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 
Abstract—Insulator defect detection is essential to the reliable 

operation of overhead transmission lines. However, current 
automatic algorithms struggle to extract critical features due to 
the small size of insulator defects in inspection images, which may 
lead to potential failures. To address this issue, this paper 
proposes a novel and high-accuracy defect detection method 
based on deep learning technology, named insulator defect 
detection network (I2D-Net), which incorporates several 
innovative modules. First, we design a three-path feature fusion 
network (TFFN) to improve the network's ability to extract 
features from shallow layers. This hierarchical feature fusion 
mechanism across different network layers preserves spatial and 
semantic information, thereby maintaining the quality of features 
at different levels of the pyramid. Second, an enhanced receptive 
field attention (RFA+) block is incorporated to enable the network 
to adapt to different-scale defects and effectively distinguish them 
from the background. Finally, the context perception module 
(CPM) is introduced to better understand the surrounding 
features and their relationship with the defects. This improves 
defect localization capacity in the presence of interfering factors. 
Experimental results on the transmission line dataset demonstrate 
that the proposed method can accurately detect insulator defects 
and electrical components, even in challenging scenarios. 

Index Terms—Deep learning, feature fusion network, attention, 
defect detection, transmission line. 

NOMENCLATURE 
I2D-Net insulator defect detection network 
TFFN three-path feature fusion network 
RFA+ enhanced receptive field attention 
CPM context perception module 
HVOHL high-voltage overhead transmission lines 
CNN convolutional neural network 
(m) AP (mean) average precision 
RPN region proposal network 
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FPN feature pyramid network 
CAM channel attention module 
SAM spatial attention module 
RoI region of interest 

I. INTRODUCTION 

tatistics as of 2020 show that the length of high-voltage 
(voltage levels of 220kV and above) overhead transmission 

lines (HVOHLs) in China has reached 79,000 kilometers. 
Insulators, as the critical component with electrical insulation 
and mechanical fixation function, are substantially applicated 
in HVOHLs. However, insulator failures occur frequently, 
mainly due to the cracks in the manufacturing process and 
deterioration caused by the harsh natural environment [1]. Once 
the insulator malfunctions, it may cause transmission line 
tripping and leakage, ultimately leading to power outage 
accidents and economic loss. Hence, the inspection of defective 
insulators to prevent further failures is essential for safe and 
stable power industry production [1-2]. 

Focusing on the insulator defects, there already have been 
some traditional methods to detect them. Utilities have 
historically dispatched helicopters to detect HVOHLs failures 
[3] (inaccurate, labor-intensive), or used other efficient means 
to analyze collected data. For instance, Palangar et al. [2] 
proposed an automatic detection device leveraging radio 
communication technology to diagnose insulator faults. 
Stefenon et al. [4] introduced an insulator conditions evaluation 
method based on ultrasound sensors and the ensemble extreme 
learning machine optimized by the particle swarm algorithm. 
They have completed efficient defect detection, but the external 
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Fig. 1.  A sample of missing-cap defects in overhead transmission line images 
captured by UAVs. 
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noise can easily interfere with detection results. Nowadays, 
utility companies tend to use unmanned aerial vehicles (UAVs) 
to monitor overhead transmission lines. However, it is 
inefficient for utility labors to analyze the condition of 
insulators (normal or defective) from massive image data 
captured by UAVs. Thus, applying deep learning technology to 
automatically detect insulator defects is an alternative solution. 
Although insulators have many types of defects due to their 
long-term exposure, this paper focuses on the most common 
and frequently occurring defect: missing-cap [5]. 

Recently, deep learning technology, especially convolutional 
neural networks (CNNs), has made significant achievements in 
defect detection applications in power transmission industries 
[6-8]. Luo et al. [7] designed a defect detection model based on 
a deep convolutional neural network (DCNN) to enhance the 
feature representation of ultra-small bolts and achieved great 
performance in bolt defect detection. Zhao et al. [8] constructed 
an automated approach based on deep learning techniques for 
pin-missing defect detection for bolts in transmission lines. The 
CNN-based automatic defect detection paradigms are generally 
divided into segmentation-based approaches (e.g. [9]) and 
detection-based approaches (e.g. [10]). The 
segmentation-based method subdivides a digital image into 
collections of pixels and outputs the regions and corresponding 
categories of defects. While the detection-based method finds 
all the regions of interest in the image to generate detection 
boxes and then determines their category and localization. 
Since the task of insulator missing-cap defects detection faces 
huge challenges, such as complex backgrounds, diverse 
components, and small size relative to the original image (see 
Fig. 1), the segmentation-based approach is not applicable to 
this scenario. In the past decade, excellent object detection 
methods have been applied in insulator defects detection. Tao 
et al. [5] proposed a cascaded architecture based on a tandem of 
two-stage deep CNNs to detect missing-cap defects, where the 
feature extraction networks of two independent networks are 
not shared. Liu et al. [11] utilized you only look once v3 

