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Abstract
Mixture models provide a useful tool to account for unobserved heterogeneity and are
at the basis of many model-based clustering methods. To gain additional flexibility,
some model parameters can be expressed as functions of concomitant covariates.
In this Paper, a semiparametric finite mixture of regression models is defined, with
concomitant information assumed to influence both the component weights and the
conditional means. In particular, linear predictors are replaced with smooth functions
of the covariate considered by resorting to cubic splines. An estimation procedure
within the Bayesian paradigm is suggested, where smoothness of the covariate effects
is controlled by suitable choices for the prior distributions of the spline coefficients.
A data augmentation scheme based on difference random utility models is exploited
to describe the mixture weights as functions of the covariate. The performance of the
proposed methodology is investigated via simulation experiments and two real-world
datasets, one about baseball salaries and the other concerning nitrogen oxide in engine
exhaust.

Keywords Mixture of experts models · Gibbs sampling · Data augmentation

Mathematics Subject Classification 62H30

1 Introduction

Regression analysis represents one of themost popular tool to investigate the effect of a
set of regressors/covariates on a dependent variable. In this context, a (possibly linear)
regression model is usually specified to describe the conditional expected value of the
dependent variable given the values of the regressors. When data come from different
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subpopulations, it may be reasonable to assume that the unknown parameters of such
model may vary across these subpopulations. Finite Mixtures of Regression (FMR)
models deal with this kind of data, whenever the information about subpopulation
membership is missing (i.e., when subpopulation membership is a source of unob-
served heterogeneity). Since their introduction (Goldfeld and Quandt 1973), mixtures
of regression models have been extensively employed in many research fields (see,
for example, Wedel and DeSarbo 1993; Wang et al. 1996; Turner 2000; Green and
Richardson 2002; Ding 2006; Tashman and Frey 2009; Dyer et al. 2012; Van Horn
et al. 2015; McDonald et al. 2016).

According to their basic formulation, FMR models are characterised by the so-
called assignment independence: namely, it is assumed that subpopulationmembership
does not depend on the regressors. Finite Mixtures of Regression models with Con-
comitant covariates (FMRC), also known as mixtures of experts models (Jacobs et al.
1991), overcome this limitation by specifying not only the component conditional
expected values but also the componentweights as functions of two (sub)sets of regres-
sors, which can be disjoint, coinciding, or overlapping. In particular, a multinomial
logistic regression structure is commonly chosen to link the component weights to the
regressors. Applications of FMRCmodels are described in the statistical, econometric
and machine learning literature (see, for example, Weigend and Shi 2000; Lu 2006;
Gormley andMurphy 2008;Villani et al. 2009; LêCao et al. 2010; Li et al. 2010, 2011;
Frühwirth-Schnatter et al. 2012; Gormley and Frühwirth-Schnatter 2019; Murphy and
Murphy 2020). It is worth mentioning that some of these applications consider mul-
tivariate regressors and/or multivariate dependent variables. Alternatively, Xu et al.
(1994) and Ingrassia et al. (2012) show how assignment dependence in the conditional
distribution of the dependent variable can be achieved by resorting to cluster-weighted
models (Gershenfeld 1997). This latter approach, however, requires the specification
of the joint distribution of both dependent variable and regressors (which is typically
assumed to be a mixture, whose components are represented as the product between
a component conditional distribution for the dependent variable and a component
marginal distribution for the regressors).

In order to enhance the flexibility of FMR/FMRC models, recently several authors
have focused their attention on providing semiparametric or nonparametric exten-
sions of such models (see Xiang et al. 2019, for a recent review). In the context of
models with Gaussian components, Young and Hunter (2010) and Huang and Yao
(2012) have suggested FMRC models where the component weights are assumed to
be smooth functions of a univariate covariate, while retaining a linear structure for the
conditional expected values. This latter assumption has been relaxed by Huang et al.
(2013), who have considered models with conditional expected values and conditional
variances allowed to vary smoothly according to the value of a covariate. Furthermore,
Xiang and Yao (2018) and Zhang and Zheng (2018) have proposed a semiparametric
representation of the conditional expected values. It is worth noting that in all the
papers just mentioned, estimation has been carried out through modified versions of
the Expectation-Maximization (EM) algorithm.

To the best of the Authors’ knowledge, none of these flexible models have been
examined from a Bayesian perspective, despite the fact that Bayesian algorithms to
estimate their parametric counterparts have been extensively studied in the literature
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(see, for example, Frühwirth-Schnatter 2006;Gormley andFrühwirth-Schnatter 2019).
The aim of this Paper is to fill this gap by considering semiparametric FMRC models
within the Bayesian framework. In particular, this Paper focuses on models where
the log-odds of component weights and the conditional means are smooth functions
of a univariate covariate. Following the approach detailed in Berrettini et al. (2021),
Bayesian P-splines (Lang and Brezger 2004) are exploited to obtain a parsimonious
representation of these smooth functions, and a newGibbs sampler algorithm is devel-
oped to perform inference based on: (i) an adaption of a data augmentation schemewith
a (partial) difference Random Utility Model (dRUM) representation; (ii) an approx-
imation of the logistic distribution through a Gaussian mixture (Frühwirth-Schnatter
et al. 2012). Differently from Berrettini et al. (2021), where mixtures of multinomials
are considered and smoothness is only allowed on the component weights, whereas
the other parameters are assumed constant, in this Paper:

• models for the conditional distribution of continuous dependent variables are
examined,

• and the component means are also assumed to be a function of the covariate.

The remainder of the Paper is organised as follows. Model specification is provided
in Sect. 2, while in Sect. 3 the associated Bayesian inference procedure is elicited;
results from simulation studies are presented in Sect. 4, while the ones about real
data applications are reported in Sect. 5. Finally, Sect. 6 is devoted to discussion and
conclusions.

2 Model specification

Suppose {yi }, i = 1, . . . , n, is a random sample from a population clustered into
G components, and that each observation i has an associated quantitative covariate
xi . For simplicity, both yi and xi are assumed univariate throughout this Paper. Let
ci ∈ {1, . . . ,G}be the component indicator for the i-th unit havingdiscrete distribution
Pr(ci = g|xi ) = pg(xi ) > 0, for g = 1, . . . ,G, such that

∑G
g=1 pg(xi ) = 1,

for i = 1, . . . , n. In addition, suppose that, conditioning on ci and xi , yi follows a
Gaussian distribution with mean μci (xi ) and variance σ 2

ci . It is further assumed that
each μg(·) is an unknown smooth function of the covariate x . Hence, given xi , the
random variable yi follows a finite mixture of Gaussian components:

f (yi |xi ) =
G∑

g=1

pg(xi ) fN
(
μg(xi ), σ

2
g

)
, (1)

where fN (·) denotes the Gaussian density function, and p1(·), . . . , pG(·) can be
referred to as the component (or mixture) weights. Conditions for identifiability of
Model (1), whose corresponding graphical representation is reported in Fig. 1, can be
derived by Theorem 1 in Huang et al. (2013) by taking into account that each variance
σ 2
g is assumed independent – and, thus, constant—with respect to covariate x :

• pg(x) > 0 are continuous functions and μg(x) are differentiable functions, for
g = 1, . . . ,G;
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Fig. 1 Graphical model
representation of the FMRC
model in Eq. (1); grey-colored
circle represent observed
quantities

• for any h = j , σ 2
h �= σ 2

j , or, if there exists h = j such that σ 2
h = σ 2

j , then
||μh(x) − μ j (x)|| + ||μ′

h(x) − μ′
j (x)|| �= 0 for any value of x ;

• the domain X of x is an interval in R.

