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A B S T R A C T

In this work we propose a strategy based on coordinate transformation to cloak Rayleigh waves.
Rayleigh waves are in-plane elastic waves which propagate along the free surface of semi-
infinite media. They are governed by Navier equations that retain their form for an in-plane
arbitrary coordinate transformation 𝐱 = 𝛯(𝐗), upon choosing the specific kinematic relation
𝐔(𝛯(𝐗)) = 𝐮(𝐱) between displacement fields in virtual, i.e. reference, (𝐔) and transformed, i.e.
cloaked, (𝐮) domains. However, the elasticity tensor of the transformed domain is no longer fully
symmetric, and thus, it is difficult to design with common materials. Motivated by this issue,
we propose a symmetrization technique, based on the arithmetic mean, to obtain anisotropic,
yet symmetric, elastic tensors for Rayleigh wave near-cloaking. In particular, by means of
time-harmonic numerical simulations and dispersion analyses, we compare the efficiency of
triangular and semi-circular cloaks designed with the original non-symmetric tensors and the
related symmetrized versions. In addition, different coordinate transformations, e.g. linear,
quadratic and cubic, are adopted for the semi-circular cloaks. Through the analyses, we show
that a symmetrized semi-circular cloak, obtained upon the use of a quadratic transformation,
performs better than the other investigated designs. Our study provides a step towards the
design of feasible and efficient broadband elastic metamaterial cloaks for surface waves.

. Introduction

Controlling surface waves with architected materials is an open challenge in several engineering applications, ranging from
icrodevices for electronic components (Jin et al., 2021), like surface acoustic wave (SAW) devices, to meter-sized barriers (Huang
Shi, 2013; Liu, Qin, & Yu, 2020; Liu & Yu, 2022; Meng, Cheng, & Shi, 2020; Muhammad, Lim, & Kamil Żur, 2021; Palermo, Krödel,
arzani, & Daraio, 2016; Pu & Shi, 2018, 2019) and seismic cloaks (Sklan, Pak, & Li, 2018) for ground-borne vibrations. In the latter

ontext, two large-scale experiments recently demonstrated that one can reflect (Brûlé, Javelaud, Enoch, & Guenneau, 2014) or even
ocus (Brûlé, Javelaud, Enoch, & Guenneau, 2017) surface Rayleigh waves in structured sedimentary soils. These experiments were
he result of collaborative work between geotechnical engineers and wave physicists that explored analogies between models of
lectromagnetic and elastodynamic waves in metamaterials (Colquitt et al., 2014; Dubois et al., 2012; Farhat, Guenneau, & Enoch,
009; Liu & Zhu, 2019; Stenger, Wilhelm, & Wegener, 2012; Tang et al., 2023; Zareei & Alam, 2017).

Based on those experiments, it was argued that one might build a cloak for Rayleigh waves with concentric layers of structured
oil around a building one may wish to protect. Such an approach amounts to considering a physical setup in a plane parallel to the
urface. Many numerical works followed, mostly considering the same approach, notably a proposal to reroute Love waves (Palermo,
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2018) in the transverse plane thanks to a graded metasurface, and some conversion of Love waves into downward propagating anti-
plane shear bulk waves via a wedge effect in the vertical plane (Maurel, Marigo, Pham, & Guenneau, 2018). In parallel, small-scale
experiments on the control of surface seismic waves (Colombi, Roux, Guenneau, Gueguen, & Craster, 2016; Colombi, Zaccherini,
Aguzzi, Palermo, & Chatzi, 2020; Palermo et al., 2018) have shown that one can also act upon the deflection of Rayleigh waves in
the vertical plane with an array of resonators atop, or buried, in the soil. The corresponding physical setups consider devices acting
on a plane orthogonal to the surface.

Following this approach, some authors of this manuscript investigated the cloaking of surface Love waves by transforming the
lastic medium along the vertical plane (Chatzopoulos, Palermo, Guenneau, & Marzani, 2022). At first sight, this strategy for cloaking
f Love waves should equally work for Rayleigh waves. However, unlike Love waves, which are polarized out-of-plane and can thus
e modeled by a scalar Helmholtz equation in the vertical plane, Rayleigh waves are governed by the Navier equations, where the
oupling between in-plane pressure and shear waves cannot be avoided.

In this regard, we stress that a major hurdle in Rayleigh wave cloaking is that the Navier equations are not form invariant under
n arbitrary geometric transformation (Milton, Briane, & Willis, 2006), leading to non-scalar density and additional third-order
lastic tensors in the transformed medium. Notably, Norris and Shuvalov (2011) investigated the relation, e.g. the gauge, between
he displacement field of the reference domain and the transformed one and showed that it directly affects the symmetry of the
lastic tensor. Recently, 2D elastodynamic cloaking has been approached either by direct design and homogenization of the so-called
icropolar metamaterials (Nassar, Chen, & Huang, 2018, 2019, 2020; Wu & Huang, 2022; Zhao, Chen, Chang, & Huang, 2023),
hich can achieve the required non-symmetric elastic tensor, or by utilizing symmetrization techniques to restore the symmetries of

he elastic tensor (Diatta, Kadic, Wegener, & Guenneau, 2016; Sklan et al., 2018). An alternative route to achieve cloaking exploits
he use of non-linear elastic pre-stress in hyperelastic material models to relax the constraints on material properties (Barnwell,
arnell, & David Abrahams, 2016; Norris & Parnell, 2012; Parnell, 2012; Parnell & Shearer, 2013; Zhang & Parnell, 2018).

Relevant studies in the context of Rayleigh waves cloaking include the use of micropolar materials to hide a cylinder embedded
n the medium (Khlopotin, Olsson, & Larsson, 2015) and near-cloaking techniques to decouple P and S waves (Quadrelli, Craster,
adic, & Braghin, 2021). Here, we focus, instead, on the use of symmetrized tensors, since micropolar materials can exhibit zero-
odes and mechanical instabilities, making them complex to manufacture (Kadic, Bückmann, Stenger, Thiel, & Wegener, 2012).

pecifically, our scope is to delve into the effects of symmetrization on the cloaking performance of Rayleigh waves, considering
ifferent transformations and cloaking geometries.

To this aim, we organize our manuscript as follows: we first recall the Navier equations for the reference and transformed
emi-infinite media. We stress that depending on the choice of the gauge, one can either assume a modified Willis medium, or a
osserat medium with a non-symmetric elastic tensor.