(YOLOv3) [12] to recognize insulators, and further diagnosed 
insulator faults with discharge phenomena by leveraging 
ultraviolet imaging technology. Wang et al. [13] utilized the 
typical single-shot detector (SSD) [14] algorithm to identify 
missing-cap defects. Lei et al. [15] proposed an insulator defect 
detection method based on faster region-based CNN (Faster 
R-CNN) [16] to recognize defective insulator strings with 
missing-cap. These methods have made progress in identifying 
normal insulators as well as detecting insulator defects. 
However, their detection accuracy for small-sized defects in 
various complex backgrounds is insufficient to meet the 
reliability for the operation and maintenance of overhead 
transmission lines. 

 To address the aforementioned problem, a high-accuracy 
approach for identifying small-sized missing-cap defects is 
proposed in this paper, named insulator defect detection 
network (I2D-Net). Our approach is designed specifically for 
offline scenarios where real-time constraints are not a primary 
concern, and aims to achieve state-of-the-art accuracy while 
maintaining reasonable computational costs. The key 
contributions are as follows: 
(1) We first devise a novel three-path feature fusion network 

(TFFN) to alleviate the feature disappearance of 
missing-cap defects. Second, we propose an enhanced 
receptive field attention (RFA+) block to highlight the 
defect feature and suppress useless information. Third, we 
design a context perception module (CPM) to strengthen 
the defect localization ability. 

(2) The I2D-Net is constructed for improving the detection 
accuracy of small-sized missing-cap defects in complex 
backgrounds by aggregating semantic information, spatial 
details, and contextual information of defects. 

(3) The experimental results demonstrate that the proposed 
I2D-Net outperforms other existing works in detecting 
missing-cap defects with an average precision (AP) value 
of 89.4%. It reliably increases the detection accuracy of 
insulator missing-cap defects by a large margin. 
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Fig. 2.  The pipeline of the proposed I2D-Net.  



 3 

The rest of this paper is organized as follows. Section II 
introduces the details of our suggested method. Section III 
presents experimental results and corresponding explanations. 
Section IV concludes this paper. 

II. METHODOLOGY 

This paper proposes a novel I2D-Net for the detection of 
small-sized insulator defects in transmission line inspection 
images. The proposed model is based on the Faster R-CNN 
detector, which incorporates a feature pyramid network (FPN) 
to generate multi-scale feature maps. However, our model 
further enhances the feature fusion network by introducing the 
TFFN, which is specifically designed to improve the feature 
representation of small-sized insulator defects. Additionally, 
our model incorporates several novel components, including 
the RFA+ module and CPM, which are not present in the 
baseline model. These components are aimed at improving the 
accuracy of the model by focusing on important regions of the 
image and by refining the location and scale of detected objects. 

The pipeline of our proposed I2D-Net is illustrated in Fig 2. 
Firstly, the input transmission line image is processed by the 
backbone convolution layers to generate multi-scale feature 
representations. Then, these features are forwarded through the 
TFFN and RFA+ block to strengthen their representation 
capacity. Next, the region proposal network (RPN) [16] is 
employed to generate candidate boxes and feature maps. 
Finally, the defect detection network produces the detection 
results. 

A. Feature Extraction Network 

1) Backbone: We adopt the ResNet-50 [17] pre-trained on 
the ImageNet dataset as the backbone network. The feature 
activations output by each stage’s last residual block are used as 
the extracted multi-scale feature representations and denoted as 
{C2, C3, C4, C5}. Note that Ci (i = 2, 3, 4, 5) represents the 
feature level with a resolution of 1/2i of the input images. 

2) Three-path Feature Fusion Network: Since insulator 
missing-cap defects usually exist in the form of small objects 
[5], their features may vanish as the network deepens (pass 
through multiple convolutions and downsampling operation), 
thereby leading to poor performance of single-scale detectors. 
Simply detecting objects on multi-scale feature maps cannot 
reverse the situation, for the reason that the shallow layers of 
the network can better localize the object but with reduced 
recall performance. 

FPN [18] is often used to solve above problems, however, it 
suffers from inefficient feature reuse that can hinder its 
performance in detection tasks. To be specific, FPN generates 
features at multiple scales, but only the features at the topmost 
level are used for object detection. This means that features 
generated at lower levels of the pyramid are not fully utilized. 
Therefore, inspired by [19-20], TFFN is designed to address the 
limitations of traditional FPN and provide a more effective way 
of combining features from multiple levels and scales in an 
image. The architecture of TFFN combines two top-down 
pathways and a bottom-up pathway in cross-scale connections, 
which allows for more accurate feature aggregation and 
stronger feature representations. 

