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Abstract
Although research on the role of the gut microbiota (GM) in human health has sharply increased in recent years, 
what a “healthy” gut microbiota is and how it responds to major stressors is still difficult to establish. In particular, 
anticancer chemotherapy is known to have a drastic impact on the microbiota structure, potentially hampering its 
recovery with serious long-term consequences for patients’ health. However, the distinguishing features of gut 
microbiota recovery and non-recovery processes are not yet known. In this narrative review, we first investigated 
how gut microbiota layouts are affected by anticancer chemotherapy and identified potential gut microbial 
recovery signatures. Then, we discussed microbiome-based intervention strategies aimed at promoting resilience, 
i.e., the rapid and complete recovery of a healthy gut microbial network associated with a better prognosis after 
such high-impact pharmacological treatments.

Keywords: Gut microbiota, chemotherapy, cancer, recovery, resilience, probiotics, prebiotics, fecal microbiota 
transplantation

INTRODUCTION
It is now a fact that the human gut microbiota (GM), i.e., the over trillion microbial cells, mainly bacteria, 
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together with archaea, fungi, and viruses that are hosted in the gastrointestinal tract, plays a multifactorial 
role in our physiology, from regulation of metabolism to the education and modulation of the immune 
system, and not least of the nervous system, just to name a few[1,2]. Despite this awareness and the significant 
advances in the compositional and functional profiling of GM, the precise features of a “healthy” (otherwise 
called eubiotic) GM are still far from being defined[3]. This is mainly due to the intrinsically plastic nature of 
GM, which allows it to respond to external perturbations (of limited duration and severity) by oscillating 
between different stable states associated with health[4]. Indeed, GM differs over time and between 
individuals, in relation to factors such as diet, lifestyle, environmental exposure, or more generally, what we 
could define as the exposome[5]. Nonetheless, studies on GM fluctuations in response to these drivers and in 
comparison with disease settings have made it possible to identify some characteristics shared by eubiotic 
GMs all over the world, namely a high level of diversity, high relative abundances of bacteria capable of 
producing beneficial metabolites (mainly short-chain fatty acids - SCFAs, bioactive small molecules with a 
pluripotent role in human physiology)[6] and low proportions of overt or opportunistic pathogens[7-12]. These 
features are in fact associated with a healthy gut whose epithelial barrier is intact and whose immune system 
is adequately trained. In particular, diversity predominantly contributes to the stability of microbial 
communities, as it allows buffering invasions and facilitates efficient use of resources and, in general, a 
certain level of functional redundancy, thus supporting the ability to recover rapidly and fully from 
perturbations, i.e., resilience[4].

However, under certain conditions, the factors listed above, depending on their duration and intensity, can 
seriously compromise the stability of the GM, pushing it towards an unstable state that, once the 
perturbation has ceased, can recover to its original state or stabilize in a new alternative, healthy or vice 
versa dysbiotic (or disease-associated) state[4,13]. More precisely, the GM response to perturbations can be of 
3 types: resilience, resistance, or hysteresis. As anticipated above, resilience is the property of a microbial 
ecosystem that defines how quickly and to what extent it will recover its initial taxonomical and/or 
functional composition following perturbations[14]. The GM is defined as resistant when it remains 
substantially unchanged in the face of perturbations. Finally, when the GM fails to recover from 
disturbance-induced changes and reaches a new stable state, which can be healthy or unhealthy[4], this is 
called hysteresis[15]. For example, the GM is generally resilient to acute travel-related perturbations [such as 
dietary changes, contamination of ingested food or water, and possible drug intake (e.g., malaria 
prophylaxis)], as upon returning home, it tends to recover its original state rather quickly[15,16]. Conversely, 
antibiotic exposure can dramatically perturb GM, in a manner strongly dependent on the initial state, with 
potentially long-lasting effects[4,17,18]. In particular, vancomycin use has been associated with a depletion of 
the relative abundance of beneficial butyrate-producing taxa, such as Coprococcus eutactus and 
Faecalibacterium prausnitzii, along with a decrease in plasma butyrate concentration, which persisted at 2-
month follow-up[18]. Moreover, bacterial species such as Bacteroides thetaiotaomicron and Bifidobacterium 
adolescentis have recently been shown to be associated with ecological recovery after antibiotic therapy, as 
they were able to support (and boost) the repopulation of other gut species through specific carbohydrate-
degradation and energy-production pathways[19].