After adopting the latter, we manipulate its non-symmetric components using the arithmetic mean and assess the effect of
ymmetrization on the cloaking of Rayleigh waves. Our analysis considers a triangular pinched cloak and 3 types of semi-circular
loaks, distinguished by the adopted radial transformation 𝐶𝑖 (linear 𝐶1, quadratic 𝐶2, cubic 𝐶3). The cloaking performance is
nalyzed by comparing the harmonic wave fields and dispersion relations of ideal, e.g. non-symmetric, and symmetrized cloaks.
n particular, the dispersive analysis exploits the inverse participation ratio (IPR), which addresses the localization level of the
isplacement fields, to identify and count the surface modes of interest.

Next, the performance analysis is continued by means of harmonic simulations and by comparing the transmitted displacement
ields after the cloak of symmetrized and ideal cases. We conclude the investigation with a focus on the circular cloaks by examining
he requirements for a symmetric elastic tensor for each 𝐶𝑖 type of transformation.

. Governing equations for 2-D elasticity

We consider a homogeneous isotropic half-space with material properties (𝜆, 𝜇, 𝜌), where 𝜆 and 𝜇 are the Lamé coefficients and
the mass density, respectively, and the spatial coordinates for the reference domain are 𝐗 = (𝑋1, 𝑋2). For in-plane surface waves,

.e. Rayleigh waves, propagating along the horizontal 𝑋1 direction, the governing Navier elastodynamic equation reads:

∇𝑋 ⋅ (𝐂 ∶ ∇𝑋𝐔) = 𝜌𝐔𝑡𝑡 (1)

here 𝐂 is the isotropic 4th order elasticity tensor, 𝐔 = (𝑈1, 𝑈2) is the displacement and 𝐔𝑡𝑡 denotes the second order derivative in
ime of 𝐔. Under the assumption of plane-strain elasticity, the elastic tensor can be written in Voigt’s notation {1, 2, 6} = {11, 22, 12}
s:

𝐂𝐼𝐽 =
⎡

⎢

⎢

⎣

𝜆 + 2𝜇 𝜆 0
𝜆 𝜆 + 2𝜇 0
0 0 𝜇

⎤

⎥

⎥

⎦

, (2)

here 𝐼, 𝐽 = 1, 2, 6.
We apply a point-wise invertible transformation Ξ that maps the reference configuration (virtual domain) 𝐗 ∈ 𝛹 to the deformed

egion (physical domain) as 𝐱 = Ξ(𝑋) ∈ 𝜓 and the remaining domain to itself (𝐗 ∉ 𝛹 ). As a result, we derive the transformed
lasticity tensor in the cloaked region. In Figs. 1(𝑎) − (𝑑), we show two examples of carpet cloaks, a triangular and a semi-circular
2

ne, with the related virtual and deformed domains. The transformation gradients for the deformed and the reference domains are
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𝐅 = ∇𝑋𝑥 and 𝐅−1 = ∇𝑥𝑋, respectively. Also, 𝐽 = 𝑑𝑒𝑡(𝐅) is the determinant of the transformation gradient. Given 𝐱 = {𝑥1, 𝑥2} the
oordinates for the physical domain, the transformation gradient 𝐅 reads:

𝐅 = ∇𝑋𝑥 =
⎛

⎜

⎜

⎝

𝜕𝑥1
𝜕𝑋1

𝜕𝑥1
𝜕𝑋2

𝜕𝑥2
𝜕𝑋1

𝜕𝑥2
𝜕𝑋2

⎞

⎟

⎟

⎠

(3)

As discussed in the literature, see for example Milton et al. (2006), Eq. (1) is not form invariant upon an arbitrary coordinate
transformation Ξ and it depends on the choice of the gauge 𝐔(Ξ(𝑋)) = 𝐀𝐮(𝐱), where 𝐀 is a non-singular matrix. In particular, the
hoice 𝐀 = 𝐅 leads to the so-called Willis setting that guarantees symmetric stress tensor (Milton et al., 2006; Norris & Shuvalov,
011). Despite possessing such a symmetry, a medium that is governed by the Willis equation is difficult to design due to the presence
f two additional 3rd order symmetric tensors, which may require the introduction of pre-stresses (Craster, Diatta, Guenneau, &
utridurga, 2021; Xiang & Yao, 2016). Additionally, in the Willis setting the material density is a 2nd order symmetric tensor, a

equirement which can be physically replicated only within narrow frequency bands using resonant microstructures.
For this reason, in the present work, we refrain from using Willis materials and we employ a Cosserat setting. In particular,

ollowing the idea by Norris and Shuvalov (2011), by assuming the gauge 𝐔(Ξ(𝐗)) = 𝐮(𝐱) (𝐀 = 𝐈) for the displacements (Brun &
uenneau, 2023; Brun, Guenneau, & Movchan, 2009), we derive the governing equation in the physical domain 𝐱 = (𝑥1, 𝑥2) as:

∇𝑥 ⋅ (𝐂𝑒𝑓𝑓 ∶ ∇𝑥𝐮) = 𝜌𝑒𝑓𝑓𝐮𝑡𝑡 (4)

here

𝐶𝑒𝑓𝑓𝑖𝑗𝑘𝑙 = 𝐽−1𝐶𝐼𝑗𝐾𝑙𝐹𝑖𝐼𝐹𝑘𝐾
𝜌𝑒𝑓𝑓 = 𝜌𝐽−1

(5)

re the transformed mechanical parameters of the cloaked region (purple region in Fig. 1b and blue region in Fig. 1d) in Einstein
ummation. As a result, the transformed elasticity tensor 𝐶𝑒𝑓𝑓 preserves the major symmetries (𝐶𝑒𝑓𝑓𝑖𝑗𝑘𝑙 = 𝐶𝑒𝑓𝑓𝑘𝑙𝑖𝑗 , etc.), but does not
ossess the minor ones as:

𝐶𝑒𝑓𝑓𝑖𝑗𝑘𝑙 ≠ 𝐶𝑒𝑓𝑓𝑗𝑖𝑘𝑙 ≠ 𝐶𝑒𝑓𝑓𝑖𝑗𝑙𝑘 ≠ 𝐶𝑒𝑓𝑓𝑗𝑖𝑙𝑘 (6)

xcept for very special cases such as in the framework of conformal transformations. Nonetheless, the medium can still be described
y a single 4th-order non-symmetric and, eventually, inhomogeneous elastic tensor.

