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Simple Summary: Cancer cells are characterized by massive glucose consumption, leading to
increased lactate generation. Once considered a waste product, this metabolite was recently shown to
take part in the regulation of gene expression. The regulatory properties of lactate were also found to
play a role in fostering drug resistance. In this paper, we examined whether the exposure of cancer
cells to increased lactate levels can affect the anticancer efficacy of doxorubicin. Doxorubicin is a
widely used drug, whose clinical application is often hampered by severe cardiotoxicity. We found
that lactate can offer protection against oxidative damage caused by the drug. Interestingly, oxidative
damage is reputed secondary to the antineoplastic action of the drug but plays an important role in
mediating its cardiotoxic effects.

Abstract: Background: Doxorubicin (DOXO) is currently administered as the first-choice therapy
for a variety of malignancies. Cancer cells exhibit enhanced glycolysis and lactate production. This
metabolite affects gene expression and can play a role in chemoresistance. Aim of this study: We
investigated whether the enhanced lactate levels that characterize neoplastic tissues can modify the
response of cancer cells to DOXO. Methods: After exposing cancer cells to increased lactate levels,
we examined whether this metabolite could interfere with the principal mechanisms responsible
for the DOXO antineoplastic effect. Results: Increased lactate levels did not affect DOXO-induced
topoisomerase poisoning but offered protection against the oxidative damage caused by the drug.
This protection was related to changes in gene expression caused by the combined action of DOXO
and lactate. Oxidative damage significantly contributed to the heavy cardiotoxicity following DOXO
treatment. In cultured cardiomyocytes, we confirmed that DOXO-induced DNA damage and oxida-
tive stress can be significantly mitigated by exposing the cells to increased lactate levels. Conclusions:
In addition to contributing to elucidating the effects of the combined action of DOXO and lactate, our
results suggest a possible method to reduce the heavy drug cardiotoxicity, a major side effect leading
to therapy discontinuation.

Keywords: lactate; cancer cell metabolism; doxorubicin; oxidative stress

1. Introduction

To improve neoplastic disease treatment, recent efforts have mainly focused on the
development of new-generation drugs, targeting critical pathways involved in cancer cell
proliferation and survival. However, despite the unquestionable progress achieved with
these studies, the currently applied anticancer therapeutic regimens very often continue
to maintain the use of old, conventional chemotherapeutic agents. In this context, the
enduring use of doxorubicin (DOXO) in the fight against disparate cancer diseases is
exemplificative [1,2].

DOXO belongs to the family of anthracyclines and is probably one of the most effective
antineoplastic drugs ever developed, even though its potential side effects (heart muscle
damage) can limit the success of treatment [3]. DOXO and its variants are currently
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administered as the first-choice therapy for a variety of solid and hematologic malignancies
and have also been evaluated in combination treatments [1,3].

Concurrently with this extensive and long-lasting clinical use, the molecular targets
of DOXO action have been actively investigated and a number of potential antineoplastic
mechanisms have been proposed for this drug. Some of these postulated mechanisms
are probably not relevant for the antineoplastic effects observed in clinics since they were
documented at DOXO concentrations far above those reached in the blood circulation of
treated patients. Others were observed at clinically relevant drug doses [4–6]. Among
these, the best characterized are topoisomerase-2 (TOP2) poisoning, free radical generation,
ceramide overproduction and histone eviction. In addition to contributing to DOXO
antineoplastic action [7], free radical generation is also considered to be involved in heart
muscle damage [8], often hindering an adequately lasting treatment. Histone eviction from
nucleosomes results from the well-documented capacity of DOXO to intercalate between
DNA bases [5,6]; DOXO intercalation causes torsional stress in the DNA helix, leading
to H2A/H2B dissociation. This event could be involved in the antineoplastic effects and
could also explain the extensive alteration in transcriptome observed in cells exposed to
DOXO or to its variants [9].

Changes in cell transcriptome can also be linked to cellular metabolic asset since
intermediates originating from energy metabolism reactions have been found to alter
histone acetylation and chromatin structure [10]. One of the most studied metabolites
showing the potential of altering gene expression is lactate, the end-product of glycolysis.
In addition to inhibiting histone deacetylases (HDAC) enzymes [11,12], lactate was shown
to promote gene expression through histone lactylation [13], a modification that facilitates
the access of transcription complexes on DNA. In this way, lactate can function as a sensor
able to transduce metabolic changes into stable gene expression patterns.

Experiments performed in our laboratory showed that lactate has the potential to re-
duce the antineoplastic efficacy of cisplatin [14], an effect linked to the increased expression
of repair pathways’ genes usually involved in the management of DNA alterations caused
by this drug. Furthermore, we observed that lactate can play an active role in promoting
tamoxifen resistance of breast cancer cells [15].

The experiments reported in this paper investigated whether this metabolite could
interfere with the principal mechanisms responsible for the DOXO antineoplastic ef-
fect, considering the transcriptional changes potentially caused by the joint action of
both compounds.

The experimental outline is summarized in the following Scheme 1:
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2. Materials and Methods
2.1. Cell Cultures and Treatments

All the materials used for cell culture and all the reagents were obtained from Merck
(Darmstadt, Germany) unless otherwise specified. MCF7, MDA-MB-231, CaCo2 and H9c2
cells (ATCC, Manassas, VA, USA) were grown in low-glucose (5 mM) Dulbecco’s minimal
essential medium (DMEM), supplemented with 100 U/mL penicillin/streptomycin, 2 mM
glutamine and 10% fetal bovine serum (FBS). Lactate (L-isomer) was dissolved in the
culture medium at a 20 mM concentration; before DOXO treatment, MCF7 and H9c2 cell
cultures were exposed to 20 mM lactate for 72 h. DOXO (Selleckchem, Huston, TX, USA)
was dissolved in dimethyl-sulfoxide (DMSO). In DOXO including experiments, the culture
medium was supplemented with 0.6% DMSO. Differentiation of H9c2 cardiomyocytes
was induced when cells reached 80% confluence; to this aim, cells were maintained for
10–11 days in DMEM with 1% FBS and supplemented daily with 10 nM retinoic acid (Enzo
Life Sciences, Farmingdale, NY, USA).

