; shear-thinning fluids; Ellis model

1. Introduction

The study of the Rayleigh–Bénard instability for a fluid-saturated porous layer is a
topic of utmost importance for the analysis of convection heat transfer in porous materials.
A comprehensive review of this research topic is presented in Nield and Bejan [1]. The
literature on this subject is mainly focused on Newtonian fluids. When a non-Newtonian
shear-thinning fluid is considered, the Ostwald–De Waele model is frequently employed
for the definition of the fluid rheology [2]. Such a model displays a peculiar feature when
the shear stress applied to the fluid tends to zero. For this limiting case, the apparent
viscosity of the fluid tends to infinity when dealing with pseudoplastic fluids, and to zero
for dilatant fluids. This is not always an issue since usually one focuses on non-vanishing
mass flow rates of shear-thinning fluids. On the other hand, when dealing with transition
to instability, it can be a major problem, as a fluid at rest is a possible basic state for the
onset of instability.

In order to fix the singular behavior of the Ostwald–De Waele law, one can employ
different rheological models. Nield [3,4] suggested a modified drag force term for Darcy’s
law. According to this suggested model, the singularity problem is solved, but only for
dilatant fluids. Instead, for pseudoplastic fluids, the problem persists since the apparent
viscosity still goes to infinity in the limit of the vanishing shear rate. More recently, Brandão
and Ouarzazi [5] and Brandão et al. [6] proposed a modified Darcy’s law based on the
Carreau and the Carreau–Yasuda models, respectively. In both cases, the apparent viscosity
is reduced to the Newtonian one when the shear stress is negligible. On the other hand,
Celli et al. [7] and Brandão et al. [8] proposed the Ellis model as a suitable framework for
the description of the rheology of shear-thinning fluids. For the Ellis model, the apparent
viscosity is also reduced to the Newtonian one in the absence of shear rate. While the
Carreau and Carreau–Yasuda extensions for porous media are recent developments, the
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Ellis model has been used for a long time in the study of non-Newtonian flow in porous
media [9] and is supported by experimental validations.

The pioneering studies on thermal instability in porous media involve Dirichlet bound-
ary conditions for the temperature field, i.e., prescribed temperature at the walls [10–12].
Recently, Celli et al. [7] investigated the effect of the shear-thinning characteristics on the
thermal instability of an Ellis fluid subject to an unstable temperature gradient due to
prescribed temperatures at the walls. It is well-known from the literature that relaxing the
Dirichlet boundary conditions for the temperature field leads to a lower critical Rayleigh
number for the Newtonian rheology both for clear fluids and for saturated porous me-
dia [13–16]. In addition, such a change in the boundary conditions yields the emergent
convective cell to be of larger wavelength (smaller wavenumber). According to Park and
Sirovich [14], a smaller value of the Rayleigh number on the instability threshold means a
smaller input energy to the fluid and, to accommodate this decrease in the energy, the fluid
develops convective cells of infinite wavelength.

The present study aims to investigate the threshold conditions for the onset of thermal
convection when a shear-thinning fluid saturates a horizontal porous layer heated from
below and cooled from above with the same uniform heat flux. The horizontal boundaries
are impermeable and a horizontal throughflow is prescribed. The Ellis model is employed
to describe the rheology of the fluid. The stability of a stationary basic state characterized
by a uniform flow and a vertical downward temperature gradient is investigated. A
linear stability analysis is performed by superposing to the basic state small-amplitude
perturbations in the form of normal modes and by solving the eigenvalue problem thus
obtained. The aim of this paper is to analyze how the shear-thinning character of the fluid
affects the onset of thermal convection.

2. Mathematical Formulation

A horizontal porous channel saturated by a shear-thinning fluid is considered. The
boundary walls, separated by a height H, are considered to be impermeable and both are
subject to a constant heat flux q0 (see Figure 1). The Oberbeck–Boussinesq approximation
is considered and the local thermal equilibrium between the fluid and the solid matrix is
assumed. A basic uniform throughflow is imposed along the horizontal x direction.
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Figure 1. Sketch of the porous layer heated from below and cooled from above by equal constant
heat fluxes with horizontal throughflow.

2.1. Rheological Model

The rheological behavior of the shear-thinning fluid is described by means of the
Ellis model. Such a model involves three parameters and describes the rheology of a
time-independent, shear-thinning and non-yield-stress fluid [17]. According to the Ellis
model, the apparent viscosity η is given by [17,18]:
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η =
η0

1 +
(

τ

τ1/2

) 1−a
a

,
(1)

where a is the Ellis index, η0 is the apparent viscosity at zero shear-stress and τ1/2 is the
value of τ when η = η0/2. The model is formulated with 0 < a < 1, although typical
values of the Ellis index are within the range 0.14 < a < 0.91 [19].