. Carpet cloaking for Rayleigh waves: Transformation

Due to the vectorial nature of Rayleigh waves, cloaking has been hindered by the requirement of a material with non-symmetric
lasticity tensor. Indeed, several researchers (Chen, Nassar, & Huang, 2021; Frenzel, Kadic, & Wegener, 2017; Zhang, Chen, Liu,

Hu, 2020; Zhao et al., 2023) have proposed metamaterials that can obtain the non-symmetric behavior required for cloaking.
ere, however, we focus our investigation on a different aspect, aiming at analyzing and comparing different linear and non-linear

ransformations, as well as symmetrization strategies, to obtain an easy-to-realize, well-performing, symmetric cloaks for Rayleigh
aves. Specifically, we delve into the behavior of carpet cloaks with boundaries described by either linear functions (triangular

hape) or semi-circular ones.

.1. Triangular carpet cloak

We first consider a two-dimensional carpet cloak of triangular shape. Given a set of cartesian coordinates centered along the
loak symmetry axis (𝐗 = {𝑋1, 𝑋2}, 𝐱 = {𝑥1, 𝑥2}), we denote with 𝑧1(𝑥1) and 𝑧2(𝑥1) the interior and exterior boundaries of the
loak, respectively. The transformation Ξ𝑇 that maps the region enclosed between two curves (𝑋1; 0) and (𝑋1; 𝑧2(𝑋1)) of the virtual
omain, Fig. 1a, to the one comprised between (𝑥1; 𝑧1(𝑥1)) and (𝑥1; 𝑧2(𝑥1)) of the real domain, Fig. 1b, is:

Ξ𝑇 ∶

⎧

⎪

⎨

⎪

⎩

𝑥1 = 𝑋1

𝑥2 = ( 𝑧2(𝑋1)−𝑧1(𝑋1)
𝑧2(𝑋1)

)𝑋2 + 𝑧1(𝑋1)
(7)

Note that (𝑋1; 0) is mapped on (𝑥1; 𝑧1(𝑥1)) while (𝑋1; 𝑧2(𝑋1)) is point-wise fixed. Let 𝑧1(𝑥1) =
𝑎
𝑐 |𝑥1| − 𝑎 and 𝑧2(𝑥1) =

𝑏
𝑐 |𝑥1| − 𝑏 be

iece-wise linear curves, where 𝑎, 𝑏, 𝑐 are the geometric parameters of the cloak, as illustrated in Fig. 1b. Then, using Cartesian
= {𝑋1, 𝑋2}, 𝐱 = {𝑥1, 𝑥2} coordinates the Jacobian of the transformation reads:

𝐅𝑇 =
⎡

⎢

⎢

⎣

𝜕𝑥1
𝜕𝑋1

𝜕𝑥1
𝜕𝑋2

𝜕𝑥2
𝜕𝑋1

𝜕𝑥2
𝜕𝑋2

⎤

⎥

⎥

⎦

=

[

1 0

𝐹21(𝑥1) 𝐹22

]

(8)

here 𝐹21(𝑥1) = 𝑠𝑖𝑔𝑛(𝑥1)
𝑎
𝑐 and 𝐹22 = 𝑑𝑒𝑡(𝐅𝑇 ) = 𝑏−𝑎

𝑏 . According to Eq. (5) and adopting the augmented Voigt notation for the plane
6} = {11, 22, 12, 21}, we obtain the following transformed elastic tensor and material density properties within
3

roblem as {1, 2, 6,
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Fig. 1. (𝑎) Reference configuration (virtual domain) of the triangular cloak. (𝑏) Deformed configuration (physical domain) obtained by the action of (Ξ𝑇 ) that
maps the (virtual domain) into a defect (white region) surrounded by the cloak (purple region). (𝑐) Reference configuration (virtual domain) of the semi-circular
cloak. (𝑑) Deformed configuration (physical domain) obtained by the action of (Ξ𝐶𝑖 ) that maps the (virtual domain) into a defect (white region) surrounded by
the cloak (blue region). (𝑒) Schematic representation of the FEM model.

the cloak domain:

𝐂𝑒𝑓𝑓𝑇𝐼𝐽 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜆+2𝜇
𝐹22

𝜆 0 𝐹21(𝑥1)
𝐹22

(𝜆 + 2𝜇)

𝜆
𝐹21(𝑥1)2𝜇+𝐹 2

22(𝜆+2𝜇)
𝐹22

𝐹21(𝑥1)
𝐹22

𝜇 𝐹21(𝑥1)(𝜆 + 𝜇)

0 𝐹21(𝑥1)
𝐹22

𝜇 𝜇
𝐹22

𝜇

𝐹21(𝑥1)
𝐹22

(𝜆 + 2𝜇) 𝐹21(𝑥1)(𝜆 + 𝜇) 𝜇
𝐹21(𝑥1)2(𝜆+2𝜇)+𝐹 2

22𝜇
𝐹22

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝜌𝑒𝑓𝑓𝑇 = 𝜌𝐹−1
22 (9)

for 𝐼, 𝐽 = 1, 2, 6, 6̄. Note that the effective density is constant. As anticipated in the previous section, the elastic tensor of Eq. (9) is
non-symmetric. In particular, it has 3 non-symmetric entries, which in the augmented Voigt notation read:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐶𝑒𝑓𝑓𝑇16 ≠ 𝐶𝑒𝑓𝑓𝑇
16

𝐶𝑒𝑓𝑓𝑇26 ≠ 𝐶𝑒𝑓𝑓𝑇
26

𝐶𝑒𝑓𝑓𝑇66 ≠ 𝐶𝑒𝑓𝑓𝑇
66

≠ 𝐶𝑒𝑓𝑓𝑇
66

(10)
4
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3.2. Circular carpet cloak

We now consider the case of annulus shaped semi-circular cloaks located at the free-surface of the semi-infinite domain (Fig. 1d).
o simplify the definition of the transformed mechanical properties, we introduce a set of polar coordinates 𝐗 = {𝑅,𝛩} centered

within the cloaked domain, where 𝑅 =
√

𝑋1
2 +𝑋2

2 and 𝛩 = arctan 𝑋2
𝑋1

[𝜋], where [𝜋] specifies the branch cut taken for arctan.
For such a configuration, we consider and compare 3 different types of radial transformations Ξ𝐶𝑖 ∶ (𝑅,𝛩) ←←→ (𝑟, 𝜃) that map the

rigin (0,0) of the reference system, Fig. 1c, onto an inner circle of radius 𝑟𝑖 = 𝑎 in the physical one, and the outer circle 𝑅𝑜 = 𝑟𝑜 = 𝑏
to itself (see Fig. 1d):