2.2. Assay of Lactate Levels

Cells (5 × 105/well) were plated in triplicate in 6-well plates and left to adhere
overnight. The medium was then replaced with Krebs–Ringer buffer and the released
lactate was measured after 2–4 h incubation at 37 ◦C using the method described in [16].
Briefly, at the end of incubation, 200–400 µL of Krebs–Ringer buffer was withdrawn,
brought to 1 mL with H2O and mixed with 200 µL of 20% CuSO4; 200 mg di Ca(OH)2
were then added, and the tubes were maintained for 30 min at room temperature. After
a 5 min centrifugation at 400 rpm, 200 µL of the supernatant was placed in conical glass
tubes containing 1.25 mL of 96% H2SO4, vortexed and boiled for 5 min at 100 ◦C. The
samples were then placed on ice and added with 6.4 µL of 4% CuSO4 and 5 µL of phenyl–
phenol. After 30 min incubation at 37 ◦C and 1.5 min of boiling, they were left to cool at
room temperature. The absorbance was read at λ565, and the amount of lactic acid in the
samples was calculated with the aid of a calibration curve prepared with known amounts
of sodium lactate.

2.3. Immunoblotting

Immunoblotting was used (a) to evidence DOXO-induced DNA damage, which was
assessed with histone 2AX phosphorylation (γ-H2AX, an established marker of DNA
damage [17]); (b) to evaluate, in treated cells, the levels of lactate dehydrogenase A (LDHA),
glucose-regulated protein 94 (GRP94, also known as heat shock protein 90B), superoxide
dismutase 1 and 2 (SOD1, SOD2) and single-strand selective monofunctional uracil DNA
glycosylase (SMUG1); (c) to assess the level of acetylated histone 3 in lactate-exposed
MCF7 cells.

For evidencing γ-H2AX, LDHA and GRP94 proteins, the cell cultures were exposed
to 1 µM DOXO from 0 to 24 h. SOD1, SOD2 and SMUG1 proteins were evaluated in
control and lactate-exposed MCF7 cells treated with 1 µM DOXO for 4 h, followed by a
16 h recovery time.

In all immunoblotting experiments, at the indicated times after treatment, cell cultures
(T-25 flasks, at 80% confluence) were harvested and lysed in 50 µL RIPA buffer containing
protease and phosphatase inhibitors. Then, 60 µg of protein (measured according to
Bradford) was loaded onto precast 4–12% polyacrylamide gels for electrophoresis and
run at 170 V. The separated proteins were blotted on low-fluorescent PVDF membranes
(Cytiva Life Sciences, Milano, Italy) using a standard apparatus for wet transfer with an
electrical field of 60 mA for 16 h. The blotted membranes were blocked with 5% BSA in
TBS-Tween and probed with the primary antibody. Actin was used as a loading control in
all experiments, with the exception of those performed in MCF7 cultures and requiring long
exposure times (≥6 h) to DOXO. In agreement with published data [18], we observed that
long DOXO exposures changed the actin level in MCF7 cells; in these cases, constitutive
heat shock 70 (HSC70) was the selected internal control protein. For each immunoblotting
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experiment, the used internal control protein can be verified from the Figures (Figures 1, 3,
4, 6 and 7) by referring to the indicated molecular weights (38–49 kDa and 62–98 kDa for
actin and HSC70, respectively).

The used antibodies were: rabbit anti-human γ-H2AX (phospho-S139) (Abcam,
Cambridge, UK); rabbit anti-rat γ-H2AX (phospho-S139) (Cell Signaling, Leiden, NE);
rabbit anti-LDH-A (Cell Signaling); rabbit anti-GRP94 (Cell Signaling); rabbit anti-histone-3
(Cell Signaling); rabbit anti-panacetyl-histone-3 (Active Motif, Brussels, BE); rabbit anti-
human and rat SOD1 (Cohesion Bioscience, London, UK); rabbit anti-human and rat SOD2
(Cohesion Bioscience); rabbit anti-SMUG1 (Cohesion Bioscience); rabbit anti-Actin (Merck);
and rabbit anti-HSC70 (Enzo Life Sciences). Binding was revealed using a Cy5-labelled sec-
ondary antibody (goat anti-rabbit-IgG, Cytiva Life Sciences). The fluorescence of the blots
was assessed with the Pharos FX Scanner (Bio-Rad, Hercules, CA, USA) at a resolution of
100 µm. The intensity of the bands was evaluated using the ImageJ 1.53a software methods.

2.4. Evaluation of Oxidative Stress

Oxidative stress was evaluated using a 2′,7′-dichlorofluorescin diacetate (DCF-DA)
assay. After cell entry, in the presence of reactive oxygen species (ROS), this probe is
oxidized to highly fluorescent dichloro-fluorescein (DCF) [19].

Control and lactate-exposed MCF7 cells were grown on coverslips in 6-well plates
and treated for 2 h with 1 µM DOXO. After washing with PBS two times, the cells were
incubated at room temperature in the dark for 25 min with 10 µM DCF-DA dissolved
in PBS. Cultures were then quickly washed with PBS and mounted with a solution of
Hoechst/DABCO (1:200). The samples were observed using a Nikon epifluorescence
microscope equipped with filters for Hoechst and FITC. Cells showing a bright and intense
fluorescence were counted as positive, whereas cells having no or low fluorescence were
counted as negative. For each sample, 500–700 cells were counted by two independent
observers. A similar experiment was performed using proliferating and differentiated H9c2
(D-H9c2) cells. In this case, the control and lactate-exposed cells were treated with 1 µM
DOXO for 16 h.

In a further experiment, oxidative stress in DOXO-treated MCF7 cells was evaluated
by measuring 8-hydroxy-2-deoxy guanosine (8-OHdG), a marker of DNA oxidative dam-
age, generated by reactive oxygen and nitrogen species [20]. A commercially available
competitive ELISA test was used (Abcam) following the manufacturer’s protocol. Control
and lactate-exposed MCF7 cells were treated with 1 µM DOXO for 2 h. Genomic DNA was
isolated using the phenol/chloroform/isoamyl alcohol extraction procedure [21]. DNA was
digested using Nuclease P1 (New England BioLabs, Ipswich, MA, USA) in 50 mM sodium
acetate pH 5.5; the pH was then adjusted to 7.5–8.5 using 1 M TRIS. For each sample, 100 µg
of DNA was incubated at 37 ◦C for 30 min with 1 unit of alkaline phosphatase. Samples
were then boiled for 10 min and placed on ice until used. For the ELISA procedure, they
were diluted to a final DNA concentration of 500 ng/mL, and 25 ng samples were used
for the assay. At the end of the procedure, absorbance was measured using a Victor plate
reader (PerkinElmer, Waltham, MA, USA) with a wavelength of 450 nm.