2.2. Modified Darcy’s Law

The classical version of the Darcy’s law for a Newtonian fluid is given by:

u =
K
η

fd , (2)

where u represents the seepage velocity vector, whose components are denoted as (u, v, w),
K is the permeability of the porous medium and fd is the drag force, which is given by:

fd = −∇p− ρ0 g β (T − T0) , (3)

where p is the local difference between the pressure and the hydrostatic pressure, ρ0 is the
fluid density at the reference temperature T0, g is the gravity acceleration vector and β is
the thermal expansion coefficient of the fluid.

A generalized form of Darcy’s law is represented by:

u =
K

ηe f f
fd , (4)

where ηe f f is the effective viscosity given by [18]:

1
ηe f f

=
1
η0

[
1 +

4a
3a + 1

(
|fd|rh
τ1/2

) 1−a
a
]

, (5)

with rh being the mean hydraulic radius, which is directly proportional to the square root
of the ratio between the permeability K and the porosity ϕ of the solid medium.

The modified Darcy’s law for a porous medium saturated by a shear-thinning fluid of
Ellis type can thus be rewritten as:

u =
K
η0

(
1 + A |fd|

1−a
a

)
fd , (6)

where A is a coefficient that depends on the properties of the fluid and the porous medium.

2.3. Governing Equations

The governing equations for mass, momentum and energy describing the present
problem are thus given by:

∇ · u = 0 , (7)

η0

K
u =

(
1 + A |fd|

1−a
a

)
fd , (8)

fd = −∇p− ρ0 g β (T − T0) , (9)

σ
∂T
∂t

+ u · ∇T = α∇2T , (10)
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y = 0, H : v = 0, −χ
∂T
∂y

= q0 . (11)

In Equations (10) and (11), σ is the ratio between the average volumetric heat capacity
of the porous medium and the volumetric heat capacity of the fluid, and α and χ are the
average thermal diffusivity and the average thermal conductivity of the saturated porous
medium, respectively.

The following dimensionless quantities, denoted with an overline, are introduced:

x =
x
H

, u =
H
α

u , p =
K

η0 α
p , t =

α

σH2 t , T =
T − T0

∆T
, (12)

where ∆T = q0H/χ and x = (x, y, z) is the position vector. Furthermore, we define El as
the Darcy–Ellis number and R as the Darcy–Rayleigh number, given by:

El = A
( α η0

H K

) 1−a
a , R =

ρ g β H K ∆T
α η0

. (13)

By substituting Equation (12) into Equations (7)–(11) and by utilizing Equation (13),
the governing equations can be written in the following dimensionless form:

∇ · u = 0 , (14)

u =
(

1 + El |fd|
1−a

a

)
fd , (15)

∂T
∂t

+ u · ∇T = ∇2T , (16)

y = 0, 1 : v = 0, −∂T
∂y

= 1 , (17)

where:

fd = −∇p + R T ey . (18)

In Equations (14)–(18), as well as in the forthcoming analysis, the overline symbol for
the dimensionless quantities has been omitted for the sake of brevity.

We note that the limit of Newtonian rheology is recovered when El → 0. On the
other hand, a very large value of El drives the Ellis model to the power–law model for
pseudoplastic fluids. In the latter case, the Ellis index a can be considered as equivalent to
the power–law index.

2.4. Basic State

The basic stationary flow is generated by a prescribed constant pressure drop along
the x axis, ∂pb/∂x, and by a prescribed heat flux at the walls. This basic solution is given by:

ub = −∂pb
∂x

(
1 + El

∣∣∣∣∂pb
∂x

∣∣∣∣ 1−a
a
)

, vb = 0,

wb = 0,
∂pb
∂y

= R Tb,
∂pb
∂z

= 0, Tb = 1− y ,

(19)

with b standing for basic state. Without any loss of generality, ∂pb/∂x can be assumed to be
negative to obtain a positive basic velocity ub.
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The pressure–temperature formulation of the dimensionless governing Equations (14)–(17)
is given by:

∇ ·
[(

1 + El |fd|
1−a

a

)
fd

]
= 0 , (20)

∂T
∂t

+
[(

1 + El |fd|
1−a

a

)
fd

]
· ∇T = ∇2T , (21)

fd = −∇p + R T ey , (22)

y = 0, 1 :
∂p
∂y

= RT, −∂T
∂y

= 1 . (23)