Ξ𝐶1 ∶

⎧

⎪

⎨

⎪

⎩

𝑟 = 𝑏−𝑎
𝑏 𝑅 + 𝑎 0 ≤ 𝑅 ≤ 𝑅𝑜

𝜃 = 𝛩
(11)

Ξ𝐶2 ∶

⎧

⎪

⎨

⎪

⎩

𝑟 = 𝐴2𝑅2 + 𝐴1𝑅 + 𝐴0 0 ≤ 𝑅 ≤ 𝑅𝑜

𝜃 = 𝛩
(12)

where:

𝐴2 =
𝑎
𝑏2
, 𝐴1 =

𝑏 − 2𝑎
𝑏

, 𝐴0 = 𝑎. (13)

Ξ𝐶3 ∶

⎧

⎪

⎨

⎪

⎩

𝑟 = 𝐵3𝑅3 + 𝐵2𝑅2 + 𝐵1𝑅 + 𝐵0 0 ≤ 𝑅 ≤ 𝑅𝑜

𝜃 = 𝛩
(14)

where:

𝐵3 =
2𝑎
𝑏3
, 𝐵2 =

−3𝑎
𝑏2

, 𝐵1 = 1, 𝐵0 = 𝑎. (15)

The general form of the Jacobian of such transformation in polar basis reads:

𝐅𝐶 =

[ 𝜕𝑟
𝜕𝑅

𝜕𝑟
𝑅𝜕𝛩

𝑟𝜕𝜃
𝜕𝑅

𝑟𝜕𝜃
𝑅𝜕𝛩

]

(16)

Specifically, for each transformation 𝐶𝑖 in Eqs. (11), (12), (14) we obtain:

𝐅𝐶1 =

[

𝐹𝐶111 0

0 𝐹𝐶122

]

=
⎡

⎢

⎢

⎣

(𝑏−𝑎)
𝑏 0

0 (𝑏−𝑎)
(𝑟−𝑎)

𝑟
𝑏

⎤

⎥

⎥

⎦

(17)

𝐅𝐶2 =

[

𝐹𝐶211 0

0 𝐹𝐶222

]

=
⎡

⎢

⎢

⎣

√

𝑏2−4𝑎𝑏+4𝑎𝑟
𝑏 0

0 2𝑎𝑟
2𝑎𝑏−𝑏2+𝑏

√

𝑏2−4𝑎𝑏+4𝑎𝑟

⎤

⎥

⎥

⎦

(18)

𝐅𝐶3 =

[

𝐹𝐶311 0

0 𝐹𝐶322

]

=
⎡

⎢

⎢

⎣

6𝑎𝑅2(𝑟)
𝑏3

− 6𝑎𝑅(𝑟)
𝑏2

+ 1 0

0 𝑟
𝑅(𝑟)

⎤

⎥

⎥

⎦

(19)

where:

𝑅(𝑟) = 𝑏
2
+

𝑏2

4 − 𝑏3

6 𝑎
(
√

(

𝑎 𝑏3−𝑏3 𝑟
4 𝑎 − 𝑏3

8 + 𝑏4
8 𝑎

)2
−
(

𝑏2
4 − 𝑏3

6 𝑎

)3
− 𝑎 𝑏3−𝑏3 𝑟

4 𝑎 + 𝑏3
8 − 𝑏4

8 𝑎

)1∕3
+

⎛

⎜

⎜

⎝

√

(

𝑎 𝑏3 − 𝑏3 𝑟
4 𝑎

− 𝑏3
8

+ 𝑏4
8 𝑎

)2
−
(

𝑏2
4

− 𝑏3
6 𝑎

)3
− 𝑎 𝑏3 − 𝑏3 𝑟

4 𝑎
+ 𝑏3

8
− 𝑏4

8 𝑎

⎞

⎟

⎟

⎠

1∕3

. (20)

We remark that the above transformations are singular, since they map the origin (a point) into a circle of radius 𝑟𝑖. The proper
pproach to avoid such singularities requires considering a very small circle of radius 𝜖 instead of the origin (Kohn, Lu, Schweizer,
Weinstein, 2014). The reader can find a more detailed discussion concerning the offset parameter 𝜖 in Appendix.
Additionally, we underline that the parameters 𝐴𝑖, 𝐵𝑖 in 𝐶2 and 𝐶3 types of transformations, respectively, are obtained from the

raction continuity requirement on the outer boundary i.e. 𝜕𝑟
𝜕𝑅 (𝑅𝑜) = 1, since the surrounding space of 𝛹 is mapped onto itself. In

contrast, this requirement is not satisfied in the 𝐶 transformation.
5
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At this stage, using the augmented Voigt notation for the plane-strain problem in polar coordinates: {1, 2, 6, 6} = {𝑟𝑟, 𝜃𝜃, 𝑟𝜃, 𝜃𝑟} =
11, 22, 12, 21}, we obtain the following effective properties for any type of transformation (𝑖 = 1, 2, 3):

𝐂𝑒𝑓𝑓𝐶𝑖𝐼𝐽 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐹𝐶𝑖11

𝐹𝐶𝑖22

(𝜆 + 2𝜇) 𝜆 0 0

𝜆
𝐹𝐶𝑖22

𝐹𝐶𝑖11

(𝜆 + 2𝜇) 0 0

0 0
𝐹𝐶𝑖11

𝐹𝐶𝑖22

𝜇 𝜇

0 0 𝜇
𝐹𝐶𝑖22

𝐹𝐶𝑖11

𝜇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝜌𝑒𝑓𝑓𝐶𝑖 =
𝜌

𝑑𝑒𝑡(𝐅𝐶𝑖 )
(21)

or 𝐼, 𝐽 = 1, 2, 6, 6̄. Again, the elastic tensor presents non-symmetric components:

𝐶𝑒𝑓𝑓𝐶𝑖66 ≠ 𝐶𝑒𝑓𝑓𝐶𝑖
66

≠ 𝐶𝑒𝑓𝑓𝐶𝑖
66

(22)

Hence, compared to the triangular-shaped cloak, the circular one presents a reduced number of non-symmetric elastic tensor
components. In what follows, we discuss and show how this feature impacts the performance of symmetrized cloaks.