First, TFFN utilizes an additional bottom-up pathway to 
aggregate information from multiple levels of the pyramid. 
This operation helps mitigate the information loss that can 
occur in traditional FPN, where features are propagated in only 
one direction. By allowing information to flow along three 
paths, TFFN can further better preserve spatial information and 
maintain the quality of features at different levels of the 
pyramid. Secondly, TFFN enhances the semantic 
representation of small target features by adding an additional 
top-down pathway, while generating more flexible skip 
connections, effectively enabling multiple feature propagation 
along skip connections and thus richer feature aggregation at 
the nodes. Finally, TFFN incorporates skip connections, 
allowing the reuse of features from earlier layers in the network. 
This approach reduces the gradient disappearance problem that 
can occur in deep networks and helps to improve the overall 
accuracy of the model. 

Specifically, the top-down pathway generates higher 
resolution features by upsampling high-level features with poor 
perception of details but stronger semantic information; then 
these features are fused with the corresponding features of the 
same size using the lateral connection. Thus, all the fused 
features will share rich semantic information. For encouraging 
the signal flow of localization details from shallow layers 
(C2P2 

4 ), the middle bottom-up pathway is built. In this path, 
features will be downsampled first and then fused with the 
corresponding left top-down features by lateral connection. In 
addition, each skip connection provides an additional 
information flow path, shortens the distance between the two 
paths, strengthens the feature representation, and compensates 
for the information loss. 

Formally, the three feature fusion paths can be summarized 
in the following equations: 
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(3) 

where up is the nearest-neighbor interpolation upsampling 
operation, down is the max-pooling downsampling operation, 
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Fig.3.  Architecture of TFFN. The leftmost rectangular box from bottom to top 
is the output feature map of progressive convolution in ResNet-50. The green 
arrow represents upsampling, the orange arrow represents downsampling, and 
the black circle represents the feature fusion process. 



 4 

Convn×n represents the n×n convolution, and + denotes the 
element-wise addition. 

The proposed TFFN accurately combines the spatial details 
stored in high-resolution features with semantically stronger 
information to achieve enhanced representation of small 
missing-cap defect features. 

3) Enhanced Receptive Field Attention Block: Due to the 
limited proportion of missing-cap defects in overhead 
transmission line images, a substantial amount of non-critical 
information occupies a significant portion of the image. Given 
the constrained capacity of the network to process multiple 
sources of information, the attention mechanism is widely 
applied to selectively emphasize the valuable features. 
Moreover, the variation in object and scene sizes in input 
images necessitates the network's ability to extract features at 
multiple scales. However, the attention mechanism is 
constrained in its ability to gather information from a single 
receptive field. Consequently, the network is only capable of 
capturing features at a specific scale, rendering it inadequate for 
deployment in the aforementioned scenario. Thus, we first 
construct an enhanced receptive field structure that allows the 
network to linearly aggregate multi-scale information from 
different branches to improve detection accuracy and increase 
its adaptability to scale variance, eventually making accurate 
judgments about targets with different aspect ratios. 
Furthermore, two attention modules [21] are applied to 
strengthen highly correlated missing-cap defect features while 
weakening non-critical features or noises. As a result, this 
attention structure achieves a detailed distinction between 
defects and backgrounds. In short, we refer to the structure in 
Fig. 4 as the RFA+ block. 

The forward process is presented below. Let one of the 
feature maps refined by TFFN is applied as input feature P of 
the RFA+ block. The receptive field enhancement process can 
be represented by the following equation: 
 ( )iP f P P    (4) 

where P' 
i  represents the output feature, and f represents the 

multiple receptive field convolution operation. Note that the 
parameters are shown in Table I. In detail, a 1×1 convolutional 
layer is first utilized to reduce the computation, and then a 
convolutional layer with a 3×3 receptive field is appended to 
extract features. Similarly, the 1×1 convolutional layer of 
branch II is followed by two stacked 3×3 convolutional layers, 
and such a structure is identical to the convolution process with 
a 5×5 receptive field but possesses fewer parameters. 

Then, two kinds of attention mechanisms are acted on P' 
i  

sequentially. Firstly, the channel attention module (CAM) 
enhances or suppresses different channels by modeling the 
importance of each feature channel. To be specific, two feature 
vectors P c 

max ∈RC×1×1 and P c 
avg ∈RC×1×1 generated by global 

max-pooling and global average-pooling, respectively, share a 
multi-layer perceptron (MLP) and further add together. Then, 
the sigmoid activation layer produces the channel attention 
weights MC∈RC×1×1. Finally, the weights are element-wisely 
multiplied by P' 

i  to obtain a new feature map P'' 
i ∈RC×H×W. The 

calculation process is as follows: 
 1 2 1 2( ( ) ( ))c c

i i max avgP P M M P M M P      (5) 

where M1 and M2 are the weight parameters of two layers of the 
MLP, respectively.  is the sigmoid activation function,   
represents the element-wise product. 