Jacobs et al. (1991) model the component weights pg(xi ) using a multinomial logistic
regression model, expressing the log-odds of these probabilities, with respect to the
reference one (e.g., the G-th), as linear functions of the covariate x . In this Paper,
similarly to Berrettini et al. (2021), each of these G − 1 linear predictors is replaced
with a smooth function of x , represented by a linear combination of m cubic B-spline
bases Bρ(·) and coefficients γgρ :

log
pg(xi )

pG(xi )
= ηg(xi ) =

m∑

ρ=1

Bρ(xi )γgρ, for i = 1, . . . , n. (2)

By defining the n × m design matrix B, where the element in row i and column ρ is
given by Bρ(xi ), and after some algebra, Eq. (2) can be rewritten as:

pg(x) = exp(Bγ g)
∑G

g=1 exp(Bγ g)
, (3)

where γ g = (γg1, . . . , γgm)′ corresponds to the vector of unknown regression coeffi-
cients, where the exponential is applied elementwise. To guarantee identifiability, the
vector of coefficients corresponding to the reference group G are all set equal to 0.

Regarding the components’ normal densities, each mean μg(·) is also assumed to
be an unknown smooth function of covariate x , represented through B-splines:

μg(x) = Bβg (4)

with βg = (βg1, . . . , βgm)′ vector of unknown regression coefficients.

3 Bayesian inference

Adopting B-splines to represent a smooth function requires the specification of what
is known as the number of knots (or, equivalently, the number of B-spline bases),
which governs how the bases behave and the flexibility of the resulting function. In
the Bayesian framework, Lang and Brezger (2004) suggest a large number of knots
(between 20 and 40) to ensure enough flexibility; additionally, they show how to
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define priors for the regression parameters γg1, . . . , γgm and βg1, . . . , βgm in terms of
a random walk:

γgρ = γg,ρ−1 + wgρ, wgρ ∼ N (0, δ2g); (5)

βgρ = βg,ρ−1 + ugρ, ugρ ∼ N (0, τ 2g ). (6)

Using this representation is equivalent to inducing a penalisation, based on differences
of adjacent B-spline coefficients, and leads to the definition of “penalised” B-splines,
commonly abbreviated to “P-splines”. Through this approach, the amount of smooth-
ness is controlled by the variance parameters δ2g and τ 2g : their presence protects against
possible overfitting when a larger than needed number of knots is chosen. In particular,
small values for δ2g and τ 2g lead to approximately constant log-odds and conditional
mean, respectively. Hyperpriors are assigned to the variances τ 2g , δ2g and σ 2

g , select-
ing Inverse Gamma distributions IG(a, b), with a = 1 and a small value for b, for
example b = 0.005, leading to almost diffuse priors. The priors in (5) and (6) can be
equivalently written in the form of global smoothness priors:

γ g|δ2g ∝ exp

(

− 1

2τ 2g
γ ′
gKγ g

)

, βg|τ 2g ∝ exp

(

− 1

2τ 2g
β ′
gKβg

)

where the penalty matrix K is given by K = �′
1�1, with �1 being the first order

difference matrix ( Rue and Held 2005, Chapter 2, p. 52). BecauseK is rank deficient
with rank(K) = m − 1 for a first-order random walk, the priors are improper. It is
worth mentioning that in the literature these kind of priors are usually referred to as
intrinsic Gaussian Markov random fields (Rue and Held 2005).

The multinomial model in Equation (2) can be conveniently represented as a binary
formulation in the partial dRUM representation proposed by Frühwirth-Schnatter et al.
(2012). Conditional on each λg(xi ) = exp(ηg(xi )), the random utilities are defined
as

zgi = ηg(xi ) − log

⎛

⎝
∑

l �=g

λl(xi )

⎞

⎠ + εgi , Dgi = 1(zgi > 0); (7)

where zgi are latent variables, Dgi = 1(ci = g) are the allocation indicators and
εgi are i.i.d. errors following a Logistic distribution (g = 1, . . . ,G, i = 1, . . . , n).
Given λ1(xi ), . . . , λG(xi ) and the latent indicator variables D1i , . . . , DGi , the latent
variables z1i , . . . , zGi are distributed according to an Exponential distribution and can
be easily sampled in a data augmented implementation. To avoid any Metropolis-
Hastings step, Frühwirth-Schnatter and Frühwirth (2010) approximate, for each εgi ,
the Logistic distribution by a finite scale mixture of H Gaussian distributions, with
zero means and variances {s21 , . . . , s2H } drawn with fixed probabilities {w1, . . . , wH }.
The same authors obtained their finite scale mixture approximation by minimizing the
Kullback-Leibler divergence between the densities, and recommend choosing H =
3 in larger applications, where computing time matters, and to work with H = 6
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whenever possible. In a second step of data augmentation, the component indicators
rgi (g = 1, . . . ,G−1, i = 1, . . . , n), each taking value h = 1, . . . , H , are introduced
as yet another level of latent variables. Conditional on zg = (zg1, . . . , zgn)′ and
rg = (rg1, . . . , rgn)′, the binary logit regression model (7) reduces to a Gaussian
regression model.

3.1 MCMC algorithm

Based on the representation of Sect. 3, a new MCMC algorithm is implemented, for a
fixed G, by integrating the scheme proposed by Frühwirth-Schnatter et al. (2012) with
the Bayesian P-spline approach by Lang and Brezger (2004), similarly to Berrettini
et al. (2021). A sketch of the algorithm is comprised of the following steps:

1. Sample the regression coefficients’ vector γ g conditional on zg and rg , g =
1, . . . ,G−1. Using the prior in Equation (5), the full conditional of γ g is given by
a multivariate Gaussian density. Straightforward calculations (Brezger and Lang
2006) show that the precision matrix Pg and the mean mg of γ g|· are given by

Pg = B′W−1
g B + 1

δ2g
K,

mg = P−1
g B′W−1

g

(
zg + logλ−g(x)

)
,

(8)

respectively, whereWg is a n × n diagonal matrix with nonzero elements equal to
the randomly drawn variances (ω1g = s2rg1 , . . . , ωng = s2rgn ) for the g-th group, the
i-th element of λ−g(x) is

∑
l �=g λl(xi ) and the logarithm is applied elementwise;

2. Sample the G − 1 variance parameters δ2g conditional on γ g:

δ2g|γ g ∼ IG

(

a + rank(K)

2
, b + 1

2
γ ′
gKγ g

)

; (9)

3. For each unit i = 1, . . . , n, sample all the (partial) differences of utilities
z1i , . . . , zG−1,i simultaneously from:

zgi = log

(
λg(xi )

∑
l �=g λl(xi )

Ugi + Dgi

)

− log

(

1 −Ugi + λg(xi )
∑

l �=g λl(xi )
Dgi

)