2.5. Linear Stability Analysis

In order to perform the linear stability analysis, the original fields are decomposed
in two parts: one relative to the basic solution and the other one relative to infinitesimal
disturbances. Neutral stability conditions, i.e., zero growth rate disturbances, are sought.
The linear dynamics of the infinitesimal disturbances is investigated by solving the lin-
earized governing equations. Such disturbances are assumed to behave as plane waves,
i.e., Fourier modes, namely:

p(x, y, z, t) = pb(x, y) + ε f (y) ei(kx x+kz z−ω t) ,

T(x, y, z, t) = Tb(y) + ε h(y) ei(k x+kz z−ω t) ,
(24)

where ε is a positive small parameter that accounts for the amplitude of the disturbances,
f and h are the eigenfunctions of the problem, kx and kz are the wavenumbers in the
streamwise and spanwise directions, respectively, and ω is the angular frequency.

After substituting Equation (24) into Equations (20)–(23), the ordinary linear differen-
tial equations governing the disturbance dynamics can be written as:

f̃ ′′ − ã k2 f̃ − R̃ h′ = 0 , (25)

h′′ − (k2 − R̃− iω̃)h− f̃ ′ = 0 , (26)

y = 0, 1 : f̃ ′ = R̃h, h′ = 0 , (27)

where the following quantities have been defined:

f̃ = (1 + Ẽl) f , R̃ = (1 + Ẽl)R , Ẽl = El
∣∣∣∣∂pb

∂x

∣∣∣∣ 1−a
a

,

kx = k cos(φ) , kz = k sin(φ) , ω̃ = ω− kPe ,

ã =
Ẽl + a(Ẽl + 2) + Ẽl(1− a) cos(2φ)

2a (Ẽl + 1)
.

(28)

In Equation (28), Pe is the Pèclet number and the wavenumbers kx and kz are written
in terms of a single wavenumber k and the inclination angle φ, in order to account for
both longitudinal and transverse rolls. It is possible to verify that ω̃ = 0, which means
that ω = kPe. In order to demonstrate such a result, let us multiply Equation (25) by the
complex conjugate of f̃ and Equation (26) by the complex conjugate of h and, then, let us
integrate the resulting equations over y. By invoking integration by parts and by taking into
account the boundary conditions (27), it is possible to show that all terms in the resulting
equations are real, which allows us to conclude that i ω̃ = 0. In other words, all modes on
the instability threshold travel with a phase velocity that is equal to the average velocity of
the fluid flow, or equivalently the stability analysis is performed in the comoving reference
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frame. The Péclet number is not explicitly defined here, but its definition can be recovered
by averaging the velocity profile given by Equations (19), namely:

Pe =
∫ 1

0
ub dy =

∣∣∣∣∂pb
∂x

∣∣∣∣
(

1 + El
∣∣∣∣∂pb

∂x

∣∣∣∣ 1−a
a
)

. (29)

3. Asymptotic Analysis for Vanishing Wavenumber

As already mentioned, disturbance modes of a vanishing wavenumber tend to be
the most unstable ones on the thermal instability threshold for a fluid layer heated by
a constant heat flux. For this reason, it can be useful to investigate the stability of the
present problem by focusing on vanishing wavenumbers, i.e., k → 0. In order to do
so, an asymptotic analysis is performed here in the vicinity of k = 0 by expanding the
eigenfunctions of f̃ and h, as well as R̃, in power series of k and then substituting these
series into Equations (25)–(27). Since in Equations (25) and (26) there are only quadratic
terms of k, the power series expansions can be performed by considering only quadratic
terms, namely:

f̃ (y) =
∞

∑
j=0

k2j f̃2j(y), h(y) =
∞

∑
j=0

k2jh2j(y), R̃ =
∞

∑
j=0

k2jR̃2j . (30)

After substituting Equation (30) into the original eigenvalue problem represented by
Equations (25)–(27), it is possible to solve the problem for each order j. Due to the boundary
conditions, h0 is defined up to a constant. Such a constant is used to fix the solution scale,
which allows us to write:

h0 = 1 , (31)

while f0 is given by:
f̃0 = R̃0y + C0 , (32)

where C0 is an integration constant. With reference to second-order terms, it is possible to
obtain the solutions for h2 and f̃2:

h2 =
1
24

ãy2
[
R̃0(y2 − 2) + C0(4y− 6)