2.5. Real-Time PCR

This experiment was performed in control and lactate-exposed MCF7, MDA-MB-231
and CaCo2 cells to evaluate the expression of inducible heat shock protein 70 (HSP70),
GRP94 and TNF receptor-associated protein 1 (TRAP1, the mitochondrial form of HSP90).
Exponentially growing cells from T25 flasks were used. In a further, different experiment,
control and lactate-exposed MCF7 cells were treated with 1 µM of DOXO for 4 h followed
by a 16 h recovery. RNA was extracted using an RNA isolation kit (Merck) and was
quantified spectrophotometrically (ONDA Nano Genius Photometer). Retro-transcription
to cDNA was performed using a Revert Aid First Strand cDNA Synthesis Kit (ThermoFisher,
Waltham, MA, USA) in different steps: 5 min denaturation at 65 ◦C, 5 min annealing at
25 ◦C, 1 h retro-transcription at 42 ◦C and 5 min at 70 ◦C. A real-time PCR (RT-PCR)
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analysis was performed using 20 ng cDNA, SsoAdvanced Universal SYBR Green Supermix
(Bio-Rad, Hercules, CA, USA) and different primer mixtures. All the primers used for the
PCR experiments were predesigned and obtained from Merck. For all genes, the annealing
temperature of the primers was 60 ◦C, and the thermal cycler (CFX96 TM Real-Time
System, Bio-Rad) was programmed as follows: 30 s at 95 ◦C, 40 cycles of 15 s at 95 ◦C and
30 s at 60 ◦C. The data from RT-PCR experiments were analyzed by applying the 2−∆∆CT

method [22].

2.6. Quantification of TOP2A:DNA Covalent Complexes

To assess a possible increase in TOP2A:DNA complexes after DOXO treatment, the
in vivo complex of the enzyme assay described in [23] was followed, with some modifications.

Briefly, control and lactate-exposed MCF7 cells (T-25 flasks, at 80% confluence) were
treated with 1 µM DOXO for 24 h. After treatment, the medium was removed and 3 mL of
1% Sarkosyl in 1X TE pH 7.5 (10 mM Tris HCl pH 7.5, 1 mM EDTA) was added to the flasks.
The addition of the anionic detergent caused cell lysis and stabilization of the DNA–protein
complexes, which became measurable. Cell lysates were sheared with a syringe equipped
with a 25G gauge needle, and the final volumes were then increased to 10 mL with 1%
Sarkosyl solution. Sheared lysates were gently stratified onto 3 mL of 9 M CsCl, dissolved
in H2O in 13.5 mL Quick-Seal centrifuge tubes (Beckman Coulter, Pasadena, CA, USA)
and centrifuged (121,900× g for 21 h at 25 ◦C). The pelleted material containing DNA and
bound proteins was washed once with 500 µL of 70% ethanol, air-dried to remove ethanol,
dissolved again in 200 µL 1X TE buffer pH 7.5, left overnight at 4 ◦C and then incubated in
a water bath at 65 ◦C for 5 min to complete resuspension.

The DNA concentration of the samples was measured; scalar amounts of DNA (0–5 µg)
were diluted to a final volume of 200 µL with 1X TE buffer and applied on a PVDF mem-
brane (Cytiva Life Science) using a dot-blot apparatus (Bio-Rad). The blotted membrane
was blocked with 5% BSA (in TBS-TWEEN) for 1 h and probed with the primary antibody
(rabbit-anti-topoisomerase II alpha, Abcam). Binding was revealed using a Cy5-labelled
secondary antibody (goat anti-rabbit-IgG, Cytiva Life Sciences). The fluorescence of the
blots was assessed with the Pharos FX Scanner (Bio-Rad) at a resolution of 100 µm. The
results were evaluated with densitometry using the Protein Array Analyzer in ImageJ soft-
ware with the aid of the Gilles Carpentier’s Dot-Blot-Analyzer macro (2008). This macro
is available at http://rsb.info.nih.gov/ij/macros/toolsets/Dot%20Blot%20Analyzer.txt,
accessed on 1 January 2020.

2.7. Cell Proliferation

These experiments were performed in control and lactate-exposed MCF7 cultures
and in an MCF7 subclone grown in the presence of 20 mM lactate for at least 6 months
(LAC-MCF7) [12]. Cells (20 × 104 cells/well) were plated in clear bottom 96-well white
plates, left to adhere overnight and then exposed to scalar doses of DOXO (0–8 µM) for
24–48 h. At the end of treatment, cell proliferation was assessed with the detection of ATP
levels using the CellTiter-Glo Assay (Promega, Madison, WI, USA). A Fluoroskan Ascent
FL reader was used to evaluate the plates’ luminescence.

2.8. Statistical Analysis

All data were analyzed using the GraphPad Prism 5 software. All results were obtained
from at least two independent experiments performed with duplicate or triplicate samples.
The results are expressed as mean values ± SE and were calculated using all the data
obtained from the independent experiments; the significance level was set at p < 0.05.