,

(10)

with Ugi ∼ Unif(0, 1);
4. For g = 1, . . . ,G − 1 and i = 1, . . . , n, sample the component indicators rgi

conditional on zgi from:

Pr(rgi = h|zgi , γ g) ∝ wh
√
s2h

exp

⎡

⎢
⎣−1

2

⎛

⎝
zgi − ηg(xi ) + log

∑
l �=g λl(xi )

√
s2h

⎞

⎠

2
⎤

⎥
⎦ ;

(11)
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5. Sample the regression coefficients’ vector βg, g = 1, . . . ,G from a multivariate
Gaussian density with covariance matrix Vg and mean νg

Vg =
(

1

σ 2
g
B(g)′B(g) + 1

τ 2g j
K j

)−1

, νg = VgB(g)′y(g), (12)

where the superscript (g) is applied throughout this section to any matrix or vector
to indicate the rows of that matrix (or the elements of that vector) corresponding
to the units allocated to the g-th group;

6. Sample the G variance parameters τ 2g conditional on βg:

τ 2g |βg ∼ IG

(

a + rank(K)

2
, b + 1

2
β ′
gKβg

)

(13)

7. Sample the G variance parameters σ 2
g conditional on μg(x) = Bβg:

σ 2
g |μg(x),∼ IG

(
a +

∑n
i=1 Dgi

2
,

b + 1

2

(
y(g) − μ

(g)
g (x)

)′ (
y(g) − μ

(g)
g (x)

) )
. (14)

8. Classify each unit i according to Bayes’ rule: draw Dgi (g = 1, . . . ,G, i =
1, . . . , n) from the following discrete probability distribution which combines the
likelihood and the prior:

Pr(Dgi = 1|yi , xi , γ ,βg, σ
2
g ) ∝ λg(xi )

∑G
g=1 λg(xi )

fN (yi |μg(xi ), σ
2
g ). (15)

It is worth mentioning that Steps 1 to 4 of this algorithm are similar to those proposed
by Berrettini et al. (2021) to sample the parameters related to the component weights,
while Steps 3 to 5 are specific to the models considered in this Paper, and are needed
to sample the parameters associated with the component means.

3.2 Label switching, posterior inference andmodel selection

The MCMC algorithm described in the previous section can be prone to label switch-
ing (see Frühwirth-Schnatter 2006, Section 3.5 for a review). A possible solution to
deal with this problem, which exploits k-means clustering (withG clusters) of the pos-
terior draws to identify a unique labeling, has been proposed by Frühwirth-Schnatter
et al. (2012). This solution is readily available to the semiparametric FMRC models
introduced in this Paper.

Posterior inference is carried out after completing the prefixed number T of iter-
ations. As usual, parameter’s posterior mean can be computed considering averages
of the last T − T0 draws of the chains, with T0 defining the burn-in phase. As far
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as the smooth functions are concerned, posterior quantities are obtained by exploit-
ing their representation as linear combinations of spline bases and the corresponding
regression coefficients’ estimates. Pointwise percentiles (usually 2.5–97.5 or 5–95)
computed over the last T − T0 posterior draws can be used to quantify uncertainty
associated to the estimated smooth functions.

TheMaximum-A-Posteriori (MAP) rule is adopted to partition the observations into
G groups, by allocating them to theG components. In particular, each unit i = 1, . . . , n
is assigned to the component ĉi such that

ĉi = argmax
g

⎛

⎝
T∑

t=T0

D(t)
1i , . . . ,

T∑

t=T0

D(t)
gi , . . . ,

T∑

t=T0

D(t)
Gi

⎞

⎠ . (16)

Occasionally, the use of the MAP rule can lead to empty groups, when one or more
components could have no units assigned to them. In such situations, it might be worth
distinguishing between the number of components G and the number of nonempty
components, denoted as

G̃ =
G∑

g=1

1
(
n̂g > 0

)
, (17)

where n̂g = ∑n
i=1 1(ĉi = g) is the number of observations assigned to group g

(g = 1, . . . ,G).
A relevant issue related to mixture models is the choice of the number of compo-

nents, which originated many efforts in the statistical literature. The proposed MCMC
algorithm requires the value ofG to be fixed in advance. Thus, the algorithm should be
run for different values of G and the obtained results should be compared in order to
select the optimal number of components. Severalmodel selection criteria are available
to perform these comparisons (see Celeux et al. 2019, for a recent review). Many of
these criteria require the determination of the number of free parameters of each candi-
date model. However, the quantification of this number for the semiparametric FMRC
models described in this Paper can be difficult due to the regularisation induced by the
prior distributions on the spline coefficients. A solution to circumvent this problem is
proposed by Raftery et al. (2007). They suggest the use of 2s2l as an estimate of this
unknown quantity, where s2l is the sample variance of the log-likelihoods computed

as l(t) = ∑n
i=1 log f (yi |θ (t)

Di
), with θ

(t)
Di

denoting the vector of estimated parameters
for the component unit i is allocated to, at iterations t = T0, . . . , T , after the burn-in.
Using this estimate, they derive two model selection criteria, whose values depend
only on the log-likelihoods from the posterior simulation, that are readily available:

AICM = −2(l̄ − s2l ), (18)

BICM = −2
[
l̄ − s2l (log(n) − 1)

]
, (19)
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where l̄ is the sample mean of the sequence of log-likelihoods l(t), for each iteration
t = T0, . . . , T , after the burn-in. As pointed out by Raftery et al. (2007), the AICM is
connected to the DIC criterion (Spiegelhalter et al. 2002). More specifically, it coin-
cides with the DIC definition provided by Gelman et al. (2004, Sect. 6.7). Concerning
the BICM, it can be related to an approximation of the log-marginal likelihood. Suc-
cessful applications of the AICM in the mixture modelling context are described, for
example, by Erosheva et al. (2007), Gormley and Murphy (2010), Gormley and Mur-
phy (2011), and Mollica and Tardella (2017). The BICM is exploited, for example, by
Ranciati et al. (2017), Murphy et al. (2020) and Redivo et al. (2020).

4 Simulation study

The performance of the proposed approach is investigated in a simulated environment,
considering two scenarios that differ in terms of the true number of components and
the distribution of the manifest variable. In both scenarios, the manifest variable y and
the concomitant covariate x are assumed to be univariate, for simplicity.

The quality of the estimates for the covariate effects on the conditional means is
evaluated through a comparison between the true effects and their posterior estimates,
after fitting each of the following mixture of regression models:

• Semiparametric Finite Mixture of Regressions models with Concomitants
(SFMRC), with flexible specification of both the mixture weights πg(x) and the
conditional means μg(x), g = 1, . . . ,G;

• Semiparametric Finite Mixture of Regression (SFMR) models, with constant
mixture weights πg and flexible specification of the conditional means μg(x),
g = 1, . . . ,G;

• (parametric) FMRC, with linearity assumption for the effect of x on both the
log-odds of the mixture weights log(πg(x)/πG(x)) = ηg(x) and the conditional
means μg(x), g = 1, . . . ,G;

• (parametric) FMR, with constant mixture weights πg and linearity assumption for
the effect of x on the conditional means μg(x), g = 1, . . . ,G.