In addition to antibiotics, anticancer chemotherapy can be considered another major nuisance for GM. 
Chemotherapeutic agents can, in fact, have direct effects on the composition of GM as well as destroying 
gut homeostasis, compromising the integrity of the mucosal barriers and allowing the translocation of 
microorganisms into the lamina propria and potentially throughout the body, with induction of a strong 
inflammatory state[20,21]. Depending once again on the initial layout and the specific dynamics that are 
established during treatment, the GM can favor the therapeutic response or vice versa, the onset of adverse 
events, including death[22-24]. However, what exactly are the GM signatures associated with a favorable 
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prognosis, a proper recovery process and the underlying driving forces are not yet fully understood. 
Understanding these aspects may provide valuable opportunities to rationally design microbiome-based 
intervention strategies aimed at strengthening GM resistance or promoting its ecological recovery, 
increasing the resilience of healthy states or overcoming that of unhealthy states.

In this narrative review, we focus on anticancer chemotherapy as one of the most profound and impactful 
ailments for GM. We discuss post-treatment recovery and non-recovery processes of GM in the context of 
different cancers, paying attention to the main factors influencing these dynamics. Finally, we summarize 
the current evidence on microbiome-based intervention strategies aimed at supporting rapid and full 
restocking of a eubiotic GM [Figure 1].

CHEMOTHERAPY-INDUCED ALTERATIONS IN THE GM AND POTENTIAL SIGNATURES 
OF RECOVERY
In recent years, GM and its metabolites have received a crescendo of attention for their involvement in 
cancer initiation and progression, as well as in anticancer therapy outcomes[25]. In particular, to date, it is 
known that there is a bidirectional relationship between GM and anticancer chemotherapy, with the former 
influencing the efficacy of the treatments, by modulating the immune system and impacting drug 
pharmacokinetics, and the latter seriously undermining the microbiota stability with potentially long-term 
consequences for health[26]. Such chemotherapy-related effects on GM can be direct or indirect, i.e., 
mediated through high-impact side effects, including gastrointestinal toxicity, malnutrition, 
myelosuppression, hepatoxicity, and neurological symptoms. Indeed, the most common side effects of 
chemotherapy are abdominal pain, abdominal bleeding, nausea, infections, and diarrhea which are 
experienced by nearly 80% of oncological patients during treatments. Underlying causes include destruction 
of the gastrointestinal tract mucosal barrier, with possible onset of mucositis (i.e., inflammation of the 
mucosa), epithelial cell death, and malabsorption, which fuel (and are fuelled by) the disruption of the GM 
ecosystem[27]. In fact, chemotherapy acts as a strong stressor on the GM, pushing it towards an unstable and 
transient state, after which it may or may not recover its initial state (i.e., show or not resilience). As 
anticipated above, chemotherapy-related perturbations can also lead to a new stable state of health or 
malaise (so-called hysteresis), which could further favor disease development. How the GM responds to 
chemotherapy is the result of a complex and multifactorial process that depends on many variables, not just 
those related to the chemotherapy regimen (i.e., type and dosage of anticancer drugs), but also the type of 
cancer, the stage of the disease, the co-administration of other drugs, other patient data (demographic, 
anthropometric, biochemical, genetic, immunological, dietary, etc.), and, of course, the baseline GM 
configuration. In particular, patients undergoing chemotherapy usually have significantly reduced oral 
intake due to the side effects of such aggressive treatment, including those mentioned before, such as enteral 
mucositis and nausea[28,29]. This deterioration of patients’ nutritional status may exacerbate GM dysbiosis 
and mucosal injury caused by mucositis, ultimately worsening clinical outcomes[30].

In this scenario, understanding GM fluctuations during anticancer treatments is critical to increase the 
resilience of healthy states (or surpass that of unhealthy states) for rapid and complete restoration of a 
eubiotic GM configuration associated with a better prognosis. However, also due to the recent awareness of 
the relationship between gut microbes and anticancer chemotherapy, relatively few studies are present in 
the literature (please, see Table 1 for a summary of the studies herein discussed). Nevertheless, 
chemotherapy undoubtedly leads to a reduction in the diversity of the GM[23,24,31,32], with a consequent 
potential loss of functional redundancy (although mostly not experimentally verified), which appears crucial 
for the stability of the GM during perturbations and, therefore, for its resilience. The first studies in this field 
were conducted on murine models treated with different chemotherapeutics, showing increased levels of 