3. Results
3.1. Enhanced Lactate Levels Modified the DNA Damaging Effects Caused by DOXO

The primary model used for our study was the MCF7 breast cancer cell line. Chemother-
apeutic treatments based on DOXO are a frequent therapeutic option for patients diagnosed
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with breast cancer [24], and MCF7 cultures are among the most studied models for this
neoplasm. These cells are characterized by moderate-level glycolysis, which allows to easily
evidence lactate-induced cell changes following exogenous administration of increased
amounts of this metabolite [15]. To highlight a possible role of lactate in modifying DOXO
antineoplastic action, MCF7 cultures were routinely grown with 5 mM glucose and exposed
to 20 mM lactate, added to the medium 72 h before experiments. This lactate concentration
was previously shown to facilitate the onset of tamoxifen resistance [15] and fits well with
the level of metabolite usually assessed in the microenvironment of neoplastic tissues [25].
The data obtained from MCF7 cultures exposed to lactate and treated with DOXO were
compared with results acquired for the MDA-MB-231 and CaCo2 cultures. MDA-MB-231
cells are a widely used model of drug-resistant breast cancer [26]. The CaCo2 culture
was selected as representative of a neoplastic disease from a different tissue, for which
DOXO-based treatment is a frequent therapeutic option [27]. As shown in Figure 1A, both
these cultures were characterized by significantly increased levels of glycolysis and lactate
production compared to MCF7 cells (p < 0.01 at both 2 and 4 h).
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Figure 1. (A) Assay of lactate levels. Lactate released in the medium was assessed as described in
the Materials and Methods section. Data were analyzed using ANOVA. A statistically significant
difference was confirmed by comparing MDA-MB-231 and CaCo2 cells with MCF7 cells. **, p < 0.01.
(B) Time course showing DNA damage and LDHA expression caused by DOXO in the cell cultures.
DNA damage was assessed with γ-H2AX. The densitometric reading of the bands is shown in (C).
For both the evaluation of DNA damage and LDHA levels, we compared the data of parental MCF7
cells with those obtained in lactate-exposed cultures using the multiple t-test analysis in GraphPad.
For γ-H2AX, a statistically significant difference was found at all the examined intervals. *, p < 0.05;
**, p < 0.01. The level of LDHA was found to be increased in parental MCF7 cultures from 6 h onwards,
with p < 0.05. The uncropped blots are shown in Supplementary Materials.

In the first experiment, the three cell cultures, together with lactate-exposed MCF7
cells, were treated with 1 µM DOXO, and the drug-induced DNA damage was assessed at
different times using an immunoblotting evaluation of γ-H2AX [17]. The results are shown
in Figure 1B,C. Interestingly, all the cultures exposed to higher lactate levels (derived from
either constitutively increased glycolysis rate or exogenous administration) appeared to
respond similarly to DOXO treatment. In contrast, they showed an appreciably reduced
DNA damage signal compared to MCF7 cultures at 2 and 6 h. In lactate-exposed MCF7
cells, the increase in γ-H2AX band intensities measured at these time intervals after DOXO
treatment was 2.4- and 1.8-fold lower than that measured in DOXO-treated parental MCF7
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cells (p < 0.01 and < 0.05 at 2 and 6 h, respectively). Conversely, the fold increase in the
DNA damage signal assessed at 16 and 24 h appeared to be significantly higher in the
lactate-exposed MCF7 culture (2.2-fold at 24 h with p < 0.05) (Figure 1C).

The immunoblotting experiment shown in Figure 1B,C also investigated the changes
in LDHA level during the phase of DOXO treatment. As well known, DNA damage triggers
glycolysis [28] since increased ATP levels are required for the repair reactions. Interestingly,
parental MCF7 and MDA-MB-231 cells showed progressively enhanced LDHA levels, in
relation to the timing of DOXO exposure: in the case of MCF7 cells, a ≈2.3-fold increase
was measured at both 16 and 24 h (p < 0.05). This increase appeared to be linked to lactate
levels since it was undetected in lactate-exposed MCF7 cells and in CaCo2, the cell line
showing the highest rate of lactate production (Figure 1A). This result could be interpreted
as a feedback regulation mechanism induced by elevated lactate levels in the medium.
Increased LDHA is expected to lead to higher lactate production, which could potentially
affect cell response to DOXO. The viability experiments described below (see Section 3.5)
showed no difference between lactate-exposed MCF7 cells and their parental culture treated
with DOXO for 24–48 h. This result suggests that the evidenced glycolytic flare (Figure 1B,C)
could play a role in equalizing the drug response of the two cell cultures in the long term.

3.2. Enhanced Lactate Levels Reduced Free Radical Generation Caused by DOXO

According to the data shown in Figure 1B, lactate exposure appeared to reduce the
early DNA damage (2–6 h) caused by DOXO. For their rapid onset, the DNA damage sig-
natures detected in parental MCF7 cells at this time could be attributed to drug-induced ox-
idative stress, a mechanism mainly accounting for the detrimental side effects of DOXO [7].
This hypothesis is also in agreement with the notion that cancer cells with activated gly-
colysis (such as MDA-MB-231 and CaCo2 cells) usually show protection against oxidative
stress [29]. This was verified with the experiments shown in Figure 2.
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Figure 2. Oxidative stress evaluation in control and lactate-exposed MCF7 cells. (A) Microscopic view
of DOXO-treated cells exposed to DCF-DA; original magnification: 600×. In these cells, DCF-DA
treatment resulted in a diffuse cytoplasmic fluorescence, and lactate exposure caused a dampened, but
still diffuse, fluorescence. For this reason, labeled cells were identified in merged pictures, as indicated
with white asterisks. The percentage of labeled cells is shown in the bar graph (B). A statistically
significant difference was found between control and lactate-exposed MCF7 cells. (C) Results of the
ELISA assay performed to evaluate 8OH-deoxyguanosine in the DNA of DOXO-treated cells; this
oxidative stress marker appeared to be significantly reduced in lactate-exposed cells. **, p < 0.01.
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Parental and lactate-exposed MCF7 cells were grown on glass slides and treated with
1 µM DOXO for 2 h, and ROS generation was visualized after applying a DCFH-DA probe.
The labeled cells were identified on pictures taken using a microscope after merging the
fluorescent DCF signal with Hoechst nuclear staining (Figure 2A). In agreement with the
data obtained with the immunoblotting evaluation of γ-H2AX, the bar graph in Figure 2B
shows that lactate exposure resulted in a significantly dampened ROS generation in DOXO-
treated MCF7 cells: the percentage of labeled cells in control cultures was reduced to about
one-third by lactate (42 % vs. 14%, p < 0.01).

Additional evidence for the reduced ROS generation in lactate-exposed cells was
achieved with the experiment shown in Figure 2C. As well documented, ROS can modify
guanine bases in DNA, giving rise to 8-OHdG. This modified guanine is considered an
oxidative stress biomarker [20]. Moreover, 8-OHdG easily forms base pairs with thymidine,
and this property could contribute to the mutagenic activity of DOXO [20]. The bar
graph in Figure 2C shows that DOXO treatment caused a ≈38% increased level of 8-
OHdG in parental MCF7 cells, while only an ≈11% increase was detected following lactate
exposure. The subsequent step in our experiment was aimed at identifying possible
molecular mechanisms underlying the oxidative damage protection effect observed in
lactate-exposed cells.