Additionally, by adapting to the univariate Gaussian case the models discussed in
Berrettini et al. (2021), two mixture models with concomitants are also considered:

• Semiparametric Finite Mixture models with Concomitants (SFMC), with flexible
specification of the mixture weights πg(x) and constant conditional means μg ,
g = 1, . . . ,G;

• (parametric) FMC, with linearity assumption for the effect of x on the log-odds of
the mixture weights log(πg(x)/πG(x)) = ηg(x) and constant conditional means
μg , g = 1, . . . ,G;

For every class of models, G is initially set equal to the true number of components.
In particular, the pointwise means of the estimated μg(x∗), denoted μ̂g(x∗), are plot-
ted together with the pointwise 2.5 and 97.5 percentiles among all samples, where
{x∗

i }, i = 1, . . . , n, are grid points taken evenly in the range of covariate x . To quanti-
tatively assess the performance of the estimators of the unknown regression functions
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μg(x), the same measure employed in Huang and Yao (2012), Huang et al. (2013)
and Xiang and Yao (2018) is adopted, that is the square Root of the Average Squared
Errors (RASE), computed as

RASEμg =
√
√
√
√1

n

n∑

i=1

(
μ̂g(x∗

i ) − μg(x∗
i )

)2
, g = 1, . . . ,G; (20)

in practice, the RASEmeasures the (Euclidean) pointwise distance between the “true”
curve and the estimated one. The same graphical and quantitative evaluations are
carried out for the covariate effects on the mixture weights, this time by restricting the
analysis to the class of semiparametric and parametric models with concomitants.

Regarding the clustering performance, a comparison between true allocations and
inferred ones is made in terms of Adjusted Rand Index (ARI) (Hubert and Arabie
1985) and soft ARI (sARI) (Flynt et al. 2019). For each method and each value of G,
4000 MCMC draws are simulated after a burn-in of as many draws. Both AICM and
BICM are considered to select the optimal number of components, and the number
of nonempty components G̃ is computed according to Equation (17). For each of the
competing classes of models, a proper MCMC algorithm has been implemented in R
(R Core Team 2020). The R codes for the four algorithms are available on GitHub at
the following link: github.com/MarcoBerrettini/sMoE.

4.1 First simulation experiment: G=2

Abatchof 100 independent datasets is generatedwithn = 1000 froma two-component
mixture of regression models with weights

π1(x) = 0.1 + 0.85 sin(πx), π2(x) = 1 − π1(x),

where x is the only covariate, sampled from a standard uniform distribution: xi ∼
Unif(0, 1), i = 1, . . . , 1000. The functional form of η1(x) = log π1(x)

1−π2(x)
, coupled

with the specific range of values for xi , leads to a nonmonotonic concave log-odds.
Conditional on x and the component indicators, each component density is a Gaussian
distribution, with means μ1(x), μ2(x), and variances σ 2

1 , σ 2
2 given by:

μ1(x) = 15(x − 0.5)2 + 1, σ 2
1 = 0.09;

μ2(x) = 5(x − 0.5)2, σ 2
2 = 0.0625.

Figure 2 shows one of the 100 independent samples. Figure 3 highlights the limits of
the parametric approachwhen a nonmonotonic function, symmetric about x = 0.5, has
to be approximated. In particular, for fixed number of components G = 2, both FMC
and FMRC tend to fit a constant function with an associated RASEη (and its standard
deviation), averaged over the 100 simulations, equal to 2.402 (0.209) and 10.091
(31.020), respectively. On the other hand, SFMRC seems to catch the underlying
trend even though some oversmoothing is present around the peak of the function.
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Fig. 2 First simulation
experiment: example of a
simulated dataset

For this model, the average RASEη drops to 0.209, with standard deviation of 0.665.
A peculiar behaviour emerges when examining the estimates for η1(x) obtained with
SFMC, characterised by an average RASEη equal to 4.646 (and a standard deviation
equal to 0.776). This might be caused by an unsuccessful attempt to counterbalance
the evident model misspecification, related to the assumption of constant conditional
means, by using the flexible mixture weights’ specification.

Regarding the estimated conditional means, the SFMRC shows good performance
in the left panel of Fig. 4, apart from some oversmoothing in the lower component
μ2(x), for central values of x . In this area, the probability of observing units from
component 2 reaches its minimum, as previously shown in Fig. 3. Around this region,
most of the observations come from component 1, with only few observations from
component 2. This disproportion, coupled with a certain degree of overlap of the two
components, seems to have led theMCMC algorithm to assign erroneously some units
from component 1 to component 2,with a consequent slight upward bias in μ̂2(x). This
explains also the oversmoothing observed when estimating the effect of the covariate
x on the log-odds η1(x) of the mixture weights. This issue becomes way more evident
if constant weights are assumed without considering the effects of the concomitant
covariate x , as for the SFMR; see the second plot in Fig. 4. Again, the main problem
regards mostly the lower component, whose true mean is not fully included in the
bands, even though they widen considerably in the overlap region.

No assumption of constant weights is made when fitting the FMRC, but, as previ-
ously shown in Fig. 3, this model estimates a constant effect of the covariate, making it
practically equivalent to a FMR. This is evident in Fig. 5, where the conditional means
estimated by the two models are compared. Since these two functions are generated
to be quadratic and symmetric about x = 0.5, both parametric regression models fit
horizontal lines, effectively collapsing to a simple mixture of Gaussians not involving
the effect of the covariate for the conditional distribution of the dependent variable,
thus leading to estimated conditional means very close to those obtained with FMC
and SFMC (Fig. 6). It is worth mentioning that the fitted constant means obtained by
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Fig. 3 First simulation experiment: pointwise average and 2.5–97.5 percentiles of the log-odds of the
mixture weight η1 estimated by the four mixture models with concomitants over 100 simulated datasets,
for fixed G = 2

Fig. 4 First simulation experiment: pointwise average and 2.5–97.5 percentiles of the conditional means
estimated with both semiparametric regression approaches over 100 simulated datasets, for fixed G = 2
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Fig. 5 First simulation experiment: pointwise average and 2.5–97.5 percentiles of the conditional means
estimated with both parametric regression approaches over 100 simulated datasets, for fixed G = 2

Fig. 6 First simulation experiment: pointwise average and 2.5–97.5 percentiles of the conditional means
estimated with both mixture approaches with concomitants over 100 simulated datasets, for fixed G = 2

these four class of models are not even centered around the true average group means.
Table 1 summarises this comparison among the conditional mean functions estimated
by the six competing models from a quantitative point of view, by displaying, for
each combination of method and component g = 1, 2, the average RASEμg and the
standard deviation over 100 simulated datasets. Quality of the estimates are strictly
related to the quality of the allocations, as Table 2 confirms. The SFMRC, in fact, out-
performs its competitors in terms of AICM, BICM, ARI and sARI for fixed number of
components G = 2, followed by the SFMR. Given the previous considerations about
the results, both the parametric approaches and those assuming constant conditional
means prove to be not satisfactory in this simulation setting.
A comparison among the six competing models is performed also by examining the
best models selected according to AICM and BICM when considering a number
of components ranging from 1 to 4. Table 3 reports the distribution of the number of
nonempty components G̃ resulting from the selection based onAICM. G̃ = 2 is always
the best choice according to the SFMRC,while 26 times out of 100 the SFMRprovides
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Table 1 First simulation
experiment: mean (and standard
deviation) of the RASE scores
computed on the estimated
conditional means over 100
simulated datasets