Unlike the CAM, the spatial attention module (SAM) mainly 
assigns weights to spatial positions. The feature maps Ps 

avg∈

R1×H×W and P s 
max ∈R1×H×W are, respectively, generated after 

global average-pooling and global max-pooling along the 
channel dimension over the feature map P'' 

i . They are connected 
by using the concatenation method and then pass through a 
convolutional layer. The sigmoid activation layer applies to get 
the spatial attention weights MS∈R1×H×W. Finally, the weights 
are element-wisely multiplied by P '' 

i ∈RC×H×W to obtain a 
refined feature map P''' 

i ∈RC×H×W, which is defined as: 

 7 7( ([ , ]))s
avg

s
i i maxP P Conv P P      (6) 

where Conv7×7 represents the convolution operation with the 
kernel size of 7×7, [ ] represents the concatenation method. At 
the end of the RFA+ block, the feature map Pi∈RC×H×W is 
produced by the skip connection. The following equation 
expresses this process: 
 i i iP P P     (7) 

In summary, the feature maps {Pout 
2 , Pout 

3 , Pout 
4 , Pout 

5 , Pout 
6 } 

output by TFFN, except for Pout 
6 , are input into the RFA+ block 

to get the refined feature map {P2, P3, P4, P5}. Next, these 
feature maps {P2, P3, P4, P5, P

out 
6 } are fed into RPN. 

B. Region Proposal Network 

The RPN is implemented with a sliding window (a 3×3 
convolutional layer) followed by two sibling 1×1 convolutional 
layers for classification and bounding box regression, 
respectively (more details in [16]). Generally, the RPN 
generates candidate boxes and then maps these candidate boxes 
to the input feature maps at different resolutions to obtain the 
region of interests (RoIs). 

C. Defect Detection Network 

1) Context Perception Module: The RoI pooling method 
only considers the information within the region of interest, 

TABLE I 
THE CONVOLUTION KERNEL PARAMETERS OF THE TWO BRANCHES 

Input 
(HWC) 

Branch I Branch II 

2
outP  1164; 33C 1164; 33C; 33C 

3
outP  11128; 33C 11128; 33C; 33C 

4
outP  11160; 33C 11160; 33C; 33C 

5
outP  11192; 33C 11192; 33C; 33C 

The H, W, C represent the height, width, and channel, respectively. 
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while neglecting the information from surrounding pixels. In 
this study，missing-cap defects may be located in unexpected 
areas or within groups of similar-looking objects in complex 
backgrounds. Capturing contextual information (the 
relationship between the target and its surroundings) is well 
adapted to distracting factors in the input image [22-23]. Ref. 
[22] and Ref. [23] have manually defined the context region as 
double the size of the RoI and as eight directions surrounding 
the original RoI, respectively. However, these methods are 
limited by the manual selection of the context region, which 
may constrain the generalization ability of the model by 
over-fitting to specific scenarios. Thus, inspired by 
Inception-ResNet V2 [24], a novel context perception module 
(CPM) utilizes different convolutional kernels to automatically 
determine the context region, with preserving the spatial 
resolution (see Fig. 5). By fusing the feature vector output from 
the RoI pooling layer with context information from different 
receptive fields, our proposed approach can more effectively 
leverage global image information to enhance the accuracy of 
missing-cap defect detection. This integration not only retains 
essential information from the RoI but also utilizes the context 
information for correction and supplementation. Compared 
with manual settings methods, the CPM can better exploit the 
learning capability of the model, and improve the model 
detection performance. 

 To be specific, the CPM can sense larger regions in the input 
space by n (n=1, 2) stacking convolution layers with the kernel 
size of 3×3 or max-pooling to integrate more contextual 
information. Then, after the element-wise addition operation, a 
convolutional layer is applied to ensure the discriminability of 
the detected features. Functionally, this module can help the 
defect detection network generate regression offsets closer to 
the ground-truth based on the relevance of the object to its 
surrounding region. Ultimately, the spatial localization of the 
target is more accurate, contributing to a reduction in the false 
detection rate of small targets. 

2) The Architecture of Defect Detection Network: With the 
RoIs produced by RPN, we first need to convert RoIs of 
different sizes into fixed-resolution feature maps of n×n 
through the RoI pooling layer [16]. This paper sets n=14. Then 
the fixed-resolution feature maps are refined by the CPM and 
then mapped to a feature vector by two fully connected layers 
(FCs). Finally, an FC layer with an additional softmax layer is 
used to output the probability vector (cls-logit) over k object 
classes; simultaneously, another parallel FC layer outputs the 
predicted position offsets (bbox-pred) of each proposal. 