Page 4 of Roggiani et al. Microbiome Res Rep 2023;2:16 https://dx.doi.org/10.20517/mrr.2022.2315

Table 1. Clinical studies investigating gut microbiota variations during chemotherapy treatments

Study Cancer type Treatment Number of 
patients Main results

D'Amico  
et al.[23]

Epithelial ovarian cancer Surgery + chemotherapy with platinum and 
taxane compounds

24 - Treatment-related decrease in 
health-promoting SCFA-producing 
taxa, such as Lachnospiraceae and 
Ruminococcaeae 
- Increased levels of Coriobacteriaceae 
and Bifidobacterium over time were 
associated with platinum resistance 
and non-response to therapy

Peled  
et al.[24]

Hematological 
malignancies

Various intensities of conditioning regimens 
before HSCT

1362 - Reduction in bacterial diversity after 
treatment 
- Non-recovers showed an increased 
risk of infections, aGvHD, and relapse

Biagi  
et al.[31]

Hematological 
malignancies (pediatric 
patients)

Conditioning regimens based on busulfan 
before HSCT

10 - Only 10% of pre-existing species 
resisted after HSCT, with Bacteroides 
spp. being the most represented 
among the persistent ones 
- A decrease in the relative 
abundance of health-associated taxa, 
such as Faecalibacterium and 
Ruminococcus, after HSCT 
- Pre-HSCT samples of aGvHD 
patients showed a lower abundance 
of Parabacteroides and Bacteroides

Biagi  
et al.[32]

Hematological 
malignancies (pediatric 
patients)

Conditioning regimens (busulfan, 
cyclophosphamide/fludarabine, total body 
irradiation) before HSCT

36 - Reduced microbial diversity, lower 
Blautia content, and increase in 
Fusobacterium abundance were 
predictive gut microbiota signatures 
of subsequent aGvHD occurrence

Zwielehner 
 
et al.[40]

Various types of 
malignancies (e.g., 
urothelial carcinoma, 
multiple myeloma, non-
Hodgkin lymphoma, 
ovarian fibroma, leukemia, 
small intestinal tumor, 
rectal tumor, colon tumor)

Chemotherapy (antimetabolites, alkylating 
agents, monoclonal antibodies, 
corticosteroids, plant alkaloids, platinum-
containing compounds, radiation therapy, 
anthracyclines, cytotoxic topoisomerase I 
and II inhibitors)

17 - Decreased species richness after 
chemotherapy in comparison with 
healthy individuals 
- Increase in Bacteroides spp. during 
chemotherapy 
- Decreased abundances of 
Bifidobacterium and Clostridium 
clusters IV and XIVa after 
chemotherapy 
- Enterococcus faecium increased 
following chemotherapy 
- The occurrence of Clostridioides 
difficile in 3/17 subjects was 
associated with a decrease in the 
genera Bifidobacterium, Lactobacillus, 
Veillonella, and the species 
Faecalibacterium prausnitzii

Fei et al.[41] Stage III colorectal cancer Chemotherapy (capecitabine + oxaliplatin) 17 - Patients with CID, compared with 
those who did not experience CID, 
had lower bacterial richness along 
with increased Proteobacteria, 
Gammaproteobacteria, 
Enterobacteriales, and 
Enterobacteriaceae (particularly 
Klebsiella pneumoniae) 
- Patients who did not develop CID 
had increased abundances of 
Clostridia, Clostridiales, 
Ruminococcaceae, and Bacteroidetes 
- In general, an increased abundance 
of Bacteroidales, Bacteroidaceae, and 
Bacteroides was observed

- Surgery affected the structure of the 
gut microbiota as demonstrated by 
multivariate analysis based on Bray-
Curtis similarity, and decreased 
biodiversity 
- Bacteroidetes was the most 
abundant phylum in healthy controls 

Deng  
et al.[42]

CRC patients before any 
chemotherapy treatments, 
CRC patients surgically 
treated, and CRC patients 
treated with 
chemotherapy

Chemotherapy (5-FU + oxaliplatin) 17 (CRC before 
chemotherapy) 
14 (CRC after 
pharmacological 
treatment) 
5 (CRC surgically 
treated)
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and CRC patients before and after 
chemotherapy 
- Fusobacterium, Oscillospira, and 
Prevotella were detected in CRC 
patients before and after 
chemotherapy 
- Veillonella dispar, Prevotella copri, and 
Bacteroides plebeius were only 
enriched in CRC patients treated with 
chemotherapy 
- Proteobacteria phylum was found in 
high abundance in CRC patients after 
surgery