RASEμg μ1(x) μ2(x)

SFMRC 0.102 (0.066) 0.099 (0.086)

SFMR 0.162 (0.232) 0.450 (0.237)

FMRC 1.222 (0.199) 0.716 (0.062)

FMR 1.179 (0.078) 0.719 (0.133)

SFMC 1.246 (0.092) 0.718 (0.035)

FMC 1.172 (0.055) 0.701 (0.033)

Table 2 First simulation experiment: average AICM, BICM, ARI and sARI (number of times each model
ranks first) over 100 simulated datasets, for fixed G = 2

AICM (best) BICM (best) ARI (best) sARI (best)

SFMRC 232.0 (99) 309.2 (99) 0.960 (98) 0.940 (98)

SFMR 453.9 (1) 792.8 (1) 0.627 (2) 0.580 (2)

FMRC 1521.9 (0) 2020.8 (0) −0.012 (0) −0.000 (0)

FMR 1607.8 (0) 2247.0 (0) −0.007 (0) 0.006 (0)

SFMC 1235.9 (0) 2956.7 (0) −0.006 (0) −0.009 (0)

FMC 1532.1 (0) 4743.9 (0) −0.008 (0) 0.006 (0)

Table 3 First simulation
experiment: number of
nonempty component selected
for each method, according to
AICM, over 100 simulated
datasets

G̃ = 1 G̃ = 2 G̃ = 3 G̃ = 4

SFMRC – 100 – –

SFMR – 74 26 –

FMRC 90 10 – –

FMR 93 2 5 –

SFMC – 1 20 79

FMC 4 – 7 89

a better AICM with an additional component. It is interesting to note that parametric
regression approaches tend to show better values for AICMwhen considering a single
component. Conversely, models characterised only by the presence of concomitants
appear to improve if a larger number of components is considered. This again might
be related to the fact that increasing the number of components might compensate for
their intrinsic mispecification.

By comparing the results reported in Table 3 to those in Table 4, the tendency of the
BICM to select models with fewer nonempty components is apparent. This seems to
be consistent with what has been already reported in the literature (see, for example,
Redivo et al. 2020). Only SFMRC models do not seem to suffer from this systematic
underestimation.

Examining the best models (according to AICM) fitted with each method for each
simulated dataset, rather than fixing the number of components, the conclusions does
not seem to change. All AICM averaged values reported in Table 5 improve with
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Table 4 First simulation
experiment: number of
nonempty component selected
for each method, according to
BICM, over 100 simulated
datasets

G̃ = 1 G̃ = 2 G̃ = 3 G̃ = 4

SFMRC – 100 – –

SFMR 66 34 – –

FMRC 100 – – –

FMR 100 – – –

SFMC 96 – 4 –

FMC 100 – – –

Table 5 First simulation experiment: average AICM, ARI and sARI (number of times each model ranks)
over 100 simulated datasets, for optimal G according to AICM

AICM (best) ARI (best) sARI (best)

SFMRC 228.4 (100) 0.975 (97) 0.955 (95)

SFMR 430.7 (0) 0.587 (3) 0.533 (5)

FMRC 1342.0 (0) −0.003 (0) −0.002 (0)

FMR 1344.2 (0) −0.002 (0) −0.001 (0)

SFMC 545.2 (0) 0.135 (0) 0.117 (0)

FMC 1015.8 (0) 0.072 (0) 0.062 (0)

respect to those in Table 2, also for the SFMRC, because sometimes having an extra
component, even if it is emptied during the posterior allocation, slightly decreases
AICM. For the same reason, both the averageARI and sARI appear to slightly improve
for the SFMRC, while they worsen for models that tend to pick the wrong number
of components; see Table 5. Similar conclusions can be drawn when considering the
best models selected using BICM (data not shown).

4.2 Second simulation expertiment: G=3

A batch of 100 independent datasets is generated with n = 1000 from a three-
component mixture of regression models, with log-odds of mixture weights ηg(x) =
logπg(x)/π3(x), g = 1, 2, defined as:

η1(x) = 3
exp(7.5 − 15x)

1 + exp(7.5 − 15x)
− 1.5,

η2(x) = 3
exp(15x − 7.5)

1 + exp(15x − 7.5)
− 1.5;

where x is the only covariate, sampled from a uniform distribution: xi ∼ Unif(0, 1),
i = 1, . . . , 1000.Conditional on x and the component indicators, y follows aunivariate
Gaussian distribution, with means μ1(x), μ2(x), μ3(x), and variances σ 2

1 , σ 2
2 , σ 2

3 ,
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Fig. 7 Second simulation
experiment: example of a
simulated dataset

respectively, defined as follows:

μ1(x) = 0.5 sin(6x + 0.8) + exp(−16(3x + 0.15)2) − 1.75, σ 2
1 = 0.04;

μ2(x) = 1.75 − 0.5 sin(6x + 0.8) + exp(−16(3x + 0.15)2) − 1.75), σ 2
2 = 0.04;

μ3(x) = −0.5 sin(2πx), σ 2
3 = 0.25.

Figure 7 shows one of the 100 independently generated samples for this second sce-
nario.

Figure 8 shows that the SFMRC is able to catch almost perfectly the effects of
the covariate x on both predictors η1 and η2. On the contrary, due to nonlinearity,
the linear approximation by the FMRC is worse, so that the true effects exceed the
bands at the boundaries of the range of x . As expected, the average RASE scores
for the SFMRC (together with the associated standard deviations) reported in Table 6
are lower than those of the parametric competitor. Table 6 contains also information
about the performance of SFMC and FMC. In this second simulation experiment, it is
evident that imposing constant conditional means has a dramatic impact on the ability
of these two class of models in recollecting the effect of the covariates on the mixture
weights: the average RASE associated with these two classes of mixture models with
concomitants are almost ten times larger than those obtained with SFMRC.

Regarding the estimates of the conditional means, the SFMRC seems to outperform
the competitors, despite some overlap present between Cluster 1 and Cluster 3 for low
values of x , and between Cluster 2 and Cluster 3 for high values of x (see Fig. 9).
The FMRC is unable to properly approximate the nonlinear trends, especially where
there are fewer observations (i.e. in Cluster 1 for high values of x , and in Cluster 2
for low values of x). Nevertheless, Fig. 10 shows that, thanks to the good estimates of
the mixture weights, the FMRC discriminates almost perfectly among groups in the
aforementioned overlapping areas.