]
+ C1 , (33)

f̃2 = R̃2y +
1

360
y2{R̃0 ã

[
60 + R̃0(3y− 5)y

]
y− 60R̃0 ã− 30

[
R̃0(y− 2)y + 12

]}
+ R̃0 y C1 + C2 , (34)

where C1 and C2 are other integration constants. By applying the boundary conditions for
f̃ , given by:

y = 0, 1 : f̃ ′2 = R̃2h0 + R̃0h2 , (35)

it is possible to find the solution for R̃0:

R̃0 =
12
ã

, (36)

which, written in terms of R0 and a by employing Equation (28), becomes:

R0 =
24a

Ẽl + (Ẽl + 2)a + Ẽl(1− a) cos(2φ)
. (37)

From Equation (37), one can infer that R0 is a monotonic increasing function of the
inclination angle φ. Consequently, the neutral stability condition for k → 0 holds for a
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smaller value of R for transverse rolls. The sensitivity of R0 to the angle φ can be inferred
also from the derivative of R0 with respect to φ:

∂R0

∂φ
=

48 Ẽl(1− a)a sin(2φ)[
Ẽl + (2 + Ẽl)a + Ẽl(1− a) cos(2φ)

]2 . (38)

By considering Ẽl ≥ 0 and 0 < a < 1, Equation (38) always returns positive values
in the range 0 ≤ φ ≤ π/2. Such a result confirms the monotonicity of R0 as a function of
φ, and the transverse modes as the preferred ones for the onset of thermal instability. The
results for the most unstable modes can be simplified as follows:

RT
0 =

12a
Ẽl + a

, (39)

where the superscript T stands for transverse. The analytical expression for R0 considering
longitudinal modes is given by:

RL
0 =

12
Ẽl + 1

. (40)

From now on, the present analysis will be focused on the most unstable modes, i.e.,
the transverse ones. Moreover, it is assumed that ω̃ = 0.

4. Results and Discussion

The solution of Equations (25)–(27) was obtained numerically by means of a shooting
method, the same as described in Celli et al. [7]. The computations were carried out within
the Mathematica environment [20]. The limit El → 0 yielded the Newtonian case, whose
critical conditions are given by kc = 0 and Rc = 12 [1,16]. Table 1 shows a comparison
between the present results from the numerical solution for small values of k, and the
well-known results for the Newtonian case. The results for k = 0 are those coming from
the asymptotic analysis presented in the previous section.

Table 1. Neutral stability values of R for small values of k for the Newtonian limit El→ 0.

k R

0.1 12.0114
0.01 12.0001
0.001 12.0000

0 12

The results are presented in terms of neutral stability conditions, that is, the parametric
regime where the disturbances have zero growth rate. Such a condition is expressed by
the pair (k, R) for prescribed values of the control parameters (Ẽl, a). Figure 2 shows the
neutral stability condition for different values of Ẽl and a. One can conclude that the
parameter a has a stabilizing effect on the basic state: by increasing a, higher values of R
are obtained. Although R can vary noticeably from frame to frame in Figure 2, the trend of
the neutral stability curves is similar for the different values of Ẽl shown. Since a controls
the shear-thinning character of the fluid, one may affirm that the non-Newtonian character
of shear-thinning fluids has a destabilizing effect for the present problem.

One may note that, for a given a, by increasing the value of Ẽl starting from Ẽl = 0,
the basic flow becomes unstable for smaller values of R. In fact, such a result is confirmed
by Figure 3. This trend can be physically explained by mentioning that an increment in Ẽl
implies an increment in the non-Newtonian character of the fluid flow as well, in analogy
to what has been found for the parameter a.



Fluids 2023, 8, 54 8 of 11

0 1 2 3 4 5 6

20

30

40

50

k

R

El

=0

a=0.2,0.4,0.6,0.8

0 1 2 3 4 5 6

10

20

30

40

50

k

R

El

=0.1

a=0.2,0.4,0.6,0.8

0 1 2 3 4 5 6

5

10

20

k

R

El

=0.5

a=0.2,0.4,0.6,0.8

0 1 2 3 4 5 6

2

5

10

20

k
R

El

=1

a=0.2,0.4,0.6,0.8

0 1 2 3 4 5 6

0.2

0.5

1

2

5

k

R

El

=10

a=0.2,0.4,0.6,0.8

0 1 2 3 4 5 6

0.05

0.10

0.20

0.50

k

R

El

=100

Figure 2. Neutral stability condition for different values of El and ã.