4. Carpet cloaking for Rayleigh waves: Symmetrization

The symmetrization of an elastic tensor is a simple, yet effective, strategy to approximate the non-symmetric constitutive behavior
of an ‘‘ideal’’ cloak with a standard Cauchy-type material, easily realizable with common media. Different symmetrization strategies,
such as geometric (Sklan et al., 2018) or arithmetic (Diatta et al., 2016) means have already been explored to realize feasible cloaks
for bulk and flexural waves. In this study, we build upon a recent work proposed by Craster et al. (2021), where it is shown that a
symmetric tensor 𝐂𝑆𝑦𝑚 obtained from the arithmetic mean nullifies the variational problem:

𝑚𝑖𝑛𝐀∈𝑀 |((𝐂𝑒𝑓𝑓 − 𝐂𝑆𝑦𝑚) ∶ 𝐀) ∶ 𝐀| = 0 (23)

where 𝑀 stands for the space of symmetric square matrices. In other words, the elastic energy per unit volume due to strain
remains unchanged upon replacing the transformed Cosserat material (𝐶𝑒𝑓𝑓 , 𝜌) by the corresponding approximated Cauchy material
(𝐶𝑆𝑦𝑚, 𝜌).

Our strategy is to choose the tensor components in such a way that the constraints above are satisfied, whilst keeping the
emaining entries unaltered. For the triangular cloak, the requirements for a symmetric elastic tensor are:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐶𝑆𝑦𝑚16 = 𝐶𝑆𝑦𝑚
16

𝐶𝑆𝑦𝑚26 = 𝐶𝑆𝑦𝑚
26

𝐶𝑆𝑦𝑚66 = 𝐶𝑆𝑦𝑚
66

= 𝐶𝑆𝑦𝑚
66

(24)

Then, from Eqs. (23)–(24) we have:

|((𝐂𝑒𝑓𝑓𝑇 − 𝐂𝑆𝑦𝑚) ∶ 𝐀) ∶ 𝐀| = |(𝐶𝑒𝑓𝑓16 + 𝐶𝑒𝑓𝑓
16

+ 𝐶𝑒𝑓𝑓61 + 𝐶𝑒𝑓𝑓
61

− 4𝐶𝑆𝑦𝑚16 )𝐴11𝐴12

+(𝐶𝑒𝑓𝑓26 + 𝐶𝑒𝑓𝑓
26

+ 𝐶𝑒𝑓𝑓62 + 𝐶𝑒𝑓𝑓
62

− 4𝐶𝑆𝑦𝑚26 )𝐴22𝐴12 + (𝐶𝑒𝑓𝑓66 + 𝐶𝑒𝑓𝑓
66

+ 𝐶𝑒𝑓𝑓
66

+ 𝐶𝑒𝑓𝑓
66

− 4𝐶𝑆𝑦𝑚66 )𝐴2
12|

(25)

onversely, for the circular cloaks 𝐶𝑖 (𝑖 = 1, 2, 3) we get the condition:

𝐶𝑆𝑦𝑚66 = 𝐶𝑆𝑦𝑚
66

= 𝐶𝑆𝑦𝑚
66

(26)

In similar fashion, using Eq. (26) we obtain:

|((𝐂𝑒𝑓𝑓𝐶𝑖 − 𝐂𝑆𝑦𝑚) ∶ 𝐀) ∶ 𝐀| = |(𝐶66 + 𝐶66 + 𝐶66 + 𝐶66 − 4𝐶𝑆𝑦𝑚66 )𝐴2
12| (27)

.e. the variational problem is equal to zero if we choose the function 𝐶𝑆𝑦𝑚𝐼𝐽 =
𝐶𝑒𝑓𝑓𝐼𝐽 +𝐶𝑒𝑓𝑓

𝐼𝐽
+𝐶𝑒𝑓𝑓

𝐼𝐽
+𝐶𝑒𝑓𝑓

𝐼𝐽
4 for 𝐼, 𝐽 = 1, 2, 6, where:

1, 2, 6, 6} = {11, 22, 12, 21}.
Regarding the symmetrization approach and the related design of composite materials matching the symmetrized effective

properties, we remark that the set of possible (symmetric) effective elasticity tensors of composites built from two materials with
isotropic elasticity tensors has been studied in a number of papers, see e.g. Milton (2002) for a review. Additionally, if one restricts
the analysis to mechanical metamaterials consisting of two phases, one of which being void, then microgeometries within the
elementary cells can be found in Milton, Briane, and Harutyunyan (2017); these would be good candidates to design the metamaterial
cloak. Conversely, it is possible to follow a different route avoiding the symmetrization and approximating the elasticity tensor
without the minor-symmetries with chiral elastic metamaterials. However, the latter approach cannot achieve the required effective
elasticity tensor over a finite bandwidth.
6
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5. Numerical results and comparisons

We analyze the propagation of Rayleigh waves in a homogeneous half-space hosting a triangular or semi-circular shaped defect.
or both configurations, the cloak mechanical parameters are obtained according to the geometrical transformation in Eq. (7) and
qs. (11)–(14). For the numerical example, we consider a material density 𝜌 = 1600 kg∕m3, shear and pressure velocities equal to
𝑐𝑠 = 300 m∕s and 𝑐𝑝 =

√

3𝑐𝑠, respectively.
We introduce the following normalized quantities to ease and generalize the discussion of the results:

• Normalized wavelength 𝜆⋆ = 𝑏, so that 𝑘⋆ = 2𝜋
𝜆⋆ , i.e. we normalize with respect to a wavelength which is equal to the depth

of the cloak.
• Normalized frequency 𝑓⋆ = 𝑐𝑅

𝜆⋆ , where 𝑐𝑅 is Rayleigh wave velocity, which can be approximated by the following formula:
𝑐𝑅 = 𝑐𝑠

0.826+1.14𝜈
1+𝜈 where 𝜈 is the Poisson’s ratio.

To assess the cloaking abilities, we perform time-harmonic simulations using the finite element software COMSOL Multiphysics.
e begin by modeling a 2D domain of dimensions 𝑊 ×𝐻 (Fig. 1e). The dimensions of the model are chosen as 𝑊 = 12.5𝜆⋆ and
≈ 4.305𝜆⋆.
The bottom of the half-space model is fixed, the surface is stress-free, and Perfectly Matched Layers are used to diminish

eflections from the model boundaries. Rayleigh waves are generated by a surface point source located at 0.35𝑊 from the left
dge of the model. The triangular-shaped inclusion has length 𝑎 = 0.0774𝐻 and width 2𝑐 = 0.309𝐻 , and is surrounded by a cloak
f related shape that extends along the depth of 𝑏 = 3𝑎 = 0.232𝐻 . The semicircular defect has radius 𝑎 and its adjoined cloak has
adius 𝑏.