3.3. Involvement of the Stress Response

Recently published studies showed that in tumor cells, high lactate production is
often associated with stress protein overexpression and radio-resistance [30,31]; on the
contrary, depletion of lactate by LDH inhibition or knockout was found to impair stress
response and promote cell sensitivity to ionizing radiation [32]. The application of ionizing
radiation in tissues is typically followed by the induction of oxidative stress and ROS
generation [33]; therefore, we hypothesized that the results observed in lactate-exposed
MCF7 cells (Figures 1 and 2) would be mediated by a lactate-induced stress response.
For this reason, we verified whether the increased lactate levels in MCF7 cells could
promote the expression of three stress proteins, for which a role in the protection from DNA
damage induced by oxidants is well documented: inducible HSP70 and two members of
the HSP90 family, GRP94 and TRAP1 [34–36]. Furthermore, in previous studies, HSP70
and GRP94 were found to be linked with glycolytic metabolism, and their increased levels
were associated with poor survival and worse prognosis in breast cancer [37,38].

Figure 3A shows the mRNA level of the selected stress proteins as assessed using
RT-PCR for all cultures used in the experiments shown in Figures 1 and 2. No difference
was observed between the used cell lines concerning HSP70 and TRAP1. In the cultures
characterized by high lactate levels, the only observed upregulation concerned GRP94
mRNA, for which a ≈3-fold increased expression was measured in MDA-MB-231 and
CaCo2 cells compared to the MCF7 culture. A modest but statistically significant increase
was also observed in lactate-exposed MCF7 cells compared to their parental culture. How-
ever, when GRP94 levels were evaluated using immunoblotting (Figure 3B), the differences
between the cell lines appeared to be clearly decreased, and no statistically significant
finding was observed in lactate-exposed MCF7 compared to their parental culture. Since
stress protein mRNAs are expected to be translated mainly as a consequence of harmful
stimuli, the immunoblotting evaluation of GRP94 was repeated in DOXO-treated cells
using the same conditions applied in the experiments shown in Figure 1B. The results are
shown in Figure 3C,D. Again, no evident difference was observed between lactate-exposed
and parental MCF7 cells. This was also shown by the levels of band intensities measured
after 24 h of DOXO exposure, which, for all four cell cultures, were related to the GRP94
band intensity measured at T = 0 (Figure 3D).
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Figure 3. Evaluation of the stress-mediated response in DOXO-treated cell cultures. (A) mRNA
expression level of three stress proteins involved in the protection against oxidative DNA damage.
Compared to MCF7 cells, GRP94 mRNA was found to be significantly increased in MDA-MB-231 and
CaCo2 cells, as evaluated using the multiple t-test analysis in GraphPad. A lower extent increase was
also observed in GRP94 lactate-exposed MCF7 cultures. (B) Level of GRP94 protein as assessed using
immunoblotting. No direct effect of lactate was observed. (C,D) Level of the GRP94 protein assessed
in DOXO-treated cells. Again, no direct effect of lactate was observed. * and **, p < 0.05 and 0.01,
respectively, compared with MCF7 cells. The uncropped blots are shown in Supplementary Materials.

Taken together, the experiments shown in Figure 3B,D suggest that, compared to
MCF7 cells, the highly glycolyzing cultures express a slight but statistically significant level
of the GRP94 protein. However, the data obtained from lactate-exposed MCF7 cultures
suggest that this finding cannot be simply explained by the increased lactate level.

From all the experiments shown in Figure 3, we concluded that the three considered
stress proteins are not involved in the oxidative damage protection observed in DOXO-
treated and lactate-exposed MCF7 cells (Figure 2) or in the different time courses of DOXO-
induced DNA damage shared by all the cultures characterized by increased lactate levels
(Figure 1B,C).

3.4. Changes in Gene Expression following Lactate and DOXO Administration in MCF7 Cells

Both lactate and DOXO have the potential to modify gene expression [9–13]. Lactate
was originally shown to increase histone acetylation [11], and, as shown in Figure 4A,
this effect was also evidenced in lactate-exposed MCF7 cells. On the other hand, for its
capacity to intercalate between DNA bases, DOXO was shown to cause the dissociation
of histones/DNA complexes [6]. For these properties, the combined action of these two
molecules can be expected to have a significant impact on cell transcriptome. As a following
step, to explain the results shown in Figures 1 and 2, we next verified whether lactate and
DOXO could modify the expression of a number of genes involved in the oxidative stress
response when given to MCF7 cells independently or in combination. Figure 4B,C shows the
results of RT-PCR experiments aimed at evaluating the expression levels for a panel of genes
involved in both oxidative damage repair (B) and protection (C). For these experiments,
parental and lactate-exposed MCF7 cells were treated with 1 µM DOXO for 4 h; mRNA
extraction for RT-PCR was performed after an additional 16 h rescue time. As expected,
both DOXO and lactate appeared to affect gene expression levels, sometimes in opposite
ways. When evaluating these results, we only considered genes showing upregulation
caused by both lactate and DOXO and for which the combination of the two compounds
resulted in a statistically significant increased gene expression. This criterion was used
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to obtain better evidence for the combined effect of the two compounds and was met by
SMUG1, SOD1 and SOD2. The level of these proteins was further analyzed in treated cells
using immunoblotting; the results are shown in Figure 4D,E. When given to MCF7 cells
independently, lactate and DOXO did not affect SOD1 and SOD2 protein levels, which,
however, appeared to be significantly increased in cells receiving the combined treatment
(≈1.5 fold compared to control MCF7 cultures). After the immunoblotting evaluation,
SMUG1 appeared to be split into two bands, compatible with two of the five isoforms
described for this protein [39]. The higher molecular weight band is compatible with
isoform 1 (NCBI Reference Sequence: NP_055126.1), whereas the lower is compatible
with isoform 3 (NCBI Reference Sequence: NP_001338187.1). Isoform 3 originates from
an alternative mRNA splicing and is missing part of the terminal sequence of SMUG1.
Interestingly, the missing region contains amino acids found to participate in the catalytical
reaction of SMUG1. For this reason, this protein isoform is expected to have compromised
catalytic activity. When the band intensities of the two isoforms were analyzed together,
no significant difference was observed between untreated and lactate/DOXO exposed
cultures. After evaluating the relative abundance of the two SMUG1 isoforms, for the cells
exposed to DOXO single treatment, we found a marked increase in the isoform 1 band,
which reached 42% of the total protein signal, a value ≈7-fold higher than that observed
in untreated cultures. Lactate was found to counteract the effect of DOXO on SMUG1
isoforms, and in cells exposed to the combined treatment, the more functional isoform of
SMUG1 was ≈3-fold lower than measured in DOXO-treated cultures.
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Figure 4. Changes in gene expression caused by the combined treatment lactate/DOXO in MCF7
cultures. (A) Lactate-exposed MCF7 cells showed a ≈30% increased level of histone-3 acetylation,
suggesting changes in gene expression. The expression of a group of genes involved in oxidative
damage repair (B) and protection (C) was then assessed in MCF7 exposed to lactate/DOXO.
Statistically significant changes were evaluated using the multiple t-test analysis in GraphPad.
(#) indicates a reduced gene expression following DOXO treatment compared to the untreated
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cultures: a result excluding a contribution of these genes to the effects shown in Figures 1B,C and 2.
SMUG1, SOD1 and SOD2 mRNA (red boxes) were found to be significantly increased with the
combined lactate/DOXO treatment, and the levels of the corresponding proteins were analyzed using
immunoblotting (D,E). A statistically significant increase caused by the combination lactate/DOXO
was confirmed for SOD1 and SOD2 (D) (*, p < 0.05, compared to lactate and DOXO single treatments).
In the case of SMUG1, a change in the protein isoforms caused by DOXO was observed, which was
significantly counteracted by lactate (*, p < 0.05). (F) The level of UGCG mRNA was significantly
increased by DOXO, but no effect of lactate was observed for this marker of DOXO resistance. The
uncropped blots are shown in Supplementary Materials. *, p < 0.05.