El
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=0.1,0.5,1,10,100

0.2 0.4 0.6 0.8

0

5

10

15

a

R

Figure 3. Comparison between asymptotic solution for k→ 0 (red dashed curves) and the neutral
stability condition obtained numerically for k = 10−3 (black continuous curves); R versus a.

In real-world problems, perturbations of any wavenumber may arise. For this reason,
once the smallest R is exceeded in Figure 2, the flow is considered to be unstable, even
if it is seemingly stable for values of k larger than the critical wavenumber. By looking
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at Figure 2, one may deduce that the critical conditions always hold true for k → 0. In
fact, Figure 3 illustrates the neutral stability conditions for k = 0.001 and compares it with
the asymptotic results given by Equation (39). Thus, we can assume, without any loss of
generality, that Equation (39) also expresses the critical conditions:

Rc = RT
0 =

12a
Ẽl + a

. (41)

Such a conclusion is of great importance since it allows one to obtain the critical
conditions entirely analytically. Table 2 shows the critical value of R for the same parametric
combination chosen to express the neutral stability condition in Figure 2.

Table 2. Critical values of R.

Ẽl a = 0.8 a = 0.6 a = 0.4 a = 0.2

0 12 12 12 12
0.1 10.666667 10.285714 9.6 8
0.5 7.3846154 6.5454545 5.3333333 3.4285714
1 5.3333333 4.5 3.4285714 2
10 0.88888889 0.67924528 0.46153846 0.23529412

100 0.095238095 0.071570577 0.047808765 0.023952096

Figure 4 shows a comparison between the neutral stability results for k = 0.001 and
the asymptotic solution for k → 0. Such results confirm the trend observed in Figure 2
and suggest again that k = 0.001 can be considered as an approximation of the critical
conditions. When Ẽl→ 0, the results do not depend on a and coincide with the Newtonian
limit. The same can be observed in Figure 2, as the results for Ẽl→ 0 do not depend on a.

It can be useful to express the critical conditions for the onset of instability in terms of
the parameters ∂pb/∂x, a and El, as follows:

Rc = 12a

(
El
∣∣∣∣∂pb

∂x

∣∣∣∣ 1−a
a

+ a

)−1

, (42)

where Equations (28) and (41) have been employed.

a=0.2,0.4,0.6,0.8

0 20 40 60 80 100

0.05

0.10

0.50

1

5

10

El


R

Figure 4. Comparison between asymptotic solution for k→ 0 (red dashed curves) and the neutral
stability condition obtained numerically for k = 10−3 (black solid curves); R versus Ẽl.

Figure 5 shows the dependence of the instability threshold given in terms of Rc as
a function of the basic pressure gradient. The Newtonian fluid limit (El → 0) yields
Rc = 12 independently of the basic pressure gradient. Thus, Figure 5 shows that Rc for
a pseudoplastic fluid is always smaller than for a Newtonian fluid. This means that a
departure from the Newtonian behavior destabilizes the basic flow. Figure 5 reveals that,
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for a = 0.8, there is a marked sensitivity to the basic pressure gradient when ∂pb/∂x is very
small, especially for large values of El.

El=100,10,1,0.5,0.1

0 1 2 3 4 5

0

2

4

6

8

10

12

∂pb /∂x

R
c

a=0.2

El=100,10,1,0.5,0.1

0 1 2 3 4 5

0

2

4

6

8

10

12

∂pb /∂x

R
c

a=0.8

Figure 5. Critical R as a function of the basic pressure gradient for different values of El for a = 0.2 and
a = 0.8.

5. Conclusions

The onset of thermal convection of a shear-thinning fluid saturating a horizontal
porous medium subject to constant heat fluxes at its impermeable boundaries was investi-
gated. The Ellis model was considered in order to overcome the singular behavior of the
power-law model for vanishing shear rates. A linear stability analysis was performed by
considering normal mode disturbances. The most important results can be summarized
as follows:

• There exists a suitable variable transformation that yields a compact representation of
the stability eigenvalue problem;

• The critical conditions hold always for k = 0. The threshold values can be obtained
entirely analytically due to an asymptotic analysis performed for k→ 0;

• The non-Newtonian character of the fluid plays a destabilizing effect on the convective
flow, namely an increasing value of the Ellis number yields a destabilization of the
basic flow;

• For El → 0, the Ellis index a does not affect the stability conditions and the results
coincide with those for the limit of Newtonian fluid already available in the literature
(kc = 0 and Rc = 12);

• For large values of the Ellis number, the power-law behavior is recovered. This means
that the critical Rayleigh number tends to zero.
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