Youssef  
et al.[43]

Stomach, pancreas, small 
intestine, colon, and 
rectum cancer 

Chemotherapy and/or radiotherapy 20 (treated 
patients) 
43 (non-treated 
patients)

- Lactobacillaceae and Lactobacillus 
were observed at higher relative 
abundances in the treated group 
compared to the non-treated group

Stringer  
et al.[44]

Various types of cancer 
(colorectal, breast, 
laryngeal, esophageal, and 
melanoma)

Chemotherapy (capecitabine, cisplatin/5-
FU, FOLFOX4, FOLFOX6, FOLFIRI, 
5-FU/folinic acid, paclitaxel, carboplatin and 
gemcitabine)

16 - Reduced proportions of Lactobacillus 
spp., Bacteroides spp., Bifidobacterium 
spp., and Enterococcus spp., and 
increased proportions of 
Staphylococcus spp. and Escherichia coli 
were observed in patients undergoing 
chemotherapy compared to healthy 
controls

Tong  
et al.[45]

Ovarian cancer Surgery and chemotherapy (carboplatin, 
paclitaxel, cisplatin)

18 - The proportions of Bacteroidetes 
and Firmicutes increased after 
treatment, while those of 
Proteobacteria decreased 
- Anaerobic bacteria, such as 
Bacteroides, Collinsella, and Blautia, 
exhibited a significant increase after 
chemotherapy

Galloway-
Peña  
et al.[47]

Acute myeloid leukemia Induction chemotherapy 34 - Loss of bacterial diversity during 
chemotherapy 
- Decreased bacterial diversity at 
baseline was associated with a higher 
risk of infection 
- Chemotherapy treatment led to 
increased abundances of the genus 
Lactobacillus 
- The gut microbiota of patients 
treated with chemotherapy was 
dominated by a single taxon, most 
frequently by opportunistic pathogens 
(e.g., Staphylococcus, Enterobacter, and 
Escherichia)

Han et al.[51
] Acute myelogenous 

leukemia, acute 
lymphoblastic leukemia,  
myelodysplastic syndrome

Myeloablative regimens (busulfan + 
cyclophosphamide and total body 
irradiation + cyclophosphamide) then 
sequential intensified regimen (fludarabine 
+ cytarabine + total body irradiation + 
cyclophosphamide + etoposide)

141 - Proteobacteria, 
Gammaproteobacteria, 
Enterobacteriales, and 
Enterobacteriaceae were associated 
with aGvHD 
- Lower microbiota diversity in the 
aGvHD group compared with the 
non-aGvHD group 
- The gut microbiota and conditioning 
might induce aGvHD by influencing 
the T regulatory/T helper 17 cell 
balance

Montassier 
 
et al.[52]

Non-Hodgkin’s lymphoma Myeloablative conditioning regimen (high 
dose carmustine, etoposide, aracytine, and 
melphalan)

28 - Chemotherapy-related decrease in 
Firmicutes and Actinobacteria and 
increase in Proteobacteria

- Bacterial diversity decreased after 
chemotherapy 
- Drastic decrease in Firmicutes (in 
particular, Faecalibacterium, Blautia, 
and Roseburia) and Bifidobacterium 
after treatment 
- The relative abundance of 
Bacteroides increased during 
chemotherapy, as well as that of 

Montassier 
 
et al.[53]

Non-Hodgkin’s lymphoma Myeloablative conditioning regimen (high 
dose carmustine, etoposide, aracytine, and 
melphalan)

8
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Proteobacteria 
- A shift from Gram-positive to Gram-
negative bacteria was observed

Rashidi  
et al.[54]

Acute myeloid leukemia Chemotherapy 52 - Higher relative abundances of 
Bacteroides and lower amounts of 
Faecalibacterium and Alistipes were 
detected up to 6 months after 
chemotherapy

Rajagopala  
et al.[55]

Acute lymphoblastic 
leukemia in pediatric 
patients

Chemotherapy 32 - Microbiota diversity and richness 
were significantly lower at diagnosis 
and during chemotherapy in 
comparison with healthy controls 
- The abundance of mucolytic gram-
positive anaerobic bacteria, including 
Ruminococcus gnavus and 
Ruminococcus torques, tended to 
increase during the chemotherapy 
regimen  
- At diagnosis, higher proportions of 
Bacteroidetes (particularly 
Bacteroides) and lower proportions of 
Faecalibacterium were found in 
patients compared with healthy 
controls 
- Alistipes proportions decreased 
substantially during chemotherapy, 
while Lachnospiraceae increased 
during treatment

aGvHD: Acute graft vs. host disease; CID: chemotherapy-induced diarrhea; CRC: colon-rectal cancer; FOLFIRI: folinic acid + fluorouracil + 
irinotecan; FOLFOX: folinic acid + fluorouracil + oxaliplatin; FU: fluorouracil; HSCT: hematopoietic stem cell transplantation.