This observation suggests that despite the evidently increased SMUG1 mRNA ex-
pression found in cells exposed to the lactate/DOXO treatment, this protein should not
be relevant to the oxidative damage protection observed in the cultures exposed to the
combined treatment. In conclusion, and on the basis of our results, the observed protective
effect can be only ascribed to the increased levels of SOD1 and SOD2. These findings
provide a mechanistic explanation for the results observed in the experiments shown in
Figures 1B,C and 2.

Finally, the bar graph in Figure 4F shows a RT-PCR experiment aimed at evaluating
the combined effect of DOXO and lactate on UDP-glucose ceramide glucosyltransferase
(UGCG). UGCG (also cited as glucosylceramide synthase, GCS) is a rate-limiting enzyme
in the synthesis of glycosylated sphingolipids [40], and its increased expression correlates
with resistance to DOXO and other chemotherapeutic agents [41]. Figure 4F shows that
DOXO treatment caused a ≈75% increased expression of UGCG; lactate did not affect the
expression of this gene either when given as a single treatment or in combination with
DOXO. From this experiment, we concluded that lactate should not impact the UGCG-
based mechanism underlying DOXO resistance.

3.5. DOXO-Induced TOP2 Poisoning in Lactate-Exposed MCF7 Cells

TOP2 poisoning inhibition is considered the main antineoplastic mechanism of DOXO.
TOP2 corrects DNA tangles that occur during replication and transcription by cleaving
and resealing the filaments [42]. DOXO intercalates in DNA strands and prevents the
resealing of cleaved sites, thus causing DNA double-strand breaks [43]. Specifically, TOP2A
is the enzyme isoform found to be essential for cell proliferation, while TOP2B is mainly
required for nervous tissue development. In DOXO resistance, an involvement of TOP1
was also described [44], and this form is also engaged in removing DNA supercoils during
transcription and replication [45].

To assess whether lactate and DOXO can affect the expression of topoisomerase
genes, an RT-PCR assay was performed using the same treatment schedule used for the
experiments shown in Figure 4. The results (Figure 5A) showed a significantly increased
expression of all three cited topoisomerase forms in DOXO-treated cells; no contribution
related to lactate emerged in this experiment. To confirm that lactate does not affect the
primary antineoplastic mechanism of DOXO, a dot-blot assay was performed to evaluate
DNA-TOP2A complexes in control and lactate-exposed MCF7 cultures treated for 24 h
with 1 µM DOXO. The results are shown in Figure 5B,C. For this experiment, samples
containing scalar doses of DNA were used. The dot fluorescence was analyzed with ImageJ
software using the built-in dot-blot-analyzer macro (see Section 2), which allowed us to
obtain the heatmap shown in Figure 5C. For each DNA sample, the signal given by the
DNA-trapped TOP2A in DOXO-treated cells was normalized on the respective untreated
control and plotted on a graph. As shown in the graph in Figure 5C, the values for the
fluorescence intensity ratios measured in control and lactate-exposed MCF7 cells did not
show significant differences, suggesting that the level of TOP2A inhibition caused by DOXO
in lactate-exposed cultures is superimposable to that observed in control MCF7 cells.
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Figure 5. TOP2A inhibition assay. (A) The level of mRNA in three topoisomerase isoforms was
assessed in MCF7 cells exposed to lactate/DOXO treatment. When administered singularly, DOXO
caused a statistically significant increased expression of the mRNAs (**, p < 0.01, as evaluated using
the multiple t-test analysis in GraphPad). Lactate co-administration did not significantly change the
effects of DOXO. (B) Dot-blot image obtained using a functional TOP2A assay; (C) heatmap showing
dot fluorescence obtained with the aid of ImageJ software. The built-in dot-blot-analyzer macro in
ImageJ allowed us to obtain the densitometric evaluation shown in the graph. (D) Cell viability assay
performed on control and lactate-exposed MCF7 cells treated with scalar doses of DOXO for 24 and
48 h. In this experiment, a clone of MCF7 cells grown with 20 mM lactate for ≥ 6 months was also
used (LAC-MCF7). The short exposure to lactate did not affect the antiproliferative activity of DOXO,
which appeared significantly reduced in LAC-MCF7 cultures. *, p < 0.05, as assessed using multiple
t-test analysis.