D. Loss Function 

In I2D-Net, the following multi-task loss function is utilized 
to train our network: 

     * * *1 1
( , ) ( , ) ( , )i i cls i i i reg i i

icls reg

L p u L p p p L t t
N N

    (8) 

where i is the index of an anchor, Lcls is the cross-entropy loss, 
and   is a factor used to balance the ratio of regression and 
classification loss. pi and ti respectively denote the predicted 
category probabilities and regression offsets. pi

* and ti
* 

respectively denote the ground truth, note that pi
* before Lreg, 

limits only the positive samples to calculate box regression loss 

(pi
*=1) and is disabled otherwise (pi

*=0). Lreg represents 
regression loss function, which uses robust loss (smooth L1) in 
[16], and the expression is as follows: 

 
2

1

0.5 | | 1,
( )

| | 0.5 .

x if x
smooth L x

x otherwise

 
 



  

  
 (9) 

Moreover, we set Ncls=256 and Nreg=2400 to balance the two 
terms and then weight them by  =10. To make the network 
easier to learn, we regress the offsets of the bounding box rather 
than its absolute coordinates, that is: 

   ,x a a y a at x x w t hy y   
 (10) 

   log , logw a h at w w t h h 
 (11) 

   * * * *,x a a y a at x x w t y y h   
 

(12) 

   * * * *log , logw a h at w w t h h 
 

(13) 
 

where x, y represent the center coordinates of the box, and w, h 
denote the width and height. x, xa, and x* correspond to the 
predicted box, anchor boх, and ground-truth box, respectively 
(the same as y, w, h). 

III. EXPERIMENTAL RESULTS 

This section presents the experimental results, including 
dataset establishment, implementation details, evaluation 
metrics, comparison results, ablation studies, robustness 
discussion, and results on other datasets. 

A. Dataset 

Our dataset consists of two parts: the CPLID dataset [5] of 
848 images, and the other part contains the dataset of 220 
images of 220kV transmission lines captured by UAVs during 
daily inspections. There are five common object categories in 
transmission line images, including insulator, missing-cap 
defect, equalizing ring, spacer, and damper. To prevent 
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s = 1; p = 1

Previous Layer 
HWC

Conv Layer 
HWC

Output Layer 
HWC

Element-wise add

Conv 33C
s = 1; p = 1

Max-pooling 
33C

s = 1; p = 1

Shortcut Connection

Conv 33C 
s = 1; p = 1

 
 

Fig. 5.  Architecture of CPM. Each branch has a specific receptive field while 
corresponding to the semantics of each level. Note that s represents the stride, 
and p represents the padding.  
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overfitting, we perform data augmentation, including 
brightness adjustment, rotation, and horizontal flip, which 
increases our dataset to a total of 1881 images. Then, we split 
the dataset into a training set (1278 images), a validation set 
(226 images), and a test set (377 images) according to the ratio 
of 75:15:20. 

B. Implementation Details and Evaluation Metrics 

The experimental hardware consists of a PC equipped with 
an Intel Core i9-9900K CPU and an NVIDIA GeForce RTX 
2070 GPU, running on the Windows 10 operating system.  

Our model is implemented using the PyTorch framework 

and trained for 15 epochs with a batch size of 1. Stochastic 
gradient descent (SGD) optimizer is employed with a 
momentum of 0.9 and a weight decay of 0.0001, with the 
learning rate set to 0.004 for the first 10 epochs and 0.0004 for 
the remaining 5 epochs. The scales of anchors are set to {322, 
642, 1282, 2562, 5122}, with three aspect ratios {0.5, 1, 2}.  

In this paper, the mean average precision (mAP) [25] is 
utilized as the evaluation metric to quantify the accuracy of 
different detection networks. 

TABLE II 
COMPARISON OF DIFFERENT MODELS WITH OUR SUGGESTED MODEL 

Model Backbone mAP (%) 
AP (%) Speed 

(ms) 
Params 

(M) missing-cap insulator equalizing ring spacer damper 
Faster R-CNN [16] VGG-16 [26] 58.6 2.2 88.1 95.7 64.0 42.8 116.3 134.7  
Faster R-CNN [16] ResNet-50 [17] 65.5 26.9 90.3 96.3 69.2 44.9 119.0 165.1  

SSD [14] ResNet-50 [17] 71.3 59.8 84.4 93.4 65.1 53.6 64.5 13.6  
YOLOv3 [12] Darknet-53 [12] 83.2 81.3 89.5 90.3 81.9 73.3 58.8 61.6  

Faster R-CNN+FPN [18] ResNet-50 [17] 87.4 83.0 93.9 97.1 86.9 76.2 117.6 41.3  
RetinaNet [27] ResNet-50 [17] 85.3 77.9 91.1 97.1 84.5 75.8 103.2 32.3  

Libra R-CNN [28] ResNet-50 [17] 86.6 79.2 92.9 97.2 84.6 78.9 122.0 41.5  
Camp-Net3 [22] ResNet-50 [17] 87.7 84.9 94.2 97.2 88.6 73.5 133.3 41.7 
BS-YOLO [29] CSPNet [31] 86.9 85.4 93.3 97.0 87.7 71.2 30.7 63.9 

FINet [30] CSPNet  [31] 88.5 86.0 94.8 98.8 87.3 75.6 90.1 86.3 
I2D-Net ResNet-50 [17] 89.6 89.4 94.4 96.4 89.8 78.2 156.2 87.5 

 

(a) Faster R-CNN with VGG16 (b) Faster R-CNN with ResNet50 (c) SSD (d) YOLOv3

(e) Faster R-CNN+FPN (f) RetinaNet (g) Libra R-CNN (h) Our proposed model  
Fig. 7.  The P-R curves of different models.  