Results for SFMR are reported, in detail, in Fig. 11. The flexibility allowed for the
estimates of the conditional means, combined with the impossibility to include the

123



Semiparametric mixture of regression models 761

Fig. 8 Second simulation experiment: comparison between the log-odds of the mixture weights estimated
by the semiparametric (left) and parametric (right) mixture of regressions with concomitants over 100
simulated datasets, for fixed G = 3

Table 6 Second simulation
experiment: mean (and standard
deviation) of the RASE scores
computed on the estimated
log-odds of the mixture weights
over 100 simulated datasets, for
fixed G = 3

RASEηg η1(x) η2(x)

SFMRC 0.421 (0.153) 0.431 (0.169)

FMRC 0.679 (0.210) 0.663 (0.213)

SFMC 3.372 (3.662) 2.789 (1.216)

FMC 4.079 (2.206) 3.963 (2.146)

effect of covariate x into the estimates of the mixture weights, results into overlapping
estimated functions and wide bands. The performance of the FMR is just slightly
worse with respect to the ones obtained by the FMRC. The main differences can be
observed in the overlapping regions of Fig. 12, where the estimated conditional means
intersect each other.As far as SFMCandFMCare concerned, these two class ofmodels
show a similar behaviour in the estimated (constant) conditional means (Figs. 13 and
14). Due to the specific settings considered in this second experiment, the impact of
the mispecification error seems less severe. However, it is apparent that both models
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Fig. 9 Second simulation
experiment: conditional means
estimated by the SFMRC over
100 simulated datasets, for fixed
G = 3

Fig. 10 Second simulation
experiment: conditional means
estimated by the FMRC over
100 simulated datasets, for fixed
G = 3

suffers from a large sampling variability in the estimated conditional means. This is
particularly evident in the estimates for component 3. It is worth noting that component
3 is used as baseline to define the log-odds. Thus, the extremely large variability in
the estimates for the conditional mean of this component can be connected with the
previously mentioned poor performance of SFMC and FMC in estimating the log-
odds. All the conclusions drawn from a graphical point of view are confirmed by the
quantitative results in terms of RASEμ reported in Table 7.

Table 8 shows that, in terms of both AICM and BICM, the SFMRC is evidently
better than its competitors with G = 3. However, this result does not correspond to
an equal gap in the quality of the allocations, expressed in terms of both ARI and
sARI. Indeed, either mixture of regression models with concomitants perform well,
even though the semiparametric one slightly prevails.

Regarding model selection, for each competing method and each simulated dataset,
the best model is considered among different mixture models with G = 1, . . . , 5.
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Fig. 11 Second simulation experiment: conditionalmeans estimated by theSFMRmodel over 100 simulated
datasets, for fixed G = 3

Fig. 12 Second simulation
experiment: conditional means
estimated by the FMR over 100
simulated datasets, for fixed
G = 3

Fig. 13 Second simulation experiment: conditionalmeans estimated by theSFMCmodel over 100 simulated
datasets, for fixed G = 3
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Fig. 14 Second simulation experiment: conditional means estimated by the FMCmodel over 100 simulated
datasets, for fixed G = 3

Table 7 Second simulation
experiment: mean (and standard
deviation) of the RASE scores
computed on the estimated
conditional means over 100
simulated datasets

RASEμg μ1(x) μ2(x) μ3(x)

SFMRC 0.086 (0.035) 0.086 (0.038) 0.145 (0.034)

SFMR 1.073 (1.078) 0.995 (1.041) 0.472 (0.188)

FMRC 0.509 (0.042) 0.507 (0.048) 0.101 (0.472)

FMR 0.474 (0.123) 0.459 (0.069) 0.343 (0.164)

SFMC 0.662 (0.108) 0.617 (0.132) 1.248 (0.532)

FMC 0.627 (0.140) 0.604 (0.145) 1.181 (0.459)

Table 8 Second simulation experiment: average AICM, BICM, ARI and sARI (number of times each
method ranks first) over 100 simulated datasets, for fixed G = 3

AICM (best) BICM (best) ARI (best) sARI (best)

SFMRC 252.8 (100) 602.4 (99) 0.906 (99) 0.845 (96)

SFMR 755.0 (0) 1261.8 (1) 0.326 (0) 0.260 (0)

FMRC 1641.7 (0) 1965.6 (0) 0.854 (1) 0.797 (4)

FMR 1463.8 (0) 2734.3 (0) 0.804 (0) 0.568 (0)

SFMC 1041.3 (0) 2523.5 (0) 0.525 (0) 0.513 (0)

FMC 1066.6 (0) 2516.7 (0) 0.520 (0) 0.512 (0)

Table 9 shows that, when the selection is based on AICM, the SFMRC is the only one
which is able to consistently pick the correct number of nonempty components.

This leads to more favorable results for the SFMRC, if ARI and sARI computed
with reference to the best models selected by each method are compared; see Table 10.
On the contrary, results worsen when BICM is considered as model selection criterion.
As shown in Table 11, the tendency of BICM to underestimate the actual number of
nonempty components is confirmed, and in this second simulation experiment also
SFMRC models suffer from this. As a consequence, the values of ARI and sARI
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Table 9 Second simulation
experiment: number of
nonempty components selected
for each method, according to
AICM, over 100 simulated
datasets

G̃ = 1 G̃ = 2 G̃ = 3 G̃ = 4 G̃ = 5

SFMRC – – 100 – –

SFMR – – 12 88 –

FMRC 14 62 17 7 –

FMR 22 – 47 27 4

SFMC – 13 10 5 72

FMC – 62 14 8 16

Table 10 Second simulation
experiment: average AICM, ARI
and sARI (number of times each
method ranks first) over 100
simulated datasets, for optimal
G according to AICM

AICM (best) ARI (best) sARI (best)

SFMRC 245.4 (100) 0.905 (99) 0.846 (97)

SFMR 588.7 (0) 0.292 (0) 0.257 (0)

FMRC 1278.6 (0) 0.599 (1) 0.586 (3)

FMR 1363.0 (0) 0.623 (0) 0.439 (0)

SFMC 844.6 (0) 0.516 (0) 0.505 (0)

FMC 968.3 (0) 0.574 (0) 0.576 (0)

Table 11 Second simulation
experiment: number of
nonempty components selected
for each method, according to
BICM, over 100 simulated
datasets

G̃ = 1 G̃ = 2 G̃ = 3 G̃ = 4 G̃ = 5

SFMRC 4 63 33 – –

SFMR 100 – – – –

FMRC 100 – – – –

FMR 100 – – – -

SFMC 1 99 – – –

FMC 3 96 1 – –

computed for the best models selected using BICM are negatively impacted (data not
shown).

5 Real data applications

5.1 Baseball salaries data

Watnik (1998) provides a dataset consisting of information about players for the
1992 Major League Baseball season. In particular, their salaries are considered as
the response, along with measures of the 337 players’ previous year’s performances.
Notice that this dataset is alreadywell known in the literature on FRMC (see, for exam-
ple, Khalili andChen 2007; Chamroukhi andHuynh 2018). For simplicity, the analysis
described in this section focuses on one of the quantitative covariates, the number of
runs, taken as a measure of a player’s contribution to the team. More specifically, the
effect of this variable on player salaries is studied, by fitting the six different mixture
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Fig. 15 Baseball salaries data: estimated posterior conditional means (and pointwise 95% posterior credible
bands) obtained from the SFMRC (left panel) and the SFMR (right panel)

of regression models considered in Sect. 4 for a fixed number of components ranging
fromG = 1 toG = 4. As suggested byWatnik (1998), due to asymmetry, the response
is preemptively transformed by taking the natural logarithm.