Finally, we performed cell viability experiments to evaluate the antiproliferative effect
of DOXO in control and lactate-exposed MCF7 cells. Again, no difference was observed
between the two cultures at either 24 or 48 h (Figure 5D). Taken together, the described
experiments suggest that lactate should not impair the primary antineoplastic mechanism
of DOXO, at least when lactate is administered using a short-term exposure before DOXO
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treatment. Interestingly, for the experiments shown in Figure 5D, we also used an MCF-7
sub-culture that was adapted to grow in the presence of 20 mM lactate for about 6 months
(LAC-MCF7). In previous experiments [15], we observed that these cells showed evidence
of an activated EGFR signaling pathway, a condition usually correlating with poor drug
response [46]. As shown in the Figure, LAC-MCF7 cells showed a significantly reduced
response to 1 µM DOXO. We hypothesize that this finding could reflect a phenomenon of
neoplastic progression triggered by a continuative exposure to lactate [47], which would
not be expected in the case of sporadic administrations of this metabolite.

3.6. Experiments on H9c2 Cardiomyocytes

While the contribution of DOXO-induced oxidative damage is considered secondary to
its antineoplastic effect, there is consolidated evidence that it plays a major role in the cardiac
toxicity caused by the drug [5,48]. Following the results obtained for lactate-exposed MCF7
cells, we wondered whether a similar protective effect against DOXO-induced oxidative
damage could be exerted by lactate in cardiomyocytes. For this experiment, we used rat
H9c2 cells, a validated model for studying DOXO cardiotoxicity and developing potential
cardioprotective strategies [49]. The combined effects of DOXO and lactate on oxidative
damage were studied in both proliferating and differentiated H9c2 cells (Figures 6 and 7,
respectively). For these experiments, H9c2 cells were exposed to 20 mM lactate for 72 h,
following the same schedule used for lactate-exposed MCF7 cells. Figure 6A shows the
results from the immunoblotting evaluation of γ-H2AX performed on proliferating H9c2
cells treated with 1 µM DOXO.
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showed a barely detectable γ-H2AX signal, and DNA damage became evident 16–24 h after DOXO
treatment. Lactate successfully reduced the extent of DNA damage. The quantitative differences
between parental and lactate-exposed H9c2 cells are shown in the bar graph **, p < 0.01, compared to
parental cells treated with DOXO. (B) Microscopic view showing DOXO-treated H9c2 cells exposed
to DCF-DA; original magnification: 600×. Compared to MCF7 cells (Figure 2), in untreated H9c2
cells, no sign of oxidative stress was evidenced with DCF-labeling, and in DOXO-treated cultures,
fluorescence showed a less diffuse and more spotted pattern. The percentage of labeled cells is
shown in the bar graph. A statistically significant difference was found between control and lactate-
exposed H9c2 cells (**, p < 0.01, as assessed with a t-test). The uncropped blots are shown in
Supplementary Materials.
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In these cells, evidence of DNA damage was observed at later times when compared 
with the MCF7 cultures (Figure 1B). These results are in complete agreement with 
previously published data that showed oxidative damage in H9c2 cells only after ≈24 h of 
DOXO exposure [50]. As shown in the immunoblotting images and the bar graph 

Figure 7. Evaluation of DNA damage and oxidative stress in DOXO-treated and lactate-exposed
D-H9c2 cells. (A) Time course of DNA damage observed in D-H9c2 cells. Untreated cells showed a
more detectable γ-H2AX signal, and DOXO-induced DNA damage became evident even after short-
time exposures. Again, lactate successfully reduced the extent of DNA damage. The quantitative
differences between parental and lactate-exposed D-H9c2 cells are shown in the bar graph. * and **,
p < 0.05 and 0.01, respectively, when compared to parental cells treated with DOXO. (B) Microscopic
view showing DOXO-treated H9c2 cells exposed to DCF-DA; original magnification: 600×. The
percentage of labeled cells is shown in the bar graph. A statistically significant difference was
found between control and lactate-exposed D-H9c2 cells (*, p < 0.05, as assessed using a t-test). The
uncropped blots are shown in Supplementary Materials.

In these cells, evidence of DNA damage was observed at later times when compared
with the MCF7 cultures (Figure 1B). These results are in complete agreement with previously
published data that showed oxidative damage in H9c2 cells only after ≈24 h of DOXO
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exposure [50]. As shown in the immunoblotting images and the bar graph reporting the
relative levels of band intensities, exposure to lactate caused a marked and statistically
significant reduction in DNA damage.

This effect was remarkable at 16 h, when, in lactate-exposed cultures, the γ-H2AX
band intensity became barely detectable; however, it also remained evident at 24 h, when
the γ-H2AX band was reduced to about one-third compared with the control cultures. In
agreement with these results, ROS evaluation in H9c2 cells treated with 1 µM DOXO for
16 h showed a marked reduction in lactate-exposed cells (Figure 6B); the extent of the effect
(≈70% reduction) is in line with the results from the γ-H2AX immunoblotting evaluation
in Figure 6A.

The same experiments were performed on differentiated H9c2 cultures (D-H9c2). The
results are shown in Figure 7.

The immunoblotting evaluation in Figure 7A shows that, compared to their un-
differentiated parental cultures, D-H9c2 appeared to be more prone to oxidative stress:
the γ-H2AX band was more evident in untreated cultures, and its increase in response to
DOXO treatment was already observed at 2 h. However, lactate exposure also successfully
reduced DNA damage in D-H9c2 cells, and the extent of the protective effect measured at
16 and 24 h was found to be very similar to that observed in the parental culture (≈70%
reduction in γ-H2AX band intensity). The higher level of oxidative stress in untreated
D-H9c2 was confirmed with the experiments in Figure 7B, which showed ROS detection
also in≈10% of cells in the control cultures. Despite this increased vulnerability to oxidative
damage, the coadministration of lactate successfully reduced DOXO-associated ROS (65%
vs. 25% ROS-labeled cells in DOXO-exposed cultures, compared to cultures exposed to
lactate/DOXO).