 
Fig. 8.  The detection accuracy of targets with different sizes in the test set. 

Fig. 6.  The ratio of average area of target to original image (%). 
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C. Comparison Results 

1) Performance Comparison with Existing Models: Our 
suggested I2D-Net is compared with commonly used and 
advanced object detection models, such as Faster R-CNN [16], 
SSD [14], YOLOv3 [12], RetinaNet [27], Libra R-CNN [28], 
Camp-Net3 [22], BS-YOLO [29], and FINet [30]. 

The overall performance comparison results are shown in 
Table II, it can be noticed that our suggested model outperforms 

other models in terms of mAP. Note that Faster R-CNN with 
ResNet-50 has an mAP of 65.5%, and the AP of missing-cap 
defect is only 26.9%. In contrast, the mAP of the proposed 
model is 89.6%, and especially the AP of missing-cap defect is 
89.4%, which is 62.5 points higher than that of Faster R-CNN 
with ResNet-50. Compared with the Faster R-CNN+FPN, our 
model improves the mAP by 2.2 points, and with an increase of 
6.4, 0.5, 2.9 and 2.0 points for missing-cap defects, insulators, 
spacers and dampers, respectively. Note that the detection 

  
 

(a) SSD (b) YOLOv3 (c) RetinaNet 

 

  

(d) Faster R-CNN+FPN (e) Libra R-CNN (f) Camp-Net3 

   
(g) BS-YOLO (h) FINet (i) Our proposed model 

 

Fig. 10.  Detection results on the test set using different models. The rectangle represents the predicted detection box; specifically, the green, blue, mint, and white 
rectangles represent missing-cap defect, insulator, equalizing ring, and spacer, respectively. The red circle represents the missed or false detection, and the purple 
circle represents duplicate overlapping detection boxes. 

   

(a) Faster R-CNN with VGG16 (b) Faster R-CNN with ResNet-50 (c) Our proposed model  

 

Fig. 9.  Comparison results with traditional detection models on the test set. 
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results of the single-scale detectors (Faster R-CNN [16]) are not 
satisfactory for the missing-cap defects. The reason is that the  
downsampling operation will lead to the features of 
missing-cap defects disappearing, resulting in failure detection 
on the low-resolution feature map. With respect to the insulator 
and equalizing ring, the detection effects are excellent due to 
their larger sizes (see Fig. 6), and there is no significant 
difference between the various methods. In comparison, the AP 
values of missing-cap defect, spacer, and damper show a great 
contrast in different models. These objects occupying small 
sizes, especially the missing-cap defect, easily lose related 
features as the network deepens, and are mistaken as redundant 
features due to their high similarity to the background. 
Compared to the existing model, I2D-Net achieves the highest 
mAP with a value of 89.6%, in particular reaching 89.4% for 
the AP of missing-cap defects. This improvement validates the 
advantages of our proposed method.  

Moreover, the precision and recall (P-R) curves of different 
models are displayed in Fig. 7. The larger the area enclosed by 
the P-R curve, the better the performance of the model. It can be 
seen in Fig. 7 that these AP curves in our proposed model are 
generally higher than other models, especially with a 
qualitative leap compared to the results in the second row. 

In order to more fully validate the effectiveness of our 
method in identifying targets of different scales, we compute 
the corresponding mAP values for targets of different pixel 
sizes in the same test set. Comparison results from I2D-Net and 
Faster R-CNN+FPN are presented in Fig. 8. Obviously, our 
method I2D-Net achieves a remarkable improvement of 11.6 
points at the mAP for targets in the 0-20 pixel range, Moreover, 
for targets in the 20-30 pixel range, the proposed method 
obtains a significant increase of 8.5 mAP points. In addition, for 
other targets in different pixel ranges, the I2D-Net generates 
higher mAPs than the baseline model. which confirms the 
advantage of our proposed method. 

2) Comparison of Speed and Parameters: Table II presents 
the test speed and parameter count of different methods. Speed 
refers to the time required to test a single image. Our method 

takes an additional 0.0386s compared to Faster R-CNN+FPN, 
but significantly improves the AP for missing-cap by 7.7%. The 
Faster R-CNN with VGG16 and ResNet-50 models, with 
134.7M and 165.1M parameters, respectively, have mAP of 
only 58.6% and 65.5%. In contrast, the proposed method has 
fewer parameters and achieves th e highest mAP of 89.6%.  