.1. Ideal cloaks

We begin our investigation by analyzing the performance of the ‘‘Ideal Cloaks’’, namely domains with mechanical parameters
efined according to the transformation in Eq. (5). Our aim is to verify that such Cosserat (non-symmetric) cloak can perfectly hide
surface defect from the propagation of Rayleigh waves in a broadband frequency range.

To this purpose, time-harmonic simulations are performed in order to compare the surface displacement field of the system in
i) the pristine configuration, i.e., the domain with no defect (‘‘Reference’’), (ii) the domain with the defect (‘‘Obstacle’’), and (iii)
he domain with the cloaked defect (‘‘Ideal Cloak’’). In particular, we display the fields as computed for harmonic excitation at
⋆ = [1, 2] in Fig. 2. The results for the pinched triangular 𝑇 and semi-circular cloaks 𝐶𝑖 at both selected frequencies verify that

he displacement field of the reference configuration (Fig. 2(𝑎) and (𝑏)) is almost perfectly approximated by the case with the ideal
non-symmetric) cloak (Figs. 2(𝑐)–(𝑓 )), as the waves are smoothly detoured around the obstacle. The performance of the cloaks is
etter understood by comparing the cloaked wave fields with those obtained in the uncloaked scenarios (see Figs. 2(𝑔)–(𝑗)). In the
atter, scattering effects dominate the field around the cloak and lead to the generation of bulk waves. To generalize these results,
e calculate the normalized transmitted displacement field ⟨𝑢⟩

⟨𝑢𝑅𝑒𝑓 ⟩
, namely the ratio between the average surface displacement ⟨𝑢⟩

computed beyond the obstacle for the ideal cloaks and the obstacle cases, and the same average displacement computed for the
reference configuration ⟨𝑢𝑅𝑒𝑓 ⟩. The results, depicted in Fig. 2𝑘, indicate perfect performance of the ideal cloaks ( ⟨𝑢⟩

⟨𝑢𝑅𝑒𝑓 ⟩
≈ 1), whereas

the cases of a defect without the cloaking device are unable to provide adequate efficiency since the transmitted surface field is
highly reduced compared to the reference.

For a more complete description of the capabilities of the cloak, we compare the dispersive properties of Rayleigh waves
propagating along a homogeneous reference medium and along the cloaked setting. Here, our scope is to prove that a cloak with
effective properties given by Eqs. (9) or (21) is able to fully duplicate the properties of the pristine homogeneous medium in a
broadband range of frequencies. Thus, for both the triangular and semi-circular defects, we investigate a small portion (unit cell) of
the 2D medium enclosing the analyzed cloaks. The unit cells have dimension 𝐻×𝐿𝑐 (see top of Figs. 3(𝑎)−(𝑏)) and are modeled with
FE using COMSOL Multiphysics. To obtain the dispersive properties of surface elastic waves propagating in such media, we impose
fixed boundary conditions at the bottom surface of the cell, and Bloch boundary conditions along the 𝑥1 direction. Note that, as
in Chatzopoulos et al. (2022), the transformation for the triangular carpet cloak is invariant along the 𝑥1 direction and thus the unit
cell can be chosen with no particular restrictions on its lenght. The dispersion curve is then computed by varying the wavenumber
inside the first Brillouin zone of interest, 𝑘𝑥1 = [ 𝜋

100𝐿𝑐
; 𝜋
𝐿𝑐

]. In contrast, for radial transformations discussed in this work, a unit cell of
dimension smaller than the dimension of the cloak (𝐿𝑐 < 𝑟𝑜 = 𝑏) subjected to Bloch boundary conditions along the 𝑥1 direction leads
to overlapping transformation. In this regard, Meirbekova and Brun (2020) recently showed that in such scenario discrepancies arise
in the dispersive properties due to the intersection of the cloak with the boundary of the unit cell. Hence, to avoid this phenomenon,
the unit cell must be at least the size of the cloak (we choose 𝐿𝑐 = 2.1𝑟𝑜). However, the above restriction on the dimension of the
unit cell narrows the size of the first Brillouin zone (which is inversely proportional to the unit cell length) and forces the calculation
of multiple modes (>500) for each wavenumber to compute frequencies up to 𝑓⋆ = 2.5. Among these, only a small portion of them
epresent waves confined at the surface (in particular, in a homogeneous medium, there exists only a Rayleigh mode). The problem
s thus shifted into the collection/recognition of such surface modes among the plethora of wave solutions computed with a finite
ell. For this purpose, we utilize the inverse participation ratio (IPR) (Evers & Mirlin, 2000; Monthus & Garel, 2010; Murphy, Wortis,
Atkinson, 2011; Tsukerman, 2017; Wegner, 1980), computed in terms of the displacements, according to the relation:

𝐼𝑃𝑅 =
∬𝜓⋆ ‖𝐮‖4 𝑑𝑥1 𝑑𝑥2

2 2
|𝜓⋆| (28)
7
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Fig. 2. Displacement fields for the Reference (𝑎) − (𝑏), Ideal Cloak (𝑐) − (𝑓 ) and Obstacle (𝑔) − (𝑗) configurations, of the triangular 𝑇 and the circular 𝐶𝑖 type of
cloaks, computed at frequencies 𝑓⋆ = [1, 2], respectively. (𝑘) Performance of the ideal cloaks and the obstacle cases, computed by using the average of the total
displacement of the transmitted field along the surface beyond the cloaked region.
8
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Fig. 3. Schematics of the unit cells for the (𝑎) reference 𝑅, (𝑏) triangular 𝑇 and (𝑐) circular 𝐶𝑖 cloak configurations, respectively. (𝑑)-(𝑒) Dispersion curves
for the reference (diamond dots) and the ideal cloaks (contour circle dots) configurations, respectively. (𝑓 ) Snapshots of surface modes displacement field, as
obtained for the triangular 𝑇 (left) and the circular 𝐶2 (right) ideal cloaks, respectively.

where we normalize the ratio by multiplying it with the area of the model |𝜓⋆| and ‖𝐮‖ =
√

𝑢21 + 𝑢
2
2 is the total displacement. The

IPR has been used extensively in solid state physics to measure the localization of particles-atoms over a domain. In our context, the
IPR measures the localization of the displacement field which will occur at the free-surface for the domain of interest; in practice,
the larger the IPR the higher is the localization of the displacement field.