Bacteroides[33-36]. However, Bacteroides were also shown to decrease following chemotherapy treatments, 
along with some beneficial microbes such as Bifidobacterium and Lactobacillus spp.[37-39]. With regard to 
human studies, Zwielehner et al. analyzed the GM profile of 17 patients with different types of cancer before 
and after chemotherapy. Pharmacological treatment promoted a slight increase in Bacteroides spp., as well 
as pathobionts not detected before treatment (e.g., Clostridioides difficile, Enterococcus faecium)[40]. Fei et al. 
found decreased microbial richness (i.e., the total number of species in a given sample) and diversity (which 
refers, depending on the metric used, to either richness or evenness, or both, and can also take into account 
phylogenetic relationships), in colorectal cancer patients receiving antimetabolites and platinum-based 
chemotherapeutic agents[41], while post-treatment enrichment of Bacteroides was found[42]. An elegant study 
from Youssef et al.[43] compared the GM profile of patients with untreated gastrointestinal malignancies (i.e., 
cancer of the stomach, pancreas, small intestine, colon, and rectum) with that of patients treated with 
chemotherapy and/or radiotherapy and healthy controls. Treated individuals, compared to untreated ones, 
had a significantly higher relative abundance of potentially beneficial taxa belonging to the Lactobacillaceae 
family, such as Lactobacillus. One might be tempted to speculate that the chemotherapy regimen is 
beneficial to the GM; however, it is far more likely that this increase is due to pre-treatment GM status or 
other conditions that facilitated a prompt GM recovery. Additionally, chemotherapy-treated patients 
exhibited decreased levels of health-associated microbes, namely Bifidobacterium, Ruminoclostridium, 
Lachnoclostridium, and Oscillobacter, compared to healthy controls[43]. Partially conflicting results emerged 
in the study by Stringer et al.[44], in which reduced proportions of Lactobacillus spp., Bacteroides spp., 
Bifidobacterium spp., and Enterococcus spp., and increased abundances of Staphylococcus spp. and 
Escherichia coli have been observed in patients undergoing chemotherapy for the treatment of several types 
of cancer. Platinum-based chemotherapy has also been shown to exert a detrimental effect on the GM of 
women with epithelial ovarian cancer, particularly with decreased proportions of health-promoting SCFA-
producing taxa, such as Lachnospiraceae and Ruminococcaeae. Notably, an increased level of 
Coriobacteriaceae and Bifidobacterium over time was associated with platinum resistance and non-response 
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Figure 1. Gut microbiota recovery after chemotherapy treatment. High-impact pharmacological treatments such as chemotherapy can 
cause profound disturbance of the intestinal environment, including inflammation, breakdown of mucosal barriers, and shifts in the gut 
microbiota composition. Depending on the initial microbiota state and other treatment-related factors, this perturbation may lead to the 
establishment of a stable state of “recovery” or “non-recovery”. The recovery state is generally characterized by greater resilience due 
to greater microbiota diversity and the presence of founders or keystone taxa (e.g., Bacteroides thetaiotaomicron, Bacteroides fragilis, 
Bifidobacterium adolescentis, and Faecalibacterium prausnitzii), able to favor the repopulation of other commensals, for rapid restoration of 
a properly functioning eubiotic ecosystem. The non-recovery state is featured by dysbiotic traits such as lower gut microbiota diversity, 
increased proportions of pathobionts (e.g., Clostridioides difficile, Enterococcus, Staphylococcus, and Escherichia coli), whose colonization 
and expansion may be promoted by the loss of competing beneficial commensals in an inflammatory environment, and a disrupted 
intestinal epithelium. Microbiome-targeted interventional strategies (e.g., prebiotics, probiotics, and fecal microbiota transplantation) 
may facilitate the transition from a non-recovery to a recovery state, thus accelerating the re-establishment of a healthy gut microbiota 
layout and protecting against the long-term consequences of chemotherapy. The figure was partly generated using Servier Medical Art 
provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license, and images from Flaticon resources. GM: gut 
microbiota.