The detection of transmission line inspection images is 
usually in the mode of offline detection [22]. Considering that 
parameters are stored in 4-byte format in a computer, the size of 
the proposed model is 350M (87.5×4). Although our model 
does not run fast enough, fortunately, nowadays computers are 
not hard to store a 350M file [22]. As the application scenario 
for this novel model is to be deployed on a computer for offline 
detection without requiring real-time performance, it is 
worthwhile to obtain a higher detection accuracy with an 
unremarkable increase in time. 

3) Visualization Experiments: This section presents 
visualization experiments to further illustrate the performance 
of our suggested method.  

In Fig. 9, both conventional target detection methods fail to 
detect the missing-caps, while our method successfully detects 
all defective targets. Subsequently, as shown in Fig. 10(a-i), 
except for the SSD model and FINet model, which detect only 
one of two missing-cap defects, none of the other models 
identifies any missing-cap defect. However, our model 
discovers all defective objects. Because it can adequately 
incorporate high-level features that capture global information 
with shallow features that preserve spatial details of defects. 
Thus, it effectively alleviates related feature loss of missing-cap 
defects and achieves accurate detection. Although the Faster 
R-CNN+FPN model also implements feature fusion, the 
detection effect of missing-cap defect is worse [see Fig. 10 (d)]. 
Concerning these object categories of equalizing ring and 
insulator, most of them have a larger size and distinguishable 
features. Therefore, all models can detect them in deep feature 
layers with a high confidence coefficient. Note that the 
YOLOv3, BS-YOLO, and FINet models (see Fig. 10) have a 
lower confidence coefficient in detecting targets compared to 
the proposed I2D-Net, which can affect the reliability of the 
predictions in practical engineering applications. Furthermore, 
the visualization of the detection comparison results in Fig.11 
shows our method outperforms the other three methods by 
detecting missing-cap defects against a highly complex 
background. Notably, all three of the other methods miss these 
small-sized target defects.  

To further explain the effectiveness of our model, we show 
the class activation maps of the specific feature map P2 output 
by the RFA+ block in Fig. 12. As shown in Fig. 12(c), semantic 
aliasing occurs in the intersection of receptive fields between 
targets, and the class activation region is blurred. However, the 
class activation region in Fig. 12(d) shows that the ambiguous 
features on the edges are suppressed, contributing to more 
accurate localization of objects. Although both models adopt 
feature fusion, our I2D-Net embeds the RFA+ block which 
increases the observation precision of the target area to obtain 
more detailed information. Besides, it has the ability to 
precisely distinguish missing-cap defects from the background 
or other fittings. 

  
(a) Camp-Net3 (b) BS-YOLO 

  
(c) FINet (d) Our proposed model 

Fig.11  Comparison results with various models in a highly complex 
background. The red circle represents the missed detection area. 
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D. Ablation Studies 

1) Effect of Three-path Feature Fusion Network: To verify 
the effect of the proposed TFFN, we conduct a comparative 
experiment with FPN and the path aggregation network (PANet) 
[19]. As shown in the first three rows of Table III, the TFFN 
model achieves 0.7-point and 0.5-point higher mAP than the 
FPN-based and PANet-based models, respectively, with a 
particularly significant increase of 2.4 and 1.9 points in AP for 

missing-cap defects. The designed TFFN overcomes the 
limitation of traditional FPN which suffers from information 
loss and fails to fully utilize the features at different levels. 
These experimental results illustrate that TFFN improves the 
accuracy for small-sized missing-cap defects with a slightly 
reduced speed.  

2) Effect of the Proposed I2D-Net: Ablation studies are 
utilized to understand the effectiveness of our proposed 
approach better. Table III presents the experimental results, 
which demonstrate how each submodule affects the 
performance of our method. It can be proved that each module 
positively affects the detection results. As can be seen from the 
last two rows in Table III, the addition of the RFA+ block and 
CPM increases the mAP of the entire model by 1.0 and 0.5 
points, respectively. 

E. Robustness Discussion 

To analyze the effectiveness of our proposed method more 
rationally and comprehensively under many uncertainties, 
robustness experiments are conducted. Electromagnetic 
interference caused by drones, insufficient or excessive light, 
and shaky filming are considered in overhead transmission line 
inspection tasks, we simulate the above environment, thus 
adding four attacks to the image: noise, exposure, backlight, 
and blurring, for discussion. 

As illustrated in Table IV, all methods exhibit performance 
degradation after various image distortion treatments. The 
impact of different interferences on the prediction of the 
proposed model is minimal. Compared to the other methods, 
I2D-Net maintains the best detection performance with the 
highest mAP value in the presence of disturbances. 

The detection results from the proposed method for 
transmission line inspection images under different 
interferences are displayed in Fig. 13. 