For our example, an IPR > 3.5 allows us to clearly distinguish surface modes from bulk ones. In Figs. 3(𝑑) − (𝑒) we display with
colored dots (based on the IPR values) the surface wave modes traveling within the triangular and semicircular cloak, respectively.
The remaining bulk modes (IPR < 3.5) are marked in the background by smaller gradually sized dots. The reader can appreciate
the matching between Rayleigh modes within the cloaked domains and the Rayleigh solutions within the reference field, which
9
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Table 1
Average value of the ratio 𝐹 𝐶𝑖

11

𝐹 𝐶𝑖
22

of each
symmetrized circular cloak.
Transformation ⟨𝐷𝐶𝑖

⟩

𝐶1 0.45069
𝐶2 0.63
𝐶3 0.4527

demonstrate the broadband cloaking capabilities of the analyzed non-symmetric cloaks. As an example, surface modes pertaining
to two wavenumber solutions (𝑘⋆ = [0.2192, 0.2381]) for each of the 𝑇 and 𝐶2 cloaks are portrayed in Fig. 3𝑓 .

5.2. Symmetrized cloaks

In what follows, we delve into the behavior of symmetrized cloaks with triangular 𝑇 and semi-circular 𝐶𝑖 transformations. Our
scope is to find which combination of symmetrization/cloak geometry provides the best cloaking performance. The displacement
field of harmonic solutions for the symmetrized cloaks at frequencies 𝑓⋆ = [1, 2] are displayed in Figs. 4(𝑎) − (ℎ). For 𝑓⋆ = 1, all the
nvestigated symmetric cloaks are unable to efficiently reroute the wavefield around the defect (see Figs. 4(𝑎), (𝑐), (𝑒), (𝑔)) and have a
esponse similar to the ‘‘Obstacle’’ case (Figs. 2(𝑔) and (𝑖)). Conversely, at frequency 𝑓⋆ = 2 the symmetric cloaks are able to better
eroute the wavefield around the obstacle (see Figs. 4(𝑏), (𝑑), (𝑓 ) and (ℎ)). To quantify the performance of the cloak over a broader
requency range, we compute again the normalized average transmitted field ⟨𝑢𝑆𝑦𝑚⟩

⟨𝑢𝐼𝑑𝑒𝑎𝑙⟩
along the domain’s surface after the cloak.

Here, the surface displacement field is normalized by the field of the ideal case. The ratio ⟨𝑢𝑆𝑦𝑚⟩
⟨𝑢𝐼𝑑𝑒𝑎𝑙⟩

versus the frequency of excitation
s reported in Fig. 4𝑖 for all the considered symmetric cloaks. For 𝑓⋆ = 0.5, all cases have similar behavior, since the wavelength is
oo long compared to the dimension of the cloak. Furthermore, all the cloaks show a performance drop at around 𝑓⋆ = 1, where
he wavelength is equal to the size of the cloak. In particular, for the triangular inclusion, the uncloaked obstacle transmits more
nergy than symmetrized cloak until frequencies at around 𝑓⋆ = 1.4. The poorer performance of the triangular-shaped cloak with
espect to the circular ones, can be possibly attributed to the larger number of conditions (3) required for its symmetrization, as
ompared to the circular one (1), as shown in Eqs. (24) and (26). Better cloak efficacy is obtained in the higher frequency regime,
.e. when 𝑓⋆ > 1.5, with a peak performance around 𝑓⋆ = 2. Overall, from Fig. 4𝑖, it is clear that the 𝐶2 transformation provides
he best performance compared to 𝐶1 and 𝐶3.

To better appreciate the above results, we replicate the dispersive analysis with unit cells consisting of symmetrized cloaks. The
esults are depicted in Fig. 5. It is evident that up to 𝑓⋆ = 0.75, the dispersive properties of the symmetrized cloak match the ones
f the reference, since at those frequencies the wavelength is small compared to the dimension of the cloak. In addition, the 𝐶2
ransformation (Fig. 5𝑐) shows the highest number of surface modes, 417 out of the 520 of the ideal case in Figs. 3(𝑑) and (𝑒),
ollowed by 388 modes in the triangular pinched cloak 𝑇 (Fig. 5𝑎), 370 modes in 𝐶1 (Fig. 5𝑏) and 296 modes in 𝐶3 (Fig. 5𝑑) upon
he same IPR value. This is a further indication of the better performance of the 𝐶2 cloak. The reader can find examples of such
ocalized surface modes obtained for symmetrized 𝑇 and 𝐶2 cloaks in Fig. 5𝑒.

To further support the premise that the 𝐶2 transformation presents better performance with respect to other ones, we notice

hat from Eqs. (21) and (26) the approximation of the symmetrized circular cloak depends on the ratio 𝐷𝐶𝑖 =
𝐹𝐶𝑖11

𝐹𝐶𝑖22

. A value of

𝐷𝐶𝑖 = 1 represents a scenario where the ideal tensor is symmetric, namely a scenario where symmetrization is not required. Note
that, according to Milton et al. (2006) this cannot be achieved with our choice of gauge. Nonetheless we can rank the level of minor
symmetry breaking introduced by the different transformation by using the ratio 𝐷𝐶𝑖 .

Since 𝐷𝐶𝑖 varies along the radial coordinate, we compute its mean value along the radial direction of the cloak as:

⟨𝐷𝐶𝑖
⟩ = 1

𝑟𝑐𝑙𝑜𝑎𝑘 ∫𝑟𝑐𝑙𝑜𝑎𝑘
𝐷𝐶𝑖𝑑𝑟 (29)

where 𝑟𝑐𝑙𝑜𝑎𝑘 = 𝑟𝑜 − 𝑟𝑖 = 𝑏− 𝑎 is the radial length of the cloak. The results obtained for the 3 types of transformations 𝐶𝑖 are collected
in Table 1:

As expected, the 𝐷𝐶2 is higher than the analogous ratio computed for the linear 𝐶1 and cubic transformation 𝐶3, thus indicating
a lower deterioration of the performance upon symmetrization.