In light of the tendency of BICM to underestimate the number of nonempty compo-
nents highlighted in the simulation experiments, in this application the optimal value
forG is selected according toAICM. The number of nonempty components G̃ resulted
to be equal to 2 for the two semiparametric mixture of regression models (SFMRC
and SFMR) as well as the two mixture of Gaussians (SFMC and FMC), and equal to 1
for the two parametric mixture of regression models (FMRC and FMR). Among these
six models, the SFMRC presents the smallest AICM (663.4), followed by the SFMR
(733.7), the SFMC (781.1) and the FMC (817.3), while the remaining best parametric
mixture of regression models, having G = 1, collapse to the same model, with the
highest AICM (888.1).

As Fig. 15 shows, the main difference between the semiparametric mixture of
regression models seems to be related to the allocation of players with a low number
of runs. The SFMRC keeps the two clusters well separated, by assigning all of these
units to the lower one, whereas the SFMR creates some overlap, such that the functions
describing the conditional means, μ̂1(x) and μ̂2(x), almost intersect one another.
Figure 15 shows, in both cases, the presence of a nonlinear effect of the number of
runs on the log-salary for the upper cluster, while the bands does not exclude a linear
effect for the lower cluster.

Fixing the number of components G = 2, the FMR allocates the players similarly
to the SFMRC. In particular, only 9 units out of 337 (ARI = 0.894) differ in cluster
allocation between the twomodels. Focusing on the parametric regression approaches,
the main difference between the allocations seems to be related to few among the
lowest paid players having a number of runs ranging between 30 and 90, which are
assigned to the upper component by the FMRC. This probably induces variability in
the estimated mean functions of the latter, which present wider bands, if compared to
the ones estimated by FMRC; see Fig. 16.
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Fig. 16 Baseball salaries data: estimated posterior conditional means (and pointwise 95% posterior credible
bands) obtained from the FMRC (left panel) and the FMR (right panel), for fixed G = 2

Fig. 17 Baseball salaries data: estimated posterior conditional means (and pointwise 95% posterior credible
bands) obtained from the SFMC (left panel) and the FMC (right panel), for fixed G = 2

The two approaches with constant conditional means produce a sensibly differ-
ent partition with respect to the other methods, and similar to each other, detecting
a cluster of highly paid players (around 500.000 dollars or more); see Fig. 17. Here,
the boundary (not drawn) separating the two groups is not perfectly horizontal due
to the covariate effect on the log-odds of the weights; see Fig. 18. In particular, all
four mixture models with concomitants agree about the presence of a decreasing trend
in the effect of the number of runs on the log-odds of the mixture weight η1(x), but
the semiparametric methods estimate nonlinear functions that cannot be approximated
properly by a straight line. The ability to pick this underlying effect is also themain rea-
son for the differences observed between the performances of the two semiparametric
regression approaches.

The partition induced by the SFMRC identifies a cluster, the lower one (in green),
whichmight be broadly interpreted as the cluster of “underrated” (or “underpaid”, with
respect to the others) baseball players. In fact, while it is obvious players with better
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Fig. 18 Baseball salaries data: estimated posterior effects on the log-odds (and pointwise 95% posterior
credible bands) obtained from the SFMRC (top left panel), the FMRC (top right panel), the SFMC (bottom
left panel), the FMC (bottom right panel) for fixed G = 2

performances get paid more, as corroborated by the increasing trends of both means,
there seems to be a group of players whose salary is substantially lower than that of
players achieving similar performances (in terms of number of runs), belonging to the
upper group (in blue). Indeed, the two estimated mean functions μ̂1(x) and μ̂2(x) in
Fig. 15 appear almost parallel. A partial explanation of this result can be found in some
additional pieces of information available in the dataset. In particular, there is a variable
indicating the “free agency eligibility” of each player, i.e. if that player could have
gone to a team of his choice in 1992. At the time -Watnik (1998) explains- only players
with a certain amount of experience were eligible for free agency (134 out of 337) and,
thus, able to market themselves to the highest bidder. On the contrary, if a player not
“free agency eligible”wanted to play, he had to accept what his teamwaswilling to pay
him, or go with his team to an appointed “arbitrator”, who would choose between the
player’s suggested salary and the team’s one. However, “arbitration eligibility”, which
is included in the dataset as a variable as well, was for players (65 out of 337, in the
dataset) who had some experience in the League, although not enough to be eligible
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Table 12 Baseball salaries data:
comparison between the
resulting allocations of the
SFMRC and (free agency or
arbitration) eligibility

Cluster Free agency or arbitration

Not eligible Eligible

Lower (green) 109 6 115

Upper (blue) 29 193 222

138 199 337

Table 13 Nitrogen oxide data:
AICM produced by the six
models for optimal G

AICM G̃

SFMRC −53.6 2

SFMR −65.3 2

FMRC −52.1 2

FMR −51.2 2

SFMC 112.0 3

FMC 110.9 3

for free agency. For interpretation purpose, the two above described categories, “free
agency eligible” and “arbitration eligible” players are merged, and Table 12 compares
the partition induced by SFMRCwith the one obtained by distinguishing between (free
agency or arbitration) eligible and noneligible players. The resulting ARI (0.626) is
the highest observed among the sixmodels. Indeed, it can be noticed that almost all the
eligible players (193 out of 199) belong to the upper (blue) cluster, together with 29
players who apparently had been able to obtain an “adequate” salary without probing
the market.

Rather than using the additional information on eligibility to validate the clustering
results, without including it into the models (and thus, treating it as a potential source
of unobserved heterogeneity), this binary variable could be explicitly included into the
models as an additional (binary) covariate. This analysis is focused only on the two
semiparametric mixture of regression models (SFMRC and SFMR). Not surprisingly,
the inclusion of this additional covariate leads the AICM to reduce the optimal number
of components to G = 1 for both of them. This is consistent with the fact that the two
conditional means as estimated by the two-component SFMRC (without the binary
covariate) are almost parallel, and can be reasonably approximated by a single curve
plus a vertical shift depending on the value taken by the binary covariate. In addition,
this simplification in themodel resulted in anAICMvalue lower than the one associated
with the two-component SFMRC. This second part of the application should allow
the Reader to appreciate the efficacy of SFMRC models in detecting possible sources
of unobserved heterogeneity. Appendix A contains details about how to extend both
the specification of the model given in Sect. 2 and the MCMC algorithm provided in
Sect. 3.1 in order to include a binary covariate.

123



770 M. Berrettini et al.

0.0 0.2 0.4 0.6 0.8 1.0

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

nitrogen oxide

eq
ui

va
le

nc
e 

ra
tio

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
2

0
2

4

nitrogen oxide

lo
g−

od
ds

estimate
2.5 − 97.5 percentile

Fig. 19 Nitrogen oxide data: estimated posterior conditional means (left panel) and log-odds of mixture
weights (right panel), with pointwise 95% posterior credible bands for the two components

5.2 Nitrogen oxide data

First introduced by Brinkman (1981), this dataset includes 88 observations about
the concentration of nitric oxide in engine exhaust and the equivalence ratio, which
represents a measure of the richness of the air-ethanol mix, for burning ethanol in
a single-cylinder automobile test engine. Mixtures of regression models have been
already fit to these data in Xiang and Yao (2018), where the equivalence ratio has been
considered as the dependent variable y, and the concentration of nitric oxide is taken
as concomitant covariate x . In this Paper, a similar analysis is performed using the pro-
posed flexible Bayesian approach. Although the two-component structure seems quite
clear in the scatterplot, six algorithms with different levels of flexibility have been run
for 10000 iterations each (burn-in: 5000 draws) withG ranging fromG = 1 toG = 4.
According to AICM, all the regression models considered find two nonempty compo-
nents, while the remaining methods find three. Figure 19 shows the covariate effects
as estimated by the proposed semiparametric mixture of regressions with concomitant
covariates. More specifically, in the left panel the estimated conditional means are
reported, while in the right one the estimated log-odds η1(x) can be observed. Both
plots are in line with the results by Xiang and Yao (2018) and indicate the lack of
need for a flexible specification of any covariate effect in this case. In fact, the bands
do not exclude linearity, although some mild nonlinearity seems to be present in the
conditional means. This shows the efficacy of the penalisation induced by the selected
priors in adjusting the proposed model to the required level of complexity. Coherently,
AICM points at SFMR as the model to be preferred; see Table 13.