 
(a) (b) 

 
(c) (d) 

Fig. 12.  Class Activation Maps. (a): The original image. (b): Enlarge images of 
defect area marked by the red boxes. (c)-(d): Class activation maps from Faster 
R-CNN+FPN (Left) and I2D-Net (Right). The white box represents the 
activated region of the missing-cap defect and its surroundings. 

TABLE IV 
THE PERFORMANCE COMPARISON OF DISTORTION TEST IMAGES 

Model Backbone 
mAP(%) 

N.A. noise 
expo
sure 

back 
light 

blur 

FRCNN  VGG-16  58.6 50.7 51.7 51.6 55.1 
FRCNN  ResNet-50  65.5 63.0 60.5 60.2 62.7 

SSD  ResNet-50  71.3 70.3 70.6 67.1 70.5 
YOLOv3  Darknet-53  83.2 82.7 82.0 79.9 81.3 
FR-FPN  ResNet-50  87.4 82.8 84.4 84.4 84.1 
Re-Net  ResNet-50  85.3 82.1 82.7 82.6 83.1 

LRCNN  ResNet-50  86.6 84.3 82.3 83.2 84.6 
Camp-Net3 ResNet-50 87.7 81.5 84.6 84.0 84.4 
BS-YOLO CSPNet 86.9 83.1 83.9 83.8 83.4 

FINet CSPNet 88.5 83.4 85.1 84.1 85.0 
I2D-Net ResNet-50  89.6 84.6 86.3 84.9 85.4 

N.A. means that no degradation processing is performed on the test images. 
FRCNN represents the Faster RCNN model, FR-FPN denotes the Faster 
RCNN+FPN, Re-Net is the RetinaNet model, and LRCNN means the Libra 
R-CNN. 

TABLE III 
ABLATION  STUDIES OF THE PROPOSED I2D-NET ON OUR TRANSMISSION LINE INSPECTION IMAGE DATASET 

Feature Fusion 
RFA+ CPM mAP (%) 

AP (%) Speed 
(ms) 

Params 
(M) FPN PANet TFFN missing-cap insulator equalizing ring spacer damper 

 - - - - 87.4 83.0 93.9 97.1 86.9 76.2 117.6 41.3 
-  - - - 87.6  83.5 93.2 97.3 87.7 76.4 120.0 43.1 
- -  - - 88.1 (+0.7) 85.4 93.2 97.3 87.3 77.2 126.4 44.8 
- -   - 89.1 (+1.0) 88.0 94.4 96.2 89.2 77.8 151.5 85.5 
- -    89.6 (+0.5) 89.4 94.4 96.4 89.8 78.2 156.2 87.5 

 

  
(a) noise (b) exposure 

  
(c) backlight (d) blur 

Fig. 13.  Detection results under different interferences. The noise is a Gaussian 
noise with a mean of 0 and a variance of 0.1; the exposure and backlight are 
processed using the gamma function with exponential parameters set to 0.5 and 
2.5 respectively, and the blur is the GaussianBlur method with a convolution 
kernel size of 3. 
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F. Results on DOTAV1.5 and TT100K Datasets 

To further evaluate the proposed model, the experiments are 
implemented on the DOTAV1.5 and TT100K datasets. Tables 
V and VI show the comparison results with Faster 
R-CNN+FPN, Libra R-CNN and Camp-Net3 on the 
DOTAV1.5 and TT100K datasets respectively. As shown in 
Table V, I2D-Net attains the highest mAP value of 86.6% on 
the DOTAV1.5 dataset, which is 3.7 points higher than the 
baseline model. Moreover, from Table VI, I2D-Net obtains the 
highest mAP among all methods with 71.6% on the TT100K 
dataset. Therefore, the evaluation results demonstrate that the 
proposed model achieves better detection performance.  

IV. CONCLUSION 

In this paper, a high-accuracy CNN-based model (called 
I2D-Net) is proposed to address the problem of small-sized 
insulator missing-cap defect detection. The specific 
conclusions are as follows. 

1) The proposed TFFN can provide a rich information flow 
to facilitate the appropriate fusion of shallow features and deep 
features. Compared to the baseline feature fusion network, our 
network has more powerful feature fusion capabilities, which 
makes the feature information of the small-sized missing-cap 
defect can be distributed in the multi-scale feature maps. 

2) The presented RFA+ module can refine the fused feature. 
To be specific, the module provides a more diverse receptive 
field to better capture objects in different aspect ratios and 
emphasizes the features of objects by the attention module. 

3) The CPM module can absorb contextual information 
without particularly deepening the network depth, which 
strengthens the performance of small missing-cap defects. 

4) Experimental results prove that our I2D-Net outperforms 
other transmission line detection models in detection accuracy, 
which provides a practical application scheme for insulator 
missing-cap defect detection, as well as a research strategy for 
the intelligent inspection of overhead transmission lines. 
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