6. Conclusion

In this study, we investigated the cloaking of Rayleigh waves by means of cloaks with symmetrized elastic tensors. Since the
Navier elastodynamic equation is not form-invariant for in-plane surface waves, we assumed a Cosserat gauge for the displacements
to recover the form invariance of the governing equation. However, this step comes at the cost of demanding a material with effective
properties that do not satisfy the minor symmetries of the elasticity tensor. For this reason, our strategy relied on the symmetrization
of the elasticity tensor using the arithmetic mean. In particular, we examined the performance of cloaks with pinched triangular and
semi-circular shapes, respectively. For the latter, we delved into 3 types of transformations: linear (𝐶1), quadratic (𝐶2) and cubic
10

(𝐶3) and we compared their cloaking performance via FE harmonic simulations computing the normalized transmitted displacement
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Fig. 4. Displacement field of the symmetrized cloaks for the (𝑎) − (𝑏) Triangular 𝑇 , (𝑐) − (𝑑) Circular 𝐶1, (𝑒) − (𝑓 ) Circular 𝐶2 and (𝑔) − (ℎ) Circular 𝐶3 class
of transformations, computed at frequencies 𝑓⋆ = 1.5 and 𝑓⋆ = 2, respectively. (𝑖) Performance of the cloaks using the ratio of the transmitted field of the
symmetrized cloak over the ideal one, calculated at normalized frequencies 𝑓⋆ = [0.5, 2.5].
11
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Fig. 5. Dispersion curves for the (𝑎) Triangular 𝑇 and (𝑏) − (𝑐) − (𝑑) Circular Symmetrized cloaks of 𝐶1, 𝐶2 and 𝐶3 type of transformation, respectively, as
obtained from the IPR method. (𝑒) Snapshots of particular surface modes of the displacement fields, as obtained for the triangular 𝑇 (Left) and the Circular 𝐶2
(Right) symmetrized cloaks, respectively.

field in each case. We found that a symmetrized semi-circular cloak obtained from a quadratic (𝐶2) transformation provided the
best approximation of the ideal one. Additionally, we conducted dispersive analyses and employed the inverse participation ratio
(IPR) as a tool to identify the surface modes among all the wave solutions. Again, we compared the results obtained for the ideal
and the symmetrized scenarios and found that the 𝐶2 transformation was able to support the propagation of the highest number
of surface modes in comparison with all the other types of transformations. As a further proof, we discussed the value of the ratio
𝐷𝐶𝑖 and addressed its connection with the performance of the symmetrized cloak by computing its mean value with respect to the
12
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parameter 𝑟. The results converged with the findings of the time-harmonic numerical simulations and the dispersive properties of
the cloaks, concluding that the quadratic 𝐶2 transformation displayed the best overall cloaking protection.

We stress that a classical homogenization procedure could be implemented to mimic the now symmetric, yet anisotropic behavior
of the cloaks via isotropic layered media, providing a feasible protection from incident Rayleigh waves. Finally, since experiments
on elastodynamic cloaking are scarce and only recently Xu et al. (2020) made the first physical realization of a polar cloak that
provided shielding from static loads, we hope this study could pave the way towards more experimental validation for cloaking
from surface elastic waves.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie
Sklodowska Curie grant agreement No 813424.

Appendix. Transformations with offset parameter 𝝐.

In this section we present the so-called Kohn’s transformation (Kohn et al., 2014), which amounts to transforming the region
𝜖 ≤ 𝑅 ≤ 𝑅𝑜 to the cloaking region 𝑟𝑖 ≤ 𝑟 ≤ 𝑟𝑜, where 𝜖 is a small positive number introduced to remove the singularity at the origin.
n addition, for the 𝐶𝜖1 type transformation we provide the more general scenario, which is parametric with respect to 𝑁 :

Ξ𝐶𝜖1 (𝑁) ∶

⎧

⎪

⎨

⎪

⎩

𝑟 = 𝑁
√

𝑏𝑁−𝑎𝑁
𝑏𝑁−𝜖𝑁 𝑅

𝑁 + 𝑎𝑁 − 𝜖𝑁 𝑏𝑁−𝑎𝑁
𝑏𝑁−𝜖𝑁 0 ≤ 𝑅 ≤ 𝑅𝑜

𝜃 = 𝛩
(30)

Note that when 𝜖 = 0, for 𝑁 = 1 in Eq. (30) we obtain the classical ‘‘Pendry’’ transformation of Eq. (11). The case of 𝑁 = 2
as been used in Liu and Zhu (2019) and Zareei and Alam (2017) for cloaking of elastic plates and in Zareei and Alam (2015) for
loaking of shallow water waves, and has the special property that its determinant 𝑑𝑒𝑡(𝐅𝐶1 ) is constant.

In a similar fashion, the general 𝐶𝜖2 type of transformation is given by:

Ξ𝐶𝜖2 ∶

⎧

⎪

⎨

⎪

⎩

𝑟 = 𝐴𝜖2𝑅
2 + 𝐴𝜖1𝑅 + 𝐴𝜖0 0 ≤ 𝑅 ≤ 𝑅𝑜

𝜃 = 𝛩
(31)

here

𝐴𝜖2 =
𝑎 − 𝑒

(𝑏 − 𝑒)2
, 𝐴𝜖1 = −

2 𝑏 (𝑎 − 𝑒) − (𝑏 − 𝑒)2

(𝑏 − 𝑒)2
, 𝐴𝜖0 =

𝑏2 (𝑎 − 𝑒)
(𝑏 − 𝑒)2

(32)

Finally the 𝐶𝜖3 reads:

Ξ𝐶𝜖3 ∶

{

𝑟 = 𝐵𝜖3𝑅
3 + 𝐵𝜖2𝑅

2 + 𝐵𝜖1𝑅 + 𝐵𝜖0 0 ≤ 𝑅 ≤ 𝑅𝑜
𝜃 = 𝛩

(33)

here

𝐵𝜖3 = 2
(𝑎 − 𝜖)
(𝑏 − 𝑒)3

, 𝐵𝜖2 =
3 (𝑏 + 𝜖) (𝜖 − 𝑎)

(𝑏 − 𝜖)3
, 𝐵𝜖1 = 𝑏3 − 3 𝑏2 𝜖 − 3 𝑏 𝜖2 + 6 𝑎 𝑏 𝜖 − 𝜖3

(𝑏 − 𝜖)3
, 𝐵𝜖0 =

𝑏2 (𝑎 − 𝜖) (𝑏 − 3 𝜖)
(𝑏 − 𝜖)3

, (34)

Note that when 𝜖 = 0, Eqs. (31)–(34) reduce to Eqs. (11)–(15).
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