to therapy[23]. Data on Bifidobacterium, a well-known probiotic genus, appear contradictory but could be 
related to its ability to produce lactate, a key oncometabolite in several cancers, and its anti-inflammatory 
role, and thus possibly a poor ability to promote antitumor immune responses. The results of D’Amico 
et al.[23] were confirmed by Tong et al.[45], who showed that the GM of ovarian cancer patients undergoing 
multiple cycles of chemotherapy was characterized by a higher relative abundance of Collinsella, belonging 
to the Coriobacteriaceae family, in addition to Blautia and Bacteroides, with the latter reported to be 
increased in other cancer types as well. It is also worth noting that oxaliplatin, a platinum-based drug, was 
found to be overall more aggressive than 5-fluorouracil, irinotecan, and calcium folinate, in terms of 
intestinal injury and GM dysbiosis[46]. Moreover, the GM dynamics were studied in adult patients with acute 
myeloid leukemia, treated with antimetabolites or hypomethylating agents, and subjected to antimicrobial 
prophylaxis[47]. Most frequently, opportunistic pathogens (e.g., Staphylococcus, Enterobacter, and 
Escherichia) have been found to make up over 30% of intestinal bacteria, but again an overabundance of 
Lactobacillus was observed, potentially related to recovery. However, current evidence on the ecological role 
of Lactobacillus, with particular regard to its resilience to stressors or its ability to promote GM recovery, is 
still inconclusive.
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In parallel, some research has focused on the GM recovery processes in adult and pediatric patients affected 
by hematologic malignancies undergoing hematopoietic stem cell transplantations (HSCT). HSCT can lead 
to several life-threatening complications, such as graft-versus-host disease (GvHD, i.e., when alloreactive 
donor T cells attack host organs, such as skin, liver, and gut), and local and systemic infections. In this 
context, several studies showed that treatment-related GM unbalances are associated with poor clinical 
outcomes[48]. Indeed, HSCT practices significantly affect GM homeostasis with a reduction in the diversity 
and sometimes monodominance by Proteobacteria, Enterococcus, or Streptococcus[31,32,49-53]. Notably, 
chemotherapy treatments in adult patients have been found to trigger a lasting shift in the GM, with higher 
relative abundances of Bacteroides and lower proportions of Faecalibacterium and Alistipes detected up to 6 
months of follow-up[54]. Similar results were confirmed in pediatric patients with various hematological 
malignancies who underwent HSCT[31,32]. Their GM profile was analyzed before and up to 4 months after 
HSCT, showing the presence of severe dysbiosis, as well as the invasion of newly acquired bacterial species. 
According to the authors, only 10% of pre-existing species resisted after HSCT, with Bacteroides spp. being 
the most represented among the persistent ones. Also, a decrease in the relative abundance of health-
associated taxa, such as Faecalibacterium and Ruminococcus, was found after HSCT. In general, patients 
who did recover a healthy GM configuration after HSCT showed a better prognosis, while non-recoverers 
showed an increased risk of infections, aGvHD, and relapse[24,32]. Conflicting results have also been reported 
regarding the timing of GM recovery, i.e., return to a layout similar to the pre-treatment one. Some studies 
reported that total bacterial abundance was restored in a few days[40], while in others, a more persistent shift 
was found, and the GM recovered its initial richness and metabolic capability several months after 
treatment[31,54,55]. These differences in the speed and extent of recovery could be explained by GM layouts 
before treatment. For example, studies carried out in different contexts have consistently shown that a high-
diversity GM is more stable and resilient to perturbations[56-58].