6 Conclusions

In this Paper, a general specification of mixture of regression models is proposed,
allowing both component weights and conditional means to be nonlinear functions
of a covariate. This general approach resort to spline functions for approximating
the smooth effect of the concomitant variables. Parameter estimation is based on a
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Bayesian approach throughMCMCmachinery. In principle, theReadermight question
whether a full parametric approach, e.g. by considering a monomial set of bases to
represent the map between component probabilities and covariates, could prove to
be flexible enough to catch nonlinearity. Unfortunately, this parametric representation
would require some arbitrary choices, such as the maximum degree for monomial
bases, or the definition of an automatic selection criterion. The approach advocated
for in this Paper bypasses this issue by controlling flexibility through the variance
parameters of the spline coefficients, following Lang and Brezger (2004).

Using simulation experiments, the proposed method has proved to be a useful
tool for recovering the underlying covariate effects -especially if indeed not linear-
and, consequently, for estimating models with a better goodness of fit and leading
to a more accurate allocation. The potential of the proposal has been illustrated also
through applications to real data.

Although the results shown seem encouraging, the proposed model is characterised
by some limitations and there are some issues that might deserve further investigation.

Firstly, there are limitations related to the assumption for both the manifest variable
and the concomitant covariate to be univariate. The adaptation to the multivariate case
would require particular attention to deal with the presence of component-specific
covariance matrices andmultiple regressors. Regarding the latter, each predictor could
be expressed as a sum of smooth functions, as in the additive paradigm introduced by
Hastie and Tibshirani (1990); hence, Bayesian P-splines could be used to approximate
such nonlinear functions. However, conditions for identifiability should be revised,
and, in particular, further constraints should be introduced to guarantee identifiability
of the predictors.

In addition, the simulation experiments have highlighted the tendency of BICM to
underestimate the actual number of components. As previously mentioned, this seems
coherent with other results already reported in the literature (see, for example, Redivo
et al. 2020). Since BICM has been introduced as an approximation of the (logarithm
of) the marginal likelihood, it would be interesting to consider other estimators of this
quantity. For example, Frühwirth-Schnatter (2019) has recently proposed two bridge
sampling estimators of the marginal likelihood for FMRC models, and investigating
their performance in the context of the semiparametric models proposed in this Paper
could be the subject of future investigation.

Furthermore, adopting a probit representation (Geweke and Keane 2007) instead
of the dRUM approach could provide another potential avenue to explore, in order
to understand the benefit of the proposed modelling framework, especially when the
ease of interpretation given by the logit formulation is not of relevance.

Alternative approaches to penalise the spline coefficients associated with the bases
could be considered. For example, one could consider applying shrinkage to the vari-
ances τ 2g and δ2g in a similar way to what Bitto and Frühwirth-Schnatter (2019) and
Cadonna et al. (2020) suggest in the context of time varying parameter models.

As far as the computational implementation is concerned, as a consequence of the
use of mixture of Gaussians to approximate the Logistic distribution, no Metropolis-
Hastings steps are required in the proposed MCMC algorithm. Although this can
be considered an advantage, the increase in the computational burden due to the
introduction of an additional latent variable should not be ignored. Furthermore, the
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implemented MCMC algorithm relies on the specification of a fixed value for the
number of components. If this quantity is unknown, it is necessary to estimate it by
running the algorithmmany times with different inputs, which might be time consum-
ing, especially when the “true” value is large. One solution could be incorporating
the choice of G within the algorithm itself. For instance, a reversible jump MCMC
algorithm could be exploited (Richardson and Green 1997), by designing appropriate
dimension-changing moves. Alternatively, the issue of choosing the optimal value for
G could be circumvented by focusing the attention on the posterior distribution of
the number of nonempty components, through the combination of a large value for
G with appropriate prior distributions, as suggested in Malsiner-Walli et al. (2016).
This latter strategy seems more coherent with the peculiar behaviour observed in the
simulation studies, where the proposed MCMC algorithm occasionally converges to
a solution that is characterised by empty components.
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A Including an additional binary covariate

Let di ∈ {0, 1} be a binary covariate associated to unit i = 1, . . . , n. Then, Equations
(2) and (4) can be respectively rewritten as follows:

ηg(xi , di ) =
m∑

ρ=1

Bρ(xi )γgρ + diξg ; (21)

μg(xi , di ) =
m∑

ρ=1

Bρ(xi )βgρ + diζg ; (22)

with ξg and ζg unknown regression coefficients. Assuming a diffuse Gaussian prior
N (0, ψ2

g ) on such parameters, with variance ψ2
g set sufficiently high (e.g., 100), leads

to the following modifications to be applied to points 1 and 5 of the Gibbs sampler
introduced in Sect. 3.1:

1a. For g = 1, . . . ,G − 1, sample the regression coefficients’ vector γ g conditional
on zg and rg from a multivariate Gaussian density with precision matrix Pg and
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mean mg given by

Pg = B′W−1
g B + 1

δ2g
K,

mg = P−1
g B′W−1

g

(
zg − dξg + logλ−g(x,d)

)
, (23)

with λ−g(·) defined as in Equation (8), and d = (d1, . . . , dn);
1b. Sample the G − 1 regression coefficients ξg associated to the binary covariate,

conditional on zg and rg , from a Gaussian density with precision pg and meanmg

given by

pg = d′W−1
g d + 1

v2
,

mg = 1

pg
d′W−1

g

(
zg − Bγ g + logλ−g(x,d)

) ; (24)

5a. For g = 1, . . . ,G, sample the regression coefficient βg, g = 1, . . . ,G from a
multivariate Gaussian density with covariance matrix Vg and mean νg

Vg =
(

1

σ 2
g
B(g)′B(g) + 1

τ 2g j
K j

)−1

, νg = VgB(g)′ (y(g) − d(g)ζg

)
, (25)

where, consistently with the notation provided in (14), d(g) indicate a subvector
of d with elements corresponding to the units allocated to the g-th group.

5b. Sample the G regression coefficients ζg, g = 1, . . . ,G from a Gaussian density
with covariance matrix vg and mean νg

vg =
(

1

σ 2
g
d(g)′d(g) + 1

ψ2
g

)−1

, νg = vgd(g)′
(
y(g) − B(g)βg

)
. (26)
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