The increased vulnerability to oxidative stress of D-H9c2 could be explained by the
metabolic switch (oxidative metabolism instead of glycolysis) that characterizes the differen-
tiation process of normal cells and leads to reduced lactate production [51]. This hypothesis
was confirmed with the experiment shown in Figure 8A. Compared to proliferating H9c2
cells, the differentiated culture showed a 40% reduction in lactate production.
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Figure 8. Evaluation of lactate production and SOD1 and SOD2 levels in cardiomyocytes.
(A) Assay of lactate levels. Lactate released in the medium was assessed as described in the Materials
and Methods section. Data were analyzed using ANOVA. A statistically significant difference was ob-
served between H9c2 and D-H9c2. **, p < 0.01. (B) Immunoblotting evaluation of SOD1 and SOD2. In
proliferating H9c2 cells, a statistically significant increase caused by the combination lactate/DOXO
was confirmed for both SOD1 and SOD2; in the differentiated culture, the lactate-induced protective
effect could be ascribed only to SOD2. **, p < 0.01, compared to lactate and DOXO single treatments.
The uncropped blots are shown in Supplementary Materials.
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Finally, for the cardiomyocyte cultures exposed to the combined lactate/DOXO treat-
ment, we verified whether the observed oxidative damage protection (Figures 6 and 7) could
be ascribed to SOD1 and SOD2 proteins, as already demonstrated for MCF7 cells. The con-
trol and lactate-exposed H9c2 and D-H9c2 cells were treated with 1 µM DOXO for 16 h, the
time-interval with the most evident reduction in oxidative damage in lactate-exposed cells
(Figures 6 and 7). The cells were then lysed, and the SOD1 and SOD2 levels were detected
using immunoblotting. As shown in Figure 8B, in DOXO-treated H9c2 cells, both SOD1
and SOD2 proteins exhibited a 40–50% increased level when these cultures were previously
exposed to 20 mM lactate. In D-H9c2 cells, the protective effect of lactate could be ascribed
only to the SOD2 protein. This difference between the proliferating and differentiated
culture can be explained by previous studies showing that in mature cardiomyocytes, the
level of SOD1 is quite low and that, in these cells, the enzyme isoform primarily involved
in oxidative damage protection is SOD2 [52]. From these experiments, we can conclude
that the molecular mechanism underlying the oxidative damage protection induced by
lactate is similar in both MCF7 cells and in cardiomyocyte cultures.

4. Discussion

DOXO and its analogs are widely used as a first-line chemotherapeutic treatment
for different solid and hematologic malignancies. It was estimated that about 1 million
cancer patients receive DOXO treatment every year [1–3]. The broad-spectrum activity
of DOXO reflects the multiplicity of the identified intracellular targets for this drug. In
addition to accounting for antineoplastic action, these targets are also involved in heavy
DOXO side effects. Among these, cardiotoxicity proved to be the most relevant since
it often leads to therapy exclusion or discontinuation for patients with compromised
heart function [53]. A number of mechanisms have been hypothesized to contribute to the
pathogenesis of DOXO-induced cardiotoxicity; among them, oxidative stress received by far
the most attention since it can easily explain the mitochondrial damage and cardiomyocyte
apoptosis frequently observed in experimental models used to characterize the molecular
mechanisms underlying DOXO side effects [5,48,54]. Oxidative stress was found to be
derived by metabolic processing of the DOXO molecule, which produces a semi-quinone
derivative able to transfer its unpaired electrons to molecular oxygen, giving rise to ROS [55].
It is well known that ROS can cause membrane damage and mitochondrial dysfunction,
leading to cell apoptosis. Recent studies also identified some molecular targets involved
in DOXO-induced oxidative damage and confirmed the beneficial effects of antioxidant
compounds in alleviating cardiotoxicity [56–58].

One of the most recently characterized mechanisms underlying DOXO action is its
capacity to damage the chromatin structure and cause histone eviction, which results in
transcriptome alterations [6,9]. This observation prompted studies aimed at evaluating the
effect of the co-administration of DOXO with other compounds affecting gene expression,
such as HDAC inhibitors.

Formerly regarded as a waste product, lactate is now considered one of the most evo-
lutionarily ancient signaling molecules involved in the regulation of gene expression [59].
Preliminary observations suggested that this metabolite is capable of inhibiting HDAC. In
2019, Zhang et al. evidenced a different lactate-based histone acylation process: lactyla-
tion [13]. Histone lactylation was found to be directly linked to LDH activity, and, in recent
years, it was shown to be induced in cell lines following exposure to agents or conditions
increasing cellular lactate levels. This finding is in agreement with the original idea of
Zhang et al., which proposed a “lactate clock” activated in cells by increased lactate levels
and leading to histone lactylation [13]. Through this mechanism, lactate can modulate gene
expression and coordinate metabolism with other physiological functions.

Neoplastic diseases are the most clinically relevant conditions characterized by acti-
vated glycolytic metabolism and increased lactate production; therefore, increased histone
acetylation and/or lactylation can be reasonably hypothesized to contribute to the growth
and invasiveness of cancer cells [60]. In line with this idea, in recent years, our research
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group tried to elucidate the role of lactate in affecting the response of cancer cells to anti-
neoplastic treatment. During these studies, we found that increased lactate exposure can
facilitate the onset of tamoxifen resistance in ER-positive breast cancer cells [15] and affect
the efficacy of cisplatin [14]. The protective effects exerted by lactate on DNA integrity are
coherent with the role of glycolytic metabolism in embryonic tissues [61]. For the treatment
of cancer diseases, these effects could reduce the efficacy of chemotherapy. However,
the results obtained from cultured cardiomyocytes suggest that when the antineoplastic
mechanisms of the drug are not affected, the gene regulatory properties of lactate could be
exploited to protect normal tissues from chemotherapy-associated damage.

5. Conclusions

In the present paper, we explored the effect of lactate on DOXO antineoplastic mecha-
nisms and found that when MCF7 cells are exposed to DOXO in the presence of increased
lactate levels, TOP2A poisoning (the main antineoplastic mechanism of the drug) is not
affected. Interestingly, lactate-exposed MCF7 cells showed upregulated levels of SOD1
and SOD2 proteins and appeared to be protected from drug-induced oxidative damage.
Oxidative damage plays a major role in cardiac toxicity caused by a drug. When the
effect of lactate was evaluated on both proliferating and differentiated cardiomyocytes
exposed to DOXO (Figures 6 and 7), this metabolite succeeded in significantly reducing
ROS generation and the DNA damage signatures caused by the drug.

Taken together, the results of our experiments suggest that, by relieving the oxidative
damage in cardiomyocytes without significantly affecting the antineoplastic effect on cancer
cells, short-term exposure to lactate prior to DOXO treatment could be considered as a
possible attempt to increase the chemotherapeutic index of the drug. Our data encourage
a better characterization of the potential effects of lactate in modulating the response of
cancer cells to chemotherapy.
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