Again, Bacteroides was identified as a key player, potentially capable of fostering the re-establishment of the 
microbial community. In fact, it was preserved during anticancer treatments, resisting not only the 
perturbations of chemotherapy but also those of antimicrobial therapy. Regarding this last point, a brilliant 
study by Chng et al.[19] found 21 bacterial species with robust associations with post-antibiotic therapy 
recovery, in particular belonging to the Bacteroides genus - i.e., B. uniformis, B. thetaiotaomicron, B. 
stercoris, B. egghertii, B. coprocola, B. caccae, and B. intestinalis. The reason for the persistence of Bacteroides 
during and after treatments may lie in its ability to penetrate the colonic mucus layer and reside within the 
crypt channels, a region that is more protected and less susceptible to stressors[59,60]. Not surprisingly, 
Bacteroides fragilis mutants for carbohydrate utilization systems that are unable to colonize the mucus layer 
are also less resistant to intestinal perturbations, such as antibiotic treatments and pathogen infections[60]. As 
suggested elsewhere, the breakdown of mucins and complex polysaccharides[61] could be one of the 
functions that allow members of the Bacteroidetes phylum to stabilize the GM community[62], thus acting as 
“primary gut species” after perturbations, which contribute to microbiota repopulation[19,63].

INTERVENTION STRATEGIES TO PROMOTE THE RECOVERY OF GM AFTER 
CHEMOTHERAPY
Nowadays, GM has effectively become a target of clinical practice in cancer management[64,65]. Its close 
relationship with host well-being has paved the way for the development of precision personalized 
intervention strategies aimed at promoting more resilient healthy GM configurations associated with a 
better prognosis[22,66,67]. Here, we briefly discuss the potential of prebiotics, probiotics, and fecal microbiota 
transplantation (FMT), as GM manipulation tools to promote its recovery after chemotherapy 
treatment[66,68,69].
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Prebiotics are defined as “a substrate that is selectively utilized by host microorganisms conferring a health 
benefit”[70]. Most of the prebiotics currently used are based on carbohydrates such as inulin, fructo-
oligosaccharides, galacto-oligosaccharides, lactulose, and human milk oligosaccharides[68,71-73]. However, 
other substances, such as polyphenols[74] and polyunsaturated fatty acids[75], are being studied for their 
beneficial effects on host health. These compounds pass through digestion in the small intestine, reaching 
the colon virtually unaffected, where they can be fermented by numerous bacterial taxa into SCFAs[76]. 
Although the information on the use of prebiotics in cancer patients is currently limited, they undoubtedly 
represent a means of promoting GM resistance and resilience[77]. In particular, their metabolism is known to 
involve the establishment of syntrophic cross-feeding interactions[77,78,79], which are essential for the 
ecological health of GM, and could therefore favor the persistence and/or repopulation of beneficial 
commensals for more rapid restoration of microbial diversity and abundance.

Probiotics are “live microorganisms that, when administered in adequate amounts, confer a health benefit 
on the host”[80]. Probiotic intake can restore the GM composition and its health-associated functions, 
limiting pathogens or unhealthy microbial expansions[81,82]. The underlying mechanisms include 
competition for receptor and binding sites, promotion of intestinal mucosa integrity, and production of a 
range of molecules, including antimicrobial agents, to name a few[82-84]. Again, there is little information on 
the potential of probiotics to specifically promote GM recovery after chemotherapy, but several trials have 
explored their efficacy in improving clinical outcomes[21,65]. Notably, a recent randomized, double-blind, 
placebo-controlled trial reported that oral administration of a mixture of six viable probiotic strains of 
lactobacilli and bifidobacteria reduced levels of pro-inflammatory cytokines (i.e., TNF-α, IL-17A, IL-17C, 
IL-22, and IL-12), but also of IL-10, and prevented post-surgical complications in patients with colorectal 
cancer (NCT03782428)[85]. It should be noted that, although generally considered an anti-inflammatory 
cytokine, IL-10 has been shown to play a dual role in immunology, as well as tumor pathogenesis and/or 
progression, with increased levels associated with colorectal cancer progression and poor patient 
survival[86-88]. In addition, a phase II randomized clinical trial showed that an oral probiotic cocktail 
(containing Lactobacillus plantarum MH-301, Bifidobacterium animalis subsp. lactis LPL-RH, Lactobacillus 
rhamnosus LGG-18, and Lactobacillus acidophilus) could alleviate the severity of oral mucositis in patients 
with nasopharyngeal cancer treated with radiotherapy and chemotherapy by regulating GM dysbiosis and 
enhancing immune system response (NCT03112837)[89]. However, as discussed above, the role of probiotics, 
especially Bifidobacterium spp., may not be entirely favorable during chemotherapy treatments, making the 
conduct of further clinical studies extremely important. In particular, future studies should investigate the 
effects of the early intake of probiotics as “GM pre-conditioning” on chemotherapy outcomes and the 
occurrence of side effects. Administration of the traditional probiotic E. coli Nissle 1917 could also be a 
promising approach for colorectal cancer control, possibly due to its pro-apoptotic effect through 
upregulation of PTEN (phosphatase and tensin homolog) and Bax and downregulation of AKT1[90]. 
However, with specific regard to GM resilience, it should be noted that the choice of probiotics to be 
administered should be rationally guided by the knowledge of which are the keystone species associated 
with GM recovery, which most likely do not include lactobacilli and bifidobacteria (generally subdominant 
taxa if not absent in adult GMs) but the so-called next-generation probiotics or live biotherapeutics[91]. For 
example, some Bacteroides species, such as B. fragilis and B. thetaiotaomicron, have shown intriguing 
therapeutic effects on immune derangement and intestinal epithelial barrier impairment, possibly favoring a 
healthy repopulation of the gut[19,92-95]. Additionally, Bacteroides xylanisolvens DSM 23964 has been tested in 
a phase I clinical trial. Heat-inactivated preparations of this organism are hypothesized to improve 
therapeutic response and cancer immune surveillance by increasing Thomsen-Friedenreich α-specific 
IgM[96], but the impact on GM recovery is currently unknown.
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FMT consists of the transfer of healthy donor stools into the gastrointestinal tract of a patient to improve 
the dysbiotic state by increasing the overall diversity and restoring the functionality of the GM[97]. FMT is 
currently used for the treatment of recurrent C. difficile infection[98] when antibiotics (e.g., vancomycin) and 
monoclonal antibodies (e.g., bezlotoxumab) fail, as suggested by international guidelines[99,100]. In this 
context, its efficacy rate is between 80% and 90%, as reported by several meta-analyses and randomized 
clinical trials[101-104]. However, some concerns regarding the long-term safety of FMT are emerging, 
particularly the risk of transfer of pathogens and antibiotic-resistant genes from donor to recipient and/or 
the occurrence of autoimmunological disorders, which makes the choice of an appropriate donor of utmost 
importance[105,106]. Furthermore, another important issue concerns the viability of anaerobic microbes, of 
which GM is largely composed. For example, Papanicolas et al.[107] found that the practice of preparing 
material for FMT in ambient air profoundly affected the microbial viability, disproportionally reducing the 
abundance of anaerobic commensals (including the health-associated taxa F. prausnitzii and Eubacterium 
hallii) and the biosynthetic capacity of important anti-inflammatory metabolites. As regards anticancer 
chemotherapy, as expected, exhaustive information on the application of FMT is not yet available, but some 
clinical trials have been completed and others are still ongoing. For example, in the single-arm phase II 
multicenter study by Malard et al. (NCT02928523)[108], 25 patients with acute myeloid leukemia were 
successfully treated with autologous FMT to restore GM dysbiosis and increase biodiversity. In particular, 
FMT facilitated the restoration of high proportions of health-associated taxa, such as Lachnospiraceae, 
Ruminococcaceae, and other Clostridiales (generally dominant in the adult GM), while the decrease of pro-
inflammatory taxa belonging to the Enterobacteriaceae and Enterococcaceae families, which instead 
predominated during chemotherapy potentially undermining GM recovery.

CONCLUSION
In the present review, we discussed the available literature on GM dynamics during anticancer 
chemotherapy, one of the most detrimental stressors to which the human body and its microbial 
counterpart can be exposed. While the devastating impact of chemotherapy on GM is well established, 
especially in terms of biodiversity reduction and loss of health-associated taxa, with potential expansion of 
pathobionts, the theme of GM resilience and recovery has not yet been sufficiently explored. Indeed, most 
of the available evidence concerns the ability of only one GM genus, Bacteroides, to withstand 
environmental stresses and help rebuild the microbial community. Although GM dynamics in a context 
such as cancer may seem at first glance to be of little relevance, identifying taxa associated with ecological 
recovery and understanding their interactions for a rapid, complete, and healthy community restocking 
would be of paramount importance as it could guide the rational design of microbiome-based adjuvant 
strategies to promote response to therapy and limit long-term negative consequences for oncological 
patients’ health. In this regard, GM manipulation tools such as prebiotics, probiotics, and FMT have shown 
promising results, but again, no particular attention has been paid to whether and to what extent and how 
quickly they allow the recovery of a eubiotic GM. Future studies should unravel such aspects for a 
revolution in the clinical approach, which places the evidence and the mechanisms of action as the basis of 
the choice of intervention strategies.
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